数理统计应用数理统计PPT
合集下载
数理统计基础及应用概述PPT课件( 56页)
二、控制图法
控制图是通过对过程中各特性值进行测定、记录、 评估和监察过程是否处于控制状态的一种用统计方 法设计的图。
在控制图中有两条平行的上下控制界限和中心线, 并有按时间序列排列的样本统计量数值的描点序列。
如果控制图中描点落在控制界限之内,则表明过程 正常;
若控制图中描点落在控制界限之外或描点序列在界 限之间有某一种或几种不正常的趋势,则表明过程 异常。
(1)这种误差与某一因素有明显的相关关系, 可能是某一因素的函数,也可能是一个常 数。
(2)如果重复测量某一相同质量特征值,系 统误差可能重复出现,且正负号不变。
(3)测量的结果经过修正后,可接近实际值。
6.可避免因素评论
这种质量误差与某一因素有明显的相关关系,用数 理统计的方法进行分析,可以很快找出原因,加以 纠正,使误差值控制在要求的范围内。但是,既是 误差并不超出允许的范围,这种误差也有可能存在, 也应找出原因加以纠正。
Rxmaxxmin
(4)标准偏差:反映质量数据分散程度。
S
1 n1(xi
x)2
(5)变异系数:表示数据相对波动大小的指标,Cv
值越小表示离散性越小,则均匀性越好。
Cv S *100% x
例2.1
四、数据的分布特征
质量数据具有一定的规律性,这种规律 性一般用概率分布来描述。
• 正态分布
根据它的特征用数学表达式来表示,是正态分布函 数,这种误差在工程中是不可避免的,只要质量波 动在允许的范围内,就不必纠正,是生产过程中的 正常现象。
在一定的科学技术条件下,要强行消除这类因素, 不仅在技术上难以达到,而且也不经济。
6.可避免因素
称为系统性因素或非偶然因素,其对质量特 征值的影响具有以下特征:
数理统计知识点PPT课件
]
为底边,作高为 fi xi'
频率直方图.
的矩形,xi' xi'1 xi' , i 1,2,, n 1 ,即得
2021/6/13
3
第3页/共53页
三、几个在统计中常用的概率分布
1、正态分布 N (m,s 2 )
密度函数: p(x)
1
( xm )2
e 2s 2 分布函数:F (x)
2p s
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
-6
-4
-2
0
2
4
6
2021/6/13
6
第6页/共53页
4. F 分布 F(n1,n2) 若 X~ 2 (n1),Y~ 2 (n2),且相互独立,则随机变量
X
F n1 Y
n2
服从自由度为(n1,n2)的 F 分布,记作 F~ F(n1,n2).
2021/6/13
17
第17页/共53页
1、总体方差s 2 已知
用 u 检验,检验的拒绝域为
W {z u } 1 2
即 W {z u1 或z u1 }
2
2
2.总体方差s 2 未知
用样本方差s 2 代替总体方差s 2 ,这种检验叫 t 检验.
H0
H1
Ⅰ m m0 m m0 Ⅱ m m0 m m0 Ⅲ m m0 m m0
其中 m 为均值,s 2 为方差, x .
1
e dy x
( ym )2 2s 2
2ps
标准正态分布:N(0,1)
0.4
密度函数
j (x)
数学数理统计PPT课件
b}P{anpnnpbnp}
npq npq npq
(bnp)(anp)
npq
npq
-25-
例 某单位有200台电话分机,每台分机有5%的时间
要使用外线通话。假定每台分机是否使用外线是相互 独立的,问该单位总机要安装多少条外线,才能以 90%以上的概率保证分机用外线时不等待?
