数学必修五第三章经典巩固试题
(好题)高中数学必修五第三章《不等式》检测(答案解析)
一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4192.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .63.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .34.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .45.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16B .25C .36D .496.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-57.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .28.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6549.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10 B .﹣10 C .14 D .﹣14 10.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题131x x +x =______. 14.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.15.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.16.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.17.已知点(3,3A ,O 是坐标原点,点(),P x y 的坐标满足303200x y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.18.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.19.对一切R θ∈,213sin cos 2m m θθ->恒成立,则实数m 的取值范围是_______. 20.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.三、解答题21.已知函数2()31f x ax x =+-;(1)若()0f x <的解集为(1,)b -,求()f x 的零点, (2)若()f x 在(1,1)-内恰有1个零点,求a 的取值范围.22.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x=23(1)b a b+--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值.23.近年来,某市在旅游业方面抓品牌创建,推进养生休闲度假旅游产品升级,其景区成功创建国家5A 级旅游景区填补了该片区的空白,某投资人看到该市旅游发展的大好前景后,打算在该市投资甲、乙两个旅游项目,根据市场前期调查, 甲、乙两个旅游项目五年后可能的最大盈利率分别为01000和0080,可能的最大亏损率分别为0040和0020,投资人计划投资金额不超过5000万,要求确保亏损不四超过1200万,问投资人对两个项目各投资多少万元,才能使五年后可能的盈利最大? 24.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.25.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值.26.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是23292⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y xy +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z y x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).4.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min244z a ⎛⎫==+, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.5.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.6.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫---⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++6622262644119(5)(52)444a a a a a a a a =++≥+⋅=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.9.D解析:D 【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.10.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b ,故选C .考点:不等式比较大小.11.D解析:D 【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.4【分析】将所给式子变形为然后利用基本不等式求解即可【详解】因为所以当且仅当即时等号成立故答案为:4【点睛】关键点睛:此题的解题关键是将所给式子变形为从而满足基本不等式成立的条件最后计算求解解析:4【分析】 1111x x x x =+-++,然后利用基本不等式求解即可. 【详解】 11x ≥, ()911211615111x x x x x x =-≥+⋅=-=+++, 11x x =+4x =时,等号成立. 故答案为:4.【点睛】 111x x +,从而满足基本不等式成立的条件,最后计算求解. 14.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利 解析:(1,2].【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解.【详解】设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯,所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m nm n t t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2]. 故答案为:(1,2].【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键. 15.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【详解】由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线11 22y x z=-,,1122y x z=-,的截距最小,此时z最大,由2222x yx y-⎧⎨+⎩==,得A(1,0).代入目标函数z=x-2y,得z=1-2×0=1,故答案为1.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.16.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案.【详解】如图所示:画出可行域和目标函数,z x y=-,则y x z=-,则z表示直线在y轴的截距的相反数,根据图像知当直线过点()2,0时,即2x=,0y=时,z有最大值为2.故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.17.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围.【详解】作出可行域,如图所示 cos 3OA OPz OA AOP AOP OP ⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-.【点睛】本题考查简单的线性规划和向量的投影,属于中档题. 18.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然 解析:16【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移,当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.19.【分析】求出的最大值然后解相应的不等式即可得【详解】由得或故答案为:【点睛】本题考查不等式恒成立问题根据参数出现的位置首先求出三角式的最大值然后只要解不等式即可得这实质上就是不等式恒成立问题中的分离 解析:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】求出sin cos θθ的最大值,然后解相应的不等式即可得. 【详解】11sin cos sin 222θθθ=≤, 由211322m m ->得13m <-或12m >. 故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭. 【点睛】本题考查不等式恒成立问题,根据参数出现的位置,首先求出三角式sin cos θθ的最大值,然后只要解不等式即可得.这实质上就是不等式恒成立问题中的分离参数法,只是本题中不等式已经参变分离了.20.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数.则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B . 当直线2y x z =-过点()3,2B时,z 有最大值4,当直线2y x z =-过点()1,3C 时,z 有最小值-1. 所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.三、解答题21.(1)函数()f x 的零点为11,4-;(2)9[2,4]4a ⎧⎫∈-⋃-⎨⎬⎩⎭. 【分析】(1)由不等式解集与一元二次方程的根的关系得方程的根,由方程根的定义可求参数值,然后解方程可得零点.(2)可利用一元二次方程根的分布分类求解.注意分类0a =和0a ≠,在0a ≠时,()0f x =在(1,1)-上有一个解,还有1-是一个解,1是一个解分别求出另一解判断,另外0∆=时进行检验.从而可得结论.