太阳能光伏组件镀膜玻璃和非镀膜玻璃的对比
AZO、ITO、FTO对比

ITO镀膜玻璃。
一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。
但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。
铟为稀有元素,在自然界中贮存量少,价格较高。
ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。
SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。
其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。
通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。
利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。
?氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。
其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。
预计会很快成为新型的光伏TCO产品。
目前主要存在的问题是工业化大面积镀膜时的技术问题。
光伏电池对TCO镀膜玻璃的性能要求:1.光谱透过率?为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。
目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。
因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。
2.导电性能?TCO导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显着变化。
这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体。
氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,提高导电率,它的导电性能在目前是最好的,最低电阻率达10-5Ωcm量级。
3.雾度?为了增加薄膜电池半导体层吸收光的能力,光伏用TCO玻璃需要提高对透射光的散射能力,这一能力用雾度(Haze)来表示。
光伏组件-光伏材料选择及概述

光伏组件——概述光伏组件主要由高效太阳能电池片、超白布纹钢化玻璃、EVA(乙烯-醋酸乙烯共聚物)、TPT(聚氟乙烯复合膜)背板以及耐腐蚀铝合金边框等组成;可分为单晶硅、多晶硅、非晶硅、铜铟镓硒(CIGS)等几种类型;是光伏发电系统中的核心部件。
特点:1. 高效率晶体硅(单晶或多晶)电池片制造:转换效率高、衰减小。
2. 技术成熟、高品质的材料和工艺:使用寿命长、性能稳定。
3. 高透光率的光伏钢化玻璃封装:太阳光的穿透性好、组件的机械强度大。
4. 优异的减反射膜:在恶劣环境下对光的吸收强。
5. 阳极氧化铝合金边框及防水接线盒:较好的机械强度和防水密封性。
6. 配备旁路二极管:避免了阴影造成的热斑损伤。
【光伏组件的原材料由八大主材和生产配套辅材组成】八大主材为:(1)电池片:太阳能电池是把光能直接转换成电能的一种器件。
它是用半导体材料制成的。
通过太阳光的照射,激发电子—空穴对,利用P—N结势垒区的静电场实现分离电子—空穴对,被分离的电子和空穴,经由电极收集输出到电池体外,形成电流。
(2)涂锡铜带:由无氧铜剪切拉直而成,所有外表面都有热镀涂层。
涂锡带用于太阳能光伏组件生产时太阳能电池片的电极引出,连接电池片。
要求具有较高的焊接操作性、牢固性及柔韧性。
(3)EVA:乙烯与醋酸乙烯酯的共聚物,是一种热熔胶粘剂。
用来封装电池片,防止外界环境对电池片的电性能造成影响,增强光伏组件的透光性,将电池片、钢化玻璃、背板粘接在一起,具有一定粘接强度,同时对电池光伏组件的电性能输出有增益作用。
(4)背板:用作背面保护封装材料,常用的分为T门、TPE和PET,聚乙烯结构。
用来增强光伏组件的耐老化、耐腐蚀性能,延长了光伏组件的使用寿命;白色的背板对入射到光伏组件内部的光进行散射,提高了光伏组件的吸光效率,同时因其具有较高的红外发射率,还可降低光伏组件的工作温度;同时提高了光伏组件的绝缘性能。
(5)钢化玻璃:用于支撑光伏组件结构,增强光伏组件的承重和载荷,具有透光、减反射透光、阻水、阻气和防腐蚀的作用。
镀膜玻璃简介

