有理数的混合运算技巧精讲

合集下载

有理数加减混合运算知识点

有理数加减混合运算知识点

有理数加减混合运算知识点
一、有理数加减混合运算的概念
有理数的加减混合运算,就是将有理数的加法和减法统一成加法运算,再按照加法运算的法则进行计算。

二、有理数加减混合运算的步骤
1. 将减法转化为加法:减去一个数,等于加上这个数的相反数。

2. 写成省略加号和括号的代数和形式:在一个和式里,通常把各个加数的括号和它前面的加号省略不写。

3. 运用加法交换律和结合律,将同号的加数相加,异号的加数相加。

4. 按照加法法则计算出结果。

三、有理数加减混合运算的技巧
1. 凑整:将相加能得到整数的数结合在一起先计算。

2. 同号结合:把同号的加数先相加。

3. 相反数结合:互为相反数的两个数先相加。

4. 同分母结合:把分母相同的数先相加。

四、有理数加减混合运算的应用
1. 在实际生活中的收支、行程等问题中,常需要运用有理数的加减混合运算来解决。

2. 在数轴上的动点问题中,通过计算动点的位置变化来求解。

五、注意事项
1. 运算时要注意符号,不要漏写或错写。

2. 交换加数的位置时,要连同前面的符号一起交换。

3. 计算结果要化简,写成最简形式。

初一数学《有理数的混合运算》知识点精讲

初一数学《有理数的混合运算》知识点精讲

知识点总结知识点1 常规计算有理数混合运算的运算顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行;3、如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.【方法总结】根据有理数的混合运算顺序和运算法则计算即可.本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.注意:绝对值符号有括号的作用.知识点2 运算律、规律计算有理数的混合运算中,常用的运算律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、加法对乘法的分配律. 【方法总结】本题主要考察了有理数混合运算的运算顺序和分配律的使用,(1)和(3)是乘法分配律的正用,(2)是乘法分配律的逆用,熟练掌握运算律的使用是解本题的关键.知识点3 求代数式的值重要结论:互为相反数的两数和为0,相反数等于自身的数是0;互为倒数的两数积为1,倒数等于自身的数有-1,1,倒数等于自身的自然数是1;最大的负整数是-1,最小的正整数是1,绝对值最小的有理数是0;有理数的混合运算:1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.知识要点1.计算的基本法则:包括:有理数的加法、减法、乘法、除法、乘方①加法:同号两数相加,取相同的符号,并把绝对值相加. 异号两数相加,取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数。

初一数学有理数混合运算解题方法与技巧

初一数学有理数混合运算解题方法与技巧

初一数学有理数混合运算解题方法与技巧板块一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.示例:a+b=b+a(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.示例:(a+b)+c=a+(b+c)(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.示例:a-b=a+(-b)有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.示例:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是求正3,负0.15,负9,正5,负11的和.板块二、有理数基本乘法、除法有理数乘、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等.示例:ab=ba (乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.示例:abc=a(bc)(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.示例:a(b+c)=ab+ac(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.板块三、有理数混合运算的顺序在进行有理数运算时,先算乘方,再算乘除,最后算加减,同级运算,按照从左到右的顺序进行,有括号的先算括号里的数.-----------------------------------------------------------------------------------------------------有理数运算所需的小学知识储备:整数、小数和分数的四则运算;约分和通分;常用的小数与分数的互化;基本的运算律和运算性质;在进行有理数运算之前,必须要掌握相反数、倒数和绝对值等相关概念:相反数:倒数:绝对值:要想学好有理数运算,必须要熟练掌握有理数运算法则:加法:减法:乘法:除法:乘方:有理数运算要点:有理数的运算顺序:先乘方和绝对值,再乘除,最后加减,有括号的先算括号里面的。

有理数混合运算法则及技巧

有理数混合运算法则及技巧

有理数混合运算法则及技巧
以下是 6 条关于有理数混合运算法则及技巧:
1. 有理数混合运算,一定要先搞清楚运算顺序呀!就像你出门先穿好衣服再穿鞋一样,先算乘除后算加减呀!比如算3+2×5,那可不能先算 3+2 呀,得先算2×5 等于 10,再加上 3 才对呀!不然结果就错啦,这多重要呀!
2. 注意符号问题可太关键啦!这就像走在路上要认清方向,不能跑偏呀!比如计算-3×(-2),两个负号碰到一起就变成正啦,结果就是 6 哦!可别搞错
符号啦!
3. 巧用括号能帮大忙呢!括号就像是给运算加上了一层保护罩。

比如 10-(3+2),得先算括号里的 3+2 等于 5,再用 10 减去 5 才对呀!这技巧能让你算得更清楚明白呀!
4. 在有理数混合运算中,约分能让计算变简单好多呢!就像把一件复杂的事情简化了一样。

像计算12÷4/3,就可以把除法变成乘法,12×3/4,然后
约分一下,轻松算出 9,是不是很神奇呀!
5. 转换思路也很重要哦!有时候换个角度就能恍然大悟啦!比如说算转化
成分数 1/4,计算起来是不是一下子就容易多啦?多试试转换呀!
6. 要多练多熟悉呀!就像你熟悉了回家的路,走起来就轻松。

经常做有理数混合运算的练习,你就会越来越熟练,越来越厉害呀!以后遇到再难的题都不怕喽!
总之,有理数混合运算不难,掌握好这些法则和技巧,多练多熟悉,你一定能轻松搞定它!。