解:设有X部分机同时使用外线,则有 X~B(n,p), 其 n 2 中 p 0 0 0. n ,0 1 p 5 n 0 ,- , p p ( 3 ) .0 1 .8 设有N 条外线。由题意有 P{XN}0.9
去掉,代之以 (Markov) 大数定律
1
n2
D n k1
Xk
n0
-11-
二 随机变量的收敛性
定义1 设 X1,X2,,Xn, 为一列随机变量,如果
存在常数 a使得对于任意的 0, 有
ln i P m X n a 1
则称 X n 依概率收敛于 a, 记为 Xn Pa
定义2 设 X1, X2, ,为一列随机变量,X是随机变量
准备工作
1) 切比雪夫不等式
设 X为一随机变量, 其数学期望 E( X )和方差 D( X )
都存在,则对于任意 0, 有
PXE(X) 22
2) A.L.Cauchy-Schwarz不等式.
设 r.v (X ,Y) ,满足 EX 2 , EY 2 则有
E(XY)2 EX2EY2
-3-
贝努里(Bernoulli) 大数定律
n i1
Xi
b}P{ani1
Xi n bn
}
n
n
n
(bn)(an)
n
n
-20-
《数理统计》课件
季节性分析
要点一
总结词
季节性分析是时间序列分析的重要环节,通过季节性分析 可以了解时间序列数据中存在的季节性波动。
要点二
详细描述
季节性分析的方法包括季节性分解、季节性自相关图、季 节性指数等。这些方法可以帮助我们识别时间序列数据中 的季节性模式,并基于这些模式进行预测和建模。
THANKS FOR WATCHING
参数与统计量
参数是描述总体特性的指标, 统计量是描述样本特性的指标 。
概率与随机变量
概率用于描述随机事件发生的 可能性,随机变量是表示随机 现象的变量。
估计与检验
估计是用样本数据推断总体参 数的过程,检验是利用样本数
据对假设进行判断的过程。
CHAPTER 02
描述性统计
数据的收集与整理
数据来源
描述数据的来源,如调查、观察、实 验等。
非线性回归分析
总结词
非线性回归分析是数理统计中用于研究非线 性关系的分析方法。
详细描述
非线性回归分析不依赖于最小二乘法原理, 而是通过其他优化方法来拟合非线性模型。 非线性回归分析适用于因变量和自变量之间 存在非线性关系的情况。常见的非线性回归 模型包括多项式回归、指数回归、对数回归 等。非线性回归分析广泛应用于各个领域,
如正态分布、指数分 布等。
随机事件的概率计算
条件概率
在某个事件发生的条件下,另一个事件发生 的概率。
互斥事件的概率计算
两个互斥事件同时发生的概率等于各自发生 概率的和。
独立事件的概率计算
两个独立事件同时发生的概率等于各自发生 概率的乘积。
全概率公式
一个复杂事件的概率可以分解为若干个互斥 事件的概率之和。
单因素方差分析
应用数理统计讲义(PPT77张)
i 1 n
则 称 X , ,X 是 相 互 独 立 的 。 1 n
定 理 1 如 果 { X i ,i=1, ,n} 是 一 族 独 立 的 离 散 型 随 机 变 量 , 则 P ( X t1 x1 , , X tn x n )
P(X
i 1
n
ti
xi ) , n.
其 中 x i 是 X ti 的 任 意 可 能 值 , i 1, 则 f ( x1 , , xn )
Chapter 1 预备知识
§1 概率空间
一、随机试验
具有下列三个特征的试验称为随机试验: (1)可以在相同条件下重复进行; (2)每次试验的可能结果不止一个,并且 预先知道所有可能的结果。称所有可能 的结果组成的集合为样本空间,记作Ω; (3)每次试验前不能确定那个结果会出现。
二、随机事件
样本空间Ω的元素称为基本事件或样 本点,Ω的子集称为事件。
2
, E Y ,则
2 2 2 2
[E ( X Y )] E X E Y 7 .单 调 收 敛 定 理 若 0 X n X ,则 lim E X n E X .
n
§4 常用分布族
一 、 分 布 族 定 义1 若 随 机 变 量 X的 概 率 密 度 函 数 为 1 x x e , x 0, f ( x ; , ) ( ) 0 , x 0.