镀膜玻璃镀膜玻璃是在玻璃表面涂镀一层或多层金属、合金或金属化合物薄膜,以改变玻璃的光学性能,满足某种特定要求。
镀膜玻璃按产品的不同特性,可分为以下几类:热反射玻璃、低辐射玻璃(Low-E)、导电膜玻璃等。
热反射玻璃一般是在玻璃表面镀一层或多层诸如铬、钛或不锈钢等金属或其化合物组成的薄膜,使产品呈丰富的色彩,对于可见光有适当的透射率,对红外线有较高的反射率,对紫外线有较高吸收率,因此,也称为阳光控制玻璃,主要用于建筑和玻璃幕墙;低辐射玻璃是在玻璃表面镀由多层银、铜或锡等金属或其化合物组成的薄膜系,产品对可见光有较高的透射率,对红外线有很高的反射率,具有良好的隔热性能,主要用于建筑和汽车、船舶等交通工具,由于膜层强度较差,一般都制成中空玻璃使用;导电膜玻璃是在玻璃表面涂敷氧化铟锡等导电薄膜,可用于玻璃的加热、除霜、除雾以及用作液晶显示屏等;镀膜玻璃的生产方法很多,主要有真空磁控溅射法、真空蒸发法、化学气相沉积法以及溶胶—凝胶法等。
磁控溅射镀膜玻璃利用磁控溅射技术可以设计制造多层复杂膜系,可在白色的玻璃基片上镀出多种颜色,膜层的耐腐蚀和耐磨性能较好,是目前生产和使用最多的产品之一。
真空蒸发镀膜玻璃的品种和质量与磁控溅射镀膜玻璃相比均存在一定差距,已逐步被真空溅射法取代。
化学气相沉积法是在浮法玻璃生产线上通入反应气体在灼热的玻璃表面分解,均匀地沉积在玻璃表面形成镀膜玻璃。
该方法的特点是设备投入少、易调控,产品成本低、化学稳定性好,可进行热加工,是目前最有发展前途的生产方法之一。
溶胶—凝胶法生产镀膜玻璃工艺简单,稳定性也好,不足之处是产品光透射比太高,装饰性较差。
镀膜玻璃中应用最多的是热反射玻璃和低辐射玻璃。
基本上采用真空磁控溅射法和化学气相沉积法两种生产方法。
镀膜玻璃性能特点:1、太阳能透过率;2、较好的单向透视功能及较高的镜面反射效果;3、对太阳能中的红外线部分有较高的反射率,对紫外线部分有较高的吸收率,避免室内物品的褪色,并能节约房屋内冷暖空调的能耗;4、保护隐私:由于镀膜玻璃反射作用,限制了可见光的通过量,是光线强的一面看不见光线弱的一面;5、性能持久:膜层使用的金属化合物与玻璃结合牢固,可有效地提高玻璃的化学稳定性和使用寿命;镀膜玻璃产品应用:广泛应用于各类建筑幕墙及门窗装饰,可制作钢化夹胶、中空等多种用途的复合玻璃制品。
太阳能光伏组件彩虹斑的问题分析与解决方法

- 15 -1 问题出现——彩虹斑现象案例1:2018年5月份某组件厂检测组件DH1000实验后,某工厂所提供的钢化镀膜超白盖板玻璃结果为失效状态。
外观出现严重彩虹斑见图2、图3,导致老化后组件发电功率衰减4.63%,衰减程度严重偏高。
太阳能组件中所使用的盖板玻璃为某公司提供,经排查:减少光线反射膜层使用的是国内知名厂镀膜液;盖板玻璃外观无严重缺陷,绝缘电阻满足初始实验要求。
发电功率衰减4.63%,从发电性能参数来看,功率衰减大是由ISC 值衰减大引起的。
如此结果,若不能及时解决,将面临巨大经济损失,发出的货物将面临退货并加倍损失赔偿及后续无订单的可能。
案例2:2019年4月上旬电站运维承包商入场,前期检查时发现电站部分光伏组件表面彩虹斑现象严重,为避免后续问题,特将此问题报告给业主。
镀膜玻璃膜面朝下,材料叠层后,140~150℃层压TPT 背板或玻璃背板电池片EVA EVA 前板玻璃镀膜面朝下图1 太阳能组件示意图图2 盖板玻璃彩虹斑图3 盖板玻璃彩虹斑太阳能光伏组件彩虹斑的问题分析与解决方法王本语,王国芳(新福兴玻璃工业集团有限公司,福州 350314)摘要:本文针对实际案例中出现的问题,大力探索。
在镀膜液厂家管控、固化镀膜工艺参数、玻璃加工段管控开孔率等方面进行了大量的实际操作与测试验证,解决了DH1000实验中出现的彩虹斑现象,纠偏发电组件功率衰减偏大以及PCT48小时试验衰减的问题,在实际生产验证和电站应用中让问题得到管控与有效解决。
- 16 -2 彩虹斑现象分析2.1 案例1:某组件厂检测组件DH1000后外观出现严重彩虹斑问题分析与应对2.1.1 失效基本情况图片与分析数据见表1所示,组件表面彩虹斑见图4所示。
图4 组件DH1000实验后的外观图片2.1.2 DH1000试验失效的原因分析(1)对膜层结构受工艺制成条件影响。
① 镀膜后未经过完全固化(可以烧掉部分有机物),进入钢化炉进行加热时,导致膜层在钢化炉内失重太多,使膜层结构显得相对疏松,易造成衰减偏大,彩虹斑严重现象。
TCO镀膜玻璃的特性及种类

TCO镀膜玻璃的特性及种类在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。
薄膜太阳能电池是在玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。
透明导电氧化物的镀膜原料和工艺很多,通过科学研究进行不断的筛选,目前主要有以下三种TCO玻璃与光伏电池的性能要求相匹配。
ITO镀膜玻璃是一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。
但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。
铟为稀有元素,在自然界中贮存量少,价格较高。
ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。
SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。
其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。
通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。
利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。
氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。
其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。
预计会很快成为新型的光伏TCO产品。
目前主要存在的问题是工业化大面积镀膜时的技术问题。
光伏电池对TCO镀膜玻璃的性能要求1.光谱透过率为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。
目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。
因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。
2.导电性能TCO导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显著变化。
AZO、ITO、FTO性能对比

