《勾股定理》教学设计
人教版数学八年级下册17.1《勾股定理》教学设计
人教版数学八年级下册17.1《勾股定理》教学设计一. 教材分析《勾股定理》是初中数学的重要内容,也是中学数学中最为基本的定理之一。
人教版数学八年级下册17.1节主要介绍了勾股定理的证明和应用。
通过本节课的学习,学生能够理解勾股定理的含义,学会运用勾股定理解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角函数等知识,具备了一定的逻辑思维能力和空间想象能力。
但部分学生对理论证明的过程可能感到困惑,对实际应用的掌握程度也有所不同。
三. 教学目标1.知识与技能:让学生掌握勾股定理的证明和应用,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、操作、探究、合作等方法,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重难点:勾股定理的证明和应用。
2.难点:对勾股定理证明过程中的一些关键步骤的理解和运用。
五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:分组讨论,共同完成任务,培养学生的团队合作精神。
4.实践操作法:让学生动手操作,加深对知识的理解和记忆。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、直尺等。
2.学具:笔记本、文具、三角板、直尺等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。
2.呈现(15分钟)介绍勾股定理的定义和表述,展示勾股定理的证明过程,如Pythagorean theorem的证明。
引导学生理解并掌握勾股定理。
3.操练(15分钟)分组讨论,每组选取一个实际问题,运用勾股定理进行解答。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)针对学生的解答,进行讲解和点评,强调勾股定理在实际问题中的应用。
勾股定理教案范本 勾股定理教案教学方法优秀7篇
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的应用教学设计5篇
勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
勾股定理教案范本 勾股定理教案教学方法优秀6篇
勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的教学设计(热门14篇)
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
八年级数学上册《勾股定理》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。
人教版《勾股定理》教学设计
人教版《勾股定理》教学设计勾股定理教学设计一、教学目标通过本节课的学习,学生应能够:1. 掌握勾股定理的概念和公式;2. 理解勾股定理的几何意义;3. 运用勾股定理解决简单的几何问题;4. 发展数学思维和解决问题的能力。
二、教学内容1. 勾股定理的概念和公式;2. 勾股定理的几何意义;3. 勾股定理的应用。
三、教学步骤步骤一:导入1. 创设情境:讲述勾股定理的历史背景。
2. 引入问题:如何确定一个直角三角形的边长关系?步骤二:呈现1. 呈现勾股定理的定义和公式。
2. 分析勾股定理的几何意义,引导学生发现直角三角形的特点。
步骤三:探究1. 设计实际测量的活动,让学生利用直尺和量角器测量直角三角形的边长和角度。
2. 引导学生发现直角三角形的边长关系,并验证勾股定理。
步骤四:拓展1. 给学生提供更多勾股定理的应用问题,引导他们运用定理解答问题。
2. 鼓励学生提出自己的问题,使用勾股定理解决。
步骤五:总结1. 归纳勾股定理的重要性和应用范围。
2. 引导学生总结勾股定理的几何意义和运用方法。
四、教学资源1. 教材:人教版九年级数学教材《勾股定理》单元。
2. 工具:直尺、量角器等测量工具。
五、教学评价与反馈1. 教师观察法:通过观察学生在测量活动中的操作和合作情况,评价他们对勾股定理的理解程度。
2. 提问评价法:随堂提问,了解学生对勾股定理的理解情况。
3. 练习评价法:布置小练习,检查学生对勾股定理的掌握情况。
六、教学反思本节课设计了一系列的教学活动,旨在引导学生理解和掌握勾股定理。
