《信号与系统》知识点总结
(完整版)信号与系统知识要点
信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统知识点归纳
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。
信号与系统_复习知识总结
信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
(完整版)信号与系统复习知识点
第一章
1.信号的运算:时移、反褶、尺度变换、微分、积分等;
2.LTI系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性;
3.阶跃型号与冲激信号及其特性。
单位冲激信号的性质:
1.
2.
3.
4.
5.
6.
7.
例、求下列积分
例、已知信号 的波形如下图1所示,试画出下列各信号的波形
抽样信号的拉氏变换
求半波整流和全波整流周期信号的拉氏变换
(1)
(2)
4-29求下列波形的拉氏变换
(1)
解题思路:单对称方波 ——周期方波——乘
—— ——
(2)
第一周期:
周期信号的拉氏变换:
第五章
1.频域系统函数 ,理想低通滤波器频谱特性;
2.无失真传输条件:幅频特性为常数,相频特性是过原点的直线;
3.系统的物理可实现性判断(1)佩利-维纳准则;(2)系统可实现性的本质是因果性。
被理想抽样信号的傅立叶变换:
被非理想抽样信号傅立叶变换:
第四章
1.典型信号的拉氏变换及拉氏变换的基本性质;
2.S域元件模型、系统函数、系统函数与激励信号极点分布与电响应的关系、系统函数与输入输出方程的关系(利用拉氏变换求解电系统响应);
3.线性系统的稳定性分析。
周期信号的拉氏变换
为信号第一个周期 的拉氏变换;整个周期信号 的拉氏变换为:
第七章
1.离散系统和信号的描述方法、基本性质
2.差分方程的经典解法
3.卷积和定义及其求解方法
第八章
1. z变换的定义、收敛域和基本性质,常用序列的z变换
2.逆z变换的求解方法
3. 的定义、零极点分布与信号/系统性质的关系
信号与系统期末重点总结
信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。
2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。
3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。
4. 系统的定义:系统是将输入信号转换为输出信号的过程。
5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。
二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。
(2)幅度谱与相位谱:复指数信号的频谱特性。
(3)周期信号:特点是在一个周期内重复。
(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。
2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。
(2)冲击响应与系统特性:系统的特性通过冲击响应得到。
(3)卷积积分:输入信号与系统冲激响应的积分运算。
3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。
(2)Fourier变换:将时域信号转换为频域信号。
(3)Laplace变换:用于解决微分方程。
三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。
(2)离散频谱:离散时间信号的频域特性。
(3)周期信号:在离散时间中周期性重复的信号。
(4)离散时间系统的线性时不变性:线性组合和时延等。
2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。
(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。
(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。
3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。
(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。
(3)Z变换:傅立叶变换在离散时间中的推广。
四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。
信号与系统知识总结
一,信号与系统的基本概念
1信号的分类:能量信号和功率信号和其他信号:周期信号一般为功率信号,非周期信号既可以为能量信号(持续时间有限),也可以为功率信号(持续时间无限)也可以为其他信号。
2,基本连续时间信号和基本离散时间信号(变量为n)。
3,线性时不变系统:LTI。
二,连续时间系统和离散时间系统的时域分析
连续系统:1,常系数微分方程,经典法;2,零输入法和零状态法,卷积积分法求零状态响应。
离散系统:1,递推法;2,经典法;3,零输入和零状态法,单位抽样序列卷积和求零状态响应。
三,连续时间傅里叶变换,谱分析和时频分析
1,傅里叶级数(周期信号)、傅里叶变换(非周期信号)。
2,傅里叶级数和傅里叶变换的关系。
3,时域乘积相当于频域卷积,相关和能量谱或者功率谱是一个傅里叶变换对。
4,时频分析和小波分析:局部分析。
四,离散时间傅里叶变换,谱分析。
1,周期离散信号:离散傅里叶级数。
离散周期的频谱。
2,非周期离散信号:离散时间傅里叶变换。
连续周期频谱。
3,离散傅里叶变换。
五,复频域分析:拉氏变换和Z变换