AZO、ITO、FTO三种TCO玻璃,技术性能对比:ITO镀膜玻璃。
一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。
但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。
铟为稀有元素,在自然界中贮存量少,价格较高。
ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。
SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。
其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。
通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。
利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。
氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。
其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。
预计会很快成为新型的光伏TCO产品。
目前主要存在的问题是工业化大面积镀膜时的技术问题。
光伏电池对TCO镀膜玻璃的性能要求:1.光谱透过率为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。
目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。
因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。
2.导电性能TCO导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显著变化。
这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体。
氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,提高导电率,它的导电性能在目前是最好的,最低电阻率达10-5Ωcm量级。
3.雾度为了增加薄膜电池半导体层吸收光的能力,光伏用TCO玻璃需要提高对透射光的散射能力,这一能力用雾度(Haze)来表示。
光伏玻璃镀膜常见问题及分析

光伏玻璃镀膜常见问题及分析摘要:随着传统化石能源的减少和污染的加重,各国开始大力发展光伏发电。
光伏玻璃作为光伏组件的主要材料之一,其性能对光伏组件发电功率有着较大影响。
SiO减反射膜层主要为纳米SiO颗粒构成的多孔膜层,是硅源经过一系列的溶胶-凝胶化学反应和热处理过程后所形成的光学功能膜层。
采用辊涂镀膜方法,将减反射膜层施镀于超白压延玻璃上,可以将超白压延玻璃对太阳光的透过率由91.5%提升至93.5%以上。
相应的,晶硅电池组件输出功率也会有2%~4%的提升。
关键词:光伏玻璃;镀膜;问题;分析引言太阳能作为一种取之不尽的清洁能源应用广泛。
目前能够有效利用太阳能之一的是太阳能电池。
太阳能电池板表面需要面板玻璃进行保护,因此,提升光伏玻璃面板的透光率能有效提高玻璃的发电功率。
沈军等研究了用溶胶-凝胶法在玻璃表面镀制一层减反射(AR)薄膜,可以将入射光强度提高5%以上。
但其复杂的工艺以及机械强度的缺陷,大大限制了它的应用。
2010年以来,随着光伏行业的发展,大规模工业化减反射镀膜技术确立起来。
中建材、福莱特、信义、安彩高科等企业均已经建立成熟的减反射镀膜生产线。
根据安彩高科内部以及客户数据,单层减反射镀膜能提高组件发电功率2.5%以上,是光伏组件必不可少的材料之一。
1透过率性能光伏减反射镀膜玻璃的透过率性能对光伏组件的发电功率具有直接影响,决定了光能到达电池片表面的多少,所以透过率性能是衡量其质量标准的核心指标之一。
根据GB/T30984.1—2015《太阳能用玻璃第1部分:超白压花玻璃》标准要求,在晶硅光伏电池响应区间380~1100nm波段内,光伏减反射镀膜玻璃的透过率要求≥93%。
在实际应用过程中,光伏组件厂商对透过率的要求高于国家标准。
随着减反射镀膜玻璃技术的进步,减反射镀膜玻璃产品的透过率性能得到提升,基本能够满足组件厂商的透过率技术要求。
光伏减反射镀膜玻璃的透过率性能受基片透过率、减反射膜层增透性能及基片花纹等因素影响。
Lowe玻璃和镀膜玻璃

L o w-e的反射颜色为紫色。
LOW-E玻璃Low-E玻璃又称低辐射玻璃,在玻璃表面镀上多层金属或其他化合物组成的膜系产品。
其镀膜层具有对可见光高透过及对中远红外线高反射的特性:优异的热性能普通浮法玻璃的辐射率高达0.84,当镀上一层以银为基础的低辐射薄膜后,其辐射率可降至0.1以下。
如果使用Low-E玻璃,由于热损失的降低,可大幅减少因采暖所消耗的燃料,从而减少有害气体的排放。
良好的光学性能Low-E玻璃对太阳光中可见光有高的透射比,可达80%以上,而反射比则很低,这使其与传统的镀膜玻璃相比,光学性能大为改观。
从室外观看,外观更透明、清晰,保证了建筑物良好的采光,又避免了以往大面积玻璃幕墙、中空玻璃门窗光反射所造成的光污染现象。
镀膜玻璃按产品的不同特性,可分为以下几类:热反射玻璃、低辐射玻璃(Low-E)、导电膜玻璃等。
热反射玻璃一般是在玻璃表面镀一层或多层诸如铬、钛或不锈钢等金属或其化合物组成的薄膜,使产品呈丰富的色彩,对于可见光有适当的透射率,对红外线有较高的反射率,对紫外线有较高吸收率,因此,也称为阳光控制玻璃,主要用于建筑和玻璃幕墙;低辐射玻璃是在玻璃表面镀由多层银、铜或锡等金属或其化合物组成的薄膜系,产品对可见光有较高的透射率,对红外线有很高的反射率,具有良好的隔热性能,主要用于建筑和汽车、船舶等交通工具,由于膜层强度较差,一般都制成中空玻璃使用;导电膜玻璃是在玻璃表面涂敷氧化铟锡等导电薄膜,可用于玻璃的加热、除霜、除雾以及用作液晶显示屏等;玻璃吸收能力的强弱,直接关系到玻璃对远红外热能的阻挡效果。
辐射率低的玻璃不易吸收外来的热辐射能量,从而玻璃通过传导、辐射、对流所传递的热能就少,低辐射玻璃正是限制了这一部分的传热。
以上两种形式的热能透过玻璃的传递可归结为两个途径:太阳辐射直接透过传热、对流传导传热。
透过每平方米玻璃传递的总热功率Q可由下式表示:Q=630Sc+U(T内-T外)?式中630是透过3mm透明玻璃的太阳能强度,(T内-T外)是玻璃两侧的空气温度,均是与环境有关的参数。
双层镀膜光伏玻璃对双玻组件性能的影响

