高中数学第四章圆与方程4.1.1圆的标准方程说课稿

合集下载

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。

下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。

高一数学人教版A版必修二课件:4.1.1 圆的标准方程

高一数学人教版A版必修二课件:4.1.1 圆的标准方程

解析答案
(2)求y-x的最大值和最小值;
解 设y-x=b,即y=x+b,
当y=x+b与圆相切时,纵截距b取得最大值和最小值,
|2-0+b| 此时 2 = 3.
即 b=-2± 6.
故 y-x 的最大值为-2+ 6,最小值为-2- 6.
解析答案
(3)求x2+y2的最大值和最小值. 解 x2+y2表示圆上的点与原点距离的平方,由平面几何知识知, 它在原点与圆心所在直线与圆的两个交点处取得最大值和最小值, 又圆心到原点的距离为2, 故(x2+y2)max=(2+ 3)2=7+4 3, (x2+y2)min=(2- 3)2=7-4 3.
第四章 § 4.1 圆的方程
4.1.1 圆的标准方程
学习目标
1.掌握圆的定义及标准方程; 2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标 准方程.
问题导学
题型探究
达标检测
问题导学
知识点一 圆的标准方程
新知探究 点点落实
思考1 确定一个圆的基本要素是什么? 答案 圆心和半径. 思考2 在平面直角坐标系中,如图所示,以(1,2)为圆心,以2为半径 的圆能否用方程(x-1)2+(y-2)2=4来表示? 答案 能. 1.以点(a,b)为圆心,r(r>0)为半径的圆的标 准方程为(x-a)2+(y-b)2=r2. 2.以原点为圆心,r为半径的圆的标准方程为x2+y2=r2.
返回
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B

高中数学第4章-4.1.1

高中数学第4章-4.1.1

第四章 圆与方程 §4.1 圆的方程 4.1.1 圆的标准方程【课时目标】 1.用定义推导圆的标准方程,并能表达点与圆的位置关系.2.掌握求圆的标准方程的不同求法.1.设圆的圆心是A (a ,b ),半径长为r ,则圆的标准方程是________________,当圆的圆心在坐标原点时,圆的半径为r ,则圆的标准方程是________________.2.设点P 到圆心的距离为d ,圆的半径为r ,点P 在圆外⇔________;点P 在圆上⇔________;点P 在圆内⇔________.一、选择题1.点(sin θ,cos θ)与圆x 2+y 2=12的位置关系是( )A .在圆上B .在圆内C .在圆外D .不能确定2.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.圆(x -3)2+(y +4)2=1关于直线y =x 对称的圆的方程是( ) A .(x +3)2+(y +4)2=1 B .(x +4)2+(y -3)2=1 C .(x -4)2+(y -3)2=1 D .(x -3)2+(y -4)2=15.方程y =9-x 2表示的曲线是( ) A .一条射线 B .一个圆 C .两条射线 D .半个圆6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上.则此圆的方程是( )A .(x -2)2+(y +3)2=13B .(x +2)2+(y -3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=52二、填空题7.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是________________________________________________________________________.8.圆O 的方程为(x -3)2+(y -4)2=25,点(2,3)到圆上的最大距离为________.9.如果直线l 将圆(x -1)2+(y -2)2=5平分且不通过第四象限,那么l 的斜率的取值范围是________.三、解答题10.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.11.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点A(6,1),求这个圆的方程.能力提升12.已知圆C:(x-3)2+(y-1)2=4和直线l:x-y=5,求C上的点到直线l的距离的最大值与最小值.13.已知点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,求|P A|2+|PB|2+|PC|2的最值.1.点与圆的位置关系的判定:(1)利用点到圆心距离d与圆半径r比较.(2)利用圆的标准方程直接判断,即(x0-a)2+(y0-b)2与r2比较.2.求圆的标准方程常用方法:(1)利用待定系数法确定a,b,r,(2)利用几何条件确定圆心坐标与半径.3.与圆有关的最值问题,首先要理清题意,弄清其几何意义,根据几何意义解题;或对代数式进行转化后用代数法求解.第四章 圆与方程 §4.1 圆的方程 4.1.1 圆的标准方程答案知识梳理1.(x -a )2+(y -b )2=r 2 x 2+y 2=r 2 2.d >r d =r d <r 作业设计1.C [将点的坐标代入圆方程,得sin 2θ+cos 2θ=1>12,所以点在圆外.]2.B [点M (5,-7)到圆心A (2,-3)的距离为5,恰好等于半径长,故点在圆上.] 3.D [(-a ,-b )为圆的圆心,由直线经过一、二、四象限,得到a <0,b >0,即-a >0,-b <0,再由各象限内点的坐标的性质得解.]4.B [两个半径相等的圆关于直线对称,只需要求出关于直线对称的圆心即可,(3,-4)关于y =x 的对称点为(-4,3)即为圆心,1仍为半径.即所求圆的方程为(x +4)2+(y -3)2=1.]5.D [由y =9-x 2知,y ≥0,两边平方移项,得x 2+y 2=9.∴选D .] 6.A [设直径的两个端点为M (a,0),N (0,b ), 则a +02=2⇒a =4,b +02=-3⇒b =-6.所以M (4,0),N (0,-6). 因为圆心为(2,-3),故r =(2-4)2+(-3-0)2=13.所以所求圆的方程为(x -2)2+(y +3)2=13.] 7.(x -4)2+(y -1)2=26解析 圆心即为两相对顶点连线的中点,半径为两相对顶点距离的一半. 8.5+ 2解析 点(2,3)与圆心连线的延长线与圆的交点到点(2,3)的距离最大,最大距离为点(2,3)到圆心(3,4)的距离2加上半径长5,即为5+2.9.[0,2]解析 由题意知l 过圆心(1,2),由数形结合得0≤k ≤2. 10.解 因为A (1,1)和B (2,-2),所以线段AB 的中点D 的坐标为⎝⎛⎭⎫32,-12, 直线AB 的斜率k AB =-2-12-1=-3,因此线段AB 的垂直平分线l ′的方程为y +12=13⎝⎛⎭⎫x -32,即x -3y -3=0. 圆心C 的坐标是方程组⎩⎪⎨⎪⎧x -3y -3=0,x -y +1=0的解.解此方程组,得⎩⎪⎨⎪⎧x =-3,y =-2.所以圆心C 的坐标是(-3,-2).圆心为C 的圆的半径长r =|AC |=(1+3)2+(1+2)2=5.所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25. 11.解 设圆的方程为(x -a )2+(y -b )2=r 2 (r >0). 由题意得⎩⎪⎨⎪⎧|a |=r a -3b =0(6-a )2+(1-b )2=r 2.解得a =3,b =1,r =3或a =111,b =37,r =111.所以圆的方程为(x -3)2+(y -1)2=9或(x -111)2+(y -37)2=1112.12.解 由题意得圆心坐标为(3,1),半径为2,则圆心到直线l 的距离为d =|3-1-5|2=32-62,则圆C 上的点到直线l 距离的最大值为32-62+2,最小值为32-62-2.13.解 设P 点坐标(x ,y ),则x 2+y 2=4.|P A |2+|PB |2+|PC |2=(x +2)2+(y +2)2+(x +2)2+(y -6)2+(x -4)2+(y +2)2=3(x 2+y 2)-4y +68=80-4y .∵-2≤y ≤2,∴72≤|P A |2+|PB |2+|PC |2≤88.即|P A |2+|PB |2+|PC |2的最大值为88,最小值为72.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