1,连续信号:拉氏变换。
2,离散信号:Z变换。
3,拉氏变换、Z变换、傅里叶变换的关系。
4,连续信号的离散时间处理。
六,状态变量分析。
信号与系统知识点详细总结
信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结
信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
信号与系统复习知识总结
重难点1.信号的概念与分类 按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的;其周期为各个周期的最小公倍数;① 连续正弦信号一定是周期信号;② 两连续周期信号之和不一定是周期信号;周期信号是功率信号;除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号;1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点;(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度;正跳变对应着正冲激;负跳变对应着负冲激;重难点2.信号的时域运算 ① 移位: 0()f t t +, 0t 为常数当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t ;② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶; ③ 尺度变换: ()f at ,a 为常数当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时,()f at 的波形在时间轴上扩展为原来的1a; ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分; 2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性,则称满足线性性;当激励为1122()()C f t C f t +1C 、2C 分别为常数时,系统的响应为1122()()C y t C y t +;线性系统具有分解特性:)()()(t y t y t y zs zi +=零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数;(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -; (3) 因果性线性非时变系统具有微分特性、积分特性; 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定;零输入响应必然是自由响应的一部分;重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=;零状态响应可分解为自由响应和强迫响应两部分;重难点7.单位冲激响应的求解;冲激响应)(t h 是冲激信号作用系统的零状态响应; 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ, f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分; 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t 3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn n nf t f t f t f t f t f t t t t ==5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积,其积分限是从0到t ; 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=;重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数; 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=,n 为正整数;直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰ 正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn tnn f t F eω∞=-∞=∑ 式中,n 为从-∞到+∞的整数;复数频谱011011()t T jn t n t F f t e dt T ω+-=⎰利用周期信号的对称性可以简化傅里叶级数中系数的计算;从而可知周期信号所包含的频率成分;有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性;①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项; ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项;③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项;重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大,谱线越密,离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性;重难点12.