光伏组件主要由太阳电池、涂锡铜带、光伏玻璃、EVA胶膜、背板、铝边框、硅胶、接线盒这8部分构成。
其中,光伏玻璃作为光伏组件主要材料中成本占比较高的物料,其在技术上的提升已迫在眉睫。
光伏玻璃的主要成分为SiO2,与普通建筑玻璃相比,其具有“超白”“高透”的特点。
而光伏玻璃的透光率会直接影响光伏组件的光电转换效率。
目前,普通光伏玻璃的透光率约为91%,而利用光的干涉原理在光伏玻璃上制备一层厚度约为120nm的多孔SiO2减反射膜(即单层镀膜)后,光伏玻璃的透光率可以达到93%左右。
由于太阳电池的光谱响应范围为380~1100nm,单层镀膜的光伏玻璃只能降低某一波长附近的反射率,因此并不能提高其在整个波段的透光率。
针对此问题,研究人员对不同材质的双层及多层镀膜光伏玻璃进行了研究,但由于研究所用的实验设备的精度较高且价格昂贵,因此该研究结果无法满足大批量生产的需求。
光伏组件输出功率对比实验01实验结果分析2种双玻单晶硅光伏组件的电性能测试结果如表1所示。
表1 2种双玻单晶硅光伏组件的电性能参数对比从表1的测试结果可以看出:针对同种版型的双玻单晶硅光伏组件,在测试机台及光伏组件其他主要材料一致,且分别配置同一厂家生产的双层镀膜光伏玻璃与单层镀膜光伏玻璃的前提下,双层镀膜玻璃光伏组件的最大输出功率比单层镀膜玻璃光伏组件的最大输出功率高3.32W,短路电流提升了0.08A。
双层镀膜光伏玻璃的增效分析及其工艺流程01玻璃透光率对光伏组件光电转换效率的影响太阳电池的工作原理主要是通过光生伏特效应实现发电。
当太阳光照射太阳电池时,入射光的能量超过单晶硅半导体的禁带宽度,在p-n结处就会产生电子-空穴对,若这些电子-空穴对未复合,就会在内电场的影响下进行移动,从而产生电流。
光伏组件的短路电流可以通过光伏组件的短路电流密度乘以太阳电池的面积计算得到,而玻璃的透光率会直接影响光伏组件的短路电流密度,最终会影响光伏组件的光电转换效率。
光伏玻璃行业深度报告:双玻组件快速渗透,光伏玻璃持续景气