通过实际测量、问题解答等活动,学生能够感受到数学在实际生活中的应用,提高他们的数学思维和解决问题的能力。
在教学过程中,我注重启发式教学,让学生自己探索和发现,培养他们的主动学习意识。
同时,我也注重评价与反馈,及时了解学生的学习情况并做出针对性的指导。
在以后的教学中,我将进一步完善教学设计,提高学生的学习效果。
勾股定理教学设计(优秀3篇)
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
初中数学教材勾股定理教案
教案:初中数学——《勾股定理》教学目标:1. 知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2. 过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3. 情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:用面积法方法证明勾股定理。
课前准备:多媒体ppt,相关图片。
教学过程:(一)情境导入1. 多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,2002年国际数学大会会标等。
通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2. 多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,但云梯底部离楼墙还有1.5米,问消防队员能否进入楼内救火?(二)新课导入1. 教师引导学生观察上述情境,提出问题:为什么消防队员无法进入楼内救火?学生通过分析,得出结论:消防队员取来的云梯长度不满足勾股定理。
2. 教师引导学生回顾勾股定理的定义,引导学生思考如何运用勾股定理解决问题。
(三)探索勾股定理1. 教师组织学生进行小组讨论,让学生尝试用勾股定理解决实际问题。
2. 教师引导学生通过观察、分析、猜想,探索勾股定理的规律。
3. 教师让学生用面积法方法证明勾股定理,引导学生动手操作,合作交流,逻辑推理。
(四)总结与应用1. 教师引导学生总结勾股定理的定义和证明方法。
2. 教师设计一些简单的实际问题,让学生运用勾股定理进行解决。
教学反思:本节课通过情境导入,激发学生的学习兴趣,引导学生回顾勾股定理的定义,探索勾股定理的规律,并用面积法方法证明勾股定理。
八年级数学下册《勾股定理》教案、教学设计
3.精讲精练,突破难点
(1)教师针对勾股定理的证明方法进行详细讲解,引导学生理解并掌握。
(2)设计具有层次性的课堂练习,让学生在实际操作中巩固勾股定理的应用。
(3)针对学生在练习中遇到的问题,教师进行个别辅导,帮助他们突破难点。
2.各小组选取一位代表进行汇报,分享他们的讨论成果和心得体会。
3.组织学生互相提问、解答,共同探讨勾股定理的证明方法和应用技巧。
4.引导学生思考勾股定理在生活中的具体应用,鼓励他们举例说明。
5.对各小组的表现进行评价,鼓励积极参与、合作交流的学生。
(四)课堂练习,500字
在课堂练习环节,我会设计以下练习题:
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及提高他们的数学思维能力,我设计了以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,要求学生通过计算给定直角三角形的斜边长度,加强对勾股定理的直接应用。
2.实践应用题:选择一道生活中的实际问题,如测量学校旗杆的高度、计算三角形广告牌的面积等,运用勾股定理解决问题,并撰写解题报告。此题旨在培养学生将数学知识应用于实际情境的能力。
1.直角三角形的两条直角边和斜边之间有什么关系?
2.在直角三角形中,是否有一个规律可以计算斜边的长度?
3.你听说过勾股定理吗?它是什么意思?
(二)讲授新知,500字
在讲授新知环节,我会按照以下步骤进行:
1.回顾直角三角形的基本概念和性质,如直角、斜边、直角边等。
2.引导学生观察直角三角形中斜边与直角边之间的关系,发现斜边的平方等于两条直角边平方和的规律。
(2)引导学生进行自我反思,总结学习经验,提高自主学习能力。
《勾股定理》教学设计
③若a∶b=3∶4,c=10,求a, b.
3.求下列图中字母所表示的正方形的面积.
4.一个直角三角形的两边长分别为3 cm和4 cm,则第三边的为.
能力提升
5.如图,在△ABC中,∠ACB=,AB=10 cm,BC=6 cm,CD⊥AB与D.
求:(1)AC的长;(2)CD的长.