傅里叶变换 傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数,可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数;()ϕω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数;常用函数 F 变换对:δtπδωut 1()j πδωω+e -t ut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→- 6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅ 7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→*8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅ 11奇偶虚实性若()()()F R jX ωωω=+,则①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数; ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数; 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍;即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱;上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复;重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得;其方法为:1 求激励ft 的傅里叶变换F j;2 求频域系统函数H j;3 求零状态响应y zs t 的傅里叶变换Y zs j,即Y zs j= H j F j;4 求零状态响应的时域解,即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为其中,)()(00ϕωωj e j H j H =为频域系统函数;重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统;)(Ωjn H 是系统函数,为基波;n Y 是输出信号的频谱;时间响应为重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=在频域中,无失真传输系统的特性为 0)(t j e K j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器;理想滤波器是非因果性的,物理上不可实现的;重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比;重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低,必须f s ≥2f m,或者说,取样间隔不能太大,必须T s ≤1/2f m ;否则将发生混叠; 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔;重难点23.单边拉氏变换的定义为积分下限定义为-=0t ;因此,单位冲激函数1)(⇔t δ,求解微分方程时,初始条件取为-=0t ;重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域;)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域;要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s7周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→频域积分性: ()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在,并且 ft ← → F s , Res>0, 0<0,则 0()lim ()s f sF s →∞=拉氏变换的性质及应用;一般规律:有t 相乘时,用频域微分性质; 有实指数t e α相乘时,用频移性质; 分段直线组成的波形,用时域微分性质;周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理;重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应;重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础; 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似;重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中,)()(s H t h ⇔,)(s H 是冲激响应的象函数,称为系统函数;系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定;① Hs 在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的;结论:极点全部在左半开平面的系统因果是稳定的系统;② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数;Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大;③ H s 在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的;重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面,)θ+边界稳定系统 Hs 的极点都在虚轴上,且为一阶, 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上;H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统,323210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ2.