目录装机需求与双玻化趋势推动光伏玻璃需求向好 (5)光伏玻璃是重要的组件封装材料 (5)光伏需求强复苏,后续高景气依旧 (6)组件双面化趋势进一步提升玻璃需求 (8)特斯拉入局,BIPV有望拓展需求空间 (11)预计2020年全球光伏玻璃需求约658万吨,2021年增速有望超过30% (13)护城河宽阔,双寡头格局稳定且有望强化 (14)技术工艺构建行业竞争壁垒 (14)成本控制是核心竞争要素,熔窑技术升级促进行业降本 (15)区位特性逐渐体现,或影响组件产能布局 (19)双寡头格局有望持续强化 (20)2020H2供需趋紧,玻璃价格迎来上涨 (22)2019年光伏玻璃供需趋紧导致涨价 (22)供需缺口显现,近期再度迎来涨价 (23)投资建议 (24)风险提示 (25)福莱特 (27)图表目录图表1. 光伏组件基本结构示意 (5)图表2. 光伏玻璃在光伏产业链中的位置 (5)图表3. 超白压花玻璃主要性能指标 (5)图表4. 3.2mm光伏玻璃透光率变化趋势预测 (6)图表5. 光伏组件封装成本组成(单晶PERC、单面) (6)图表6. 部分省区2020年平价项目统计 (7)图表7. 全球光伏新增装机 (8)图表8. 全球光伏季度新增装机拆分 (8)图表9. 全球光伏组件需求季度拆分 (8)图表10. PERC单面电池结构示意图 (9)图表11. PERC双面电池结构示意图 (9)图表12. PERC单面、双面电池工艺流程区别 (9)图表13.各类组件封装工艺流程区别 (9)图表14. 单玻、双玻组件封装面板重量对比 (10)图表15. 组件重量对费用的影响 (10)图表16. 单/双面组件市占率预测 (10)图表17. 双面组件中双玻/透明背板市占率预测 (10)图表18. 不同组件对应光伏玻璃需求(单晶PERC) (11)图表19. 部分省市绿色建筑扶持政策 (11)图表20. 发达国家近零能耗建筑发展目标 (12)图表21. 特斯拉Solarglass宣传图 (12)图表22. 全球光伏玻璃年度需求测算 (13)图表23. 光伏玻璃生产工艺流程图 (14)图表24. 光伏玻璃与普通玻璃工艺含铁量控制对比 (15)图表25. 阶梯式池底结构示意图 (15)图表26. 光伏玻璃行业壁垒 (15)图表27. 光伏玻璃与普通玻璃工艺含铁量控制对比 (16)图表28. 光伏玻璃原料的化学成分控制值(%) (16)图表29. 2019年重质纯碱市场价(中间价)趋势 (17)图表30. 光伏玻璃各项原料成本占比 (17)图表31. 2019年石英砂价格指数趋势 (17)图表32. 光伏玻璃熔窑(一窑四线) (18)图表33. 2015-2018H1福莱特能源成本占采购金额比例 (18)图表34. 2015-2018H1 OPEC一揽子原油价格趋势 (18)图表35. 2015-2018H1天然气(工业)市场价趋势 (18)图表36. 熔窑单位能耗与熔化面积的关系 (19)图表37. 光伏玻璃行业运输模式对比 (20)图表38. 光伏玻璃双寡头市占率变化 (20)图表39. 光伏玻璃头部企业与二线企业毛利率对比 (21)图表40. 2020-2021年部分拟投产光伏玻璃产能统计 (21)图表41. 2018-2019年国内3.2mm光伏玻璃价格走势图 (22)图表42. 2019年国内光伏玻璃产量统计 (22)图表43. 2019年全球光伏玻璃季度供需 (23)图表44. 2020年光伏玻璃供需季度预测 (23)图表45. 2020年国内3.2mm与2.0mm光伏玻璃价格走势图 (23)附录图表46. 报告中提及上市公司估值表 (26)图表47. 福莱特主要产品分布 (28)图表48. 光伏玻璃双寡头市占率变化 (29)图表49. 福莱特、信义光能与二线企业毛利率对比 (29)图表50. 2020-2021年部分拟投产光伏玻璃产能统计 (30)图表51. 福莱特营业收入与毛利率预测 (31)图表52. 福莱特可比上市公司估值比较 (31)装机需求与双玻化趋势推动光伏玻璃需求向好光伏玻璃是重要的组件封装材料超白压花玻璃为主流光伏玻璃产品:光伏玻璃一般用作光伏组件的封装面板,是光伏组件的核心辅材之一,其强度、透光率直接决定了光伏组件的寿命和发电效率。
光伏减反射镀膜玻璃应用性能

光伏减反射镀膜玻璃应用性能摘要:文章尝试对光伏减反射镀膜玻璃应用性能进行分析,分别对光伏减反射镀膜玻璃的透过率、耐脏污性、耐候性等应用性能进行介绍,证实光伏减反射镀膜玻璃性能优势与重要性,以耐受不同使用环境对光伏减反射镀膜玻璃组间外观质量的要求,以延长使用寿命。
关键词:光伏;减反射镀膜;玻璃;应用性能光伏减反射镀膜玻璃被应用于太阳能组件表面。
作为一类最为常见的盖板玻璃,其最核心作用是保障光线透射,同时避免外部环境对防护晶硅电池装置产生不良影响。
光伏减反射镀膜玻璃生产时是直接对光伏玻璃基片表面的的镀制一层具有减反射膜特点的功能性涂层,并借助于高温钢化烧结的方式,巩固光伏玻璃与减反射膜涂层之间的结合关系,促进玻璃强度的提升。
以下即尝试就光伏减反射镀膜玻璃应用性能进行分析。
1透过率在光伏组件发电功率的诸多影响因素中,光伏减反射镀膜玻璃的透过率占据非常关键的地位,会直接对光能达到电池片表面的大小与规模产生影响,这也提示透过率在反应光伏减反射镀膜玻璃性能方面的突出的作用。
根据现行要求来看,对于光伏减反射镀膜玻璃而言,在晶硅光伏电池响应区间(即波段380.0~1100.0nm)的范围内,光伏减反射镀膜玻璃透过率需要达到93.0%及以上水平。
而实际应用中,厂商对光伏减反射镀膜玻璃透过率的要求是高于该规范标准的。
既往有报道人员认为,基片透过率、减反射膜层增透性等指标均是光伏减反射镀膜玻璃的影响因素。
并且,随着市面上对高功率组组件需求的增加,制造商需要采取一切办法提高光伏减反射镀膜玻璃的透过率,同时兼顾满足增加耐脏污以及耐候性特点。
从增透膜透过率要求上来看,市面上已经出现了基于双层膜的光伏减反射镀膜玻璃,但在耐候性以及耐污性等方面仍然有待验证与证实。
2耐脏污性对于光伏减反射镀膜玻璃而言,在组件制作期间可能导致脏污形成的环节众多,包括手印、胶带印、硅胶印、油印、传输皮带印等。
受组件外观质量要求严格因素影响,光伏减反射镀膜玻璃组件在生产、制作以及流转环节中所产生的脏污均需要满足“应用乙醇可擦拭至不可见状态”的要求。
太阳能光伏玻璃镀膜缺陷解析