人教版高中数学第四章 圆的一般方程(共13张PPT)教育课件

人教版高中数学第四章 圆的一般方程(共13张PPT)教育课件

凡事 都 是多 棱 镜, 不 同的 角 度会
凡 事都 是 多棱 镜 ,不 同 的角 度 会看 到 不同 的 结果 。 若能 把 一些 事 看淡 了 ,就 会 有个 好 心境 , 若把 很 多事 看 开了 ,就 会 有个 好 心情 。 让聚 散 离合 犹 如月 缺 月圆 那 样寻 常 ,让 得 失利 弊 犹如 花 开花 谢 那样 自 然, 不 计较 , 也不 刻意 执 着; 让 生命 中 各种 的 喜怒 哀 乐, 就 像风 儿 一样 , 来了 , 不管 是 清风 拂 面, 还 是寒 风 凛冽 , 都报 以 自然 的微 笑 ,坦 然 的接 受 命运 的 馈赠 , 把是 非 曲折 , 都当 作 是人 生 的定










同学们加油!










































:
















■电你是否有这样经历,当 你在做某一项工作 和学习的时候,脑 子里经常会蹦出各 种不同的需求。比 如你想安 心下来看2小时的书,大脑会 蹦出口渴想喝水, 然后喝水的时候自 然的打开电视。。 。。。。,一个小 时过去 了,可能书还没看2页。很多 时候甚至你自己都 没有意思到,你的 大脑不停地超控你 的注意力,你就这 么轻易 的被你的大脑所左右。你已 经不知不觉地变成 了大脑的奴隶。尽 管你在用它思考, 但是你要明白你不 应该隶属 于你的大脑,而应该是你拥 有你的大脑,并且 应该是你可以控制 你的大脑才对。一 切从你意识到你可 以控制你 的大脑的时候,会改变你的 很多东西。比如控 制你的情绪,无论 身处何种境地,都 要明白自己所