课后作业:教材P24 1、2题
反思:课程培训中,好几个专家都同时强调,学会课堂中放手,让学生学会学习,主动学习,这才是根本。
这堂课以学生活动为主线,寓教于学,同时充分利用一体机,直观图形的变化,取得了很好的效果。
其实作为班主任懂得放手,更加重要。
坚守教室、关爱学生,做事讲方法,让我一点一点的学会去做一个班级的管理者,学会和家长沟通,学会处理学生的问题,学会应对压力。
但是也不可否认遇到了瓶颈,我可能还不太会也不太敢放手,所以虽然班级整体越来越好,而我也越来越累,究其根本就是我不懂的放手。
我一直都在尝试,主题班会放手,家长会放手等等,令我印象最深的是有一次家长会,三天时间,开会决定形式,负责人,所有的事情全部由学生完成。
舞蹈、唱歌、情景剧、朗诵各种形式都在短时间内自发完成。
诧异于学生的主动,得意于他们的表现。
这两年我一共外出学习或比赛三次,最长的有十天,没找代理班主任,没麻烦家长们帮忙管理,他们依然保持优秀,我真的感觉学会管理才能真正出成效!。
勾股定理教学设计
《勾股定理》教学设计一、教学目标:(一)知识与技能目标:掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角三角形的任意两边求得第三边。
(二)过程与方法目标:通过探究勾股定理的发现与证明,渗透数形结合的思想方法,增强逻辑思维能力,操作探究能力和培养学生的探索精神和合作交流的能力。
(三)情感态度与价值观目标:通过对勾股定理的探索,培养学生对数学问题孜孜以求的探究精神和科学态度.通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。
二、教学重、难点:1.探索和证明勾股定理。
2. 用拼图方法证明勾股定理。
三、教学方法:启发、合作交流和直观演示。
四、教具准备:相同规格的直角三角形纸片若干张。
五、教学过程:(一)故事引入,激发兴趣毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上划来划去,回到家中不停演算,最后证明了勾股定理。
你想知道毕达哥拉斯是怎样利用地砖证明这个定理的吗?(二)故事场景,发现新知(1)观察两个正方形面积与两个小正方形面积关系。
(2)用a、b、c三个字母表示直角三角形三边,用这三个字母来表示这三个正方形的面积关系。
(3)是不是所有的三角形三边都满足这样的关系呢?(三) 深入探究,交流归纳(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?(2)想一想,怎样利用小方格计算正方形A、B、C面积?直角三A 积B 单位A 角形三边关系、B 、C 面积关系图2图1C 的面(单位面积)的面积(面积)的面积(单位面积)(3)正方形A 、B 、C 面积之间的关系是什么?(4)直角三角形三边之间的关系用命题形式怎样表述? 师生共同讨论、交流、逐步完善,得到命题1:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2 + b 2 =c 2 (四)拼图验证,加深理解:(1)用手中的四个全等的三角形平成一个正方形。
人教版八年级下册17.1《勾股定理》第一课时教学设计
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标
勾股定理教学设计方案
《勾股定理》教学设计方案地面同学们, 请你也来观察下图中地面, 看看能发觉些什么?提问: 1)上图中等腰直角三角形有什么特点?2)等腰直角三角形是特殊直角三角形, 通常直角三角形是否也满足这种特点?引导学生分析情景、提出问题:你是怎样观察这个砖铺现场?(从基础砖铺材料、图形单元、位置形态进行观察: 铺设材料是正方形砖块, 其中丰富图案都是由等腰Rt△色块作为基础单元组成。
)A B因为对角线作用, 经过深入观察或者手工拼图能够发觉用等腰直角三角形拼正方形基础方法(充足展示出了等腰直角三角形与正方形结构关系)。
3)在课堂上开展分组活动, 让学生亲手操作: 对正方形进行剪切、拼贴然后再将它们关联(由正方形边长关系到等腰直角三角形)起来从而实现真正意义上发觉----合围(以等腰直角三角形三边为边)教学活动2 活动二、深入探究→网络信息等腰Rt△有上述性质其它Rt△是否也含有这个性质呢?网格提问:(1)你是怎样计算那个建立在Rt△斜边上正方形面积?怎样探索“其它”Rt△三边关系呢?目标体验: 有区分看待直角三角形(从地板上等腰直角三角形出发, 构建“其它”直角三角形而且在它三边建立正方形以突出便利于探究性学习网格图形)。
(2)要求学生画一个两直角边分别为2, 3直角三角形, 并以它三边为边长(依据定义法辅用以直尺)建立正方形。
(3)计算各正方形面积并验证这个Rt△三边存在关系。
或归纳得到: 两条直角边上正方形面积之和等于斜边上正方形面积.命题1 假如直角三角形两直角边长分别为a,b,斜边为c,那么学生依据命题写出已知和求证。
已知如图, 在Rt△ABC中, 它两条直角边长分别为a,b斜边长为c,求证:教学活动3图中两个黄色正方形面积分别为25和144, 求红色正方形面积。
教学活动4 当堂反馈:1.在△ABC中, ∠C=90°AC=21m, BC=28m .①求△ABC面积;②求斜边AB长;③求高CD。
