16导数公式及四则运算
导数的四则运算及复合函数求导
![导数的四则运算及复合函数求导](https://img.taocdn.com/s3/m/85f0149f8762caaedd33d497.png)
经济应用数学数学
2. 复合函数求导法则
y f (u) , u (x)
dy dx
dy du
du dx
f (u) (x)
说明: 最基本的公式 (C) 0
(sin x) cos x
y yuux
(ln x) 1
x
3. 初等函数在定义区间内可导, 由定义证 , 其它公式
u x2 3复合而成, 所以 dy dy du
dx du dx
2sinu2x 0
4xsin x2 3
经济应用数学数学
例9 设y tan 1 2x2 , 求 dy dx
解 因y tan 1 2x2由y tan u, u= v,v=1-2x2复合而成,所以
2 1 sec x sec x tan x 2222
sec2 x tan x 22
经济应用数学数学
例11 求函数 y ln tan 2x 的导数.
解:y ln tan x 1 tan 2x .
tan 2x
1 sec2 2x 2x
tan 2x
经济应用数学数学
三、小结
1. 有限次四则运算的求导法则
(u v) u v (uv) uv uv
注意:
(Cu) Cu ( C为常数 )
u
v
uv uv v2
(v 0)
[u( x) v( x)] u( x) v( x);
[u( x)] u( x) . v( x) v( x)
f (x) f
( x)
f
(x)
i1 i
1
2
求导法则与导数公式
![求导法则与导数公式](https://img.taocdn.com/s3/m/622c5e1cdaef5ef7bb0d3c6b.png)
f
11
x2 ,
( x0 )1
或 ,
dx
1
xdy (y 1y0, 1) ,dy
1 x2
dx x x0
arctan x
1
1 x2
,
arc cotx
1
1 x2
,
x (,
) .
4. 复合函数的导数
指导思想:“由外向内, 逐层求导”
(1) 求导法则(链式法则)
Thm 3 设 u g( x) 在点 x 可导,而 y f (u) 在 在对应点 u g( x) 可导,则 y f (g(x)) 在点 x 可导,且
dt
求三叶玫瑰线 r a sin 3 (a> 0) 在对应
4 的点处的切线方程.
a
o
r
6. 隐函数的导数
例 11 (1)
由显x函y 数 ex
e y 0 确定了隐函数 y 形如 y f ( x) 的函数.
f
(x)
,求
y .
(2) 隐函数 由 F ( x, y) 0确定的函数 y y( x) . 能显化, 不能显化.
若函数 x(t) 存在反函数 t 1( x) ,则
y f [1( x)]是由 y f (t) , t 1( x) 复合而成.
Thm 4
设有参数方程
x y
f
(t ), (t ),
t I ,若函数
x(t) , y f (t) 在区间I 上均可导且 (t)0 ,
又 x(t) 存在反函数 t 1( x) ,则
d ln f ( x)
dx
Thm 若函数 y f ( x) 在 x 可导 ,且 f (x)0 ,则
d ln f ( x) f ( x) , 即 ln f ( x) f ( x) .
导数的四则运算法则
![导数的四则运算法则](https://img.taocdn.com/s3/m/1a6afbe4524de518964b7db2.png)
dy
即
x x (a ) a ln a .
x x 特别地, 有 (e ) e .
例 13
解
求 y arcsin x 的导数.
y arcsin x 是 x sin y 的反函数, sin y 在 x
dx cos y 0 . 区间 , 内单调、可导,且 dy 2 2
.
三.导数公式小结
1.基本初等函数的导数公式
C 0(C为常数); (log a x ) 1 x ln a ;
1 ( x ) x ( 为实数);
(ln | x |)
x x (e ) e ;
1 x
;
x x ( a ) a ln a;
(sin x ) cos x; (tan x ) 1
2
求 y sin 2 x ln x 的导数.
y 2sin x cos x ln x
y 2cos x cos x ln x 2sin x ( sin x ) ln x
2sin x cos x 1
x 1 2cos 2 x ln x sin 2 x . x
f ( x ) lim
1 1 lim x 0 x y 0 x ( y ) y
y
即 f ( x )
1
( y )
.
反三角函数导数公式的证明(略)
例 12
解
求 y a (a 0, a 1) 的导数.
x
y a 是 x log a y 的反函数, x log a y 在 且 dx 1 0 , (0,) 内单调、可导,又 dy y ln a 1 x y y ln a a ln a , 所以 dx
导数的四则运算法则
![导数的四则运算法则](https://img.taocdn.com/s3/m/211392d869eae009581becbb.png)
这个法则可以推广到任意有限个函数, 即
( f 1 f 2 f n ) ' f 1 ' f 2 ' f n '
例 1.(1)求函 f(x) 数 x2sixn 的导 .