单位阶跃序列()n ε与)(n δ的关系: ()()(1)n n n δεε=-- 延迟的表达式()n m ε-; 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器,乘法器,相加器; 重难点37、系统的零输入响应若其特征根均为单根,则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n , f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和;即 重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分; 重难点42.熟悉基本序列的Z 变换;k ←→ 1 , z>0 k ←→1zz -, z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换; 重难点45.掌握离散系统Z 域的分析方法; 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类;① 极点全部在单位圆内的系统因果是稳定系统;② Hz 在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统;③ Hz 在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统;。
信号与系统知识点总结
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
信号与系统重点总结
信号与系统重点总结一、信号的分类与特征1.根据信号的时间性质划分,可分为连续时间信号和离散时间信号。
连续时间信号在时间上连续变化,离散时间信号在时间上以离散的形式存在。
2.根据信号的取值范围划分,可分为有限长信号和无限长信号。
有限长信号在一定时间段内有非零值,无限长信号在时间上无边界。
3.根据信号的周期性划分,可分为周期信号和非周期信号。
周期信号在一定时间内以固定的周期重复出现,非周期信号没有固定的周期性。
4.根据信号的能量和功率划分,可分为能量信号和功率信号。
能量信号能量有限且为有限幅,功率信号在无穷时间上的平均能量有限。
二、连续时间信号的表示与处理1.连续时间信号的表示可以使用函数形式:s(t),其中t为连续变量,s(t)为连续时间信号的幅值。
2.连续时间信号的处理包括时域分析和频域分析。
时域分析主要研究信号的幅值和时间关系,频域分析主要研究信号的频率和振幅关系。
3.连续时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、微分和积分等操作,以实现信号的滤波、平滑和增强等功能。
三、离散时间信号的表示与处理1.离散时间信号的表示可以使用序列形式:x[n],其中n为整数变量,x[n]为离散时间信号的幅值。
2.离散时间信号的处理包括时域分析和频域分析。
时域分析主要研究信号的幅值和时间关系,在离散时间上进行运算,频域分析主要研究信号的频率和振幅关系,在离散频率上进行运算。
3.离散时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、差分和累加等操作,以实现信号的滤波、平滑和增强等功能。
四、连续时间系统的特性与分析1.连续时间系统可以通过输入信号和输出信号之间的关系来描述。
输入信号经系统处理后,输出信号的幅值和时间关系可以通过系统的传递函数来表示。
2.系统的特性包括因果性、稳定性、线性性和时不变性等。
因果性要求系统的输出只能依赖于过去的输入,稳定性要求系统的输出有界,线性性要求系统满足叠加原理,时不变性要求系统的特性不随时间变化。
信号与系统定义知识点总结
信号与系统定义知识点总结一、信号的基本概念1. 信号的定义:信号是指随时间或空间变化的某一物理量,它可以是电压、电流、声压、光强等。
信号可以是连续的,也可以是离散的。
2. 基本信号类型:常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号等。
3. 基本信号操作:信号的加法、乘法、平移、缩放等操作对信号的表示和分析非常有用。
二、连续时间信号的表示和分析1. 连续时间信号的表示:连续时间信号可以用数学函数来表示,如正弦函数、余弦函数、指数函数等。
2. 连续时间信号的性质:连续时间信号的周期性、奇偶性、能量和功率等性质对信号的分析和处理至关重要。
3. 连续时间信号的分析方法:傅里叶级数和傅里叶变换是分析连续时间信号最常用的方法,它可以将信号分解成一系列正弦、余弦函数的和,方便对信号进行分析。
三、离散时间信号的表示和分析1. 离散时间信号的表示:离散时间信号可以用序列来表示,如离散单位冲激函数、阶跃函数等。
2. 离散时间信号的性质:离散时间信号的周期性、能量和功率等性质对信号的分析和处理同样十分重要。
3. 离散时间信号的分析方法:离散傅里叶变换和Z变换是分析离散时间信号最常用的方法,它可以将离散时间信号转换成频域表示,方便对信号进行分析。
四、系统的基本概念1. 系统的定义:系统是对信号进行输入输出转换的装置或过程,它可以是线性系统、非线性系统,时变系统、时不变系统等。
2. 系统的性质:系统的稳定性、因果性、线性性、时不变性等性质对系统的分析和设计至关重要。