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

第四章 圆 与 方 程 4.1 圆 的 方 程 4.1.1 圆的标准方程圆的标准方程圆心为C(x 0,y 0),半径为r 的圆的标准方程为(x -x 0)2+(y -y 0)2=r 2,特别地,圆心在原点时,圆的标准方程为x 2+y 2=r 2.(1)如果圆的标准方程为(x +x 0)2+(y +y 0)2=a 2(a ≠0),那么圆的圆心、半径分别是什么? 提示:圆心为(-x 0,-y 0),半径为|a|.(2)如果点P(x 0,y 0)在圆x 2+y 2=r 2上,那么x 20 +y 20 =r 2,若点P 在圆内呢?圆外呢?提示:若点P 在圆内,则x 20 +y 20 <r 2;若点P 在圆外,则x 20 +y 20 >r 2.1.辨析记忆(对的打“√”,错的打“×”) (1)圆的标准方程由圆心、半径确定.( √ ) (2)方程(x -a)2+(y -b)2=m 2一定表示圆.( × )(3)原点在圆(x -x 0)2+(y -y 0)2=r 2上,则x 20 +y 20 =r 2.( √ ) 提示:(1)如果圆的圆心位置、半径确定,圆的标准方程是确定的. (2)当m =0时,表示点(a ,b).(3)原点在圆上,则(0-x 0)2+(0-y 0)2=r 2,即x 20 +y 20 =r 2. 2.圆(x -1)2+y 2=3的圆心坐标和半径分别是( ) A .(-1,0),3B .(1,0),3C .()-1,0, 3D .()1,0 , 3【解析】选D.根据圆的标准方程可得,(x -1)2+y 2=3的圆心坐标为(1,0),半径为 3 . 3.到原点的距离等于 3 的点的坐标所满足的方程是________.【解析】设点的坐标为(x ,y),根据到原点的距离等于 3 以及两点间的距离公式,得(x -0)2+(y -0)2= 3 ,两边平方得x 2+y 2=3,是半径为 3 的圆. 答案:x 2+y 2=3类型一 圆的标准方程的定义及求法(数学抽象、数学运算)1.以点(2,-1)为圆心,以 2 为半径的圆的标准方程是( ) A .(x +2)2+(y -1)2= 2 B .(x +2)2+(y -1)2=2 C .(x -2)2+(y +1)2=2D .(x -2)2+(y +1)2= 2【解析】选C.由题意,圆的标准方程是(x -2)2+(y +1)2=2. 2.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .x 2+(y -3)2=1D .x 2+(y +3)2=1【解析】选C.由题意,设圆的标准方程为x 2+(y -b)2=1,由于圆过点(1,3),可得1+(3-b)2=1,解得b =3,所以所求圆的方程为x 2+(y -3)2=1.3.已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25【解析】选C.圆C 的圆心坐标C(6,8),则OC 的中点坐标为E(3,4),半径|OE|=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.4.圆心在直线x -2y -3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程为________. 【解析】方法一(几何性质法):设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a). 因为该圆经过A ,B 两点,所以|CA|=|CB|,所以(2a +3-2)2+(a +3)2 =(2a +3+2)2+(a +5)2 , 解得a =-2,所以圆心为C(-1,-2),半径长r =10 . 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法二(待定系数法):设所求圆的标准方程为(x -a)2+(y -b)2=r 2,由题设条件知,⎩⎨⎧a -2b -3=0,(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,解得a =-1,b =-2,r =10 (负值舍去), 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法三(几何性质法):线段AB 的中点的坐标为(0,-4), 直线AB 的斜率k AB =-3+52+2 =12, 所以弦AB 的垂直平分线的斜率为k =-2,所以弦AB 的垂直平分线的方程为y +4=-2x ,即2x +y +4=0. 又圆心是直线2x +y +4=0与直线x -2y -3=0的交点, 所以圆心坐标为(-1,-2),所以圆的半径长r =(2+1)2+(-3+2)2 =10 , 故所求圆的标准方程为(x +1)2+(y +2)2=10. 答案:(x +1)2+(y +2)2=101.直接法求圆的方程圆的方程由圆心、半径决定,因此求出圆心和半径即可写出圆的标准方程. 2.待定系数法求圆的方程(圆心(a ,b)、半径为r)特殊位置 标准方程 圆心在x 轴上 (x -a)2+y 2=r 2 圆心在y 轴上 x 2+(y -b)2=r 2 与x 轴相切 (x -a)2+(y -b)2=b 2 与y 轴相切(x -a)2+(y -b)2=a 23.利用圆的性质求方程求圆的方程时,可以利用圆的性质求圆心、半径,如弦的垂直平分线过圆心,过切点垂直于切线的直线过圆心等.类型二点与圆的位置关系的判断(数学抽象、数学运算)1.点P(m,5)与圆x2+y2=24的位置关系是( )A.在圆外 B.在圆内C.在圆上 D.不确定【解析】选A.把P(m,5)代入x2+y2=24,得m2+25>24,所以点P在圆外.2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,所以点P(3,2)在圆内.3.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.【解析】因为点(1,1)在圆(x+2)2+y2=m上,故(1+2)2+12=m,所以m=10.则圆的方程为(x+2)2+y2=10.答案:(x+2)2+y2=10.4.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.【解析】由题意知,点A在圆C上或圆C的外部,所以(1-a)2+(2+a)2≥2a2,所以2a+5≥0,所以a≥-52.因为a≠0,所以a的取值范围为⎣⎢⎡⎭⎪⎫-52,0∪(0,+∞).【思路导引】1.将点P的坐标代入圆的方程,看方程的等于号变成了什么符号,然后进行判断.2.验证点P与圆心的距离与半径之间的关系.3.将点的坐标代入圆的方程,解方程即可得出m的值,进而得方程.4.不在圆的内部,即在圆上或圆外.