【详解】(1)依题意得方程2310ax x +-=的两根为-1,b ,将1x =-代入方程得4a =,于是方程2310ax x +-=可化为24310x x +-=,解得1x =-或14x =. 所以函数()f x 的零点为11,4-. (2)因为函数2()31f x ax x =+-在(1,1)-内恰有1个零点,所以该函数图象在(1,1)-内与x 轴只有一个公共点.(i )当0a =时,由()31=0f x x =-,得1=(1,1)3x ∈-,故0a =满足题意;(ii )当0a ≠时,①当函数()f x 的图象在x 轴两侧时,则由(1)(1)(4)(2)0f f a a -=-+<,解得24a -<<,此时24a -<<且0a ≠,满足题意当2a =-时,1(1,1)2x =∈-,满足题意; 当4a =时,1(1,1)4x =∈-,满足题意. ②当函数()f x 的图象在x 轴同侧时,则由23-4(1)0a ∆=⨯⨯-=, 解得94a =-. 由29()31=04f x x x =+--即2912+4=0x x -解得()21,13x =∈-, 故94a =-,满足题意. 综上所述,a 的取值范围是9[2,4]4⎧⎫-⋃-⎨⎬⎩⎭.【点睛】易错点睛:本题考查一元二次不等式的解集、一元二次方程的根、二次函数的图象之间的关系,掌握三个“二次”的关系是解题关键.利用二次函数图象可得一元二次方程根的分布的知识.要注意根的分布结论都是在开区间(,)a b 有解,而实际解题时还要分类讨论a 或者b 是方程根的情形,否则可能漏解.22.(1)减区间为(],1-∞,增区间为[3,)+∞;(2)18.【分析】(1)根据函数的解析式有意义,求得函数的定义域,再结合二次函数的性质和复合函数的单调性的判定方法,即可求解;(2)先求得函数()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭,利用基本不等式,求得函数()g x 的值域为116,)[a -+∞,根据题意,得到2331,[),[16)b a b a+--+∞⊆-+∞,结合基本不等式,即可求解.【详解】(1)由题意,函数233()1b f x b +=-有意义, 则满足2430x x -+≥,解得1x ≤或3x ≥,即定义域为{|1x x ≤或3}x ≥,又由函数243y x x =-+在减区间为(],1-∞,增区间为[3,)+∞,根据复合函数的单调性的判定方法,可得()f x 的减区间为(],1-∞,增区间为[3,)+∞.(2)由函数233()1b f x b +=--,可得()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭, 211111()||||20422016||2||2g x x x x a x a a ⎛⎫⎛⎫=+++-≥+⨯-=- ⎪ ⎪⎝⎭⎝⎭, 当且仅当1||||x x =时,即1x =±,等号成立, 所以()g x 的值域为116,)[a-+∞, 因为()f x 是()g x 的“子函数,所以2331,[),[16)b a b a+--+∞⊆-+∞, 所以233116b a b a+--≥-,即13316a b a b +++≤, 又13(3)()103()b a a b a b a b++=++,221331316(3)6422a b a b a b a b ⎛⎫+++ ⎪⎛⎫⎛⎫++≤≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭, 当且仅当1338a b a b+=+=时取“=”,即735 a-=,35b+=或735a+=,35b-=时,等号成立,所以103()64b aa b++≤,即2218a b b aab a b+=+≤所以22a bab+的最大值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.23.甲乙两项目投资额分别为1000万元和4000万元【解析】试题分析:设投资人对甲,乙两个项目分别投资,x y万元.根据已知条件可列出可行域为5000{0.40.212000,0x yx yx y+≤+≤≥≥,目标函数为0.8z x y=+,画出可行域,根据图像可知目标函数在点()1000,4000处取得最大值.试题设投资人对甲,乙两个项目分别投资,x y万元5000{0.40.212000,0x yx yx y+≤+≤≥≥求0.8z x y=+最大值如图作出可行域当目标函数结果点()1000,4000A时,0.8z x y =+取得最大值为4200 万元,此时对甲乙两项目投资额分别为1000 万元和4000 万元盈利最大.24.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥ 所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+ ⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞.25.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-. 【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解.【详解】(1)当2a =时,不等式为23440x x -++>,所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<,所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-. 【点睛】 本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.26.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数;(2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论.【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用,即需4y ≥,则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y ,则()1220(8)2616168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦,当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L .【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键.。
高中数学 第三章3.3.3随堂即时巩固 苏教版必修5
一、填空题1.已知点P (x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -20≤0,x -y +20≥0,0≤x ≤60,0≤y ≤60.则点P (x ,y )所在区域的面积为________. 解析:在直角坐标系中作出点P (x ,y )的可行域,如图所示,所以点P (x ,y )所在区域的面积为 60×60-2×12×40×40=2000. 即点P (x ,y )所在区域的面积为2000. 答案:2000 2.已知x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0y ≥0x +y ≥1,则(x +3)2+y 2的最小值为________. 解析:画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10.答案:103.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是________. 解析:先画出满足约束条件的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧ 5x -11y =-22,2x =11, 解得⎩⎪⎨⎪⎧ x =5.5,y =4.5,但x ∈N *,y ∈N *,结合图知当x =5,y =4时,z max =90.答案:904.在△ABC 中,三顶点A (2,4)、B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值为________.解析:先作出△ABC ,如图所示.对z =x -y ,可看成y =x -z ,求z的最值,相当于找斜率为1的直线经过△ABC 区域时纵截距的有关最值.易知,直线经过C 、B 点,纵截距-z 分别取最小值-1及最大值3,从而z 分别得到最大值1及最小值-3.答案:15.设D 是不等式组⎩⎪⎨⎪⎧ x +2y ≤102x +y ≥30≤x ≤4y ≥1表示的平面区域,则D 中点P (x ,y )到直线x +y =10距离的最大值为________.解析:画出不等式组表示的平面区域,当P 点为(1,1)时,P 到直线x +y =10的距离最大,即d =|1+1-10|1+1=4 2.答案:4 26.某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、质量、可获利润和托运能力限制货物 体积每箱(m 3) 质量每箱(kg ) 利润每箱(百元)甲 5 2 20 乙 4 5 10 托运 限制24 13 由题意,得⎩⎪⎨⎪⎧ 5x +4y ≤24,2x +5y ≤13,x ,y ∈N *,利润z =20x +10y .由线性规划知识可得x =4,y =1时,利润最大.答案:4,1二、解答题7.设z =2y -2x +4,已知x 、y 满足条件⎩⎪⎨⎪⎧ 0≤x ≤1,0≤y ≤2,2y -x ≥1,求z 的最大值和最小值. 解:作出满足不等式组⎩⎪⎨⎪⎧ 0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示的阴影部分.作直线l :2y -2x =t .当l 经过点A (0,2)时,z max =2×2-2×0+4=8;当l 经过点B (1,1)时,z min =2×1-2×1+4=4.8.某运输公司有7辆载重量为6吨的A 型卡车与4辆载重量为10吨的B 型卡车,有9名驾驶员.在建筑某高速公路中,该公司承包了每天至少搬运360吨土的任务.已知每辆卡车每天往返的次数:A 型卡车为8次,B 型卡车为6次;每辆卡车每天往返的成本费用情况:A 型卡车160元,B 型卡车252元.试问,A 型卡车与B 型卡车每天各出动多少辆时公司的成本费用最低?解:设每天出动的A 型卡车数为x ,则0≤x ≤7;每天出动的B 型卡车数为y ,则0≤y ≤4.因为每天出车的驾驶员最多9名,则x +y ≤9,每天要完成的搬运任务为48x +60y ≥360,每天公司所花成本费用为z =160x +252y .本题即求满足不等式组⎩⎪⎨⎪⎧ 0≤x ≤7,0≤y ≤4,x +y ≤9,48x +60y ≥360,且使z =160x +252y 取得最小值的非负整数x 与y 的值.不等式组表示的平面区域即可行域如图所示,其可行域为四边形ABCD 区域(含边界线段),它的顶点是A (52,4),B (7,25),C (7,2),D (5,4). 结合图形可知,在四边形区域上,横坐标与纵坐标都是非负整数的点只有P 1(3,4),P 2(4,4),P 3(4,3),P 4(5,2),P 5(5,3),D (5,4),P 6(6,2),P 7(6,3),P 8(7,1),C (7,2)10个点.作直线l :160x +252y =0.把l 向上方作平行移动,可发现它与上述的10个点中最先接触到的点是P 4(5,2),所以在点P 4(5,2)上,得到的z 的值最小,z min =160×5+252×2=1304.即当公司每天出动A 型卡车5辆,B 型卡车2辆时,公司的成本费用最低.。