3. 系统的表示和分析:系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示和分析。
五、线性时不变系统的性质与分析1. 线性时不变系统的特点:线性时不变系统具有线性性质和时不变性质,这使得对其进行分析和设计更加方便。
2. 线性时不变系统的表示:线性时不变系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示。
3. 线性时不变系统的分析方法:冲激响应、频域分析、零极点分析等方法对线性时不变系统的分析非常重要。
信号与系统 知识点总结
信号与系统知识点总结1. 信号的分类信号可以分为连续信号和离散信号。
连续信号是在连续的时间范围内变化的信号,如声音信号、光信号等。
离散信号则是在离散的时间点上取值的信号,如数字信号、样本信号等。
信号还可以根据其能量或功率的性质来分类,能量信号是能量有限,而功率信号是功率有限。
对于周期信号和非周期信号,周期信号必须满足在某个周期内的所有时间点上的信号值是相同的。
2. 时域分析时域分析是研究信号在时间域上的特性,主要包括信号的幅度、相位、频率等。
时域分析有利于了解信号在时间上的变化规律,对于非周期信号可通过傅里叶变换将其分解为频谱成分,而对于周期信号可以利用傅里叶级数展开。
此外,还有拉普拉斯变换、Z变换等方法用于时域分析。
3. 频域分析频域分析是研究信号的频率特性,对于周期信号可以采用傅里叶级数展开进行频域分析,而对于非周期信号可以采用傅里叶变换进行频域分析。
频域分析有助于了解信号的频率分布情况,诸如频率分量的大小、相位、频率响应等。
4. 系统特性系统特性包括线性性、时不变性、因果性等。
线性时不变系统是信号与系统理论中最基本的概念之一,它是指系统对输入信号的线性组合具有线性响应,且系统的特性参数不随时间变化。
除了这些基本的特性外,系统还有稳定性、因果性、可逆性等特性。
稳定系统是指对于有限输入产生有限输出,因果系统则是指系统的输出只能由当前和过去的输入决定等。
5. 离散系统离散系统是指在离散的时间点上产生输出的系统,如数字滤波器、数字控制系统等。
离散系统与连续系统相比,具有离散时间的性质,其特性和分析方法也有所不同。
在离散系统中,常见的方法有差分方程描述、Z变换分析等。
而离散系统的特性与分析方法与连续系统有很大的差异,需要通过一定的数学工具进行分析与设计。
以上就是信号与系统的主要知识点总结,通过对这些知识的掌握,可以更好地理解信号的特性与系统的特性,从而应用于实际工程问题的处理与解决。
希望以上内容能对你的学习有所帮助。
信号与系统面试知识点总结
信号与系统面试知识点总结一、基本概念1. 信号与系统的定义:信号是某种随时间或空间变化的物理量的数学表达,系统是将输入信号映射为输出信号的装置或规律。
2. 基本信号类型:包括连续时间信号和离散时间信号;周期信号和非周期信号;能量信号和功率信号等。
3. 信号的基本运算:信号的加法、乘法、平移、积分、微分等运算。
4. 系统的基本分类:线性系统和非线性系统;时不变系统和时变系统。
5. 傅里叶分析:傅里叶级数和傅里叶变换,以及它们在信号与系统中的应用。
二、连续时间信号与系统1. 连续时间信号的表示和性质:冲激函数、单位阶跃函数、正弦函数、矩形波等基本信号的性质及表示方法。
2. 连续时间系统的性质:因果系统、稳定系统、线性时不变系统等基本性质的定义和判断方法。
3. 连续时间系统的时域分析:冲激响应、单位阶跃响应、系统的零点和极点等。
4. 连续时间信号的频域分析:傅里叶级数分析、傅里叶变换和拉普拉斯变换的定义、性质和应用。
5. 连续时间系统的频域分析:系统的频率响应、幅频特性、相频特性等。
三、离散时间信号与系统1. 离散时间信号的表示和性质:单位脉冲、单位阶跃序列、正弦序列、方波序列等基本离散时间信号的性质及表示方法。
2. 离散时间系统的性质:因果系统、稳定系统、线性时不变系统等基本性质的定义和判断方法。
3. 离散时间系统的时域分析:脉冲响应、阶跃响应、差分方程描述等。
4. 离散时间信号的频域分析:傅里叶级数分析、傅里叶变换和z变换的定义、性质和应用。
5. 离散时间系统的频域分析:系统的频率响应、幅频特性、相频特性等。
四、采样和重建1. 采样定理的理论基础:奈奎斯特定理和香农采样定理的定义、理论推导和应用。
2. 信号的重构方法:理想插值方法、牛顿插值方法、插值滤波器设计等。
3. 采样系统的频谱分析:采样系统的频带限制、混叠现象的分析和抑制方法。
五、系统的时域与频域分析方法1. 系统的单位脉冲响应和阶跃响应:定义、性质、求解方法及应用。
信号与系统知识点汇总总结
信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。
通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。
信号与系统重要知识点
信号与系统重要知识点一、信号与系统的基本概念1.信号的定义:信号是随时间或空间变化的物理量,可以简单分为连续信号和离散信号两种。
2.连续信号与离散信号的区别:连续信号的取值是连续的,可以在任意时间点取值;离散信号的取值是离散的,只能在一些离散时间点取值。
3.系统的定义:系统是指将输入信号转换为输出信号的过程,可以根据输入输出信号的时间特性分为时不变系统和时变系统。
4.线性系统和非线性系统的区别:线性系统的输入输出之间满足叠加原理,即输入的线性组合对应于输出的线性组合;非线性系统则不满足叠加原理。
二、信号与系统的分类与特性1.基本信号:包括单位冲激函数、单位阶跃函数等,这些信号可以通过线性组合构成任意复杂的信号。
2.周期信号和非周期信号:周期信号在一定时间范围内具有重复的模式;非周期信号在时间上没有明显的重复性。
3.傅里叶级数:任意周期信号都可以表示为一系列正弦和余弦函数的叠加,这种表示方式称为傅里叶级数展开。