有理数的加减乘除的混合运算技巧

有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。

它们的混合运算在解决复杂问题时尤为重要。

下面将介绍有理数的加减乘除的混合运算技巧。

一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。

1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。

1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。

二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。

2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。

2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。

三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。

3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。

3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。

四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。

4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。

4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。

五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。

5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。

5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。

六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。

有理数的混合运算技巧精讲

有理数的混合运算技巧精讲

有理数的混合运算技巧精讲1.加法和减法的混合运算:在进行加法和减法的混合运算时,可以先按照运算的优先级逐步进行计算。

具体步骤如下:a)首先计算同符号的有理数相加或相减,即进行整数部分的加法或减法运算。

例如,计算2.5+3-1.2-0.8:2.5+3=5.5;5.5-1.2=4.3;4.3-0.8=3.5b)然后计算异符号的有理数相减,即进行小数部分的减法运算,注意保持减数不变,被减数取相反数。

例如,计算4.3-1.2:4.3-1.2=4.3+(-1.2)=3.12.乘法和除法的混合运算:在进行乘法和除法的混合运算时,同样需要按照运算的优先级逐步进行计算。

具体步骤如下:a)先进行乘法运算,按照整数部分和小数部分分别计算。

例如,计算2.5×1.2÷0.5:2.5×1.2=3;0.5×3=1.5b)最后计算整数和小数的除法运算。

例如,计算1.5÷0.5:1.5÷0.5=33.混合运算的技巧:a)遇到括号时,首先计算括号内的运算。

例如,计算2×(3+4):先计算括号内的运算,得到2×7=14b)在进行加法和减法运算时,可以将有理数转化为同一个分数再进行计算。

例如,计算1/2+2/3-3/4:可以将1/2转化为3/6,2/3转化为4/6,3/4转化为4.5/6,然后进行分数的加减法运算。

4.需要注意的问题:a)在进行乘法和除法运算时,需要注意小数点的位置。

乘法和除法的运算结果的小数点的位数是所有运算数小数点位数之和的和,即应根据实际情况来调整小数点的位置。

例如2.5×0.3=0.75b)在进行除法运算时,除数不能为零,需要注意排除除数为零的情况。

例如,计算2.5÷0:除数为零,无法进行运算。

通过以上的讲解,能够使学生更好地理解和掌握有理数的混合运算技巧,提高解题的准确性和效率。

同时在实际应用中,学生需要根据具体情境灵活运用这些技巧,以解决实际问题。

第09讲 有理数混合运算(6种题型)(解析版)

第09讲 有理数混合运算(6种题型)(解析版)