(典型题)高中数学必修五第三章《不等式》测试卷(答案解析)
一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4192.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .83.已知实数x ,y 满足221x y x m-≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2 B .3 C .4 D .8 4.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .7 6.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+7.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( )A .2B .1CD .8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤ B .3c 6<≤ C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( )A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 11.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .60二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.若0x >,0y >,若()()144x y --=则x y +的最小值为_________. 15.若正数,x y 满足113122x y xy++=,则xy 的最小值为_________. 16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.18.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 19.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.已知函数2()(21)f x ax a x c =-++,且(0)2f =. (1)若()0f x <的解集为{|28}x x <<,求函数()f x y x=的值域; (2)当0a >时,解不等式()0f x <.23.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫- ⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由.24.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值.25.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).26.已知a >0,b >0,a +b =3. (1)求11+2+a b的最小值; (2)证明:92+a b b aab【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 2.C解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.4.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.5.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A【分析】当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x9x+)min,利用基本不等式可求得(x9x+)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥9xx⋅=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.7.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x,y满足约束条件261322x yx yy-≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y=-+可化为1y x z=+-,当直线1y x z=+-过点A时,此时直线在y轴上的截距最大值,此时目标函数取得最小值,又由2132yx y=⎧⎪⎨+=⎪⎩,解得(2,2)A,所以目标函数的最小值为min2211z=-+=.故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.C解析:C【解析】根据题意,依次分析选项:对于A,当2a=,2b=-时,11a b>,故A错误;对于B,当1a=,2b=-时,22a b<,故B错误;对于C,由不等式的性质可得C正确;对于D,当1a=,1b=-时,a bb a=,故D错误;故选C.11.D解析:D【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b aa b a b a b a b++=++=+++=,当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()455941x y x y x y y x x y +⎛⎫+=+=++≥+=⎪⎝⎭,当且仅当4x yy x=即3,6x y ==时取等号. 故答案为:9. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】将化为后利用基本不等式得再解一元二次不等式可得结果【详解】由得因为所以当且仅当时等号成立所以所以所以或所以或(舍)所以即的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必解析:92【分析】将113122x y xy++=化为232y x xy ++=后,利用基本不等式得23xy -≥一元二次不等式可得结果. 【详解】 由113122x y xy++=得232y x xy ++=,因为0,0x y >>,所以232xy y x -=+≥2y x =时,等号成立.所以2302≥,所以2)22≥2-≥2≤,2≥2≤-(舍),所以92xy ≥,即xy 的最小值为92. 故答案为:92. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322z y x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由2y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=, 故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.17.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 23θ=即可得解. 【详解】设不等式()243220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a⎛⎫ ⎪⎝⎭, 则a ,b 为方程()243220x x θ-+=的两个根,1a ,1b为方程()224sin 210x x θ++=的两个根, 由韦达定理得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=, 43cos 22sin 2θθ=-即tan 23θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈,所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.18.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A ,联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤,所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.19.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规解析:1,22⎡⎤⎢⎥⎣⎦【分析】 作出可行域,yx表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解. 【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以yx 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解.【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥.【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可. 【详解】(Ⅰ)由指数函数xy b =的图象过点(2,4),得2b =,所以2()222x xnf x +=-⋅-, 又()f x 为R 上的奇函数, 所以()00f =, 得1n =-,经检验,当1n =-时,符合()()f x f x -=-,所以121()22x x f x +-+=+;(Ⅱ)12111()22221x x xf x +-+==-+++, 因为21xy =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减, 由于()f x 为R 上的奇函数, 所以由()23()0f x x f a x ++-+=, 可得()()23()f x x f a x f a x +=--+=-,则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根, 即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数,由()22(1)0f t a f at -+-≥,得()()221f ta f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立, 令()221g t t at a =+--,由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩,得0a ≥,所以实数a 的取值范围为:{}0a a ≥. 