16导数公式及四则运算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数公式及四则运算
【使用说明及学法指导】
1.自学课本P14-P21,仔细阅读课本,课前完成预习学案,牢记基础知识,掌握基本题型,在做题过程中,如遇不会问题再回去阅读课本; AA 完成所有题目,BB 完成除(**)外所有题目,CC 完成不带(*)题目。
2.认真限时完成,书写规范;课上小组合作探究,答疑解惑。
3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;
3.预习指导:理解幂函数导数的推导过程,熟记常用初等函数的导函数,并能应用导数的四则运算法则求导。 【学习目标】
1.理解并记忆基本初等函数的导函数,掌握导数的运算法则; 2.自主学习、合作交流,归纳出求导公式应用的规律与方法; 3.激情投入,高效学习,形成缜密的数学思维品质。 一、课前预习
问题1.结合函数3)(x x f =的求导过程总结求导导函数的步骤..
设
3)(x x f y ==, Θ
△y=
)()(x f x x f -∆+=3)(x x ∆+-3x
=322
)()(33x x x x x
∆+∆⋅+∆⋅
∴
x
y ∆∆=2
2)(33x x x x ∆+∆⋅+ ∴x
y x ∆∆→∆0lim
=2
3x 即2'3)(x x f =.
问题2:什么样的函数是幂函数? 由2
'
33)(x
x =,x x
2)('
2=,Λ
2
'1)(---=x x 归纳幂函数的导数表达式是怎
样的?
问题3.结合课本p17“基本初等函数导数公式表”书写出这组导数公式并分析特点,这组公式可分为几类?如何记忆?秀秀你的高招.
问题4. 两个函数和、差、积、商的导数是否等于这两个函数导数的和、差、积、商?写出函数求导的四则运算法则并分析这组公式的特点,看看谁记忆地既准又快!
问题5.当
()1≡x f 时,你能否运用商的求导法则确定函数
()x g x f )(即()
x g 1
的导数?
二、学始于疑---我思考、我收获
1.判断正误:(1))()(])()([x g x f x g x f
''='.
(2)c 是常数,则)()]([''x f c x f c ⋅=⋅
.
2.(1) 若x e x f =)(,则)('x f = .
(2) 若
x x f ln )(=,则)('x f = .
3.求下列函数的导数: (1)=++-+='222
3
y e
x x x y x
(2)x y x
lg 2-= ='y
我的疑问:(请将预习中未能解决的问题和疑惑写下来,以便课堂解决)
三、质疑探究---质疑解疑,合作探究
【探究一】利用定义求函数的导数 已知4
)(x x f =,求证:3
'
4)(x x f =.
小结:深刻理解导数的概念,熟练定义法求导步骤:
【探究二】运用求导公式求导数 (1)x
y 1
= (2)x x y ln sin ⋅=
(3)2
1x
e y x
+= (4) ()(1)ln 1f x x x x =+-+
【拓展】⑴1y x x
=+ ⑵ x x x y cos sin -= (3)x x y +-=11
小结:求导公式及运算法则应用的出错点,进一步熟记这些公式.
【BC 选做】求函数x
x x y 1
1ln ++=的导数.
【课堂小结】
1.知识方面
2.数学思想方法