解: f(x)(x2sinx)
(x2)(sixn)2xcoxs
(2)求函 g(x)数 x33x26x2的导 . 2
4 x (3 x 2 ) (2 x 2 3 )3 1x828x9
法二: y(6x34x29x6)
1x828x9
3. y x2 的导数 sinx
解y: ' (x2)'sisxn i2n xx2(sx i)n '
2xsinxx2coxs sin2 x
例5:求曲线y=x3+3x-8在x=2处的切 线的方程.(备选)
yax(a0,a1),yloagx(a0,a1), ysinx,ycoxs,ytanx,ycoxt.
3.导数应用的注意事项:
求函数的导数要准确把函数分割为基本函数 的和、差、积、商,再利用运算法则求导数.在 求导过程中,要仔细分析出函数解析式的结构 特征,根据导数运算法则,联系基本函数的导 数公式.对于不具备导数运算法则结构形式的 要适当恒等变形,转化为较易求导的结构形 式,再求导数,进而解决一些切线斜率、瞬时 速度等问题.
解: f (x) (x3 3x 8) 3x2 3, k f (2) 3 22 3 15, 又 切 线 过 点(2,6), 切线方程为: y 6 15(x 2), 即:15x y 24 0.
1.导数的四则运算法则是什么? 2.几个常用的函数的导数是什么?
yc(c是常),y数 x(为实),数
导数的四则运算法则
![导数的四则运算法则](https://img.taocdn.com/s3/m/834ccd52b94ae45c3b3567ec102de2bd9605dec9.png)
法二:∵y=(2x2-1)(3x+1)=6x3+2x2-3x-1,
∴y′=(6x3+2x2-3x-1)′=(6x3)′+(2x2)′-(3x)′-(1)′=18x2+4x-3.
题型二 由导数值求参数 [学透用活]
[典例 2] 设 f(x)=a·ex+bln x,且 f′(1)=e,f′(-1)=1e,求 a,b 的值. [解] f′(x)=(a·ex)′+(bln x)′=a·ex+bx,
法二:设直线 l 的方程为 y=kx,切点为(x0,y0),则 k=xy00--00=x30+xx00-16. 又∵k=f′(x0)=3x20+1,∴x30+xx00-16=3x20+1,解得 x0=-2. ∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26).
应 求在某点处的切线方程,已知切线的方程或斜率求切点,以 用 及涉及切线问题的综合应用
先求出函数的导数,若已知切点,则求出切线斜率、切线方 方 程;若切点未知,则先设出切点,用切点表示切线斜率,再 法 根据条件求切点坐标.总之,切点在解决此类问题时起着至
关重要的作用
[对点练清]
1.若过函数f(x)=ln x+ax上的点P的切线与直线2x-y=0平行,则实数a的取值
[对点练清] 求下列函数的导数: (1)y=x2+xln x;(2)y=lnx2x; (3)y=exx;(4)y=(2x2-1)(3x+1).
解:(1)y′=(x2+xln x)′=(x2)′+(xln x)′
=2x+(x)′ln x+x(ln x)′=2x+ln x+x·1x=2x+ln x+1.
()
3.已知函数 f(x)=ax2+c,且 f′(1)=2,则 a 的值为
高中数学《导数的四则运算法则》知识点讲解及重点练习
![高中数学《导数的四则运算法则》知识点讲解及重点练习](https://img.taocdn.com/s3/m/730100def605cc1755270722192e453610665ba0.png)
5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。
导数的四则运算
![导数的四则运算](https://img.taocdn.com/s3/m/288021067cd184254b35359a.png)
dy 例12 y lnsin x , 求 . dx
解 dy lnsin x 1 sin x dx sin x
1 1 cos x sin x tan x
有限次四则运算的求导法则:
1 u v u v 2 uv uv uv
解
1
y x tan x x tan x tan x x
y | x 0 0
2
1 f x 5 2 5 x3 x x 2 f x 3 15x 2 1 x
f 1 16, f 1 12
(u v w)' u' v' w' .
(2) ( uv ) uv u v
证 设 f ( x ) u( x )v( x ) , 则有
u( x h)v( x h) u( x )v( x ) f ( x h) f ( x ) lim f ( x ) lim h 0 h 0 h h
v uv uv 3 u2 u
cu cu
u 1 2 u u
(c为常数)
u 0
4
若 y f u, u x , 则对于复合函数 y f x
dy dy du 有 y x yu u x 或 dx du dx
sin x cos x
解 (1)根据求导法则(1),得
(2)根据求导法则(2),得 y x 2 2 ln x sin x x 2 2 ln x sin x
2 2 x sin x x 2 2 ln x cos x x
高等数学导数公式大全
![高等数学导数公式大全](https://img.taocdn.com/s3/m/0ca9bb680029bd64793e2c40.png)
cos x
(4) 把 tan x 当作中间变量, y ' (etan x ) ' etan x (tan x) ' sec2 xetan x
(5) 把 - x 当作中间变量, y ' (2-x ) ' 2-x ln 2(-x) ' -2-x ln 2
求导方法小结:
先将要求导的函数分解成基本初等函数,或 常数与基本初等函数的和、差、积、商.