勾股定理-教学设计
勾股定理(第一课时)教学目标1.知识与技能:(1)了解勾股定理的发现过程。
(2)掌握勾股定理的内容。
(3)会用面积法证明勾股定理。
(4)会应用勾股定理进行简单的计算。
2.过程与方法:(1)经历利用等腰直角三角形探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
(2)探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
3.情感、态度与价值观:(1)介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
(2)培养在实际生活中发现问题、总结规律的意识和能力。
教学重难点勾股定理的内容及证明。
教学过程一、引入新课。
教师活动:目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,更是非常了不起的成就。
二、进行新课。
1.勾股定理的内容及其证明。
教师活动:引导学生阅读课本相关的内容。
相传2500年前,毕达哥拉斯又一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形三边的某种数量关系。
我们也来观察下图中的地面,看看能发现些什么?思考:你能发现下面图中的直角三角形有什么性质吗?可以发现,以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。
即我们惊奇的发现,等腰三角形的三边之间有一种特殊的关系:斜边的平方等于两直角边的平方和。
探究:等腰直角三角形有上述性质,其他的直角三角形也有这个性质吗?上图中,每个小方格的面积均为1,请分别算出图中正方形A,B,C,'A,'B,'C的面积,看看能得出什么结论。
(提示:以斜边为边长的正方形的面积,等于以某个正方形的面积减去4个直角三角形的面积。
勾股定理课堂教学设计方案
勾股定理课堂教学设计方案引言:“勾股定理”是许多学生在数学学习过程中都要学习的重要定理之一。
通过掌握勾股定理,学生可以更好地理解和应用三角形的性质和关系。
本文将针对中学数学教师在课堂上教授勾股定理时的设计方案进行讨论,旨在帮助教师提供有效的教学方法,使学生能够深入理解和灵活运用该定理。
一、教学目标:1. 知识目标:了解勾股定理的定义和性质,理解勾股定理的证明思路。
2. 能力目标:掌握勾股定理的运用方法,能够独立解决应用问题。
3. 情感目标:培养学生的数学兴趣,提高解决问题的能力和自信心。
二、教学内容:本节课的教学内容包括:1. 勾股定理的定义和性质;2. 勾股定理的证明思路;3. 勾股定理的应用。
三、教学过程:本节课可以分为以下几个环节进行讲解和实践:1. 导入环节(5分钟):引导学生回忆并复习已经学过的直角三角形的有关知识,激发学生对勾股定理的兴趣。
2. 知识讲解(20分钟):2.1. 讲解勾股定理的定义和性质,给出学生对于勾股定理的几个常见认识,引导学生从直观上认识勾股定理的内容;2.2. 介绍勾股定理的证明思路,引导学生通过绘制图形和运用几何性质推导勾股定理的证明。
3. 分组讨论与实践(30分钟):3.1. 将学生分成小组,每个小组由4-5名学生组成;3.2. 每个小组选择一个具体的应用场景,如房屋建筑、测量、航海等,设计一个与勾股定理相关的问题,并利用勾股定理解决问题;3.3. 学生们在小组内讨论和研究问题,互相协作,发挥团队合作精神,解决问题并记录下解题过程。
4. 分享与总结(15分钟):4.1. 每个小组派出一名学生代表,向全班分享他们的问题设计和解题过程;4.2. 整理并总结学生的解题思路和方法,加深对勾股定理的理解;4.3. 提出问题复杂度递进的辅助问题,进一步拓展学生思维,培养解决较为复杂问题的能力。
四、教学评估:1. 教师对学生的团队合作能力和解题思路进行评价;2. 学生之间的小组内评价和交流,培养学生互助和评价他人的意识;3. 教师通过观察、提问和讨论等方式,对学生的学习情况进行评估。
《勾股定理》教学设计
《勾股定理》教学设计一、内容解析:本节课为人教版八年级数学上册第一章第一节的内容。
其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生实行爱国主义教育的良好素材。
教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这个事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理实行了详细的论证勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它能够解决很多直角三角形中的计算问题,在实际生活中用途很大。
它不但在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。
学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这个事实从学习的角度不难,包括对它的应用也不成问题。
但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。