点与圆位置关系的判断与应用(1)位置关系的判断:①几何法:判断点到圆心的距离与半径的大小;②代数法:将点的坐标代入圆的方程左边,判断与r 2的大小. (2)位置关系的应用:代入点的坐标,利用不等式求参数的范围.【补偿训练】1.若点(3,a)在圆x 2+y 2=16的内部,则a 2的取值范围是( ) A .[0,7) B .(-∞,7) C .{7}D .(7,+∞)【解析】选A.由点在圆的内部,得9+a 2<16得a 2<7,又a 2≥0,所以0≤a 2<7. 2.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .(-1,1) B .(0,1) C .⎝ ⎛⎭⎪⎫-1,15 D .⎝ ⎛⎭⎪⎫-15,1【解析】选D.因为点(2a ,a -1)在圆的内部,所以d =(2a )2+(a -2)2 =4a 2+a 2-4a +4 =5a 2-4a +4 < 5 , 解得-15 <a <1,所以a 的取值范围是⎝ ⎛⎭⎪⎫-15,1 .3.若点A(a +1,3)在圆C :(x -a)2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5)D .[0,5]【解析】选C.由题意,得(a +1-a)2+(3-1)2>m ,即m<5, 又由圆的方程知m>0,所以0<m<5.类型三 与圆有关的最值问题(数学抽象、数学运算)角度1 与几何意义有关的最值问题【典例】已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.【思路导引】首先由条件观察x 、y 满足的条件,然后分析x 2+y 2的几何意义,求出其最值. 【解析】由题意知,x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取得最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12 =32 ,最小距离为1-12 =12.因此x2+y2的最大值和最小值分别为94,14.1.本例条件不变,试求yx的取值范围.【解析】设k=yx,变形为k=y-0x-0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k=yx,可得y=kx,此直线与圆有公共点,圆心到直线的距离d≤r,即|-k|k2+1≤12,解得-33≤k≤33.即yx的取值范围是⎣⎢⎡⎦⎥⎤-33,33.2.本例条件不变,试求x+y的最值.【解析】令y+x=b并将其变形为y=-x+b,问题转化为斜率为-1的直线在经过圆上的点时在y轴上的截距的最值.当直线和圆相切时,在y轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b=±22-1,即最大值为22-1,最小值为-22-1.角度2 距离的最值问题【典例】1.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4 C.3 D.2【解析】选B.|PQ|的最小值为圆心到直线的距离减去半径长.因为圆的圆心为(3,-1),半径长为2,所以|PQ|的最小值为3-(-3)-2=4.2.已知圆O的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为________.【解析】由题意知,点M在圆O内,O为圆心,MO的延长线与圆O的交点到点M(2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2 .答案:5+ 2【思路导引】1.转化为圆心到直线x=-3的距离减去半径;2.转化为M到圆心的距离加半径.1.与圆有关的最值问题的常见类型及解法(1)形如u=y-bx-a形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l=ax+by形式的最值问题,可转化为动直线y=-abx+lb在y轴上的截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.2.求圆外一点到圆的最大距离和最小距离的方法采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值或最小值.1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+ 2 C.2+22D.1+2【解析】选B.圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为 2 ,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2 .2.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为( )A.2 B.1 C.0 D.-1【解析】选B.x2+y2表示圆上的点(x,y)与(0,0)间距离的平方,由几何意义可知最小值为(14-13)2=1.3.如果实数x,y满足(x-2)2+y2=3,求yx的最大值和最小值.【解析】方法一:如图,当过原点的直线l与圆(x-2)2+y2=3相切于上方时yx最大,过圆心A(2,0)作切线l的垂线交于B,在Rt△ABO中,OA=2,AB= 3 .所以切线l的倾斜角为60°,所以yx的最大值为 3 .同理可得yx的最小值为- 3 .方法二:令yx=n,则y=nx与(x-2)2+y2=3联立,消去y得(1+n2)x2-4x+1=0,Δ=(-4)2-4(1+n2)≥0,即n2≤3,所以- 3 ≤n≤ 3 ,即yx的最大值和最小值分别为 3 ,- 3 .【补偿训练】1.已知圆C的圆心为C(x0,x),且过定点P(4,2).(1)求圆C的标准方程.(2)当x为何值时,圆C的面积最小?求出此时圆C的标准方程.【解析】(1)设圆C的标准方程为(x-x0)2+(y-x)2=r2(r≠0).因为圆C过定点P(4,2),所以(4-x0)2+(2-x)2=r2(r≠0).所以r2=2x2-12x+20.所以圆C的标准方程为(x-x0)2+(y-x)2=2x2-12x+20.(2)因为(x-x0)2+(y-x)2=2x2-12x+20=2(x-3)2+2,所以当x=3时圆C的半径最小,则圆C的面积最小.此时圆C的标准方程为(x-3)2+(y-3)2=2.2.已知实数x,y满足方程x2+(y-1)2=14,求(x-2)2+(y-3)2的取值范围.【解析】(x-2)2+(y-3)2可以看成圆上的点P(x,y)到A(2,3)的距离.圆心C(0,1)到A(2,3)的距离为d=(0-2)2+(1-3)2=2 2 ,由图可知,圆上的点P(x ,y)到A(2,3)的距离的范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .即(x -2)2+(y -3)2 的取值范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .。