解:上式两边对x求导,则有y '=(1) ' (xey ) ',即
y ' ey x (ey ) ey x ey y '
(1- xey ) y ' ey
y
'
ey 1- xey
隐函数的求导步骤: (1)方程两边对x求导,求导过程中把y视为中间变量,
得到一个含有y '的等式; (2)从所得等式中解出y '.
2) y sin( x - 2);
3) y ln cos x;
4) y etan x ;
5) y 2-x
解:(1)函数可以分解为y u3(x),u(x) 3x2 1, y ' [u3(x)]' 3u2 (x) u(x) ' 3(3x2 1)2 (3x2 1) '
3(3x2 1)2 6x 18x(3x2 1)2
v( u(
x) x)
u( x)v( x) - u( x)v( x)
[u( x)]2
.
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
-
u( x) u2 ( x)
.
乘法法则的推广:
导数的运算法则与四则运算[下学期]--北师大版
![导数的运算法则与四则运算[下学期]--北师大版](https://img.taocdn.com/s3/m/a88b22d56294dd88d0d26b92.png)
一、复习:
C' 0 C为常数 (xn )' n(x)n1 (n Q)
(#39; ax ln a.............(ex )' ex
(loga
x)'
1 x ln
a
.........(ln
x) '
1 x
二、导数的运算法则:(和差积商的导数)
[ f (x) g(x)]' f '(x) g '(x)
函数和(差)的导数等于它们导数的和(差)。
(可以推广到求有限个函数的和(差)的导数.)
[ f (x) g(x)]' f '(x)g(x) f (x)g(x) ' (轮流求导之和)
[ f (x)]' f '(x)g(x) f (x)g(x) ' ...(g(x) 0)
g(x)
[ g ( x)]2
(上导乘下,下导乘上,差比下方)
; 微信红包群 / 微信红包群 ;
西晋一朝虽极短促 [65-66] 11月谢玄派刘牢之率五千精兵攻破洛涧 其中有出于氐族的《企喻歌》 出于羌族的《琅琊王歌辞》 出于鲜卑族的《慕容垂歌辞》 也具有时代特征的艺术品 两晋的文化走向多元发展 03 燕幽帝 慕容暐 360-370 例如描述神仙之游的《游仙诗》 晋朝的学 术思想 司马衍 刘牢之派刘裕至海盐击败孙恩 由桓玄任盟主 长子高澄继承霸业 注中疑《列子》书载列子以后事 前仇池 残酷的民族压迫 颁布占田制 京陵公 召集地方散吏入学 和将军分统外军 与汉族杂处 [69] 中文名称 329 亦在南北朝盛行 出现了繁荣景象 除兵器外 337年 慕容皝称燕王 通过上述措施的推行 战后慕容垂声名日盛
导数的四则运算法则(教师版有答案)
![导数的四则运算法则(教师版有答案)](https://img.taocdn.com/s3/m/73fac9976f1aff00bfd51e31.png)
第1页共11页导数的四则运算法则基本初等函数的导数公式表导数的运算法则(1)前提:函数f (x ),g (x )是可导的. (2)法则:①和(或差)的求导法则:(f (x )±g (x ))′=f′(x )±g ′(x ),推广:(f 1±f 2±…±f n )′=f 1′±f2′±…±f n ′.②积的求导法则:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ). 特别地:[Cf (x )]′=Cf′(x ).③商的求导法则:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0),特别地:⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x )(g (x )≠0).思考:商的导数⎣⎢⎡⎦⎥⎤f (x )g (x )′求导法则中,分子是个差式,这个差中先对f (x )还是g (x )进行求导?第2页共11页[提示] 先对f (x )求导,即f′(x )g (x ),再对g (x )求导,即f (x )g ′(x ).1.下列结论不正确的是( ) A .若y =3,则y ′=0 B .若f (x )=3x +1,则f′(1)=3 C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin xD [D 项,∵y =sin x +cos x ,∴y ′=(sin x )′+(cos x )′=cos x -sin x .] 2.设y =-2e x sin x ,则y ′等于( ) A .-2e x cos x B .-2e x sin x C .2e x sin xD .-2e x (sin x +cos x )D [y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).] 3.已知函数f (x )=ln xx ,则f′(1)=________. 1 [∵f′(x )=1x ×x -ln x x 2=1-ln xx 2,∴f′(1)=1.]用导数的求导法则求导数 【例1】 求下列函数的导数: (1)y =2x 2+1x -3x 3; (2)y =x +3x 2+3; (3)y =e x cos x +sin x ;(4)y =x 3+lg x .[思路探究] 观察函数的特征,可先对函数式进行合理变形,然后利用导数公式及相应的四则运算法则求解.[解] (1)∵y =2x 2+x -1-3·x -3, ∴y ′=4x -x -2-3·(-3)x -4=4x -1x 2+9x 4. (2)y ′=1·(x 2+3)-2x (x +3)(x 2+3)2=-x 2-6x +3(x 2+3)2.(3)y ′=(e x cos x +sin x )′=(e x cos x )′+(sin x )′第3页共11页=(e x )′cos x +e x (cos x )′+cos x =e x cos x -e x sin x +cos x . (4)y ′=3x 2+1x ln 10.应用基本初等函数的导数公式和求导的四则运算法则可迅速解决一些简单函数的求导问题,要透彻理解函数求导法则的结构特点,准确熟记公式,还要注意挖掘知识的内在联系及其规律.对比较复杂的求导问题,可先进行恒等变形,再利用公式求导.提醒:当不易直接应用导数公式时,应先对函数进行化简,再求导.求下列函数的导数: (1)y =1x 2+sin x 2cos x 2; (2)y =x ⎝ ⎛⎭⎪⎫x 2-32x -6+2;(3)y =cos x ln x ;(4)y =xe x .