学生接受起来有障碍(是第一次接触面积法),所以从面积的“分割”“补全”两种方法实行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。
有利的让学生经历了“感知、猜测、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提升学生学习习惯和水平。
教学重点:勾股定理的内容教学难点:勾股定理的论证二、教学目标及目标解析:1、教学目标理解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。
在勾股定理的探索过程中,发展合情推理水平,体会数形结合的思想。
通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
、在对勾股定理历史的理解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
勾股定理教学设计一等奖
数学八年级上册苏科版教学设计3.1.1勾股定理备课人:一、教材分析勾股定理是苏科版八年级上册第三章第一节所要探究的课题。
也是三角形三边关系的第一课时的内容。
它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它是解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析、画图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
由直观到抽象,提高学生的逻辑思维能力。
二、学情分析学生在已经学会了完全平方公式,具备一定的独立计算能力,为本节课的学习做好了铺垫。
八年级学生的思维较为活跃,求知欲望强烈,具有浓郁的好奇心,同时具有较强的推理能力,能够通过测量和猜想提出假设,对于勾股定理探究有一定的助力作用。
因此在教学素材的选取和呈现方式以及学习活动的安排上要设计学生可以动手操作并且具有一定挑战性的内容,才能帮助学生更好的掌握所学知识。
三、教学目标(一)核心素养目标1.主要核心素养(1)掌握并熟练运用勾股定理,求解具体直角三角形中发展运算能力;(2)在具体实际生活问题中,利用观察和归纳总结抽取出数量和图形之间的关系,发展数学抽象能力;2.次要核心素养(1)学生动手实践操作中发现和验证勾股定理的过程中,培养学生良好的数学思维习惯,发展逻辑推理能力;(2)利用教材和实际生活中的案例进行自主探究过程中,发展应用意识;(二)四基目标1.知识与技能目标(1)了解关于勾股定理的相关文化历史背景,经历勾股定理的探究过程,会用面积法来证明勾股定理;(2)了解利用画图来验证勾股定理的方法,理解勾股定理,会用勾股定理进行简单计算;2.数学思想目标(1)在具体动手操作中,体验勾股定理的发现和证明过程,将抽象的数学语言和直观图形结合,在“以形助数”中感受数形结合的思想;(2)在实际生活中应用勾股定理,通过从中抽取勾股定理,将未知转化为已知,体会化繁为简的数学转化思想;(3)在求解问题过程中,感受将问题中的条件转化为数学模型方程,体会数学方程思想;3.基本活动经验目标在合作探究中积累勾股定理计算的经验(三)四能目标1.发现和提出问题的目标能用数学的眼光发现和提出现实生活中与勾股定理有关的实际应用案例。
勾股定理的教学设计
勾股定理的教学设计一、引言勾股定理是数学中的经典定理之一,它在解决直角三角形相关问题时具有重要的应用价值。
为了帮助学生更好地理解和应用勾股定理,本文将介绍一种教学设计,旨在提升学生的学习效果和兴趣。
二、目标通过本次教学设计,我们的目标是:1. 使学生能够清晰地理解勾股定理的概念和数学表达方式;2. 培养学生运用勾股定理解决实际问题的能力;3. 激发学生对数学的兴趣和探索欲望。
三、教学过程1. 导入为了激发学生对勾股定理的兴趣,我们可以从生活中常见的问题入手,如直角三角形的应用场景。
可以选择一些图案如路牌、建筑物等,要求学生思考其中的直角三角形,并将其与勾股定理联系起来。
2. 理论概述在学生已经对直角三角形有一定的了解后,我们可以向他们介绍勾股定理的定义和基本形式。
可以用简洁明了的语言解释定理的含义,并呈现其数学公式。
重点强调三边关系,即勾股定理的数学表达方式。
3. 证明方法引导学生思考如何证明勾股定理的有效性。
可以采用几何证明和代数证明相结合的方式,同时加以图形演示和数学计算,从而让学生在动静结合的过程中理解和掌握证明的过程。
4. 实例讲解选择一些具体的实例,结合勾股定理进行解题讲解。
通过实际问题的讲解,学生能够更加直观地认识到勾股定理的应用价值。
鼓励学生积极参与思考和讨论,引导他们独立解决问题。
5. 拓展应用在学生对勾股定理有一定了解的基础上,引入一些拓展应用的内容,如解决直角三角形的面积、高度等问题。
通过这些扩展的内容,进一步提高学生对勾股定理的理解和应用能力。
6. 实践活动设计一些实践活动或小组任务,让学生在实际操作中运用勾股定理。
可以提供一些测量工具和材料,让学生进行测量或者制作简易的直角三角形模型,从而让他们亲自体验勾股定理的应用过程。
7. 总结复习课堂结束前,对本次教学内容进行总结和复习。
可以通过提问、小测验等形式,让学生回顾所学的知识点和解题方法。
并鼓励学生提出问题和疑惑,以进一步促进他们的深入思考和学习参与度。