第4章 4.1 4.1.1 圆的标准方程

第4章   4.1  4.1.1 圆的标准方程

4.1.1圆的标准方程1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?2. 点与圆的位置关系圆的标准方程为(x-a)2+(y-b)2=r2,圆心A(a,b),半径为r.设所给点为M(x0,y0),则位置关系判断方法几何法代数法点在圆上│MA│=r⇔点M在圆A上点M(x0,y0)在圆上⇔(x0-a)2+(y0-b)2=r2点在圆内│MA│<r⇔点M在圆A内点M(x0,y0)在圆内⇔(x0-a)2+(y0-b)2<r2点在圆外│MA│>r⇔点M在圆A外点M(x0,y0)在圆外⇔(x0-a)2+(y0-b)2>r21.圆(x-2)2+(y+3)2=2的圆心和半径分别是()A.(-2,3),1 B.(2,-3),3 C.(-2,3), 2 D.(2,-3), 22.以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2 B.x2+y2=4 C.(x-2)2+(y-2)2=8 D.x2+y2= 23.点P(m,5)与圆x2+y2=24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定4.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.求圆的标准方程【例1】求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程:(1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P (2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上.命题角度1 直接法求圆的标准方程例1 (1)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)与y 轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________.反思与感悟 (1)确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,要首先求出圆心坐标和半径,然后直接写出圆的标准方程.(2)确定圆心和半径时,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中垂线的交点必为圆心”等.跟踪训练1 以两点A (-3,-1)和B (5,5)为直径端点的圆的方程是( )A .(x +1)2+(y +2)2=10B .(x -1)2+(y -2)2=100C .(x +1)2+(y +2)2=25D .(x -1)2+(y -2)2=25命题角度2 待定系数法求圆的标准方程例2 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的方程.反思与感悟 待定系数法求圆的标准方程的一般步骤跟踪训练2 已知△ABC 的三个顶点坐标分别为A (0,5),B (1,-2),C (-3,-4),求该三角形的外接圆的方程.点与圆的位置关系【例2】 已知圆心为点C (-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.例3 (1)点P (m 2,5)与圆x 2+y 2=24的位置关系是( )A .点P 在圆内B .点P 在圆外C .点P 在圆上D .不确定(2)已知点M (5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围是_________.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断.2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A (1,2)不在圆C :(x -a )2+(y +a )2=2a 2的内部,求实数a 的取值范围.跟踪训练3 已知点(1,1)在圆(x -a )2+(y +a )2=4的外部,则a 的取值范围是________.与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?2.若点P (x , y )是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.1.本例条件不变,试求y x的取值范围.2.本例条件不变,试求x +y 的最值.与圆有关的最值问题的常见类型及解法: (1)形如u =y -b x -a形式的最值问题,可转化为过点(x , y )和(a , b )的动直线斜率的最值问题. (2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +l b截距的最值问题. (3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点(x , y )到定点(a , b )的距离的平方的最值问题.例4 已知实数x ,y 满足方程(x -2)2+y 2=3,求y x的最大值和最小值.引申探究1.若本例条件不变,求y -x 的最大值和最小值.2.若本例条件不变,求x 2+y 2的最大值和最小值.反思与感悟 与圆有关的最值问题,常见的有以下几种类型(1)形如u =y -b x -a形式的最值问题,可转化为过点(x ,y )和(a ,b )的动直线斜率的最值问题. (2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +l b截距的最值问题. (3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点(x ,y )到定点(a ,b )的距离的平方的最值问题.跟踪训练4 已知x 和y 满足(x +1)2+y 2=14,试求: (1)x 2+y 2的最值;(2)x +y 的最值.1.判断点与圆位置关系的两种方法(1)几何法:主要利用点到圆心的距离与半径比较大小.(2)代数法:主要是把点的坐标代入圆的标准方程来判断:点P (x 0,y 0)在圆C 上⇔(x 0-a )2+(y 0-b )2=r 2;点P (x 0,y 0)在圆C 内⇔(x 0-a )2+(y 0-b )2<r 2;点P (x 0,y 0)在圆C 外⇔(x 0-a )2+(y 0-b )2>r 2.2.求圆的标准方程时常用的几何性质求圆的标准方程,关键是确定圆心坐标和半径,为此常用到圆的以下几何性质:(1)弦的垂直平分线必过圆心.(2)圆内的任意两条弦的垂直平分线的交点一定是圆心.(3)圆心与切点的连线长是半径长.(4)圆心与切点的连线必与切线垂直.3.求圆的标准方程常用方法(1)待定系数法.(2)直接法.一、选择题1.圆(x +1)2+(y -2)2=4的圆心与半径分别为( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),42.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,则圆的标准方程为( )A .(x +2)2+(y -3)2=13B .(x -2)2+(y +3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=523.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的标准方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=44.点(5a +1,12a )在圆(x -1)2+y 2=1的内部,则实数a 的取值范围是( )A .|a |<1B .a <13C .|a |<15D .|a |<1135.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且与直线x +2y =0相切,则圆C 的标准方程为( )A .(x -5)2+y 2=5B .(x +5)2+y 2=5C .(x -5)2+y 2=5D .(x +5)2+y 2=56.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的标准方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=18.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( )A .6B .4C .3D .2二、填空题9.若圆C 与圆M :(x +2)2+(y -1)2=1关于原点对称,则圆C 的标准方程为________.10.圆O 的方程为(x -3)2+(y -4)2=25,则点(2,3)到圆上的最大距离为________.11.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________________________.12.若实数x ,y 满足x 2+y 2=1,则y -2x -1的最小值是______. 三、解答题13.求过点A (1,2)和B (1,10)且与直线x -2y -1=0相切的圆的标准方程.四、探究与拓展14.设P(x,y)是圆C:(x-2)2+y2=1上任意一点,则(x-5)2+(y+4)2的最大值为() A.6 B.25 C.26 D.3615.已知x,y满足x2+(y+4)2=4,求(x+1)2+(y+1)2的最大值与最小值.。

人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

《4.1.1 圆的标准方程》教案
授课时间:授课地点:授课教师:
一、教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。

对于知识的后续学习,具有相当重要的意义.
二、教学目标:
1、知识与技能:①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;反之,
会根据圆的标方程,求圆心和半径;
②会判断点和圆的位置关系;
③会用待定系数法和几何法求圆的标准方程;
2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思
想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问
题、发现问题和解决问题的能力.
3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习
数学的热情和兴趣.
三、内容分析:
重点:圆的标准方程的求法及其应用
难点:会根据不同的已知条件求圆的标准方程
四、教具学具的选择:多媒体、圆规、直尺、课件.
五、教学方法:采用“问题-探究”教学法.
六、教学过程:。

人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)

人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)
设圆的标准方程为(x-a)2+(y-b)2=r2。
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系

直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)

r2

展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0

解得a=2,b=-3,r=5.


O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为

(x–2)2+(y+3)2=25.

C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2

ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.


O
x


C

高中数学第四章圆与方程4.1.1圆的标准方程课件新人教A版必修2

高中数学第四章圆与方程4.1.1圆的标准方程课件新人教A版必修2

二、内容标准 1.圆与方程 (1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程. (2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定 两个圆的方程,判断两圆的位置关系. (3)能用直线和圆的方程解决一些简单的问题. (4)初步了解用代数方法处理几何问题的思想. 2.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 本章的重点是直线的点斜式方程、一般式方程和圆的方程.难点是坐标 法的应用.坐标法是研究解析几何的基本方法,由曲线求方程和由方程研 究曲线是解析几何的基本问题,应注意展现过程,揭示思想方法,强调学 生的感受和体验.在活动中逐步提高认识和加深理解.
直线 AB 的斜率 kAB= 2 5 =-7,……………………………………………………………………4 分 1 0
因此线段 AB 的垂直平分线的方程是 y- 3 = 1 (x- 1 ),…………………………………………6 分 27 2
即 x-7y+10=0.同理可得线段 BC 的垂直平分线的方程是 2x+y+5=0.……………………………8 分
规范解答:法一 设所求圆的标准方程为 (x-a)2+(y-b)2=r2.…………………………………………………………4 分 因为 A(0,5),B(1,-2,),C(-3,-4)都在圆上, 所以它们的坐标都满足圆的标准方程,于是有
(0 a)2 (5 b)2 r2,
a 3,
(1
a)2
(2
3.(圆的标准方程)圆心为(1,1)且过原点的圆的方程是( D )
(A)(x-1)2+(y-1)2=1 (B)(x+1)2+(y+1)2=1