二、分布函数的性质
(1)F(x)↗; (2)F(-∞)=0,F(∞)=1,F(X)∈[0,1]; (3) F(x)右连续,即F(X+0)=F(x)。
三、n维随机变量
定义 2 设 ( ,F ,P )为概率空间, X ( ) ( X 1 ( ),
则 称 X , ,X 是 相 互 独 立 的 。 1 n
定 理 1 如 果 { X i ,i=1, ,n} 是 一 族 独 立 的 离 散 型 随 机 变 量 , 则 P ( X t1 x1 , , X tn x n )
P(X
i 1
n
ti
xi ) , n.
其 中 x i 是 X ti 的 任 意 可 能 值 , i 1, 则 f ( x1 , , xn )
Chapter 1 预备知识
§1 概率空间
一、随机试验
具有下列三个特征的试验称为随机试验: (1)可以在相同条件下重复进行; (2)每次试验的可能结果不止一个,并且 预先知道所有可能的结果。称所有可能 的结果组成的集合为样本空间,记作Ω; (3)每次试验前不能确定那个结果会出现。
二、随机事件
样本空间Ω的元素称为基本事件或样 本点,Ω的子集称为事件。
2
, E Y ,则
2 2 2 2
[E ( X Y )] E X E Y 7 .单 调 收 敛 定 理 若 0 X n X ,则 lim E X n E X .
n
§4 常用分布族
一 、 分 布 族 定 义1 若 随 机 变 量 X的 概 率 密 度 函 数 为 1 x x e , x 0, f ( x ; , ) ( ) 0 , x 0.
二、分布函数的性质
(1)F(x)↗; (2)F(-∞)=0,F(∞)=1,F(X)∈[0,1]; (3) F(x)右连续,即F(X+0)=F(x)。
三、n维随机变量
定义 2 设 ( ,F ,P )为概率空间, X ( ) ( X 1 ( ),
应用数理统计课件
证明 不妨设A,B独立,则
P( AB ) P( A B ) P( A ) P( AB ) P( A ) P( A )P( B ) P( A )(1 P( B )) P( A )P( B )
其他类似可证.
注意 判断事件的独立性一般有两种方法:
① 由定义判断,是否满足公式;
② 由问题的性质从直观上去判断.
P ( A1A2…An) =P(A1)P(A2|A1)P(A3|A1A2)…P(An|A1A2…An-1) 乘法公式一般用于计算n个事件同时发生的概率 19
3. 全概率公式 设Ω是随机试验E的样本空间,事件组 A1,A2,…,An
满足:
(1) Ai Aj (i j);
n
(2)
i 1
Ai
, P( Ai )
A是B的子集,表示若事件A发生,事件B一定发生.
(2) A B(A B),
A与B的并(和).表示事件A,B至少有一个发生.
(3) A B(AB), A与B的交(积).表示事件A和B同时发生.
(4) A B , 表示事件A和B不能同时发生,称A与B互斥 (或互不相容).
(5) A B ,且A B .
(1) Ai Aj (i j);
n
(2)
i 1
Ai
, P( Ai )
0(i
1,2,, n)
则 对于任何一个正概率事件B,有
P(Aj | B)
P(Aj )P(B | Aj )
n
( j 1,2,..., n)
注:
P( Ai )P(B | Ai )
i 1
1.以上两个公式中的A1,A2,...,An可以看作是导致事件B
0(i
1,2,, n)
则 对于任何一个事件B,有
P( AB ) P( A B ) P( A ) P( AB ) P( A ) P( A )P( B ) P( A )(1 P( B )) P( A )P( B )
其他类似可证.
注意 判断事件的独立性一般有两种方法:
① 由定义判断,是否满足公式;
② 由问题的性质从直观上去判断.
P ( A1A2…An) =P(A1)P(A2|A1)P(A3|A1A2)…P(An|A1A2…An-1) 乘法公式一般用于计算n个事件同时发生的概率 19
3. 全概率公式 设Ω是随机试验E的样本空间,事件组 A1,A2,…,An
满足:
(1) Ai Aj (i j);
n
(2)
i 1
Ai
, P( Ai )
A是B的子集,表示若事件A发生,事件B一定发生.