第09讲有理数混合运算(6种题型)会进行有理数的混合运算,合理应用运算律,进行简便运算.一.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.二.计算器—基础知识(1)计算器的面板是由键盘和显示器组成.(2)开机键和关机键各是AC/ON,OFF,在使用计算器时要按AC/ON键,停止使用时要按OFF键.(3)显示器是用来显示计算时输入的数据和计算结果的装置.键上的功能是第一功能,直接输入,下面对应的是第二功能,需要切换成才能使用.(4)开方运算按用到乘方运算键x2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx2被开方数ENTE.(6)对于开立方运算的按键顺序是:32ndf∧被开方数ENTE.(7)部分标准型具备数字存储功能,它包括四个按键:MRC、M﹣、M+、MU.键入数字后,按M+将数字读入内存,此后无论进行多少步运算,只要按一次MRC即可读取先前存储的数字,按下M﹣则把该数字从内存中删除,或者按二次MRC.注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.三.计算器—有理数计算器包括标准型和科学型两种,其中科学型使用方法如下:(1)键入数字时,按下相应的数字键,如果按错可用(DEL )键消去一次数值,再重新输入正确的数字.(2)直接输入数字后,按下对应的功能键,进行第一功能相应的计算.(3)按下(﹣)键可输入负数,即先输入(﹣)号再输入数值.(4)开方运算按用到乘方运算键x 2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx 2被开方数ENTE 或直接按键,再输入数字后按“=”即可.(6)对于开立方运算的按键顺序是:32ndf ∧被开方数ENTE 或直接按x 3,再输入数字后按“=”即可注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.题型一:有理数四则混合运算一、填空题1.(2022秋·江苏无锡·七年级统考期中)定义一种新运算:x y x y xy =+-★,则计算()32-=★___________.【答案】5【分析】根据新运算的定义代入直接计算即可.【详解】解:∵x y x y xy =+-★,∴()()3232323265-=-+--⨯=-++=★,故答案为:5【点睛】本题考查了新运算和有理数的混合运算,理解新运算的定义是解题的关键.二、解答题2.(2022秋·江苏徐州·七年级校考阶段练习)计算(1)13251216-+-(2)()()()0510037÷-⨯+-÷-(3)()()()25549-⨯-÷-+【答案】(1)23,5a b+(2)≠(3)42-【分析】(1)根据题目所给新运算的运算顺序和运算法则进行计算即可;(2)先根据题目所给新运算的运算顺序和运算法则将a b 和b a 计算出来,再用作差法比较即可;(3)根据题目所给新运算的运算顺序和运算法则进行计算即可.【详解】(1)解:4345323=⨯+= ;5a b a b =+ ;故答案为:23,5a b +.(2)∵5a b a b =+ ,5b a b a =+ ,∴()()()()5544a b b a a b b a a b -=+-+=- ,∵a b ¹,∴440a b -≠∴a b b a ≠ .故答案为:≠.(3)()543-- ()5453=--⨯+ ()517=-- ()5517=-⨯+-42=-.【点睛】本题主要考查了新定义下的有理数的混合运算,解题的关键是正确理解题意,明白题中所给新定义的运算顺序和运算法则,熟练掌握有理数的混合运算顺序和运算法则.题型二:有理数四则混合运算的应用一、填空题1.(2022秋·江苏·七年级开学考试)园林公司在林州大道旁种植了120棵树,有116棵成活,后来又补栽4棵,全部成活,这124棵树苗的成活率为_____【答案】97%∴在这过程中共耗油2.16升.(3)∵接送第一批客人的收费为:9元,接送第二批客人的收费为:()9 1.84310.8+⨯-=(元),接送第三批客人的收费为:()9 1.87316.2+⨯-=(元),送第四批客人的收费为:9元,接送第五批客人的收费为:()9 1.85312.6+⨯-=(元),∴910.816.2912.657.6++++=(元).所以在这过程中该出租车驾驶员共收到车费57.6元.【点睛】本题考查了正负数的意义和有理数的运算,解题关键是明确正负数的意义,能熟练运用有理数运算法则进行计算.3.(2023秋·江苏淮安·七年级统考期末)新能源电动轿车越来越受现代家庭青睐.小明家买了一辆电动轿车,他连续10天记录了他家这辆轿车每天行驶的路程,以25km 为标准,超过或不足部分分别用正数、负数表示,得到的数据如下(单位:km ):+3,+1,-4,+1,-8,+2,-6,+2,-3,+2.(1)请计算小明家这10天这辆轿车行驶的总路程;(2)若该轿车每行驶100km 耗电15度,且轿车充电的价格为每度1.5元,请估计小明家一个月(按30天算)电动轿车耗电费用.【答案】(1)小明家这10天轿车行驶的路程为240km(2)估计小明家一个月耗电费用为162元【分析】(1)记录数字的和再加上10个25即可得到结果;(2)用(1)的结论乘以3即可得到总路程,再根据“该轿车每行驶100km 耗电15度,且轿车充电的价格为每度1.5元,”列式解答即可;【详解】(1)解:()314182623210km +-+-+-+-+=-,()251010240km ⨯-=,答:小明家这10天轿车行驶的路程为240km .(2)240310015 1.5162⨯÷⨯⨯=(元),答:估计小明家一个月(按30天算)的电动轿车耗电费用为162元.点B 以每秒1.5个单位的速度向右运动,点C 以每秒3个单位的速度先向右运动碰到点A 后立即返回向左运动,碰到点B 后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,当三个点聚于一个点时,这一点表示的数是多少?点C 在整个运动过程中,移动了多少单位?【答案】(1)3.5或0.5或 3.5-或0.5-(2)6-,4(3)8,4,24【分析】(1)先求出点M 所表示的数,进而即可求解;(2)先求出折痕对应的数为:-1,进而即可求解;(3)先求出A 、B 相遇时所花的时间,进而即可求解.【详解】(1)解:∵点M 与原点的距离为2,∴点M 表示的数为:2±,∵,M N 两点的距离为1.5,∴N 表示的数为:2 1.5 3.5±=或0.5;2 1.5 3.5-±=-或0.5-,故答案是:3.5或0.5或 3.5-或0.5-;(2)∵折叠纸面,使数轴上表示2的点与表示4-的点重合,∴折痕对应的数为:1-,∵数轴上,E F 两点之间的距离是10(E 在F 的左侧),且,E F 两点经过上述折叠后重合,∴点E 表示的数是:156--=-,点F 表示的数是:154-+=,故答案是:6-,4;(3)当三个点聚于一个点时,则A 、B 相遇,运动的时间为:()()880.5 1.58+÷+=(秒),此时,这一点表示的数是:8 1.584-+⨯=,点C 在整个运动过程中,移动了:2483=⨯个单位.【点睛】本题主要考查数轴上的点所表示的数,两点间的距离,折叠的性质,掌握数轴上两点的距离等于对应的两数之差的绝对值,是解题的关键.7.(2022秋·江苏南通·七年级统考期中)如图,将一根长为a 的长方形木条放在数轴上,木条的左、右两端分别与数轴上的点A ,B 重合(点A 在点B 的左边).(1)【初步思考】若5a =,当点A 表示的数为2-时,点B 表示的数为______;(2)【数学探究】如图2,若将木条沿数轴向右水平移动,当它的左端移动到B 点时,它的右端在数轴上所对应的数为14;若将木条沿数轴向左水平移动,当它的右端移动到A 点时,它的左端在数轴上所对应的数为10-.请确定a 的值及图中..A ,B 两点表示的数;(3)【实际应用】一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我已经124岁,是老寿星了,哈哈!”根据以上信息可知,爷爷现在的年龄是______岁.【答案】(1)3(2)a 的值为8,点A 表示的数为2-,点B 表示的数为6(3)72【分析】(1)根据数轴的性质列出运算式子,再计算有理数的加法即可得;(2)先根据3根木条的长度等于14与10-之间的距离可求出a 的值,再根据数轴的性质列出运算式子,计算有理数的加减法即可得;(3)先参照(2)的思路求出爷爷比小红大52岁,再利用124减去52即可得.【详解】(1)解:由题意得:点B 表示的数为253-+=,故答案为:3.(2)解:由题意得:a 的值为()141038--÷=⎡⎤⎣⎦,则点A 表示的数为1082-+=-,点B 表示的数为1486-=,即a 的值为8,点A 表示的数为2-,点B 表示的数为6.(3)解:由题意得:爷爷比小红大()12432352--÷=⎡⎤⎣⎦(岁),则爷爷现在的年龄为1245272-=(岁),故答案为:72.【点睛】本题考查了数轴、有理数的加减法与除法的应用,熟练掌握数轴的性质是解题关键.题型三:程序流程图与有理数计算一、单选题1.(2022秋·江苏苏州·七年级统考期中)按如图所示的程序运算,依次输入以下三组数据:①7x =,2y =:②2x =-,=3y -;③4,1x y =-=-,,能使输出的结果为25的有是()A .①②B .①③C .②③D .①②③【答案】B 【分析】分别将三组数据代入程序流程图运算求解即可.【详解】解:①当7x =,2y =时x y >,222()(72)525x y ∴-=-==;② 当2x =-,=3y -时x y >,[]222()2(3)11x y ∴-=---==;③ 当4,1x y =-=-时x y <,[]222()4(1)(5)25x y ∴+=-+-=-=,∴能使输出的结果为25的有①③,故选:B .【点睛】本题主要考查了与程序流程图有关的有理数计算,有理数比较大小,正确读懂程序流程图是解题的关键.二、填空题2.(2022秋·江苏盐城·七年级校考阶段练习)如图所示是计算机某计算型序,若开始输入2x =-,则最后输出的结果是__________.故答案为: 3.625-.【点睛】此题考查了有理数的混合运算,代数式求值,熟练掌握运算法则是解本题的关键.4.(2023秋·江苏泰州·七年级校考期末)如图是一个计算程序,若输入的值为1,则输出的值应为___________.【答案】4【分析】根据程序流程图的流程,列出算式,进行计算即可.【详解】解:输入的值为1时,由图可得:212420⨯-=-<;输入2-可得:()222440-⨯-=>;∴输出的值应为4;故答案为:4.【点睛】本题考查程序流程图.按照流程图的流程准确的列出算式,是解题的关键.5.(2022秋·江苏淮安·七年级统考期中)如图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是___.【答案】-11【分析】读懂计算程序,把1x =-,代入,按计算程序计算,直到结果小于5-即可.【详解】解:当输入x ,若()41x ⨯--小于5-,即为输出的数,当1x =-时,()()()414113x ⨯--=⨯---=-,3-不小于5-,因此,把3x =-再输入得,()()()4143111x ⨯--=⨯---=-,11-小于5-,故答案为:11-.【点睛】本题考查实数的混合运算,掌握计算法则是关键.6.(2022秋·江苏无锡·七年级校考期中)如图是一个对于正整数x 的循环迭代的计算机程序.根据该程序指令,如果第一次输入x 的值是3时,那么第一次输出的值是10;把第一次输出的值再次输入,那么第二次输出的值是5;把第二次输出的值再次输入,那么第三次输出的值是16;以此类推得到一列输出的数为10,5,16,8,4,2,1,4,…若第五次输出的结果为1,则第一次输入的x 为_____.【答案】32、5、4【分析】读懂题意,寻找规律,利用规律解决问题.【详解】解:若第五次输出的结果为1,则第5次输入为:2,第4次输出为:2,第4次输入为:4,第3次输出为:4,第3次输入为:8或1,第2次输出为:8或1,第2次输入为:16或2,第1次输出为:16或2,第1次输入为:32、5或4,故答案为:32、5、4.【点睛】本题考查了有理数的混合运算,解题关键是读懂题意,寻找到数字变化的规律,利用规律解决问题.三、解答题7.(2023秋·江苏扬州·七年级统考期末)如图,按图中的程序进行计算.题型四:算“24”点一、填空题1.(2022秋·七年级单元测试)用一组数3,4,﹣4,﹣6算24点(每个数只能用一次):________.【答案】3×4×[﹣4﹣(﹣6)]=24(答案不唯一)【分析】此题只要符合题的要求,得数等于24即可,答案不唯一.【详解】解:3×4×[﹣4﹣(﹣6)]=12×(﹣4+6)=12×2=24,故答案为:3×4×[﹣4﹣(﹣6)]=24(答案不唯一).【点睛】本题主要考查有理数的混合运算,此题要注意要求的得数为24,而且每个数字只能用一次.2.(2022秋·江苏镇江·七年级校联考阶段练习)“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行混合运算(每张牌只能使用一次),使得运算结果是24或者是24-,现抽出的牌所对的数字是4,5-,3,1-,请你写出刚好凑成24的算式__________.【答案】[]34(5)1⨯---【分析】利用“24点游戏”的游戏规则写出算式即可.【详解】解:根据题意得:[]34(5)1⨯---38=⨯=24.故答案为:[]34(5)1⨯---(答案不唯一).【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022秋·江苏南京·七年级南京钟英中学校考阶段练习)已知4个有理数:1,2,3,4----,在这4个有理数之间用“,,,+-⨯÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是___________.【答案】(1)(2)(3)(4)24-⨯-⨯-⨯-=(答案不唯一)【分析】根据“24点”游戏规则列出算式即可.【详解】解:(1)(2)(3)(4)24-⨯-⨯-⨯-=故答案为:(1)(2)(3)(4)24-⨯-⨯-⨯-=(答案不唯一)【点睛】此题考查了有理数的混合运算,弄清“24点”游戏规则是解题的关键4.(2022秋·江苏南京·七年级阶段练习)算“24点”是一种数学游戏:把所给的四个数字用运算符号(可以有括号)连接起来,使得运算结果为24,注意:每个数字只能用一次,请你用“5、5、5、1”这4个数字算“24点”,列出的算式是____.【答案】555124⨯-=(答案不唯一)【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题。