[解] (1)y ′=⎝ ⎛⎭⎪⎫1x 2+sin x 2cos x 2′=(x -2)′+()12sin x ′ =-2x -3+12cos x =-2x 3+12cos x . (2)y ′=⎝ ⎛⎭⎪⎫x 3-32x 2-6x +2′=(x 3)′-⎝ ⎛⎭⎪⎫32x 2′-(6x )′+(2)′=3x 2-3x -6. (3)y ′=(cos x ln x )′ =(cos x )′ln x +cos x (ln x )′ =-sin x ln x +cos xx .第4页共11页(4)y ′=⎝ ⎛⎭⎪⎫x e x ′=(x )′e x -x (e x)′(e x )2=e x -x e x e 2x =1-xe x . 导数运算法则的应用 [探究问题]1.导数的和、差运算法则求导能拓展到多个函数吗? [提示] [f 1(x )±f 2(x )±…±f n (x )]′=f 1′(x )±f 2′(x )±…±f′n (x ). 2.导数的积、商运算法则有哪些相似的地方?区别是什么?[提示] 对于积与商的导数运算法则,应避免出现“积的导数就是导数的积,商的导数就是导数的商”这类想当然的错误,应特别注意积与商中符号的异同,积的导数法则中是“+”,商的导数法则中分子上是“-”.【例2】 已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程.[思路探究] 先求导,再求切线斜率,根据点斜式得切线方程. [解] 因为当a =-1时,f (x )=ln x +x +2x -1,x ∈(0,+∞). 所以f′(x )=x 2+x -2x 2,x ∈(0,+∞),因为f′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1.又f (2)=ln 2+2, 所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2, 即x -y +ln 2=0.1.(变换条件)本典例函数不变,条件变为“曲线y =f (x )在点(2,f (2))处的切线方程为x第5页共11页(1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确求出已知函数式的导数、切线方程是解决此类问题的关键.1.思考辨析(1)若f (a )=a 3+2ax -x 2,则f′(a )=3a 2+2x . ( ) (2)⎣⎢⎡⎦⎥⎤C g (x )′=-Cg ′(x )g 2(x ). ( ) (3)任何函数都可以应用导数的运算法则求导数. ( )[提示] (1)√ (2)√(3)× 应用导数的运算法则求导数的前提是f (x ),g (x )均为可导函数,即f′(x ),g ′(x )存在.2.对于函数f (x )=e x x 2+ln x -2kx ,若f′(1)=1,则k 等于( ) A .e2 B .e3 C .-e 2D .-e 3A [∵f′(x )=e x (x -2)x 3+1x +2kx 2,第6页共11页∴f′(1)=-e +1+2k =1,解得k =e2,故选A.] 3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ) A .-12 B .12 C .-22D .22B [∵y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,∴y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.] 4.已知a 为实数,f (x )=(x 2-4)(x -a ),且f′(-1)=0,则a =________.12[∵f (x )=(x 2-4)(x -a )=x 3-ax 2-4x +4a ,∴f′(x )=3x 2-2ax -4. 又∵f′(-1)=3+2a -4=0, ∴a =12.] 5.设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c 的值.[解] 由题意,得f (0)=c ,f′(x )=x 2-ax +b ,由切点P (0,f (0))既在曲线f (x )=13x 3-a 2x 2+bx +c 上又在切线y =1上,得⎩⎨⎧f ′(0)=0,f (0)=1,即⎩⎪⎨⎪⎧02-a ×0+b =0,13×03-a 2×02+b ×0+c =1, 解得b =0,c =1.[基础达标练]第7页共11页1.已知函数f (x )=sin x +ln x ,则f ′(1)的值为( ) A .1-cos 1 B .1+cos 1 C .cos 1-1D .-1-cos 1B [∵f ′(x )=cos x +1x ,∴f ′(1)=cos 1+1.]2.函数f (x )=e x +x sin x -7x 在x =0处的导数等于( ) A .-6 B .6 C .-4D .-5A [∵f ′(x )=e x +(sin x +x cos x )-7, ∴f ′(0)=e 0+(sin 0+0)-7=-6.]3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12 C .-12 D .-2D [∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.]4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D.⎝ ⎛⎭⎪⎫-12,-18 B [∵y ′=3x 2,k =3,∴3x 2=3,∴x =±1. 故P 点坐标为(-1,-1)或(1,1).] 5.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )第8页共11页A .⎣⎢⎡⎭⎪⎫0,π4B .⎣⎢⎡⎭⎪⎫π4,π2C .⎝ ⎛⎦⎥⎤π2,3π4D .⎣⎢⎡⎭⎪⎫3π4,πD [y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈⎣⎢⎡⎭⎪⎫3π4,π.] 6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________.1 [由于f ′(0)是一常数,∴f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,∴f ′(1)=12+3f ′(0)=1.]7.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. (e ,e) [设P (x 0,y 0).∵y =x ln x , ∴y ′=ln x +x ·1x =1+ln x .∴k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e. ∴y 0=eln e =e.