(2) A B(A B),
A与B的并(和).表示事件A,B至少有一个发生.
(3) A B(AB), A与B的交(积).表示事件A和B同时发生.
(4) A B , 表示事件A和B不能同时发生,称A与B互斥 (或互不相容).
(5) A B ,且A B .
(1) Ai Aj (i j);
n
(2)
i 1
Ai
, P( Ai )
0(i
1,2,, n)
则 对于任何一个正概率事件B,有
P(Aj | B)
P(Aj )P(B | Aj )
n
( j 1,2,..., n)
注:
P( Ai )P(B | Ai )
i 1
1.以上两个公式中的A1,A2,...,An可以看作是导致事件B
0(i
1,2,, n)
则 对于任何一个事件B,有
应用数理统计课件
SPSS在统计中的应用
数据输入与管理
SPSS提供了数据编辑器,方便用户输入和 管理数据。
描述性统计
SPSS可以进行描述性统计,包括频数、均 值、标准差等计算。
高级统计分析
SPSS支持多种高级统计分析方法,如回归 分析、因子分析、聚类分析等。
报告生成
SPSS可以将分析结果导出为各种格式的报 告,方便用户进行汇报和交流。
季节性指数
计算时间序列的季节性指数,通过比较不同时间段的数据,了解季 节性变化对整个序列的影响程度。
季节性图
绘制时间序列的季节性图,直观地展示时间序列的季节性规律和变 化趋势。
08 统计软件应用
Excel在统计中的应用
描述性统计
Excel提供了丰富的函数和工具,可以 进行平均数、中位数、众数、方差、标
应用数理统计课件
目录
CONTENTS
• 引言 • 概率论基础 • 统计推断 • 回归分析 • 方差分析 • 多元统计分析 • 时间序列分析 • 统计软件应用
01 引言
什么是应用数理统计
定义
应用数理统计是一门将数学原理和统 计方法应用于实际问题求解的学科。 它利用概率论和数理统计的理论,通 过对数据的收集、整理、分析和推断 ,为决策提供依据。
03 统计推断
点估计
总结词
点估计是一种用确定的数值对未知参数进行估计的方法。
详细描述
点估计的基本思想是用一个数值来近似表示未知参数的值。常见的点估计方法包括最大似然估计和最小二乘估计 等。这些方法通过构造适当的统计量,使得估计的参数值尽可能地接近真实值。
区间估计
总结词
区间估计是一种给出未知参数可能取值范围的方法。
核心概念
应用数理统计课件第一章
1. SPSS
Statistical Package for the Social Science (社会科学统计软件包) Statistical Product and Service Solutions (统计产品与服务解决方案) 用户遍布于通讯、医疗、银行、证券、 保险、制造、商业、市场研究、科研教育 等多个领域和行业,是世界上应用最广泛 的专业统计软件。
《应用数理统计》
孙 平 东北大学数学系
plsun@
1. 预 备 知 识
2.参数 估计
4.方差 分析
3.假设 检验
5.回归 分析
第1章 预备知识
第1.1节 基本概念与主要内容 第1.2节 概率论基础 第1.3节 统计量与抽样分布
统计学 ( Statistics ) 是一门收集与分析数据, 并且根据数据进行推断的艺术与科学。 ———— 《大英百科全书》 统计学理论主要包含三个部分: 1.数据收集,2.数据分析,3.由数据做出决策。
0, x ≤ x(1) k — , x(k) < x ≤ x(k+1) n 1, x > x(n)
这个函数实际上是观察值 x1,…,xn中 小于 x 的频率,即 Fn (x) = { x1,…,xn中小于 x 的个数} / n
y
…