有理数的混合运算的方法与技巧

有理数的混合运算的方法与技巧

有理数混合运算的方法技巧一、理解运算顺序有理数混合运算的运算顺序:①从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键 例1.计算:3+50÷22×(51-)-1②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。

例2.计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯--③从左向右:同级运算,按照从左至右的顺序进行(或应用分配律、结合律);例3:计算:⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431二、应用四个原则:1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。

2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。

3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心.4、分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算.如何分段呢?主要有:(1)运算符号分段法。

有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。

在运算中,低级运算把高级运算分成若干段。

一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和.(2)括号分段法,有括号的应先算括号里面的。

在实施时可同时分别对括号内外的算式进行运算。

(3)绝对值符号分段法.绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算.(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算. 例4。

有理数混合运算的方法及法则

有理数混合运算的方法及法则

有理数混合运算的方法及法则1500字有理数混合运算是指将整数、分数和小数混合起来进行加减乘除运算的过程。

下面将介绍一些常用的方法和法则。

一、加法运算:我们可以将有理数混合运算中的加法运算分解为两个步骤:先计算整数部分之间的和,然后计算小数部分和分数部分之间的和。

最后将两个部分的和相加即得最终结果。

二、减法运算:减法运算与加法运算类似,也是将有理数混合运算中的减法运算分解为两个步骤:先计算整数部分之间的差,然后计算小数部分和分数部分之间的差。

最后将两个部分的差相减即得最终结果。

三、乘法运算:有理数混合运算中的乘法运算可以按照下面的步骤进行:1. 先将所有数的整数部分相乘;2. 再将所有数的小数部分相乘;3. 将所有数的分数部分相乘;4. 将上面三个结果相乘。