数学高中 圆的标准方程说课稿

数学高中 圆的标准方程说课稿

今天说课的课题是《圆的标准方程》,下面我将从教材分析,教法设计,学法设计,教学过程设计,教学反思等五个方面向各位介绍我的总体教学设计.第一个方面:教材分析教材选用高等教育出版社出版、李广全和李尚志主编的《数学》(基础模板).《圆的标准方程》是本书下册的第八章第四节内容.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.我授课的对象为电子专业的学生,所以本内容的学习为学生专业知识和专业技能的钻研提供了理论依据.针对学生已有的认知结构和心理特征,我制定了如下教学目标:知识技能目标:掌握圆的标准方程的结构,能根据已知条件求圆的标准方程;会由圆的标准方程写出圆的半径和圆心坐标.过程性目标:能运用数形结合思想解题,培养学生观察问题,发现问题,解决问题的能力.情感、价值观目标:通过运用圆的知识解决实际问题,激发学生学习数学的热情和兴趣.根据教学大纲及对教材的分析,确定本节课重难点如下:教学重点:圆的标准方程的结构;教学难点:圆的标准方程的推导.第二个方面:教法设计为了有效地完成教学任务,本节课的教学方法我设计了:演示法:首先创造通过课件把生活中圆形的物体展示给学生,借助直观,启发引导学生归纳出圆的定义,推导出圆的标准方程.讲练结合法:把例题和练习从易到难分成三等,让学生能够比较轻松的学习,克服他们对数学的恐惧心里,恢复自信,自豪起来.第三个方面:学法设计这个方面我是这样考虑的,模具专业中职班的学生,大部分数学基础都比较差,对数学的学习存在害怕心理,因此我针对教学内容,采用了对照课件,动手实验,找出规律,强化训练.通过学生自主探求圆的标准方程,提高分析问题、解决问题的能力.第四个方面:教学过程设计环节一:导入新知这个环节我通过课件向学生展示了生活中的许多五彩圆,吸引学生的注意力.这里,提出思考题,让学生思考,然后回答.设计意图是动态课件可以引发学生的好奇心,激励学生探究新知.学生通过观察、思考,对圆会增加更多的感性认识.这里我安排学生动手实验.在平面固定一个点C,画出到C点的距离等于10的所有点.图中,点C周围的10个点到C的距离都是10.这样的点还有很多,要求学生尽量多画一些.引导学生自主发现,当这样的点越来越多时,平面上逐渐形成了一个以点C为圆心,以10为半径的圆.我这样的安排是为了:训练学生观察、发现、动手的能力,使他们亲自经历、感受、探索与发现,真正体现以学生发展为本的教育理念,避免了老师讲学生听的千人一面的传统教育模式.环节二:讲授新课这个环节我是这样设计的:在学生动手作图的基础上,提出思考题:什么是圆?让学生讨论。

《圆的标准方程》说课稿

《圆的标准方程》说课稿

《圆的标准方程》说课稿《圆的标准方程》说课稿1我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。

圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。

圆也是体现数形结合思想的重要素材。

推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。

同时和今后的直线与圆等课程有重要联系。

因此本节课具有承前启后的作用,是__的关键内容。

在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:2.教学目标根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键我将本课的教学重点、难点确定为:①重点:掌握圆的标准方程及其推导方法,②难点:圆的标准方程的应用。

二、教学方法分析在教法上,主要采用研究性和启发式教学法。

以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。

结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。

例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。

在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析我所任教的班级是金融一年级,学生已具备了直线的相关知识。

学生的基本运算过关,可是主动思考问题能力较薄弱。

4.1.1《圆的标准方程》课件人教新课标

4.1.1《圆的标准方程》课件人教新课标
或OM0 MM0 0
过圆x2+y2=r2上一点M0(x0,y0)的切线方程
x0x+y0y=r2
练一练
1.写出过圆x2+y2=10上一点 M(2, 6)的 切线方程. 2.已知圆的方程是x2+y2=1,求斜率等 于1的圆的切线方程.
xy 2 0
课堂小结
圆 圆的标准方程 应用


求圆的方程 切线问题 位置关系
y
C
(x 1)2 ( y 3)2 256 O M
x
25
变式:求圆心在直线2x-y-3=0上,且过 点A(5,2),B(3,-2)的圆的标准方程.
方法一:设圆心为C(a,2a-3),利用|CA|=|CB| 求得a=2,所以C(2,1),r=|CA|,从而求得圆的方 程.
方法二:圆心可以通过线
段AB的中垂线与已知直线
的距离不变,
y
探求:能否求出机器人运动的轨
迹方程?
O •C(5, 3) x
第四章 圆与方程 高一数学 必修2
4.1 圆的方程
4.1.1 圆的标准方程
学习目标:
1.掌握圆的标准方程,能根据圆心、半径写出圆的标准方程 ; 2.进一步培养同学们用解析法研究几何问题的能力 .
探索新知
根据圆的定义,我们来求圆心是 C(a,b),半径是r的圆的方程.
A

的交点来实现.
C
方法三:待定系数法.
2x-y-3=0 B
题型三:求圆的切线方程
例3.已知圆的方程是x2+y2=r2,求经过圆
上一点M0(x0,y0)的切线方程.
解法研究
y
M0(x0,y0)
1.用点斜式求解; o