【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键.22.(1)91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)答案见解析.【分析】(1)由()0f x <的解集转化为2和8是方程2(21)20ax a x -++=的两根,求得18a =,得出()12584f x x x x =+-,再分0x >和0x <两种情况,结合基本不等式,即可求解; (2)由题意,得到(1)(2)0ax x --<,分类讨论,即可求得不等式的解集.【详解】(1)由题意,函数2()(21)f x ax a x c =-++,且(0)2f c ==,所以2()(21)2f x ax a x =-++,因为()0f x <的解集为{|28}x x <<,即2和8是方程2(21)20ax a x -++=的两根,所以228c a a ⨯==,所以18a =,所以()12584f x y x x x ==+-,当0x >时,125518444x x +-≥=-,当且仅当4x =时等号成立;当0x <时,12512559848444x x x x ⎡⎤⎛⎫⎛⎫+-=--+--≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 当且仅当4x =-时等号成立. 故函数()f x y x =的值域城为91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭.(2)由2()(21)2(1)(2)0f x ax a x ax x =-++=--<,因为0a >时,分三种情况讨论: ①当12a <,即12a >时,1()02f x x a<⇒<<; ②当12a =,即12a =时,无解; ③当12a >,即102a <<时,1()02f x x a<⇒<<,综上所述,当12a >时,不等式()0f x <的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭; 当12a =时,不等式()0f x <的解集为∅; 当102a <<时,不等式()0f x <的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭. 【点睛】解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.23.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.24.(1)501010y x=--,(0,5)x ∈;(2)75-(1)由题意得10AB CD x ==-,则10CP x y =--,根据ADP Rt CBP ≌,可得DP BP y ==,所以222+(10)y x x y =--,化简整理,即可求得y 与x 的关系,根据AB AD >,即可求得x 的范围,即可得答案;(2)由(1)可得501010y x=--,(0,5)x ∈,则ADP △的面积12505(10)75210S xy x x ==-++-,根据x 的范围,结合基本不等式,即可求得答案. 【详解】(1)由题意得:10AB CD x ==-,则10CP x y =--,因为在Rt ADP 和Rt CBP 中,,APD CPB AD BC ∠==,所以ADP Rt CBP ≌,即DP BP y ==,所以在Rt CBP 中,222+(10)y x x y =--,所以2222+10020202y x x y x y xy =++--+, 化简可得501010y x=--, 因为AB AD >,所以100x x ->>,解得05x <<, 所以501010y x=--,(0,5)x ∈; (2)由(1)可得501010y x =--,(0,5)x ∈, 所以ADP △面积115025250(10)55(10)7522101010x S xy x x x x x x ==⋅-=-=-++---, 因为(0,5)x ∈,所以100x -<,所以2502505(10)[5(10)]1010x x x x -+=--+≤-=---当且仅当2505(10)10x x-=-,即10x =-时等号成立,此时面积250[5(10)]757510S x x =--++≤--即ADP △面积最大值为75-【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.25.(1)3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65(1)根据已知条件列出关系式,即可得出答案;(2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544k x x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004k k x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】(1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204k k x x =---+, 即3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544k x x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004k k x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+, 令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x m m++++==+++,由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题.26.(1)45;(2)证明见解析 【分析】(1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】 (1)3a b +=,()215a b ++∴=,且200a b +>>,, ∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a b b a ab ,需证2292a b +≥, 因为()222239222a b a b ++≥==, 所以92+a b b aab ,当且仅当32a b ==时等号成立. 【点睛】 本题考查条件等式求最值、基本不等式的应用,属于中档题.。
人教版--高中数学必修5巩固练习
特别说明:本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照每章分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
目录:数学(必修5)数学(必修5)第一章:解三角形 [基础训练A组] 数学(必修5)第一章:解三角形 [综合训练B组] 数学(必修5)第一章:解三角形 [提高训练C组] 数学(必修5)第二章:数列 [基础训练A组] 数学(必修5)第二章:数列 [综合训练B组]数学(必修5)第二章:数列 [提高训练C组]数学(必修5)第三章:不等式 [基础训练A组]数学(必修5)第三章:不等式 [综合训练B组]数学(必修5)第三章:不等式 [提高训练C组](数学必修5)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2019年高一数学必修5第3单元 复习卷2套打包含答案
2018-2019学年必修五第三章训练卷不等式(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( ) A .若a b <,则11a b< B .若33ac bc >,则a b >C .若a b >,k *∈N ,则k k a b >D .若a b >,c d >,则a d b c ->-2.已知1x >,1y >,且1ln 4x ,14,ln y 成等比数列,则xy ( )A .有最大值e BC .有最小值eD 3.设(22)M a a =-,()(3)1N a a =+-,则( ) A .M N >B .M N ≥C .M N <D .M N ≤4.不等式22120x ax a --<(其中0a <)的解集为( ) A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a5.已知a ,b ∈R ,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .g 0()l a b ->D .1a b> 6.当1x >时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)3,+∞D .(],3-∞7.已知函数()2,02,0x x x f x x +≤⎧=⎨-+>⎩,则不等式()2f x x ≥的解集是( )A .[]1,1-B .[]2,2-C .[]2,1-D .[]1,2-8.若0a >,0b >,且4a b +=,则下列不等式中恒成立的是( ) A .112ab > B .111a b +≤ C2≥D .22118a b ≤+ 9.设变量x ,y 满足约束条件02220x y x y y -≥⎧⎪+≤⎨⎪+≥⎩,则目标函数3z x y =+的最大值为( )A .4B .6C .8D .1010.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( ) A .甲先到教室 B .乙先到教室 C .两人同时到教室D .谁先到教室不确定11.设111111M a b c ⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,且1a b c ++=(其中a ,b ,c 为正实数),则M 的取值范围是( ) A .10,8⎡⎫⎪⎢⎣⎭B .1,18⎡⎫⎪⎢⎣⎭C .[)1,8D .[)8,+∞12.函数()221221f x x x x x +--+=,()0,3x ∈,则( )A .()f x 有最大值74B .()f x 有最小值1-C .()f x 有最大值1D .()f x 有最小值1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知0t >,则函数241t ty t =-+的最小值为___________.14.对任意实数x ,不等式2()(2)2240a x a x ---<-恒成立,则实数a 的取值范围是_______. 15.若不等式组5002x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩,表示的平面区域是一个三角形,则a 的取值范围是________.16.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____吨.