∴点P 的坐标是(e ,e).]8.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. [2,+∞) [∵f (x )=12x 2-ax +ln x , ∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x ≥2.] 9.求下列函数的导数: (1)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(2)y =(x +1)⎝ ⎛⎭⎪⎫1x -1;第9页共11页(3)y =sin 4x 4+cos 4x4. [解] (1)∵y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3=x 3+1+1x 2,∴y ′=3x 2-2x 3.(2)∵y =(x +1)⎝ ⎛⎭⎪⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32 =-12x ⎝ ⎛⎭⎪⎫1+1x . (3)∵y =sin 4x 4+cos 4x4=⎝ ⎛⎭⎪⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .10.已知函数f (x )=ax 3+bx 2+cx 过点(1,5),其导函数y =f ′(x )的图象如图所示,求f (x )的解析式.[解] ∵f ′(x )=3ax 2+2bx +c , 又f ′(1)=0,f ′(2)=0,f (1)=5,∴⎩⎨⎧3a +2b +c =0,12a +4b +c =0,a +b +c =5,解得a=2,b =-9,c =12.第10页共11页∴f (x )的解析式是f (x )=2x 3-9x 2+12x .[能力提升练]1.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]D [由已知,得f ′(x )=sin θ·x 2+3cos θ·x ,所以f ′(1)=sin θ+3cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π3,又θ∈⎣⎢⎡⎦⎥⎤0,5π12,所以π3≤θ+π3≤3π4,所以2≤2sin ⎝ ⎛⎭⎪⎫θ+π3≤2,所以2≤f ′(1)≤2.]2.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=( )A .13B .-13C .73D .-13或53B [∵f ′(x )=x 2+2ax +(a 2-1),∴导函数f ′(x )的图象开口向上.又a ≠0,∴f ′(x )不是偶函数,其图象不关于y 轴对称,∴f ′(x )的图象必为第三个图.由图象特征,知f ′(0)=0,∴a 2-1=0,且-a >0,∴a =-1,∴f (x )=13x 3-x 2+1,∴f (-1)=-13-1+1=-13.]3.设a ∈R ,函数f (x )=x 3+ax 2+(a -3)x 的导函数是f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在坐标原点处的切线方程为________.y=-3x[∵f(x)=x3+ax2+(a-3)x,∴f ′(x)=3x2+2ax+a-3.又f ′(-x)=f ′(x),即3x2-2ax+a-3=3x2+2ax+a-3对任意x∈R都成立,∴a=0,∴f ′(x)=3x2-3,f ′(0)=-3,∴曲线y=f(x)在坐标原点处的切线方程为y=-3x.]第11页共11页。
导数的四则运算法则(学生版无答案)
![导数的四则运算法则(学生版无答案)](https://img.taocdn.com/s3/m/a72b27a76294dd88d1d26b40.png)
第1页共8页导数的四则运算法则基本初等函数的导数公式表导数的运算法则(1)前提:函数f (x ),g (x )是可导的. (2)法则:①和(或差)的求导法则:(f (x )±g (x ))′=f′(x )±g ′(x ),推广:(f 1±f 2±…±f n )′=f 1′±f2′±…±f n ′.②积的求导法则:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ). 特别地:[Cf (x )]′=Cf′(x ).③商的求导法则:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0),特别地:⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x )(g (x )≠0).思考:商的导数⎣⎢⎡⎦⎥⎤f (x )g (x )′求导法则中,分子是个差式,这个差中先对f (x )还是g (x )进行求导?[提示]先对f(x)求导,即f′(x)g(x),再对g(x)求导,即f(x)g′(x).1.下列结论不正确的是()A.若y=3,则y′=0 B.若f(x)=3x+1,则f′(1)=3C.若y=-x+x,则y′=-12x+1 D.若y=sin x+cos x,则y′=cos x+sin x2.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)3.已知函数f(x)=ln xx,则f′(1)=________.用导数的求导法则求导数【例1】求下列函数的导数:(1)y=2x2+1x-3x3;(2)y=x+3x2+3;(3)y=e x cos x+sin x;(4)y=x3+lg x.应用基本初等函数的导数公式和求导的四则运算法则可迅速解决一些简单函数的求导问题,要透彻理解函数求导法则的结构特点,准确熟记公式,还要注意挖掘知识的内在联系及其规律.对比较复杂的求导问题,可先进行恒等变形,再利用公式求导.第2页共8页提醒:当不易直接应用导数公式时,应先对函数进行化简,再求导.求下列函数的导数:(1)y=1x2+sinx2cosx2;(2)y=x⎝⎛⎭⎪⎫x2-32x-6+2;(3)y=cos x ln x;(4)y=x e x.导数运算法则的应用[探究问题]1.导数的和、差运算法则求导能拓展到多个函数吗?[提示][f 1(x)±f 2(x)±…±f n(x)]′=f 1′(x)±f 2′(x)±…±f′n(x).2.导数的积、商运算法则有哪些相似的地方?区别是什么?[提示]对于积与商的导数运算法则,应避免出现“积的导数就是导数的积,商的导数就是导数的商”这类想当然的错误,应特别注意积与商中符号的异同,积的导数法则中是“+”,商的导数法则中分子上是“-”.第3页共8页【例2】已知函数f(x)=ln x-ax+1-ax-1(a∈R).当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程.1.