四、除法运算:有理数混合运算中的除法运算可以按照下面的步骤进行:1. 先将被除数的整数部分除以除数的整数部分;2. 再将被除数的小数部分除以除数的小数部分;3. 将被除数的分数部分除以除数的分数部分;4. 将上面三个结果相除。

五、加减乘除的法则:1. 加法和乘法的交换律和结合律:a+b=b+a,a×b=b×a,(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)。

这些法则可以使我们在进行运算时更加方便和灵活,可以用于改变运算顺序,使运算更简单。

2. 减法和除法的公式转换:a-b=a+(-b),a÷b=a×(1/b)。

减法可以转换为加法的计算,除法可以转换为乘法的计算,这样可以简化计算过程。

3. 分数与整数的运算法则:将整数看成分母为1的分数,可以将整数与分数相加、相减、相乘、相除。

4. 小数与分数的运算法则:可以将小数转换为分数进行计算,或者将分数转换为小数进行计算。

综上所述,有理数混合运算的方法和法则可以帮助我们进行加减乘除运算,从而解决实际问题。

在运算过程中,我们需要注意整数与分数之间的转换以及小数与分数之间的转换,灵活运用各种运算法则,能更加快速、准确地进行运算。

有理数混合运算的解题技巧与策略

有理数混合运算的解题技巧与策略

有理数混合运算的解题技巧与策略有理数混合运算是数学中常见的一种运算形式,它涉及到整数、小数、分数等多种数的运算。

为了解决这类题目,我们可以采用以下的解题技巧和策略。

一、熟悉有理数的基本运算规则在进行有理数的混合运算之前,我们需要熟悉有理数的基本运算规则,包括加法、减法、乘法和除法。

例如,在进行混合运算时,我们需要注意乘法和除法的优先级高于加法和减法,可以利用括号改变运算顺序。

二、化简操作在有理数混合运算中,有时我们会遇到复杂的表达式,这时可以通过化简操作来简化计算过程。

例如,我们可以对分数进行通分,将小数和分数化为同一类型的有理数,以便进行运算。

此外,我们还可以利用分配律、结合律和交换律等数学性质,通过合并同类项、化简分子分母等方式来简化运算。

三、借位与借位还原在进行有理数减法时,可能会出现被减数小于减数的情况。

这时,我们可以利用借位的方法,将减法问题转化为加法问题。

具体操作为,从相邻的高位向低位借位,将被减数的某一位的值增加10,然后进行加法运算。

同样,在进行加法运算时,可能会出现需要借位还原的情况,我们可以利用借位还原法来进行运算。

四、小数的运算在有理数混合运算中,小数的运算也是常见的。

对于小数的加减法,我们需要将小数点对齐,然后按照整数的加减法运算规则进行计算;对于小数的乘法和除法,我们可以将小数转化为分数形式,然后进行分数的乘除法运算。

五、注意运算顺序在进行有理数混合运算时,我们需要遵循正确的运算顺序,例如,先进行括号内的计算,再进行乘法和除法,最后进行加法和减法。

如果没有括号,我们可以根据乘除法的优先级高于加减法的规则,将计算顺序进行调整。

六、画图与辅助线有时,我们可以通过画图或者辅助线的方式来解决有理数混合运算问题。

例如,在解决复杂的多步运算时,我们可以通过画图将问题拆解成多个简单的运算步骤,然后逐步解决;在解决几何问题或者应用题时,我们可以利用辅助线帮助我们理清思路,找到解题的关键点。

有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧理数加减混合运算是数学中非常常见和重要的运算。

下面将介绍五种运算技巧,帮助学生掌握这一技巧。

技巧一:整理运算顺序在进行理数加减混合运算时,首先要整理运算顺序。

首先进行加减法运算,然后再进行乘除法运算。

对于括号中的运算,应该优先计算,以保证得到正确的结果。

例如:计算式3+(5-2)×4÷2首先,根据括号中的运算,计算得到3+3×4÷2然后,按照乘除法优先于加减法的原则,计算得到3+6÷2最后,进行加法运算,得到最终结果6技巧二:分数的化简和通分在进行理数加减混合运算时,经常会遇到分数的加减运算。

为了计算方便,需要将分数化简和通分。

分数化简的原则是将分子和分母的公因数约去。

例如,对于分数12/8,可以将分子和分母都除以4得到3/2通分是将两个分数的分母改为相同的数,使得计算更加方便。

例如,计算1/2+1/3,需要将两个分数的分母都改为6,得到3/6+2/6=5/6技巧三:加减法的运算法则在进行理数加减混合运算时,需要根据加减法的运算法则进行计算。

对于同号数相加,直接将它们的绝对值相加,然后保持符号不变。

例如,计算-3+(-5)=-8对于异号数相加,首先将它们转化为同号数相减,然后按照同号数相减的方式计算。

例如,计算5+(-2)=5-2=3技巧四:小数的运算在进行理数加减混合运算时,经常会遇到小数的运算。

对于小数的加减,需要保持小数位数一致,以免出现误差。

例如,计算4.5+1.7,首先对小数进行对齐,然后按照整数加法进行运算,最后在结果中保留相同的小数位数,得到6.2技巧五:对数进行合并和拆分有时候,在进行理数加减混合运算时,数学表达式中可能存在一些可以进行合并或拆分的数。