高中数学人教A版必修2第四章4.1.1圆的标准方程课件

高中数学人教A版必修2第四章4.1.1圆的标准方程课件

求曲线方程的步骤:
1、选系; 2、取动点; 3、列方程; 4、化简.
我们知道,在平面直角坐标系中, 两点确定一条直线,一点和倾斜角也能 确定一条直线.
思考?在平面直角坐标系中,如何确
定一个圆呢?
三、圆的定义:
平面内与定点距离等于定长的点
的集合(轨迹)是圆.
定点就是圆心,
y
定长就是半径.
怎样求出圆心是 A(a,b),半径是r的 圆的方程?
(3)方法:①待定系数法; ②数形结合法.
练习:
6、圆心在直线y=x上,与两轴同时相切, 半径为2.
Y
Y=X
-2 C(-2,-2)
C(2,2)
02
X
-2
(x-2)2+(y-2)2=4 或 (x+2)2+(y+2)2=4
例4、求以C1,3为圆心,并且和直线
3x 4 y 7 0相切的圆的方程.
课堂小结:
1. 圆的方程的推导步骤:
建系设点→写条件→列方程→化简→说明
2. 圆的方程的特点:点(a, b)、r分别 表示圆心坐标和圆的半径;
3. 求圆的方程的两种方法: (1)定义法; (2)待定系数法:确定a,b,r.
课外作业: P124 习题 A组 1、2、3、4、5、6
练习
1. P.120第1题、P.121第4题;
2. 求下列条件所决定的圆的方程: (1) 圆心为 C(3, -5),并且与直线
x-7y+2=0相切; (2) 过点A(3, 2),圆心在直线y=2x上,
且与直线y=2x+5相切.
3. 已知:一个圆的直径端点是A(x1, y1)、 B(x2, y2),证明:圆的方程是 (x-x1)(x-x2)+(y-y1)(y-y2)=0.

高中数学教案 必修2教案 第四章 圆与方程 4.1.1 圆的标准方程

高中数学教案 必修2教案 第四章 圆与方程 4.1.1 圆的标准方程

圆的标准方程教案教学目标(1)在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.(2)理解掌握圆的切线的求法.包括已知切点求切线;从圆外一点引切线;已知切线斜率求切线等.教学重点和难点重点:圆的标准方程的理解、应用;圆的切线方程.(已知切点求切线;从圆外一点引切线;已知切线斜率求切线).难点:从圆外一点引切线,求切线方程,已知切线斜率求切线.教学过程设计(一)导入新课,教师讲授.同学们,前面我们研究了直线(特殊的曲线)的方程及其有关问题,今天我们研究圆及与圆有关的问题.什么是“圆”.想想初中我们学过的圆的定义.“平面内与定点距离等于定长的点的集合(轨迹)是圆”.定点就是圆心,定长就是半径.根据圆的定义,我们来求圆心是c(a,b),半径是r的圆的方程.(启发引导学生推导).设 M(x,y)是圆上任意一点,圆心坐标为(a,b),半径为r.则│CM│=r,两边平方. (x-a)2+(y-b)2=r2,我们得到圆的标准方程,这就是圆心为C(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程.如果圆的圆心在原点.O(0,0).即a=0.b=0.这时圆的方程为.下面我们用大家学过的向量知识再来推导一下圆的方程.设M(x,y)是圆上任意一点,过圆心C(a,b),作x轴的平行线与圆交于A、B两点,则A点坐标为(a-r,b),B点坐标为(a+r,b),=(x-(a-r),y-b)、=(x-(a+r),y-b),M为圆上一点,AM⊥BM,·=0.[x-(a-r)][x-(a+r)]+(y-b)2=0,整理得.(x-a)2+(y-b)2=r2.例1.求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程.解:已知圆心C(1,3),现在来求圆的半径r,因圆心到切线的距离等于半径,例2图7-37是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度.[师生共同分析思路]如图,先确定有关各点的坐标,A(-10,0)、B(10,0)、P(0,4),再找出圆拱所在圆的方程,设这圆的圆心为(0,b),半径为r,则圆的方程为x2+(y-b)2=r2,由,A、B、P这些已知点,选A、P或B、P代入圆的方程,可以求出b和r,这样,这个圆的方程就为已知.P2点为圆上一点,满足圆的方程,P2的坐标为(-2,y2),把x=-2代入圆的方程,求出y2,∴A2P2的长度为y2.。

高中数学人教A版必修2《4.1.1圆的标准方程》教案3

高中数学人教A版必修2《4.1.1圆的标准方程》教案3

必修二4.1.1 圆的标准方程整体设计教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.三维目标1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.重点难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.课时安排1课时教学过程导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-, |CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了. ⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程. ③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2. 用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外; 2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上; 3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内. 应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25, 则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是 ⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6). ①同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5).②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC外接圆的圆心是△ABC的外心,它是△ABC三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y轴上,由题意得P(0,4),B(10,0).设圆的方程为x2+(y-b)2=r2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(222222rbrb解得⎩⎨⎧=-=,5.14,5.1022rb所以这个圆的方程是x2+(y+10.5)2=14.52.设点P2(-2,y0),由题意y0>0,代入圆方程得(-2)2+(y0+10.5)2=14.52,解得y0=2225.14--10.5≈14.36-10.5=3.86(m).答:支柱A2P2的长度约为3.86 m.例2 求与圆x2+y2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程.活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r2.圆x2+y2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-ba=r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6. 故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36. 点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上, 所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a 所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-,所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2. (2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x 1,y 1)、B(x 2,y 2)的圆的方程是(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0.作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1 A 组第2、3题.设计感想圆是学生比较熟悉的曲线,求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生应用数学的意识.另外,为了培养学生的理性思维,在例题中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课的设计通过适当的创设情境,调动学生的学习兴趣.本节课以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维,提高了能力、培养了兴趣、增强了信心,高效地完成本节的学习任务.。