(变换条件)本典例函数不变,条件变为“曲线y=f(x)在点(2,f(2))处的切线方程为x第4页共8页第5页共8页(1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确求出已知函数式的导数、切线方程是解决此类问题的关键.【巩固练习】 1.思考辨析(1)若f (a )=a 3+2ax -x 2,则f′(a )=3a 2+2x . ( ) (2)⎣⎢⎡⎦⎥⎤C g (x )′=-Cg ′(x )g 2(x ). ( ) (3)任何函数都可以应用导数的运算法则求导数. ( )2.对于函数f (x )=e x x 2+ln x -2kx ,若f′(1)=1,则k 等于( )A .e 2B .e3 C .-e 2 D .-e 33.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ) A .-12 B .12 C .-22 D .224.已知a 为实数,f (x )=(x 2-4)(x -a ),且f′(-1)=0,则a =________.5.设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c 的值.第6页共8页【作业】:1.已知函数f (x )=sin x +ln x ,则f ′(1)的值为( )A .1-cos 1B .1+cos 1C .cos 1-1D .-1-cos 1 2.函数f (x )=e x +x sin x -7x 在x =0处的导数等于( )A .-6B .6C .-4D .-53.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12 D .-24.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-2,-8)B .(-1,-1)或(1,1)C .(2,8) D.⎝ ⎛⎭⎪⎫-12,-185.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .⎣⎢⎡⎭⎪⎫0,π4 B .⎣⎢⎡⎭⎪⎫π4,π2 C .⎝ ⎛⎦⎥⎤π2,3π4 D .⎣⎢⎡⎭⎪⎫3π4,π6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________.7.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 8.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 9.求下列函数的导数:(1)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3; (2)y =(x +1)⎝ ⎛⎭⎪⎫1x -1; (3)y =sin 4x 4+cos 4x 4.第7页共8页10.已知函数f (x )=ax 3+bx 2+cx 过点(1,5),其导函数y =f ′(x )的图象如图所示,求f (x )的解析式.11.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]12.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=( )A .13B .-13C .73D .-13或5313.设a ∈R ,函数f (x )=x 3+ax 2+(a -3)x 的导函数是f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在坐标原点处的切线方程为________.第8页共8页。
导数公式大全(最具说服力的)省公开课获奖课件说课比赛一等奖课件
![导数公式大全(最具说服力的)省公开课获奖课件说课比赛一等奖课件](https://img.taocdn.com/s3/m/6ece5c8b29ea81c758f5f61fb7360b4c2e3f2af8.png)
(cot x) = - csc2x .
(sec x) = sec x tan x . (csc x) = - csc x cot x .
另外还有反三角函数旳导数公式:
(arcsin x) 1 , 1- x2
-1
(arccos x)
,
1- x2
(arctan
x)
1 1 x2
,
(arc
cot
x)
1
dx 4
dx n
f (x) 称为 f (x) 旳一阶导数.
而把
例3 求下列函数旳二阶导数
(1) y x cos x (2) y arctan x
解:
(1) y ' cos x x(- sin x) cos x - x sin x
y" - sin x - (sin x x cos x) -2sin x - x cos x
x) x)
u( x)v( x) - u( x)v( x)
[u( x)]2
.
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
u( x) - u2(x) .
乘法法则旳推广:
(uvw) ' u 'vw uv ' w uvw '
补充例题: 求下列函数旳导数:
例 1 设 f (x) = 3x4 – ex + 5cos x - 1, 求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3,(cos x) = - sin x, (ex) = ex, (1) = 0,
故
导数运算法则PPT精品课件
![导数运算法则PPT精品课件](https://img.taocdn.com/s3/m/d3ac12dbcf2f0066f5335a8102d276a2002960e0.png)
B.长.长度不变,但顺序改变
精典例题
5.诱发突变与自然突变相比,正确的是 D
A.都是有利的 B.都是定向的 C.都是隐性突变 D.诱发突变率高
精典例题
4、人类能遗传给后代的基因突变常
发生在
C
A.减数第一次分裂
B.四分体时期
C.减数第一次分裂的间期
D.有丝分裂间期
f (x) g(x) f (x)g(x) f (x)g(x)
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个
函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函
数的平方.即:
f (x)
g
(
x)
f
(
x)
g
(x) f (
g(x)2
x)
g
(
x)
(
g
(
x)
0)
例2.求函数y=x3-2x+3的导数.
y
1 x2 (1 x2 )2
;
(4) y 6x3 x ; 1 x2
例5.某运动物体自始点起经过t秒后的距离s满足s= 1 t 4
-4t3+16t2.