2/n 1/n O ○ x(1) x(2) x(3) x ○
可以证明,经验分布函数 Fn (x) 将依概率、 甚至是几乎处处收敛到 F (x) 。
回归与相关分析
数理统计学重要应用之一
讨论数值变量之间的效应关系问题 一元线性回归 比如说,想了解儿子身高与父亲身高之间的关系。 在每个被调查的家庭中同时获得这两个变量的 观察值,分析它们是否有某种(函数)关系,… 多元线性回归 例如,钢的去碳量与不同矿石、融化时间、 炼钢炉体积等等是否有关?关系如何?…
应用统计方法第一章数理统计基本概念PPT课件
回归方程y^=β0^+β1^x可用于预测和解释x对y的影响,其中β1^ 表示x每增加一个单位,y平均增加β1^个单位。
多元线性回归模型建立与求解
模型建立
多元线性回归模型描述多个自变量与因变量之间的线性关 系,形式为y=β0+β1x1+β2x2+⋯+βpxp+ε。
01
最小二乘法
与一元线性回归类似,通过最小化残差 平方和来估计参数β0,β1,…,βp。
选择检验统计量
根据问题的性质,选择合适的检验统计量 ,并确定其分布。
计算检验统计量的值
根据样本数据,计算检验统计量的值。
确定显著性水平
根据问题的要求,选择合适的显著性水平 $alpha$。
单侧检验和双侧检验选择依据
单侧检验
当备择假设具有方向性时,即只关心参数变 化的方向而不关心变化的大小,应选择单侧 检验。例如,比较两种药物的疗效,只关心 新药是否比旧药好。
双侧检验
当备择假设不具有方向性时,即关心参数变 化的大小而不关心变化的方向,应选择双侧 检验。例如,检验某批次产品的质量是否合 格。
假设检验在实际问题中应用举例
01
医学领域
比较两种药物的疗效、评价某种治 疗方法的效果等。
农业领域
比较不同品种农作物的产量、评估 某种肥料的效果等。
03
02
工业领域
检验某批次产品的质量是否合格、 评估生产过程的稳定性等。
研究对象的全体个体组成的集合。
总体分类
根据研究目的和范围,总体可分为有限总体和无限总体。
样本概念及选取方法
样本定义
从总体中随机抽取的一部分个体组成的集合。
样本选取方法
简单随机抽样、分层抽样、系统抽样等。
多元线性回归模型建立与求解
模型建立
多元线性回归模型描述多个自变量与因变量之间的线性关 系,形式为y=β0+β1x1+β2x2+⋯+βpxp+ε。
01
最小二乘法
与一元线性回归类似,通过最小化残差 平方和来估计参数β0,β1,…,βp。
选择检验统计量
根据问题的性质,选择合适的检验统计量 ,并确定其分布。
计算检验统计量的值
根据样本数据,计算检验统计量的值。
确定显著性水平
根据问题的要求,选择合适的显著性水平 $alpha$。
单侧检验和双侧检验选择依据
单侧检验
当备择假设具有方向性时,即只关心参数变 化的方向而不关心变化的大小,应选择单侧 检验。例如,比较两种药物的疗效,只关心 新药是否比旧药好。
双侧检验
当备择假设不具有方向性时,即关心参数变 化的大小而不关心变化的方向,应选择双侧 检验。例如,检验某批次产品的质量是否合 格。
假设检验在实际问题中应用举例
01
医学领域
比较两种药物的疗效、评价某种治 疗方法的效果等。
农业领域
比较不同品种农作物的产量、评估 某种肥料的效果等。
03
02
工业领域
检验某批次产品的质量是否合格、 评估生产过程的稳定性等。
研究对象的全体个体组成的集合。
总体分类
根据研究目的和范围,总体可分为有限总体和无限总体。
样本概念及选取方法
样本定义
从总体中随机抽取的一部分个体组成的集合。
样本选取方法
简单随机抽样、分层抽样、系统抽样等。
应用数理统计课件
应用数理统计课件
目录
• 引言 • 基础知识 • 描述性统计方法 • 推断性统计方法 • 实验设计与数据分析案例