4.1.1圆的标准方程课件人教新课标

4.1.1圆的标准方程课件人教新课标

[变式训练] (1)若圆C与圆(x+2)2+(y-1)2=1关于
原点对称,则圆C的方程为( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1 D.(x+1)2+(y-2)2=1
(2)已知圆C的圆心在x轴的正半轴上,点M(0, 5 )
在圆C上,且圆心到直线2x-y=0的距离为
(3)圆心坐标是(-1,-2),半径是2,故不正确. (4)点(0,0)在圆外,故不正确. 答案:(1)× (2)√ (3)× (4)×
2.圆心为P(-1,2)、半径长是2的圆的标准方程是 ()
A.(x-1)2+(y-2)2=2 B.(x+1)2+(y-2)2=4 C.(x-2)2+(y+1)2=4 D.(x-1)2+(y-2)2=4 解析:根据圆心P的坐标为(-1,2),圆的半径长为 2,得圆的标准方程为(x+1)2+(y-2)2=4. 答案:B
[知识提炼·梳理] 1.圆的标准方程 (1)圆的定义:平面内到定点的距离等于定长的点的 集合叫作圆,定点称为圆心,定长称为圆的半径.
(2)确定圆的要素是圆心和半径,如图所示.
(3)圆的标准方程:圆心为A(a,b),半径长为r的圆 的标准方程是(x-a)2+(y-b)2=r2.
当a=b=0时,方程为x2+y2=r2,表示以原点为圆 心、半径为r的圆.
故所求圆的标准方程为(x-4)2+(y-6)2=5. 分别计算点M,N,P到圆心C的距离: |CM|= (4-5)2+(6-3)2= 10> 5, |CN|= (4-3)2+(6-4)2= 5, |CP|= (4-3)2+(6-5)2= 2< 5, 所以点M在圆外,点N在圆上,点P在圆内.
[迁移探究1] (变换条件)将典例2中两点P1,P2坐标改 为“P1(4,9)和P2(6,3)”,求以P1P2为直径的圆的方程,并 判断点M(6,9),N(3,3),Q(5,3)是在圆上、圆内还是圆 外.

圆的标准方程说课稿

圆的标准方程说课稿

《圆的标准方程》说课稿陆川县实验中学钟利各位评委、老师们,大家好!我是陆川县实验中学的数学教师钟利,我今天说课的题目是《圆的标准方程》,下面我将从教学背景分析、教法学法分析、教学过程与设计、板书设计四个方面来阐述我对本节课的教学认识。

首先,我分四小点对本节课的教学背景进行分析。

【一】教学背景分析1.教材的地位及作用《圆的标准方程》是高中数学必修二第四章“圆与方程”的第一节内容。

圆的方程属于解析几何的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。

2.学情分析圆的标准方程是学生在初中学习了圆的概念和基本性质后,又在上一章学习了直线与方程,初步认识解析法的基础上进行研究的。

但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。

另外学生在探究问题的能力,合作交流的意识等方面有待加强。

根据上述教材的地位及作用分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识与技能①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.②会用待定系数法求圆的标准方程.(2)过程与方法①通过几何问题代数化来定量描述圆的相关知识,深化数形结合的数学思想;②通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。

(3)情感态度与价值观通过运用圆的知识解决生活中的实际问题的学习,理解理论来源于实践,激发学生自主探究问题的兴趣。

根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析本节课基本学习方法是在观察实验,自主探究基础上的六动学习法:动手、动笔、动口、动脑、动心、动情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的标准方程
【一】教学背景分析
1. 教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强. 根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征 ,我制定如下教学目标:
3. 教学目标
(1)在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母
的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.
(2)理解掌握圆的切线的求法.包括已知切点求切线;从圆外一点引切线;已知切线斜
率求切线等.
4. 教学重点与难点
重点:圆的标准方程的理解、应用;圆的切线方程.(已知切点求切线;从圆外一点引切线;
已知切线斜率求切线).
难 点:从圆外一点引切线,求切线方程,已知切线斜率求切线.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
【二】教法学法分析
1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.
2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求r b a 、、的过程.
下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
下面我从纵横两方面叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m ,高为3m 的货车能不能驶入这个隧道? 通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD 的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心
在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问
0x y r
M(x,y)C(a,b)题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二)深入探究——获得新知
问题二 1.根据问题一的探究能不能得到圆心在原点,半径为r 的圆的方程?
2.如果圆心在),(b a ,半径为r 时又如何呢? 这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生
对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.
(三)应用举例——巩固提高
I .直接应用 内化新知
问题三 1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点)1,5(P ,圆心在点)3,8(-C .
2.写出圆2
22)2()2(-=++y x 的圆心坐标和半径.
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.
II .灵活应用 提升能力
问题四例1.写出圆心为C(2,-3),半径长等于5的圆的方程,并判断点 m1(5.-7), m2(-5,-1) 是否在这个圆上。

例2 ⊿ABC 的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程
例3 己知圆心为C 的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C 的圆的标准方程.
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III .实际应用 回归自然
问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到0.01m ).
我选用了教材的例3,它是待定系数法求出圆的三个参数r b a 、、的又
一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培
养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六 1.求过原点和点),(11P ,且圆心在直线0132=++y x 上的圆的标准方程.
2.求圆1322=+y x 过点)3,2(-P 的切线方程.
3.求圆2522=+y x 过点)2,5(-B 的切线方程.
(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为),(b a C ,半径为r 的圆的标准方程为:222)()(r b y a x =-+- ;
圆心在原点时,半径为r 的圆的标准方程为:222r y x =+.
②已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是:2
00r y y x x =+.
2.分层作业 (A )巩固型作业:教材P81-82:(习题7.6)1,2,4.
(B )思维拓展型作业:
试推导过圆222)()(r b y a x =-+-上一点),(00y x M 的切线方程.。

相关文档
最新文档