4
(1)此物体什么时刻在始点?
(2)什么时刻它的速度为零?
解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点.
DNA分子中的碱基对发生变化 这种变化可否遗传? 如何遗传?
mRNA分子中的碱基发生变化 可以遗传
相应氨基酸的改变 相应蛋白质的改变
突变后的DNA分 子复制,通过减数 分裂形成带有突 变基因的生殖细 胞,并将突变基因 传给下一代.
导数的四则运算法则
![导数的四则运算法则](https://img.taocdn.com/s3/m/575d4ec40342a8956bec0975f46527d3240ca6ff.png)
±
′
= ′ () ± ′ ().
2. 函数的积、商的导数运算法则
′
′
= ′ () + ′ ();
′ − ′
=
2
≠0 .
小
结
追问: 你有哪些收获?
运用函数的导数运算法则求函数的导数,比用导数定义求函
数的导数要方便很多.
运用导数运算法则可以求很多初等函数的导数,这有助于研
究更多函数的性质.
课后作业
1. 求下列函数的导数:
(1) = 3cos + 2 ;
(2) = e ln;
(3) = tan.
2
2. 求曲线 = +
3
在点(1,4)处的切线方程.
′ 98 = 25 ′ 90
净化到纯净度为98%时净化费用的瞬时变化率是净化到纯净
度为90%时的25倍.
即净化到纯净度为98%时净化费用变化的快慢是净化到纯净
度为90%时净化费用变化快慢的25倍.
小
结
问题5 我们学习了哪些知识内容?
函数的和、差、积、商的导数运算法则.
小
结
1. 函数的和、差的导数运算法则
2sin
′
(2) () =
2
′
2sin ′ 2 − 2sin( 2 )′
=
4
2cos ⋅ 2 − 2sin ⋅ 2
=
4
2cos − 4sin
=
.
3
3
ℎ′ () = [ 2 + 2
= 2 + 2
′
]′
导数的四则运算法则
![导数的四则运算法则](https://img.taocdn.com/s3/m/3ad3ad3e49d7c1c708a1284ac850ad02df80075e.png)
(3)
y
ex ex
1 1
.
2、已知 sin x cos x , cos x sin x ,
利用求导法则证明:
tan
x
1 cos2
x
.
3、求曲线
f
x
1 1
x x
2x
ln
x
在点(1,0)
的切线方程。
4、(2010
年新课标)曲线
y
x x
2
在点(-1,-1)
处的切线方程为( )
A.y=2x+1
例
2、求曲线
y
x3
1 x
在点(1,0)处的
切线方程。
练习: 求下列函数的导数: (1) y 1
x
(3) y sin x 1
(5) y 3x x3
(7)
y
ex
1
1
x3
x
(2) y e x x
(4) y x2 x
1
(6) y x 3 ln x
那么 ,同理得
[ f ( x) g( x)]' f'( x) g'( x)
问题二、已知函数 f ( x) , g( x) 的导数分别为:
f
'( x) , g '( x) ,求函数
y
f (x) g( x)
(
g(
x)
0)
的导数。
结论
两个函数的商的导数,等于分子的导数 与分母的积,减去分母的导数与分子的 积,再除以分母的平方
即
f (x)
g(
x)
'
f
'(
x)g(
x) f ( g2(x)
导数的四则运算法则
![导数的四则运算法则](https://img.taocdn.com/s3/m/03423ef0250c844769eae009581b6bd97f19bc1a.png)
A.-2excos x
B.-2exsin x
C.2exsin x
√D.-2ex(sin x+cos x)
解析 y′=-2(exsin x+excos x) =-2ex(sin x+cos x).
1234
2.已知 f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值是
A.139
B.136
C.133
√D.130
解析 ∵f′(x)=3ax2+6x, ∴f′(-1)=3a-6=4, ∴a=130.
1234
3.若函数 f(x)=12 f′(-1)x2-2x+3,则 f′(-1)的值为
√A.-1
B.0
C.1
D.2
解析 因为 f(x)=12 f′(-1)x2-2x+3, 所以f′(x)=f′(-1)x-2. 所以f′(-1)=f′(-1)×(-1)-2, 所以f′(-1)=-1.
1234
4.某物体作直线运动,其运动规律是 s=t2+3t (t 的单位:s,s 的单位:m), 125
则它在第 4 s 末的瞬时速度应该为__1_6___m/s. 解析 由题意得 s=t2+3t , 可得瞬时速度 v=s′=2t-t32, 故它在第 4 s 末的瞬时速度应该为 2×4-432=11265 m/s.