例如,计算2/3-1/5-1/15,可以将2/3拆分为1/3+1/3,然后进行运算,得到1/3-1/5-1/15=(5/15)-(3/15)-(1/15)=1/15综上所述,掌握这五种运算技巧对于理数加减混合运算非常重要。

有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧
一、比较法
比较法的原理是把有理数的乘除操作分解为加减操作来进行解题,通过比较有理数之间的大小关系,进一步缩小了最后的计算量。

比较法的基本步骤:
(1)确定大小关系:先比较两个有理数的大小,判断大者小者,再比较后一个有理数与前面大小关系,如此循环,直至将所有有理数排列出一个从大到小的数列。

(2)逐步缩小范围:将连续的有理数比较,判定大小,当有3个有理数需要比较大小时,由3个有理数中间的有理数开始比较,比较完毕后将左右2个有理数再比较。

(3)最终确定:最后将比较好的有理数从大到小进行排列,由此确定最终结果。

二、拆分法
拆分法的原理是将有理数的加减运算拆分为多个运算,实现加减混合运算,从而简化运算步骤,让结果更精确。

拆分法的基本步骤:
(1)拆分运算:因为有理数的加减运算拆分成多个运算,实现加减混合运算,所以首先根据有理数的运算关系,将其拆分开来进行计算。

(3)最终确定:拆分计算结束后,就可以得出最终的结果。

有理数加减乘除混合运算技巧

有理数加减乘除混合运算技巧

有理数加减乘除混合运算技巧理数加减乘除是数学中一项基本的运算,它们在日常生活和实际问题中都有广泛的应用。

掌握有理数的加减乘除混合运算技巧不仅可以提高计算速度和准确性,同时也对培养逻辑思维和解决问题的能力有着重要的作用。

下面将详细介绍有理数加减乘除混合运算的技巧。

一、有理数的加法运算技巧1.相同符号的有理数相加时,仍保留原来的符号,同时将绝对值相加。

例如:(3)+(5)=3+5=8(-4)+(-7)=-(4+7)=-112.不同符号的有理数相加时,将绝对值较大的数减去绝对值较小的数,并在结果前加上绝对值较大的数的符号。

例如:(3)+(-5)=3-5=-2(-4)+(7)=7-4=33.加法满足交换律和结合律。

例如:(3)+(5)+(2)=10=(5)+(2)+(3)(3)+(5)+(2)+(4)=14=(4)+(2)+(5)+(3)二、有理数的减法运算技巧1.减去一个数可以看作加上这个数的相反数。

例如:(2)-(3)=2+(-3)=-1(-7)-(-4)=-7+4=-32.减法中括号里面的加减法运算按照从左到右的顺序进行。

例如:(2)-(3)+(5)=(2+(-3))+5=-1+5=4三、有理数的乘法运算技巧1.相同符号的有理数相乘,结果是正数,绝对值为两个有理数绝对值的乘积。

例如:(3)×(5)=3×5=15(-4)×(-7)=4×7=282.不同符号的有理数相乘,结果是负数,绝对值为两个有理数绝对值的乘积。

例如:(3)×(-5)=-(3×5)=-15(-4)×(7)=-(4×7)=-283.乘法满足交换律和结合律。

例如:(3)×(5)×(2)=30=(5)×(2)×(3)(3)×(5)×(2)×(4)=120=(4)×(2)×(5)×(3)四、有理数的除法运算技巧1.除以一个数可以看作乘上这个数的倒数。