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知0a >,0b >,且a b ≠,比较22a b b a+与a b +的大小.18.(12分)已知a ,b ,()0,c ∈+∞.求证:18a b c a b b c c a ⎛⎫⎛⎫⎛⎫≤ ⎪⎪⎪+++⎝⎭⎝⎭⎝⎭.19.(12分)若1a <,解关于x 的不等式12axx >-.20.(12分)求函数y =的最大值.21.(12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3AB = 米,2AD = 米. (1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.22.(12分)某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:2018-2019学年必修五第三章训练卷不等式答 案一、选择题 1.【答案】D【解析】对于选项A ,举例2a =-,1b =,但是112a =-,11b =-,11a b>, 所以该选项错误;对于选项B ,举例2a =-,1c =-,1b =-,满足33ac bc >,但是a b <, 所以该选项错误;对于选项C ,举例1a =-,0b =,3k =,显然k k a b <,所以该选项错误; 对于选项D ,由题得a b >,d c ->-,所以a d b c ->-,所以该选项正确. 故答案为D . 2.【答案】C 3.【答案】A【解析】∵()()222()(221)(3242)323M N a a a a a a a a a a -=--+-=----=-+()2120a =-+>.∴M N >.故选A . 4.【答案】B【解析】∵()()()22120043043x ax a a x a x a a x a -<<⇔-+<⇔<<--.故选B . 5.【答案】B【解析】取0a =,1b =-,否定A 、C 、D 选项.故选B .6.【答案】D【解析】∵1x >,∴()11111311x x x x +=-++≥=--. ∴3a ≤.故选D . 7.【答案】A【解析】()2202x x x x x f ≤⎧≥⇔⎨+≥⎩或202x x x >⎧⎨-+≥⎩2020x x x ≤⎧⇔⎨-+≤⎩或2020x x x >⎧⎨+-≤⎩ 012x x ≤⎧⇔⎨-≤≤⎩或021x x >⎧⎨-≤≤⎩10x ⇔-≤≤或01x ≤≤ 11x ⇔-≤≤.故选A .8.【答案】D【解析】取1a =,3b =,可验证A 、B 、C 均不正确,故选D . 9.【答案】C【解析】可行域如阴影,当直线3u x y =+过()2,2A --时,u 有最小值22()()38-+-⨯=-;过22,33B ⎛⎫⎪⎝⎭时u 有最大值2283333+⨯=.∴838,3u x y ⎡⎤=+∈-⎢⎥⎣⎦.∴[]30,8z x u y =+=∈.故选C . 10.【答案】B【解析】设甲用时间T ,乙用时间2t ,步行速度为a ,跑步速度为b ,距离为s , 则22222s ss s a b T s a b a b ab +=+=+=⨯,22s ta tb s t a b+=⇒=+,∴()()()()224220222a b ab s a b a b s T t s s ab a b ab a b ab a b +--+-=⨯-=⨯=>+++,故选B . 11.【答案】D【解析】111111M a b c ⎛⎫⎛⎫⎛⎫=---⎪⎪⎪⎝⎭⎝⎭⎝⎭111a b c a b c a b c a b c ++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭b c a c a b a a b b c c ⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭8≥=. ∴8M ≥,当13a b c ===时取“=”.故选D .12.【答案】D【解析】∵()0,3x ∈,∴()11,2x -∈-, ∴()()210,4x -∈,∴()()()2211112111f x x x +-≥-=--==.当且仅当()()22111x x =--,且()0,3x ∈,即2x =时取等号,∴当2x =时,函数()f x 有最小值1.故选D .二、填空题 13.【答案】2- 【解析】∵0t >,∴24114242t t t t y t-+=+-≥-=-=.14.【答案】22a -<≤【解析】当2a =时,40-<恒成立,∴2a =符合.当20a -≠时,则a 应满足:2204()16(022)a a a ∆+<-<⎧⎨=--⎩,解得22a -<<. 综上所述,22a -<≤. 15.【答案】57a ≤<【解析】先画出50x y -+≥和02x ≤≤表示的区域,再确定y a ≥表示的区域.由图知:57a ≤<.16.【答案】20【解析】该公司一年购买某种货物400吨,每次都购买x 吨, 则需要购买400x次,运费为4万元/次,一年的总存储费用为4x 万元, 一年的总运费与总存储费用之和为40044x x ⎛⎫⋅+ ⎪⎝⎭万元,40044160x x ⋅+≥,当16004x x=即20x =吨时,一年的总运费与总存储费用之和最小.三、解答题17.【答案】22a b a b b a+>+.【解析】∵()()222222222211a b a b a b b a a b b a a b ba b a b a b a ⎛⎫--⎛⎫+-+=-+-=+=-- ⎪ ⎪⎝⎭⎝⎭ ()()()222a b a b a b a b ab ab-+-=-=,又∵0a >,0b >,a b ≠, ∴()20a b ->,0a b ->,0ab >, ∴()220a b a b ba ⎛⎫+-+> ⎪⎝⎭,∴22a b a b b a+>+. 18.【答案】见解析.【解析】∵a ,b ,()0,c ∈+∞,∴0a b +≥,0b c +≥,0c a +≥, ∴()()()80a b b c c a abc +++≥>. ∴()()()18abc a b b c c a ≤+++,即18a b c a b b c c a ⎛⎫⎛⎫⎛⎫≤ ⎪⎪⎪+++⎝⎭⎝⎭⎝⎭. 当且仅当a b c ==时,取到“=”. 19.【答案】见解析. 【解析】不等式12axx >-可化为()1202a x x -+>-. ∵1a <,∴10a -<,故原不等式可化为2102x a x -->-. 故当01a <<时,原不等式的解集为122a x x -⎧⎫<<⎨⎬⎩⎭,当0a <时,原不等式的解集为221a xx ⎧⎫<<⎨⎩-⎬⎭. 当0a =时,原不等式的解集为∅. 20..【解析】设t =()220x t t =-≥,则221t y t =+.当0t =时,0y =; 当0t >时,112y t t=≤+. 当且仅当12t t =,即t =即当32x =-时,max y =.21.【答案】(1)()20,6,3⎛⎫+∞ ⎪⎝⎭;(2)当DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米.. 【解析】(1)设DN 的长为()0x x >米,则()2AN x =+米. ∵DN DC AN AM=,∴()32x AM x +=,∴()232AMPN x S AN AM x +⋅==, 由32AMPN S >,得()23232x x+>.又0x >,得2320120x x +>-, 解得:203x <<或6x >, 即DN 长的取值范围是()20,6,3⎛⎫+∞ ⎪⎝⎭.(2)矩形花坛AMPN 的面积为 ()223231212123121224x x x x xx x y +++==++≥==,当且仅当123x x=,即2x =时, 矩形花坛AMPN 的面积取得最小值24.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米.22.【答案】生产甲种产品20吨,乙种产品24吨,才能使此工厂获得最大利润. 【解析】设此工厂每天应分别生产甲、乙两种产品x 吨、y 吨,获得利润z 万元. 依题意可得约束条件:943604520031030000x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,作出可行域如图.利润目标函数612z x y =+,由几何意义知,当直线l :612z x y =+经过可行域上的点M 时,612z x y =+取最大值. 解方程组31030045200x y x y +=⎧⎨+=⎩,得20x =,24y =,即()20,24M .答:生产甲种产品20吨,乙种产品24吨,才能使此工厂获得最大利润.2018-2019学年必修五第三章复习卷不等式 (二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
(常考题)北师大版高中数学必修五第三章《不等式》测试题(有答案解析)(4)
一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .64.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-5.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .17.已知α,β满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,则3αβ+的取值范围是( )A .[1,7]B .[5,13]-C .[5,7]-D .[1,13]8.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .69.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .211.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1++∞ C .(1,3)D .(3,+∞)12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.已知正实数a 、b 满足21a b +=,则11a ba b+--的最小值为____________. 15.已知x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,则3z x y =+的最大值为___________.16.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.17.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.18.已知11()2x x f x e e a --=++只有一个零点,则a =____________.19.已知x ,y 是正数,121x y +=,则21x yxy ++的最小值为________.20.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的3倍.若存在正实数x ,y 使得12(2)(1)AC AB AD x y=-+-成立,则x y +的最小值为___________. 