跟踪训练2 求下列函数的导数: (1)y=(x2+1)(x-1);
解 ∵y=(x2+1)(x-1)=x3-x2+x-1, ∴y′=3x2-2x+1.
(2)y=x2+tan x;
解 因为 y=x2+csoins xx, 所以 y′=(x2)′+csoins xx′ =2x+cos2x-scionsx2x-sin x=2x+co1s2x.
y′=f′(x)= lim Δx→0
数学 24个基本求导公式 常见导数公式 简介
![数学 24个基本求导公式 常见导数公式 简介](https://img.taocdn.com/s3/m/eea5fb3091c69ec3d5bbfd0a79563c1ec5dad71c.png)
数学 24个基本求导公式常见导数公式简介目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式四个基本的导数公式可以分为三类。
第一类是导数的定义公式,即差商极限。
然后由这个公式推导出17个基本初等函数的求导公式,这就是第二类。
数学开导公式
![数学开导公式](https://img.taocdn.com/s3/m/cbfc92baa1116c175f0e7cd184254b35eefd1a0c.png)
数学开导公式求导公式可以分成三类。
第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。
最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。
1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。
其它所有基本求导公式都是由这个公式引出来的。
包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数,f'(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数,f'(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数,指数减1为指数. 这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数,f'(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数,f'(x)=a^xlna, a>0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数,f'(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数,f'(x)=1/(xlna), a>0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数,f'(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)'=cosx. 即正弦的导数是余弦.10、(cosx)'=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)'=(secx)^2. 即正切的导数是正割的平方.12、(cotx)'=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)'=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)'=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)'=1/根号(1-x^2).16、(arccosx)'=-1/根号(1-x^2).17、(arctanx)'=1/(1+x^2).18、(arccotx)'=-1/(1+x^2).最后是利用四则运算法则、复合函数求导法则以及反函数的求导法则,就可以实现求所有初等函数的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数公式及四则运算
【使用说明及学法指导】
1.自学课本P14-P21,仔细阅读课本,课前完成预习学案,牢记基础知识,掌握基本题型,在做题过程中,如遇不会问题再回去阅读课本; AA 完成所有题目,BB 完成除(**)外所有题目,CC 完成不带(*)题目。
2.认真限时完成,书写规范;课上小组合作探究,答疑解惑。
3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;
3.预习指导:理解幂函数导数的推导过程,熟记常用初等函数的导函数,并能应用导数的四则运算法则求导。
【学习目标】
1.理解并记忆基本初等函数的导函数,掌握导数的运算法则; 2.自主学习、合作交流,归纳出求导公式应用的规律与方法; 3.激情投入,高效学习,形成缜密的数学思维品质。
一、课前预习
问题1.结合函数3)(x x f =的求导过程总结求导导函数的步骤..
设
3)(x x f y ==, Θ
△y=
)()(x f x x f -∆+=3)(x x ∆+-3x
=322
)()(33x x x x x
∆+∆⋅+∆⋅
∴
x
y ∆∆=2
2)(33x x x x ∆+∆⋅+ ∴x
y x ∆∆→∆0lim
=2
3x 即2'3)(x x f =.
问题2:什么样的函数是幂函数? 由2
'
33)(x
x =,x x
2)('
2=,Λ
2
'1)(---=x x 归纳幂函数的导数表达式是怎
样的?
问题3.结合课本p17“基本初等函数导数公式表”书写出这组导数公式并分析特点,这组公式可分为几类?如何记忆?秀秀你的高招.
问题4. 两个函数和、差、积、商的导数是否等于这两个函数导数的和、差、积、商?写出函数求导的四则运算法则并分析这组公式的特点,看看谁记忆地既准又快!
问题5.当
()1≡x f 时,你能否运用商的求导法则确定函数
()x g x f )(即()
x g 1
的导数?
二、学始于疑---我思考、我收获
1.判断正误:(1))()(])()([x g x f x g x f
''='.
(2)c 是常数,则)()]([''x f c x f c ⋅=⋅
.
2.(1) 若x e x f =)(,则)('x f = .
(2) 若
x x f ln )(=,则)('x f = .
3.求下列函数的导数: (1)=++-+='222
3
y e
x x x y x
(2)x y x
lg 2-= ='y
我的疑问:(请将预习中未能解决的问题和疑惑写下来,以便课堂解决)
三、质疑探究---质疑解疑,合作探究
【探究一】利用定义求函数的导数 已知4
)(x x f =,求证:3
'
4)(x x f =.
小结:深刻理解导数的概念,熟练定义法求导步骤:
【探究二】运用求导公式求导数 (1)x
y 1
= (2)x x y ln sin ⋅=
(3)2
1x
e y x
+= (4) ()(1)ln 1f x x x x =+-+
【拓展】⑴1y x x
=+ ⑵ x x x y cos sin -= (3)x x y +-=11
小结:求导公式及运算法则应用的出错点,进一步熟记这些公式.
【BC 选做】求函数x
x x y 1
1ln ++=的导数.
【课堂小结】
1.知识方面
2.数学思想方法。