太阳能光伏玻璃镀膜缺陷解析太阳能光伏玻璃镀膜缺陷解析-SK镀膜安彩高科光伏玻璃二厂赵俊涛秦胜利宋志华陈志勇摘要:安彩高科光伏二厂钢化车间镀膜工序自2014.7.16日开工以来,长期使用SK镀膜液,在实际生产中遇到并解决了较多问题,并取得明显成效,在此汇总一下,希望能对今后的生产起到一定的指导作用。
关键词:峰值补给量下压量纠偏印1、光伏玻璃SK镀膜综述光伏玻璃SK镀膜透过率曲线:峰值535±5,头部偏瘦为宜。
这时外观较好:呈现均匀的黄蓝色;发黄时透过率偏低,膜层较薄;发紫时透过率偏高,膜层较厚。
镀膜玻璃透过率曲线图如下:2、光伏玻璃SK镀膜透过率波动1 镀膜液自身的不稳定性,导致镀膜生产中的透过率波动。
1.1对策1:调整胶辊、钢辊速度(速度差值不变),直接改变透过率。
膜层较薄时,提速;膜层较厚时,降速。
1.2对策2:随着季节的变化,室内湿度大幅变化时,相应调整异丙醇补给量。
膜层较薄时,降低补给量;膜层较厚时,增加补给量。
2镀膜液长期使用后,浓度波动或混入较多杂质,导致镀膜生产中的透过率波动。
2.1对策1:更换新镀膜液,使镀膜液恢复新鲜洁净。
2.2对策2:通过退液擦辊,使镀膜设备恢复洁净,避免对镀膜液的污染。
3、镀膜辊涂机示意图现将光伏镀膜玻璃-SK镀膜玻璃外观缺陷及对策方案详列如下:1、前压辊印如图所示:一道距离尾部约720mm的辊印。
原因分析:前压辊下压量过大或倾斜;导致玻璃脱离前压辊时产生较大的震动。
对策措施:升高、调平前压辊;使用八字带将前压辊与压辊连接可根除2、压辊印如图所示:一道距离尾部约360mm的辊印。
原因分析:压辊下压量过大或倾斜;压辊与传送速度不匹配;压辊表面腐蚀发粘,与玻璃粘连;导致玻璃脱离压辊时产生较大的震动。
对策措施:升高压辊;校准压辊速度、高度;更换压辊3、周长印如图所示:一道距离头部一个圆周的辊印(圆周=胶辊周长785mm*传送速度/胶辊速度)原因分析:玻璃进入胶辊时产生的痕迹没有消除,胶辊运转一周后,镀在玻璃上。
镀膜玻璃及隔热特性及其参数