4.傅里叶变换:傅里叶变换将信号从时间域转换到频率域,可以获得信号在不同频率上的频谱特性。
5.拉普拉斯变换:拉普拉斯变换是一种复变函数变换,它将信号从时间域转换到复平面上的变换域,可以对线性时不变系统进行分析和设计。
三、系统的时域分析方法1.冲激响应:系统对单位冲激函数的响应称为冲激响应,可以通过冲激响应求解系统对任意输入信号的响应。
2.系统的重要特性:包括冲激响应、单位阶跃响应、单位脉冲响应等,这些特性可以通过求系统的单位冲激响应来得到。
3.系统的线性时不变特性:系统具有叠加原理,即输入的线性组合对应于输出的线性组合;同时,系统的时移和加权求和特性在时间上不变。
四、系统的频域分析方法1.系统的频率响应:系统对不同频率的输入信号的响应称为频率响应,可以通过傅里叶变换和拉普拉斯变换进行分析。
2.系统的传递函数:系统的传递函数是输入信号和输出信号的拉普拉斯变换之间的关系,是对系统频率响应的数学描述。
信号与系统知识要点.
《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激。
5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。
(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。
信号与系统复习资料
信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。
信号可以是连续的或离散的,并且可以是模拟的或数字的。
系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。
在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。
二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。
离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。
连续时间信号和离散时间信号可以通过采样和保持操作相互转换。
三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。
周期信号具有重复的模式,并且在无穷远处也保持有界。
非周期信号则没有重复的模式,并且在无穷远处不保持有界。
另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。
四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。
系统可以是线性的或非线性的。
线性系统遵循叠加原则,输出信号是输入信号的线性组合。
非线性系统则不遵循叠加原则。
五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。
常用的时域分析技术包括时域图、自相关函数、互相关函数等。
时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。
自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。
六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。
傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。
傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。
功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。
信号与系统复习总结
左边序列 :
信号的三大变换
五
(三)z变换
3、典型序列的z变换
单位样值序列
单位阶跃序列
斜变序列
指数序列
信号的三大变换
五
(三)z变换
4、性质
线性
ROC为公共部分
位移性
(1)单边Z变换
信号的三大变换
五
(三)z变换
4、性质
(2)双边Z变换
位移性
z域微分特性
(一)傅立叶变换
五
3、非周期信号的傅立叶变换
(3)傅立叶变换的性质
尺度变换特性
时域压缩——频域展宽
时移特性
频移特性
为常数
微分特性
信号的三大变换
积分特性
(一)傅立叶变换
五
3、非周期信号的傅立叶变换
(3)傅立叶变换的性质
频域微分定理
时域卷积定理
频域卷积定理
信号的三大变换
五
(二)拉普拉斯变换
1、单边定义式
大连轻工业学院信息学院
信号与系统
CLICK HERE TO ADD A TITLE
复习总结
演讲人姓名
信 号 信号与系统 系 统
信号的基本运算
信号
典型信号
信号的定义及分类
信号的三大变换
章节一
信号的特性
CHAPTER ONE
信号的定义及分类
一
1、信号的定义:随时间变化的物理量。
2、信号的分类:
确定性信号
同时域法
等效激励源法
等效激励源法
电感L:
电容C:
系统稳定性的判别
3、s域分析法
连续时间系统
(一)
(完整版)信号与系统知识点整理
(完整版)信号与系统知识点整理第一章1.什么是信号?是信息的载体,即信息的表现形式。
通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。
2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。
4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与非周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。
6.离散信号:只在某些离散的时刻或位置才有定义的信号。