目录
• 质量控制与可靠性评估方法 • 总结与展望
01
引言
数理统计简介
01
定义
数理统计是应用概率论对数据 进行收集、整理、分析和推断
的数学学科。
02
发展历程
介绍数理统计的历史背景、发 展过程和重要里程碑。
假设检验原理及应用举例
01
原假设与备择假设
明确待检验的假设,设定原假设 和备择假设。
03
拒绝域与显著性水平
设定拒绝域和显著性水平,判断 原假设是否成立。
02
检验统计量
根据原假设选择合适的检验统计 量,如Z检验、t检验、χ²检验等
。
04
应用举例
通过实际案例展示假设检验的应 用,如检验两种不同教学方法的
01
数据清洗
去除异常值、缺失值和重复值,确 保数据质量。
推论性统计
运用假设检验、方差分析等方法, 推断实验结果的可靠性和有效性。
03
02
描述性统计
计算均值、中位数、标准差等指标 ,以描述数据的基本特征。
可视化展示
利用图表直观展示数据分布和趋势 ,便于理解和分析。
04
实际案例展示与讨论
案例一
某种新药的临床试验。通过 随机双盲对照实验,比较新 药与安慰剂对病患的疗效差 异,并运用统计方法进行数
效果是否有显著差异。
方差分析与回归分析简介
01
方差分析
02
回归分析
研究不同因素对观测变量影响的显著性,判断因素之间是否存在交互 作用。例如,分析不同品种、不同施肥量对农作物产量的影响。
目录
• 引言 • 基础知识 • 描述性统计方法 • 推断性统计方法 • 实验设计与数据分析案例
目录
• 质量控制与可靠性评估方法 • 总结与展望
01
引言
数理统计简介
01
定义
数理统计是应用概率论对数据 进行收集、整理、分析和推断
的数学学科。
02
发展历程
介绍数理统计的历史背景、发 展过程和重要里程碑。
假设检验原理及应用举例
01
原假设与备择假设
明确待检验的假设,设定原假设 和备择假设。
03
拒绝域与显著性水平
设定拒绝域和显著性水平,判断 原假设是否成立。
02
检验统计量
根据原假设选择合适的检验统计 量,如Z检验、t检验、χ²检验等
。
04
应用举例
通过实际案例展示假设检验的应 用,如检验两种不同教学方法的
01
数据清洗
去除异常值、缺失值和重复值,确 保数据质量。
推论性统计
运用假设检验、方差分析等方法, 推断实验结果的可靠性和有效性。
03
02
描述性统计
计算均值、中位数、标准差等指标 ,以描述数据的基本特征。
可视化展示
利用图表直观展示数据分布和趋势 ,便于理解和分析。
04
实际案例展示与讨论
案例一
某种新药的临床试验。通过 随机双盲对照实验,比较新 药与安慰剂对病患的疗效差 异,并运用统计方法进行数
效果是否有显著差异。
方差分析与回归分析简介
01
方差分析
02
回归分析
研究不同因素对观测变量影响的显著性,判断因素之间是否存在交互 作用。例如,分析不同品种、不同施肥量对农作物产量的影响。
数理统计全集ppt课件
ak
1 n
n i1
xik
由大数定律可知:
bk
1n ni1(xi
x)k
Ak
1n n i1
Xi k
依概率收敛于
E( X k )
.
例1. 从一批相同的电子元件中随机地抽出8个,测得使用
寿命(单位:小时)分别为:2300,2430,2580,2400,
2280,1960,2460,2000,试计算样本均值、样本方差及
n
证 明:设 χ2 X i2 X i ~N (0,1)i1,2,,n i 1 X1,X2,,Xn相互独立,则
E (X i)0 ,D (X i)1 , E (X i2) D (X i) E (X i)21,
E χ2 E n Xi2 n E(X i2) n i1 i1
.