镀膜玻璃的节能特性及其参数一、概述现代建筑,不论是商厦还是住宅,都趋向于大面积采光。
但是,普通透明玻璃对太阳能辐射和远红外热辐射没有控制,其面积越大,夏季进入室内的热量越多,冬季室内散失的热量越多。
为此,必须对玻璃表面进行处理,于是产生了有节能功能的镀膜玻璃。
早期的镀膜玻璃主要是热反射镀膜玻璃(或称阳光控制膜玻璃),其作用是限制太阳能辐射直接进入室内。
用于建筑幕墙玻璃时,除具有亮丽的外观装饰效果外,还可降低冷气设备的运行费用。
但这种玻璃与普通玻璃一样,会吸收远红外热辐射而使其自身的温度升高,最终仍有相当部分的热能透过了玻璃,其隔热性能也受到了极大的限制。
选用什么材料?采用何种工艺镀膜才能有效地阻挡远红外热辐射?研究的结果诞生了低辐射镀膜玻璃(简称Low-E玻璃)。
这种玻璃的最大特点是将远红外热辐射反射出去,使其不能透过玻璃从而起到节能隔热的作用。
因此,目前世界上公认Low-E 玻璃是最理想的窗玻璃材料。
Low-E玻璃在国外已有近二十年的使用历史,我国因受到设备和生产工艺技术方面限制,同时也因节能观念的落后而起步较晚。
可喜的是,自南玻集团于1997年推出Low-E玻璃并在全国X围内大力推介后,目前已为众多设计师和用户所认同并采用。
规模化采用Low-E玻璃时代已经到来,这必将对我国的建筑节能材料应用产生影响并作出贡献。
关于镀膜玻璃,包括LOW-E玻璃的节能特性,已有许多文章或专著论述过,在大多数文章或企业的产品介绍中都列出了完整的参数,但理解这些参数须具备一定的专业知识。
对用户来说更关心的是:哪些参数与节能性直接相关?怎样才能区别不同玻璃之间节能性的优劣?如何根据这些参数选择适用的玻璃?本文拟深入浅出地回答这些问题。
二、热能的形式及窗玻璃组件的传热1、自然环境中的热能自然环境中的热能主要是太阳辐射能,其能量的98%分布在至3µm波长之间。
除了太阳直接辐射的能量外(能量分布在),还存在着大量的远红外线热辐射能,其能量分布在3至40µm波长之间。
光伏减反玻璃简介及其标准

光伏减反玻璃简介及其标准近年来随着现代科技水平快速提高,古老而传统的玻璃行业焕发新生,各种具备独特功能的玻璃产品纷纷问世。
想要了解光伏减反射玻璃具有什么与众不同的特点,以及太阳能光伏玻璃的标准是什么,读完文章就知道了。
光伏减反玻璃是什么就是指镀膜玻璃。
镀膜玻璃是在玻璃表面涂镀一层或多层金属、合金或金属化合物薄膜,以转变玻璃的光学性能,满意某种特定要求。
镀膜玻璃按产品的不同特性,可分为以下几类:热反射玻璃、低辐射玻璃(Low-E)、导电膜玻璃等。
热反射玻璃一般是在玻璃表面镀一层或多层诸如铬、钛或不锈钢等金属或其化合物组成的薄膜,使产品呈丰富的颜色,对于可见光有适当的透射率,对红外线有较高的反射率,对紫外线有较高汲取率,因此,也称为阳光掌握玻璃,主要用于建筑和玻璃幕墙;低辐射玻璃是在玻璃表面镀由多层银、铜或锡等金属或其化合物组成的薄膜系,产品对可见光有较高的透射率,对红外线有很高的反射率,具有良好的隔热性能,主要用于建筑和汽车、船舶等交通工具,由于膜层强度较差,一般都制成中空玻璃使用;导电膜玻璃是在玻璃表面涂敷氧化铟锡等导电薄膜,可用于玻璃的加热、除霜、除雾以及用作液晶显示屏等。
太阳能光伏玻璃标准是什么钢化玻璃,采纳低铁钢化绒面玻璃(又称为白玻璃),现在光伏业中用的较多的是厚度3.2mm0.3mm的一般规格;钢化性能符合国标:GB9963-88,或者封装后的组件抗冲击性能达到国标 GB9535-88 地面用硅太阳电池组件环境试验方法中规定的性能指标;一般状况下,透光率应高于90%;在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。
此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。
玻璃通过或符合国家标准GB/T 9963-1998和GB 2828-87。
光伏玻璃有许多种,可以查看一些这方面的资料,例如建筑材料方面的国标什么的。
太阳能光伏玻璃镀膜缺陷解析