有理数混合运算的实用技巧与方法

有理数混合运算的实用技巧与方法

有理数混合运算的实用技巧与方法在数学学习中,有理数是我们经常接触到的一种数形。

有理数混合运算则是基于有理数的四则运算,并结合了括号、指数、根号等运算符号。

本文将介绍一些实用的技巧和方法,帮助我们更好地进行有理数混合运算。

一、整数与分数的转换在有理数的混合运算中,我们常常需要转换整数与分数的形式,以便于计算。

例如,将整数10转换为分数形式,可以写为10/1,或者将分数3/5转换为整数形式,可以写为0.6。

二、加减法的技巧1. 相同符号的有理数相加或相减,只需将它们的绝对值相加或相减,并保留相同的符号。

例如,-3 + (-5) = -8,3 + 5 = 8。

2. 不同符号的有理数相加或相减,先计算绝对值的差,并用较大的符号作为结果的符号。

例如,-3 + 5 = 2,3 + (-5) = -2。

三、乘除法的技巧1. 有理数相乘时,符号相同为正,符号不同为负,并将绝对值相乘。

例如,-3 × (-5) = 15,3 × (-5) = -15。

2. 有理数相除时,先将除数的倒数变为一个真分数,然后将除法转化为乘法。

例如,-3 ÷ (-5) = -3 × (-1/5) = 3/5。

四、括号运算的技巧在有理数的混合运算中,括号是用来改变运算次序的重要符号。

1. 括号前面有负号时,括号内的运算结果正负相反。

例如,-3 × (-5) = -3 × 5 = -15。

2. 括号内有多个数时,可以通过先用括号内的运算进行计算,再用结果进行后续运算。

例如,2 × (3 + 4) = 2 × 7 = 14。

五、指数运算的技巧指数运算是一种简化有理数乘方运算的方法。

1. 有理数的正整数指数,表示将这个有理数连乘多次。

例如,2³ = 2 × 2 × 2 = 8。

2. 有理数的负整数指数,表示这个有理数倒数的连乘多次。

例如,2⁻³ = 1/(2 × 2 × 2) = 1/8。

有理数混合运算方法技巧

有理数混合运算方法技巧

有理数混合运算方法技巧理数混合运算是数学中的一种基本运算,它涉及到整数、分数和小数的加、减、乘、除等计算。

正确地进行理数混合运算需要掌握一定的方法和技巧。

接下来,我将介绍一些常用的理数混合运算方法和技巧。

一、对于加减运算:1.整数与整数的加减运算:根据正数加正数为正数,负数加负数为负数的原则,将整数的相加或相减的运算转化为无符号的加减法运算进行计算。

2.整数与分数、小数的加减运算:将分数或小数转化为带分数,然后进行整数与带分数的加减运算,最后将结果化简为最简形式。

3.分数与分数的加减运算:先将两个分数找到一个相同的分母,然后对分子进行运算,最后将结果化简为最简形式。

二、对于乘法运算:1.整数与整数的乘法运算:正数与正数相乘为正数,负数与负数相乘也为正数,正数与负数相乘为负数。

将乘法运算转化为无符号的乘法运算进行计算。

2.分数与分数的乘法运算:将两个分数的分子和分母相乘,然后对结果进行化简,得到最简形式。

3.分数与整数、小数的乘法运算:将分数转化为带分数,然后将带分数的整数部分和小数部分分别与整数或小数相乘,最后将结果进行合并得到最终结果。

三、对于除法运算:1.整数与整数的除法运算:正数除以正数为正数,负数除以负数也为正数,正数除以负数为负数,负数除以正数为负数。

将除法运算转化为无符号的除法运算进行计算。

2.分数与分数的除法运算:将除法运算转化为乘法的倒数运算,即将除数的分子与被除数的分母相乘,被除数的分子与除数的分母相乘,然后将两个结果进行合并得到最终结果。

3.分数与整数、小数的除法运算:将分数转化为带分数,然后将带分数的整数部分和小数部分分别与整数或小数进行除法运算,最后将结果进行合并得到最终结果。

四、括号的运用:在进行理数混合运算时,可以通过加括号来改变运算的顺序,从而得到正确的结果。

特别是在涉及到多个运算符时,根据运算的先后顺序来加括号,避免由于运算顺序不正确而导致错误的结果。

在进行理数混合运算时,还需要注意以下一些常见的误区和技巧:1.注意符号的运用:正数和负数的运算是经常出错的地方,需要特别注意符号的运用和理解。

有理数混合运算技巧

有理数混合运算技巧

有理数混合运算技巧有理数混合运算是数学中常见的运算形式,它涉及到有理数的加减乘除运算。

在进行有理数混合运算时,我们可以通过一些技巧来简化运算过程,提高计算效率。

本文将介绍一些常用的有理数混合运算技巧。

一、整数的加减运算当进行整数的加减运算时,我们可以利用相反数的性质来简化计算。

相反数是指与一个数的和为零的数,例如,2的相反数是-2,-3的相反数是3。

在进行整数的加减运算时,可以将减法运算转化为加法运算。

例如,计算-5+3,可以将它转化为-5+(-3),即-5的相反数加上3,这样就可以直接进行加法运算,得到-8。

同样地,计算-5-3也可以转化为-5+(-3),得到-8。

二、分数的加减运算在进行分数的加减运算时,我们需要先找到它们的公共分母。

一种简化计算的方法是将分数化成最简形式。

例如,计算1/4+2/3,我们可以先找到它们的最小公倍数12,然后将1/4化成3/12,将2/3化成8/12,这样就可以直接进行加法运算,得到11/12。

同样地,计算1/4-2/3,我们可以先找到它们的最小公倍数12,然后将1/4化成3/12,将2/3化成8/12,这样就可以直接进行减法运算,得到-5/12。

三、有理数的乘法运算在进行有理数的乘法运算时,我们可以利用乘法的交换律和分配律来简化计算。

乘法的交换律指的是两个数相乘的结果与顺序无关,例如,2×3=3×2。

分配律指的是一个数与两个数相加的积等于这个数分别与两个数相加的积的和,例如,2×(3+4)=2×3+2×4。

在进行有理数的乘法运算时,我们可以根据需要调整运算顺序,使计算更简便。

例如,计算(-2)×(-3),可以利用乘法的交换律将其转化为(-3)×(-2),再利用乘法的分配律将其拆分为(-3)×(-1)×2,这样就可以直接进行乘法运算,得到6。

四、有理数的除法运算在进行有理数的除法运算时,我们可以利用除法的倒数性质来简化计算。

有理数的混合运算方法技巧

有理数的混合运算方法技巧

有理数的混合运算方法技巧
混合运算方法是指把不同种类的数据运算,比如有理数、不定方程、有理方程等结合在一起。

有理数混合运算方法就是以有理数为核心,结合高中数学中的知识、技巧对有理数作混合运算。

下面介绍有理数的几种混合运算方法技巧:
一、公因式分解法
公因式分解法的做法是将有理数中含有公因式的项分解为几个
单项式,然后研究各个单项式的运算规律,这样可以把复杂的有理数运算转换为单纯的有理数运算,而后根据有理数的单项式运算规律,去分解有理数,最后根据规律去求出有理数的解。

二、代入法
代入法的做法是将有理数中含有未知数的项代入前面已经计算
出来的结果中,去求出未知数的值,也就是把有理数的运算转换成一元一次方程求解,最后根据已知的解来求出有理数的解。

三、利用公式法
利用公式法的做法是先将有理数中的项整理为特定的公式,然后根据解公式的方法去求出有理数的解,最后根据已知的解来求出有理数的解。

四、分析法
分析法的做法是通过分析有理数中的具体情况,综合运用有理数的技巧,去求出有理数的解,最后根据已知的解来求出有理数的解。

以上就是有理数混合运算方法的技巧,希望能帮助到大家!。

有理数混合运算的方法技巧

有理数混合运算的方法技巧

有理数混合运算的方法技巧
1. 先算乘除后算加减,这可是铁律呀!就像你走路先迈左腿还是右腿,顺序不能错哟!比如3+2×5,那得先算2×5=10,再加上 3 等于 13,可别搞错啦!
2. 注意符号呀,符号可不能丢!这就像你出门不能忘了带钥匙一样重要呢!比如-3×(-4),负负得正,结果就是 12。