三、解答题21.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x (米),外周长(梯形的上底BC 与两腰长的和)为y (米).(1)求y 关于x 的函数关系式,并指出其定义域;(2)当防洪堤的腰长x 为多少米时,断面的外周长y 最小?求此时外周长的值.22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 23.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin A C b cB a c--=+.(1)求角A ;(2)若ABC 的外接圆半径为2,求ABC 周长的最大值. 24.已知函数()251f x x x =--+. (1)解不等式()3f x x <;(2)当[]1,2x ∈时,2()3f x ax x -+恒成立,求实数a 的取值范围.25.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.26.已知函数2(4)()x f x x +=(0)x >. (1)解不等式:f (x )>503; (2)求函数f (x )的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<,综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.4.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x xf x x++=2222cos 8sin 28tan 114tan 4tan 42sin cos 2tan tan tan x x x x x x x x x x++===+≥⨯=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.6.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解.【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.7.A解析:A 【解析】分析:该问题是已知不等关系求范围的问题,可以用待定系数法来解决. 详解:设α+3β=λ(α+β)+v (α+2β) =(λ+v )α+(λ+2v )β.比较α、β的系数,得123v v λλ+=⎧⎨+=⎩,从而解出λ=﹣1,v=2.分别由①、②得﹣1≤﹣α﹣β≤1,2≤2α+4β≤6, 两式相加,得1≤α+3β≤7. 故α+3β的取值范围是[1,7]. 故选A点睛:本题考查待定系数法,考查不等式的基本性质,属于基础题.8.B解析:B【分析】由等比中项定义得1ab=,再由基本不等式求最值.【详解】,a b的等比中项是1,∴1ab=,∴m+n=1ba++1ab+=a ba bab+++ =2()a b+≥44ab= .当且仅当1a b==时,等号成立.故选B.【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.9.C解析:C【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案.【详解】作出x,y满足约束条件261322x yx yy-≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y=-+可化为1y x z=+-,当直线1y x z=+-过点A时,此时直线在y轴上的截距最大值,此时目标函数取得最小值,又由2132yx y=⎧⎪⎨+=⎪⎩,解得(2,2)A,所以目标函数的最小值为min2211z=-+=.故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大, 此时z 最大.由2x y x =⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=.即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.11.A解析:A 【解析】 试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A .考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】将所求代数式变形为将所求代数式与相乘展开后利用基本不等式可求得的最小值【详解】已知正实数满足则当且仅当时即当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其12【分析】将所求代数式变形为1121121a b a b b b+=+----,将所求代数式与()1b b +-⎡⎤⎣⎦相乘,展开后利用基本不等式可求得11a b a b+--的最小值. 【详解】已知正实数a 、b 满足21a b +=,则1211112112121a b b b a b b b b b--++=+=+-----()111111122112222b b b b b b b b -⎛⎫=+-+-=+-≥=⎡⎤ ⎪⎣⎦--⎝⎭.当且仅当1b -=时,即当1b =时,等号成立,因此,11a ba b +--12.12. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.-2【分析】根据条件作出可行域由目标函数表示的几何意义可得答案【详解】由xy 满足约束条件作出可行域如图将化为表示直线在轴上的截距由图可知当直线过点时直线在轴上的截距最大此时最大由解得所以的最大值为故解析:-2 【分析】根据条件作出可行域,由目标函数表示的几何意义可得答案. 【详解】由x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,作出可行域,如图.将3z x y =+化为3y x z =-+,z 表示直线3y x z =-+在y 轴上的截距.由图可知,当直线3y x z =-+过点时,直线3y x z =-+在y 轴上的截距最大,此时z 最大.由210340x y x y ++=⎧⎨-+=⎩,解得()1,1C -所以z 的最大值为()3112⨯-+=- 故答案为:-2【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.16.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.17.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.18.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】 由函数11()2x x f x e e a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解. 【详解】由题意,函数11()2x x f x ee a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解, 令()11x x g x e e --=+因为110,0x x ee -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-. 故答案为:1-. 【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.19.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果. 【详解】 由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号,所以有1108xy <≤,19118xy <+≤,18191xy ≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.20.【分析】由面积比得再利用三点共线可得出的关系从而利用基本不等式可求得的最小值【详解】如图设与交于点由得所以又三点共线即共线所以存在实数使得因为所以所以又因为所以当且仅当即时等号成立所以的最小值为故答【分析】由面积比得3BM MD =,再利用,,A M C 三点共线可得出,x y 的关系,从而利用基本不等式可求得x y +的最小值. 【详解】如图,设AC 与BD 交于点M ,由1sin 231sin 2ABCADCAC BM AMBS BMS DM AC DM AMD ⋅∠===⋅∠△△得3BM MD =,所以1313()4444AM AB BM AB BD AB AD AB AB AD =+=+=+-=+,又,,A M C 三点共线,即,AM AC 共线,所以存在实数k 使得AC k AM =,因为12(2)(1)AC AB AD x y =-+-,所以11242314k x ky ⎧-=⎪⎪⎨⎪-=⎪⎩,所以327x y +=,又因为0,0x y >>,所以132132132526()()(5)52777y x y x x y x y x y x y x y ⎛⎫++=++=++≥+⨯= ⎪ ⎪⎝⎭,当且仅当32y x x y =,即36x +=,26y +=时等号成立.所以x y +的最小值为526+. 故答案为:5267+.【点睛】本题考查向量共线定理,考查基本不等式求最值,解题关键是利用平面向量共线定理得出,x y 的关系,然后用“1”的代换,凑配出定值,用基本不等式求得最小值. 三、解答题21.(1)1832,(26)2xy BC x x x =+=+≤<;(2)外周长的最小值为3米,此时腰长为3.【分析】()1由腰与底边所成的角为60︒,求出3h x =,182x BC x =-,结合限制条件求出定义域26x ≤<,从而得到y 关于x 的函数关系式()2由()1得1832x y x=+,运用基本不等式求出结果【详解】 (1)()12AD BC h =+,其中2,22x AD BC BC x h x =+⋅=+= ∴182x BC x =-由,261802h x x x BC x ⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得 ∴1832,(26)2xy BC x x x =+=+≤<.(2)1832x y x =+≥=当且仅当[)1832,62x x x ==即时等号成立 ∴外周长的最小值为. 【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件 22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦.【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 23.(1)3π;(2) 【分析】(1)正弦定理角化边可得a c b cb a c--=+,利用余弦定理,结合角A 的范围,即可得答案;(2)由(1)得3A π=,由正弦定理可得a 的值,利用余弦定理及均值不等式,即可求得b+c 的最大值,进而可得答案. 