通常考虑自变量取等间隔的离散值的情况。
7.确定信号:任何时候都有确定值的信号。
8.随机信号:出现之前具有不确定性的信号。
可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。
9.能量信号的平均功率为零,功率信号的能量为无穷大。
因此信号只能在能量信号与功率信号间取其一。
10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。
(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。
对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。
例:测试电路的瞬态响应。
13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。
要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。
15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子信息工程学院 程轶平
2.3 积分与 u(t),累加和与 u[k] 若 g(t)是 f(t)从-开始积分到 t 得到的积分信号。则 g(t)=f(t)u(t)。 若 g(t)是 f(t)从 0-开始积分到 t 得到的积分信号。则 g(t)=f(t)u(t)u(t)。 若 g[k]是 f[k]从-开始累加到 k 得到的信号。则 g[k]=f[k]*u[k]。 若 g[k]是 f[k]从 0 开始累加到 k 得到的信号。则 g[k]=f[k]u[k]*u[k]。 2.4 根据信号波形写出表达式解题方法 连续情形:我的个人看法是绝大多数情况下,求导法是好方法。逐步求导,直到导数信号由 冲激和矩形构成。要注意从导数信号积分得到原信号存在一个常数问题。
3.1 LTI 系统的时域描述
由线性常系数微分(差分)方程描述的系统是连续(离散)线性时不变系统。但是反过来不 成立,比如延迟环节 y(t)=x(t-t0)就不能用微分方程描述。
(n) ( n i ) (t ) b0 x ( n ) (t ) bi x ( n i ) (t ) 微分方程形式: y (t ) ai y i 1 i 1 n n
【例】某离散时间 LTI 系统的差分方程为 y[k]+3y[k-1]+2y[k-2]=x[k]。求系统的单位脉冲响应 h[k]。 解:系统的特征方程为 r2+3r+2=0。解得特征根为 r1=-1,r2=-2。单位脉冲响应的形式为 h[k]= [C1(-1)k+C2 (-2)k]u[k]。 从原方程得到 h[k]+3h[k-1]+2h[k-2]=[k]。分别用 k=0, k=1 代入得 h[0]=C1 +C2 =1, -C1-2C2+3h[0]=0。 解得 C1=-1, C2=2。 因此,系统的单位脉冲响应为 h[k]= [-(-1)k+2 (-2)k]u[k]。
差分方程形式: y[k ] ai y[k i ] b0 x[ k ] bi x[ k i ]
i 1 i 1
n
n
说它们是 LTI 的可以这么理解: 1)如果该系统起作用(即工作)的时间范围是双边的,即 ( , ) ,相应地输入信号 x(t)和 输出信号 y(t)都定义在 ( , ) 上,则该系统是 LTI 系统。
《信号与系统》知识点总结
北京交通大学电子信息工程学院 程轶平
《信号与系统》知识点总结
北京交通大学电子信息工程学院 2009.6 程轶平
0. 前言
本文的目的是帮助《信号与系统》课程学习者整理知识。它适合于对《信号与系统》已经建 立起一定的框架,但可能对某些问题感到模糊或困惑的人阅读。本文也试图对一些类型的计算题 给出机械的标准化的解法。过于容易,或不太可能被考试题考察的知识点在此省略。知识点基本 上按照章来组织和编号。但是如果不同的章有相类似的知识点,我将把它们合并成一个,然后用 字母 M (mixed)开头编号。 另外大家要注意将本文和教材结合起来看。它的目的是整理思路,因此不能对它期望过多。 符号表示卷积,而不是乘法。
3.7 固有响应和强制响应
定义见教科书 96 页。Oppenheim 的教材没有提及这对概念;而在 Haykin 的教材中,固有响应=零输入响应, 强制响应=零状态响应。按照我们的教科书的定义,零输入响应构成固有响应的一部分,而在零状态响应中也 包含一部分固有响应。我们的定义在绝大多数情况下是没有歧义的。但是如果输入信号中含有对应于系统的 特征根的指数信号,则固有响应和强制响应难以区分。
【例】写出下列波形的用基本信号表示的表达式。
f (t )
1 1 2
t
解:采用导数法。首先画出
f '(t ) 的波形(这里省略) 。从导数信号的图可以写出:
f '(t ) u (t ) 2u (t 1) u (t 2) 。
因此,
f (t ) r (t ) 2r (t 1) r (t 2) C , 这 里
2
《信号与系统》知识点总结
北京交通大学电子信息工程学院 程轶平
2)如果该系统起作用(即工作)的时间范围是 [0, ) ,相应地输入信号 x(t)和输出信号 y(t) 都定义在 [0, ) 上,则从线性的原始定义出发,该系统是有条件的 LTI 系统。其条件是 y(0-), y’(0-),…,y (0-)均为 0(对连续系统) ;y[-1],y [-2],…,y[-n]均为 0(对离散系统) 。如果把 初始状态也视为某种扩展的“输入” ,则系统对输入信号和“初始状态输入”是线性的,从这个意 LTI 义上把该系统视为 系统。 3)前面已述如果系统处于零初始状态(initially at rest, IR) ,则该系统为 LTI 系统(即使按照 原来的严格标准) 。这可以有两种理解:A)将系统理解为从双边信号到双边信号的 LTI 系统;如果 采用这种理解,则需扩充 x(t)和 y(t)的定义为当 t<0 时,x(t)=0, y(t)=0。B)将系统理解为从 0 始信 号到 0 始信号的 LTI 系统;如果采用这种理解,则无需扩充相关信号的定义域,但须修改时不变 性定义,规定时间位移只能是非负的(因为负的时间位移会破坏信号的 0 始性) 。 3.2 0-的含义