3. 括号里的要先算,这就好比你进家门得先开门一样理所当然呀!像(5+3)×2,先算括号里的 5+3=8,再乘以 2 就是 16。

4. 约分能让计算变简单哦,就像给计算减肥一样!比如说12÷4/3,可以变成12×3/4=9。

5. 找规律呀,有理数运算里也有很多规律等你发现呢,就像在宝藏堆里找宝贝!比如算 2+4+6+8,不就可以找到两两相加相等的规律嘛。

6. 转换思路很重要呀,不要死脑筋!这跟你走路遇到石头得绕过去一样嘛!像计算5×19,可以变成5×(20-1)呀。

7. 别粗心大意呀,要仔细仔细再仔细!不然就像在森林里迷路一样啦!比如把 3 看成 8 可不行哦。

8. 多练习才能更熟练呀,这和你学骑自行车是一个道理!只有多练,才能在有理数混合运算的道路上畅通无阻呀!
我的观点结论就是:掌握好有理数混合运算的方法技巧真的太重要啦,能让我们算得又快又准!大家一定要好好记住这些哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数混合运算的方法技巧
一、理解运算顺序
有理数混合运算的运算顺序:
①从高级到低级:先算乘方,再算乘除,最后算加减;
有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键。

例1:计算:3+50÷22×(5
1-)-1
②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。

例2:计算:()[]232315.011--⨯⎥⎦
⎤⎢⎣
⎡⎪⎪⎭⎫ ⎝
⎛⨯--
③从左向右:同级运算,按照从左至右的顺序进行。

例3:计算:⎪⎪⎭
⎫ ⎝
⎛-+⎪⎪⎭⎫ ⎝
⎛-÷⎪⎪⎭⎫ ⎝
⎛--388712787431
二、应用四个原则:
1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。

2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。

3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。

4、分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。

如何分段呢?主要有:
(1)运算符号分段法。

有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。

在运算中,低级运算把高级运算分成若干段。

一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和。

把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,
这是进行有理数混合运算行之有效的方法。

(2)括号分段法,有括号的应先算括号里面的。

在实施时可同时分别对括号内外的算式进行运算。

(3)绝对值符号分段法。

绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算。

(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。

例2计算:-0.252÷(-1
2
)4-(-1)101+(-2)2×(-3)2
说明:本题以加号、减号为界把整个算式分成三段,这三段分别计算出来的结果再相加。

三、掌握运算技巧
(1)、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。

(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。

(3)、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。

(4)、约简:将互为倒数的数或有倍数关系的数约简。

(5)、倒序相加:利用运算律,改变运算顺序,简化计算。

例计算2+4+6+…+2000
(6)、正逆用运算律:正难则反, 逆用运算定律以简化计算。

乘法分配律a(b+c)=ab+ac在运算中可简化计算.而反过来,ab+ac=a(b+c)同样成立,有时逆用也可使运算简便。

例3计算:
(1)-3216
25
÷(-8×4)+2.52+(
1
2
+
2
3

3
4

11
12
)×24
(2)(-3
2
)×(-
11
15
)-
3
2
×(-
13
15
)+
3
2
×(-
14
15
)
四、理解转化的思想方法
有理数运算的实质是确定符号和绝对值的问题。

因此在运算时应把握“遇减化加.遇除变乘,乘方化乘”,这样可避免因记忆量太大带来的一些混乱,同时也有助于学生抓住数学内在的本质问题。

把我们所学的有理数运算概括起来。

可归纳为三个转化:
一个是通过绝对值将加法、乘法在先确定符号的前提下,转化为小学里学的算术数的加法、乘法;
二是通过相反数和倒数分别将减法、除法转化为加法、乘法;
三是将乘方运算转化为积的形式。

若掌握了有理数的符号法则和转化手段,有理数的运算就能准确、快速地解决了。

例计算:
(1) (-6)-(+5)+(-9)+(-4)-(-9)
(2) (-212 )÷11
4 ×(-4)
(3) 22+(2-5)×13
×[1-(-5)2
]
六、会用三个概念的性质
如果a ,b 互为相反数,那么a+b=O ,a=-b ; 如果c ,d 互为倒数,那么cd=l ,c=1/d ; 如果|x|=a(a >0),那么x=a 或-a 。

例 6 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于2,试求x 2-(a+b+cd)x+(a+b)2000+(-cd)2001的值。

有理数的混合运算典型例题
例1 计算: 。

例2 计算:。

例3 计算:
例4 计算
例5 计算:。

例6 计算
有理数的混合运算习题精选
一、选择题
1.若,,则有( ) 。

A. B. C. D.
2.已知,当时,,当时,的值是( ) 。

A. B.44 C.28 D.17
3.如果,那么的值为( ) 。

A.0 B.4 C.-4 D.2
4.代数式取最小值时,值为( )。

A. B. C. D.无法确定
5.六个整数的积(修改为-36),互不相等,则 ( ) 。

A.0 B.4 C.6 D.8
6.计算所得结果为( ) 。

A.2 B. C. D.
二、填空题
1.有理数混合运算的顺序是________________________ 。

2.已知为有理数,则 ____0, ____0, _____0。

(填“>”、“<”或“≥”=)
3.平方得16的有理数是_________,_________的立方等于-8。

4. _________。

5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为
__________。

三、判断题
1.若为任意有理数,则。

( )
2.。

( )
3.。

( )
4.。

( )
5.。

( )
四、解答题
1.计算下列各题:
(1);
(2);
(3);
(4);
(5);
(6);
(7);
(8)。

2.若有理数、、满足等式,试求的值。

3.当,时,求代数式
的值。

4.已知如图2-11-1,横行和竖列的和相等,试求的值。

5.求的值。

6.计算。

计算:。

相关文档
最新文档