太阳能光伏玻璃镀膜缺陷解析-SK镀膜安彩高科光伏玻璃二厂赵俊涛秦胜利宋志华陈志勇摘要:安彩高科光伏二厂钢化车间镀膜工序自2014.7.16日开工以来,长期使用SK镀膜液,在实际生产中遇到并解决了较多问题,并取得明显成效,在此汇总一下,希望能对今后的生产起到一定的指导作用。
关键词:峰值补给量下压量纠偏印1、光伏玻璃SK镀膜综述光伏玻璃SK镀膜透过率曲线:峰值535±5,头部偏瘦为宜。
这时外观较好:呈现均匀的黄蓝色;发黄时透过率偏低,膜层较薄;发紫时透过率偏高,膜层较厚。
镀膜玻璃透过率曲线图如下:2、光伏玻璃SK镀膜透过率波动1 镀膜液自身的不稳定性,导致镀膜生产中的透过率波动。
1.1对策1:调整胶辊、钢辊速度(速度差值不变),直接改变透过率。
膜层较薄时,提速;膜层较厚时,降速。
1.2对策2:随着季节的变化,室内湿度大幅变化时,相应调整异丙醇补给量。
膜层较薄时,降低补给量;膜层较厚时,增加补给量。
2镀膜液长期使用后,浓度波动或混入较多杂质,导致镀膜生产中的透过率波动。
2.1对策1:更换新镀膜液,使镀膜液恢复新鲜洁净。
2.2对策2:通过退液擦辊,使镀膜设备恢复洁净,避免对镀膜液的污染。
3、镀膜辊涂机示意图现将光伏镀膜玻璃-SK镀膜玻璃外观缺陷及对策方案详列如下:1、前压辊印如图所示:一道距离尾部约720mm的辊印。
原因分析:前压辊下压量过大或倾斜;导致玻璃脱离前压辊时产生较大的震动。
对策措施:升高、调平前压辊;使用八字带将前压辊与压辊连接可根除2、压辊印如图所示:一道距离尾部约360mm的辊印。
原因分析:压辊下压量过大或倾斜;压辊与传送速度不匹配;压辊表面腐蚀发粘,与玻璃粘连;导致玻璃脱离压辊时产生较大的震动。
对策措施:升高压辊;校准压辊速度、高度;更换压辊3、周长印如图所示:一道距离头部一个圆周的辊印(圆周=胶辊周长785mm*传送速度/胶辊速度)原因分析:玻璃进入胶辊时产生的痕迹没有消除,胶辊运转一周后,镀在玻璃上。
AZO、ITO、FTO对比

AZO ITO、FTO三种TCC玻璃,技术性能对比:ITO镀膜玻璃。
一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。
但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。
铟为稀有元素,在自然界中贮存量少,价格较高。
ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。
SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。
其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。
通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。
利用这一技术生产的TCO 玻璃已经成为薄膜光伏电池的主流产品。
氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。
其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。
预计会很快成为新型的光伏TCO 产品。
目前主要存在的问题是工业化大面积镀膜时的技术问题。
光伏电池对TCO 镀膜玻璃的性能要求:1.光谱透过率为了能够充分地利用太阳光,TCO 镀膜玻璃一定要保持相对较高的透过率。
目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。
因此,非晶/ 微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。
2.导电性能TCO 导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显著变化。
这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体。
氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,提高导电率,它的导电性能在目前是最好的,最低电阻率达10-5Q cm量级。
3.雾度为了增加薄膜电池半导体层吸收光的能力,光伏用TCO 玻璃需要提高对透射光的散射能力,这一能力用雾度(Haze )来表示。
low-e玻璃与热反射镀膜玻璃热学性能的比较

low-e玻璃与热反射镀膜玻璃热学性能的比较一、概述我国是能源消耗大国,目前全国单位建筑面积能耗是发达国家的2-3倍以上,面对严峻的事实,发展节能建筑刻不容缓。
国家建设部提出:到2010年,新建建筑争取1/3以上能够达到节能建筑标准。
同时,{TodayHot}全国城镇建筑总耗能要实现节能50%的目标。
Low-E 玻璃和热反射镀膜玻璃是建筑节能领域的主要材料,下面把这两种玻璃性能比较一下。
二、热能的形式及玻璃组件的传热自然环境中的最大热能是太阳辐射能,其中可见光的能量仅占约1/3,其余的2/3主要是热辐射能。
自然界另一种热能形式是远红外热辐射能(图1中虚线),其能量分布在4~50μm波长之间。
在室外,这部分热能是由太阳照射到物体上被物体吸收后再辐射出来的,夏季成为来自室外的主要热源之一。
在室内,这部分热能是由暖气、家用电器、阳光照射后的家具及人体所产生的,冬季成为来自室内的主要热源。
太阳辐射投射到玻璃上,一部分被玻璃吸收或反射,另一部分透过玻璃成为直接透过的能量。
被玻璃吸收太阳能使其温度升高,并通过与空气对流及向外辐射而传递热能,因此最终仍有相当部分透过了物体,这可归结为传导、{HotTag}辐射、对流形式的传递。
对暖气发出的远红外热辐射而言,玻璃不能直接透过,只能反射或吸收它,最终仅以传导、辐射、对流的形式透过玻璃,因此远红外热辐射透过玻璃的传热是通过传导、辐射及与空气对流体现的。
玻璃吸收能力的强弱,直接关系到玻璃对远红外热能的阻挡效果。
辐射率低的玻璃不易吸收外来的热辐射能量,从而玻璃通过传导、辐射、对流所传递的热能就少,低辐射玻璃正是限制了这一部分的传热。
以上两种形式的热能透过玻璃的传递可归结为两个途径:太阳辐射直接透过传热、对流传导传热。
透过每平方米玻璃传递的总热功率Q可由下式表示:Q=630Sc+U(T内-T外)式中630是透过3mm透明玻璃的太阳能强度,(T内-T外)是玻璃两侧的空气温度,均是与环境有关的参数。