【详解】 (1)由sin sin sin A C b c B a c --=+及正弦定理得:a c b c b a c--=+,化简得222b c a bc +-=,∴2221cos 222b c a bc A bc bc +-===,又∵(0,)A π∈,∴3A π=.(2)∵ABC 的外接圆半径为2,3A π=,∴由正弦定理得324sinaR π==,解得a =∴由余弦定理得2222cos a b c bc A =+-⋅,∴2222212()3()32b c b c bc b c bc b c +⎛⎫=+-=+-≥+- ⎪⎝⎭,∴b c +≤b c =时,等号成立, ∴ABC的周长的最大值为a b c ++=【点睛】本题考查正弦定理、余弦定理、均值定理的应用,考查分析理解,求值化简的能力,属中档题.24.(1)23x x ⎧⎫>⎨⎬⎩⎭;(2)3,4⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)分别在1x ≤-、512x -<<、52x ≥去除绝对值符号可得到不等式;综合各个不等式的解集可求得结果;(2)根据x 的范围可转化为2433x ax x -≤-+在[]1,2x ∈上恒成立,通过分离变量可得2max 12a xx ⎛⎫≥- ⎪⎝⎭,通过求解最大值可得到结果.【详解】(1)当1x ≤-时,()()25163f x x x x x =-+++=-+<,解集为∅当512x -<<时,()251343f x x x x x =-+--=-+<,解得:25,32x ⎛⎫∈ ⎪⎝⎭当52x ≥时,()25163f x x x x x =---=-<,解得:52x ≥ 综上所述,()3f x x <的解集为:23x x ⎧⎫>⎨⎬⎩⎭(2)当[]1,2x ∈时,()43f x x =-∴不等式可化为:2433x ax x -≤-+,即:212a x x≥- 当[]1,2x ∈时,11,12x ⎡⎤∈⎢⎥⎣⎦当112x =,即2x =时,2max 1234x x ⎛⎫-=- ⎪⎝⎭ 34a ∴≥- 即a 的取值范围为:3,4⎡⎫-+∞⎪⎢⎣⎭【点睛】本题考查绝对值不等式的求解、含绝对值不等式的恒成立问题的求解;解绝对值不等式的关键是能够通过分类讨论的方式得到函数在每个区间上的解析式;常用的恒成立问题的处理方法是通过分离变量的方式将问题转化为所求变量与函数最值之间的关系. 25.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭,由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<; (2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫ ⎪ ⎪⎝-⎝⎭⎭2808160648m =-=, 当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.26.(1)8|03x x ⎧<<⎨⎩或}6x >;(2)16 【分析】(1)令2(4)503x x +>,解得x 的范围与0x >求交集即可得解集. (2)将2(4)()x f x x+=展开整理,然后用基本不等式求最值. 【详解】(1)220(4)50()(4)5033x x f x x x x >⎧+⎪=>⇔⎨+>⎪⎩, 208|03264803x x x x x >⎧⎧⇔⇔<<⎨⎨-+>⎩⎩或}6x >. (2)22(4)81616()8816x x x f x x x x x +++===++≥=, 当且仅当16x x =,即4x =时函数2(4)()x f x x+=取得最小值16. 【点睛】本题主要考查了分式不等式的解法,和基本不等式求最值,属于基础题.。
(常考题)北师大版高中数学必修五第三章《不等式》检测题(答案解析)
一、选择题1.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .42.若正实数a ,b 满足lg a +lg b =1,则25a b+的最小值为( ) AB .CD .23.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.4.已知x ,y 满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤5.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6548.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2C .a 3>b 3D .a b b a> 10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .12二、填空题13.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.14.已知x ,y 满足条件1030,1x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则32z x y =-+的最小值为___________.15.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.16.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________. 17.已知0,0a b >>,且33+122a b =++,则2+a b 的最小值为______________.18.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 19.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 20.已知11()2x x f x e e a --=++只有一个零点,则a =____________.三、解答题21.已知函数2()(21)f x ax a x c =-++,且(0)2f =. (1)若()0f x <的解集为{|28}x x <<,求函数()fx y x=的值域; (2)当0a >时,解不等式()0f x <.22.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x (米),外周长(梯形的上底BC 与两腰长的和)为y (米).(1)求y 关于x 的函数关系式,并指出其定义域;(2)当防洪堤的腰长x 为多少米时,断面的外周长y 最小?求此时外周长的值.23.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.24.在平面直角坐标系中,圆C 是以(1,1)为圆心、半径为1的圆,过坐标原点O 的直线l 的斜率为k ,直线l 交圆C 于P ,Q 两点,点A k k(1)写出圆C 的标准方程; (2)求△APQ 面积的最大值.25.已知关于x 的不等式2430ax x -+<的解集为{}|1x x b <<. (1)求a ,b 的值;(2)求关于x 的不等式()20ax ac b x bc +--<的解集.26.已知2()2(2)f x x a x a =-++,a R ∈. (1)解关于x 的不等式()0f x >;(2)若方程()1f x x =+有两个正实数根1x ,2x ,求2112x x x x +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域, 由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A ,220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫==++, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.2.D解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25252a b a b+≥⋅.∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>,∴252a b +≥=当且仅当2,5a b ==时等号成立. ∴25a b +的最小值为2. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.4.D解析:D 【详解】作出满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩的可行域如图所示:平移直线20x y +=到点1(1,)3A 时,2x y +有最小值为73∵2x y m +≥恒成立 ∴min (2)m x y ≤+,即73m ≤ 故选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>, ∴121121414(2)4422444n m n m m n m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.B【分析】结合题意画出可行域,然后运用线性规划知识来求解 【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.8.D【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-.故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.9.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 10.A解析:A因为4222 33332=4,3,5a b c===,且幂函数23y x=在(0,)+∞上单调递增,所以b<a<c.故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C【解析】试题分析:作差法化简a﹣b=x2﹣2x+1=(x﹣1)2≥0.解:∵a=3x2﹣x+1,b=2x2+x,∴a﹣b=x2﹣2x+1=(x﹣1)2≥0,∴a≥b,故选C.考点:不等式比较大小.12.C解析:C【分析】画出不等式组表示的平面区域,将2z x y=+转化为斜截式,即22x zy=-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件4040x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y=+转化为斜截式,即22x zy=-+,平移直线2xy=-,由图可知当直22x zy =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩,所以2z x y =+的最大值为0248+⨯=. 故选:C. 【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.二、填空题13.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值. 