3
《信号与系统》知识点总结
北京交通大学电子信息工程学院 程轶平
请仔细阅读教材 86,87 页的两个例子。不过我个人观点,在两个例子中,t0 都可以去掉。 离散情形解题步骤: 1) 写出特征方程,求出特征根。 2) 根据特征根写出脉冲响应 h[k]的含有待定系数的表达式。注意有重根,共轭复根的情况。 还要注意表达式为某个叠加起来的式子乘以 u[k]。如果差分方程等式两端的最大延迟相 同,在 h[k]中还会含有 [k]项。 3) 将原差分方程右端的所有输入信号 x[k]用[k]替换, 将微分方程左端的输出信号 y[k]用 h[k] 替换。 4) 将如此得到的差分方程用 k=0,k=1,…代入,解出所有的待定系数。 5) 写出 h[k]的明确表达式。 我这里用教材 103 页的例子进行补充说明。
i 1
n
(连续)
y[k ] ai y[ k i ] 0
i 1
n
(离散)
4
《信号与系统》知识点总结
北京交通大学电子信息工程学院 程轶平
线性微分(差分)方程所对应的齐次方程的解称为齐次解。由此可见,齐次解一般不是原方程的解。齐次解 有无穷多个,它们构成一个线性空间。 “特解”这个名词根本不是什么数学概念,用某种方法求出的一个具体 的原方程的解就称为一个特解。因此,不存在哪些解是特解,哪些解不是特解这样的说法。任何一个解,只 要被求出了,就可以称为是一个特解。 “特解”这个名词的出现,主要是基于线性微分(差分)方程的这么一 个性质:只要求出一个解(称为“特解” ) ,则方程的所有解都可以表示为该特解与一齐次解之和。 零输入响应是该线性微分(差分)方程的一个齐次解。
个人觉得教材 103 页把第 4 步其实是如此简单的方法不必要地复杂化了。 3.5 求 LTI 系统的全响应 全响应 = 零输入响应+零状态响应 = 零输入响应+输入*冲激(脉冲)响应。 在最后给出全响应表达式时,要加注 t0-(连续) ,k-n(离散) 。
【注】零输入响应是由系统的初始状态引起的响应,由于比初始状态更早的 y 的值我们并不知道,而且也不 需要知道,因此我们只能把零输入响应看作有始信号,在正确的前提下可将开始时间尽量选得早一点,对连 续系统选 0-,对离散系统选-n(n 为差分方程的阶)比较好。因此,零输入响应在解题时一般写成
2. 第 2 章
2.1 冲激信号的性质 筛选特性、抽样特性、展缩特性,即教材中公式(2-21) , (2-22) , (2-23)必须在理解的基础 上记忆。冲激信号(t)不是一般意义上的信号,而是一种理想化的“信号” ,在数学上它是一广 义函数。我们无法离开冲激信号因为它为我们的推导和思维提供了很多方便。冲激信号虽然在物 理上不存在,但如果一个物理信号取到非 0 值的时间集中在某个瞬时,就可用冲激信号近似。不 过要注意脉冲信号[k]却是完完全全的一般意义上的信号。 2.2 信号的尺度变换、翻转与时移图示解题方法 对这种类型的题目。针对信号是连续或离散应采用不同的解题步骤。 对于连续信号, 大家应仔细阅读教材中的例子, 特别是例 2-6。 建议严格按照例 2-6 的步骤做。 对折线波形可以用一个小技巧:把所有的关键点在新图画出其对应点,然后将他们连接起来。 对于离散信号,可直接根据自变量的值算出函数值,然后在图上标出即可。一般来说,需要 画的值没几个。
y zs (t ) 某表达式 u (t ) y zs [k ] 某表达式 u[k ]
3.6 齐次解和特解
(连续) (离散)
前面给出的线性微分(差分)方程,如果将方程右端置为 0,所得到的方程被称为原方程的齐次方程。即
y ( n ) (t ) ai y ( n i ) (t ) 0
(n-1)
lim f (t ) 。即 0- 不是一个独立的值,它一定是和函数联系在一起的。正式定义: f (0-) = t< 0,t 0
f(0-)是 f(t)在 t=0 处的左极限。为方便起见,我们有时也说 f(0-)是 f 在 0-的值。 3.3 求 LTI 系统零输入响应解题方法 连续情形解题步骤: 1) 写出特征方程,求出特征根。 2) 根据特征根写出响应的含有待定系数的表达式。注意有重根,共轭复根的情况。还要注 意表达式中不含有 u(t),但后面要加注 t0-。 3) 根据 y 及其各阶导数在 0-的值,求出所有待定系数。 4) 写出零状态响应的明确表达式,注意最后要加注 t0-。 离散情形解题步骤: 1) 写出特征方程,求出特征根。 2) 根据特征根写出响应的含有待定系数的表达式。注意有重根,共轭复根的情况。还要注 意表达式中不含有 u[k],但后面要加注 k-n。其中,n 为方程的阶数。 3) 根据 y[-1],…y[-n]的值,求出所有待定系数。 4) 写出零状态响应的明确表达式,注意最后要加注 k-n。 3.4 求 LTI 系统冲激响应/脉冲响应解题方法 连续情形解题步骤: 1) 写出特征方程,求出特征根。 2) 根据特征根写出冲激响应 h(t)的含有待定系数的表达式。注意有重根,共轭复根的情况。 还要注意表达式为某个叠加起来的式子乘以 u(t)。 如果微分方程等式两端的最高求导阶数 相同,在 h(t)中还会含有冲激信号项。 3) 将原微分方程右端的所有输入信号 x(t)用(t)替换,将微分方程左端的输出信号 y(t)用 h(t)替换。 4) 将如此得到的微分方程用冲激平衡法即“等式两端的(t) ,’(t) ,…的相应系数必须相 等”确定所有的待定系数。注意在这个过程中要充分利用冲激信号的筛选特性。 5) 写出 h(t)的明确表达式。