E(Xi4)
1 x4ex22dx3 2π
ψ(x) Γ(Γn2(1)n1Γ 2n(2)n22)(n n1 2)(n n1 2x0)n211
1 x n1
n1n2 2
n2
x0 x0
.
f(x;n1,n2) n1 20
n2 n2 25
n2 10
o
x
.
注意:统计的三大分布的定义、基本性质在后面的
学习中经常用到,要牢记!!
4、上α分位点
例3.设总体X和Y相互独立,同服从 N(0,32 )
分布,而 X1,X2,…, X9 和 Y1,Y2,…, Y9 分别是来自X和Y的简单随机样本,求统计量
U X1X2 X9 的分布. Y12 Y22 Y92
解:Xi ~N(0,9)
9
Xi ~ N(0,81)
i1
9
Xi
i1 ~ N(0,1) 9
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
执行后得到的主要结果有:
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
大家有了上述 SAS语言的基本知识后,将比较容易学习后面 的各类SAS过程.如果读者还需要进一步掌握复杂的SAS程序以 及较全面的SAS基础知识的话,可查阅下列参考文献: (1)《SAS系统 Base SAS 软件使用手册》,高惠璇等 编 译,中国统计出版社,1997年4月。 (2)《SAS系统 SAS/STAT 软件使用手册》,高惠璇等 编 译,中国统计出版社,1997年9月。 (3)《SAS系统 SAS/ETS 软件使用手册》,高惠璇等 编 译,中国统计出版社,1998年2月。
291
292
293
294
记
yij i ij , 其中 ni i 0. (效因模型)
i 1
1 s ni i n i 1
, i i
s
则
H0 : 1 2 s
等价于
: 1 2 s 0 H0
s
1 记总观察次数 n ni ,组平均值 yi ni i 1
s ni
y
j 1
ns
ij
,
1 1 s 总平均值 y n yij n ni yi ,则有平方和分解式: i 1 j 1 i 1
295
296
297
298
方差分析将观测到的应变量的变差分解为属于不 同分类变量的和随机误差进行分析
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
601
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
565
SAS主要模块
SAS/Enterprise Reporter----数据转换和报表生成工具; SAS/IntrNet----网络服务软件包; SAS/STAT----实用数理统计分析方法; SAS/QC----全面质量管理系列工具; SAS/ETS---计量经济学和时间序列分析方法; SAS/ACCESS----数据存取工具; SAS/CONNECT----远程网络连接工具包; SAS/OR----运筹决策优化及项目管理; SAS其他的解决方案;
组均值
变差
组内 全部 组间
Group
组间变差
组内变差
1
2
3
4
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
运行后,得到的因子负荷阵是
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
562
SAS 系统介绍
The SAS System
数据访问 Base SAS,STAT,ETS, 开 AF OR,QC,IML,INSIGHT, Base SAS 发 EIS NNA,LAB, ACCESS 工 FSP SPECTRAVIEW 具 MDDB Server ODBC 数据分析 数据管理 分 Base SAS GRAPH, GIS, CALC, 布 CONNECT 式 INSIGHT, Base SAS SHARE 计SPECTRAVIEW, FSP ASSIST IntrNET 算 SHARE 环 境 CONNECT ASSIST 数据呈现 Warehouse Admin. MDDB Server
570
571
SAS系统的基本窗口
访问和编辑已有的SAS程序 编写新的SAS程序 递交SAS程序 将SAS程序存为文件
是一个基本的窗口,缺省地打开 依次记录程序输出的结果 有结果输出时自动转到前台
是一个基本的窗口,缺省地打开 依次记录SAS进程中各程序运行的信息 可用命令清空
572
573
574
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96Leabharlann 79899100
101
102
103
555
556
557
558
559
560
SAS系统简介
东南大学数学系
陈平
561
SAS系统 前言---关于SAS及其软件系统
SAS Institute Inc.
• 初期的统计分析系统和报表工具软件; • 数据仓库/数据挖掘/决策支持技术与应用;
SAS系统
• 是用于数据分析与决策支持的大型集成式模块化软 件包。其早期的名称为:Statistical Analysis System
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500