【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫ ⎪⎝⎭,所以54164333max z =⨯-=. 故答案为:163.【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;②平移,将l平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.14.【分析】作出不等式组所表示的可行域平移直线根据直线在轴上的截距最小找到使得目标函数取得最小值时的最优解代入计算即可【详解】作出不等式组所表示的可行域如下图所示:平移直线当直线经过可行域的顶点时直线在解析:2-【分析】作出不等式组所表示的可行域,平移直线32 zx y=-+,根据直线32z x y=-+在y轴上的截距最小,找到使得目标函数32z x y=-+取得最小值时的最优解,代入计算即可.【详解】作出不等式组10301x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域如下图所示:平移直线32z x y=-+,当直线32z x y=-+经过可行域的顶点()2,1A时,直线32z x y=-+在y轴上的截距最小,此时z取得最小值,即min32122z=-⨯+=-.故答案为:2-.【点睛】思路点睛:求线性目标函数的最值问题,一般利用平移直线的方法,根据目标函数所对应的直线在坐标轴上的截距取得最值来判断目标函数在何处取得最优解.15.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2].【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解.【详解】设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯,所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m nm n t t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2]. 故答案为:(1,2].【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键. 16.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.17.【分析】先利用基本不等式求得的最小值进而求得的最小值即可得到答案【详解】由题意设又由当且仅当时即时等号成立即的最小值为所以的最小值是故答案为【点睛】本题主要考查了利用基本不等式求最值问题其中解答中先 解析:623【分析】先利用基本不等式求得(2)2(2)a b +++的最小值,进而求得2+a b 的最小值,即可得到答案.【详解】由题意,设26(2)2(2)z a b a b =++=+++, 又由()()3232336(2)6(2)[(2)2(2)]()992962222222a a b b a b a b a b a b +++++++⋅+=++≥+⨯=+++++++,当且仅当()326(2)=22a b a b ++++时,即22(2)a b +=+时等号成立, 即z 的最小值为962+2+a b 的最小值是623.故答案为623.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中先利用基本不等式求得(2)2(2)a b +++的最小值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.18.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问 解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大; 联立1{4x x y =+=,可得13x y ,即()1,3A , 联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C , 故:13OC k =,3OA k =,∴133OP k ≤≤, 所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.19.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定 解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案.【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=,∴()41141141941(52222b a a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.20.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】由函数11()2x x f x ee a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解.【详解】由题意,函数11()2x x f x e e a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解,令()11x x g x ee --=+因为110,0x x e e -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-.故答案为:1-.【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.三、解答题21.(1)91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)答案见解析. 【分析】(1)由()0f x <的解集转化为2和8是方程2(21)20ax a x -++=的两根,求得18a =,得出()12584f x x x x =+-,再分0x >和0x <两种情况,结合基本不等式,即可求解; (2)由题意,得到(1)(2)0ax x --<,分类讨论,即可求得不等式的解集. 【详解】(1)由题意,函数2()(21)f x ax a x c =-++,且(0)2f c ==,所以2()(21)2f x ax a x =-++,因为()0f x <的解集为{|28}x x <<,即2和8是方程2(21)20ax a x -++=的两根, 所以228c a a ⨯==,所以18a =,所以()12584f x y x x x ==+-,当0x >时,125518444x x +-≥=-,当且仅当4x =时等号成立;当0x <时,12512559848444x x x x ⎡⎤⎛⎫⎛⎫+-=--+--≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 当且仅当4x =-时等号成立. 故函数()f x y x =的值域城为91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭. (2)由2()(21)2(1)(2)0f x ax a x ax x =-++=--<,因为0a >时,分三种情况讨论:①当12a <,即12a >时,1()02f x x a <⇒<<; ②当12a =,即12a =时,无解; ③当12a >,即102a <<时,1()02f x x a<⇒<<,综上所述,当12a>时,不等式()0f x<的解集为1|2x xa⎧⎫<<⎨⎬⎩⎭;当12a=时,不等式()0f x<的解集为∅;当12a<<时,不等式()0f x<的解集为1|2x xa⎧⎫<<⎨⎬⎩⎭.【点睛】解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.22.(1)1832,(26)2xy BC x xx=+=+≤<;(2)外周长的最小值为米,此时腰长为.【分析】()1由腰与底边所成的角为60︒,求出h x=,182xBCx=-,结合限制条件求出定义域26x≤<,从而得到y关于x的函数关系式()2由()1得1832xyx=+,运用基本不等式求出结果【详解】(1)()12AD BC h=+,其中2,2xAD BC BC x h x=+⋅=+=∴182xBCx=-由,26182h xxxBCx⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得∴1832,(26)2xy BC x xx=+=+≤<.(2)1832xyx=+≥=当且仅当[)1832,62xxx==即时等号成立∴外周长的最小值为.【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件23.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦. 【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3.(2)①当0a =时,()30f x =-≤恒成立;②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<. 综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.24.(1)()()22111x y -+-=;(2)1【分析】(1)根据圆心和半径,即可直接写出圆C 的方程;(2)联立直线l 方程和圆方程,求得k 的范围,结合弦长公式,求得PQ ,再利用点到直线的距离公式,即可求得点A 到直线l 的距离,结合基本不等式,即可求得面积的最大值.【详解】(1)根据题意可得,圆C 的圆心为()1,1,半径1r =,故圆方程为:()()22111x y -+-=;(2)设直线l 的方程为y kx =,联立圆C 方程可得: ()()2212210k x k x +-++=, 因为直线l 圆交于两点,故可得()()22Δ22410k k=+-+>,解得0k >;又圆心()1,1到直线l的距离d =故可得PQ ==;又点A 到直线l的距离h =故三角形APQ 的面积)()21112212121k S PQ h k k k +=⨯⨯==≤=++++-+. 当且仅当1k=时取得面积的最大值1. 【点睛】本题考查圆方程的求解,涉及直线截圆的弦长求解,涉及基本不等式的应用,属综合中档题. 25.(1)13a b =⎧⎨=⎩;(2)分类讨论,答案见解析. 【分析】(1)根据题意利用根与系数的关系列方程求出a 、b 的值;(2)不等式化为2(3)30x c x c +--<,求出对应方程的解,利用分类讨论写出不等式的解集.【详解】(1)由题意知:0a >且b 和1是方程2430ax x -+=的两根,由根与系数的关系有4131b a b a⎧=+⎪⎪⎨⎪=⨯⎪⎩, 解得13a b =⎧⎨=⎩. (2)不等式2()0ax ac b x bc +--<可化为2(3)30x c x c +--<,即(3)()0x x c -+<.其对应方程的两根为13x =,2x c =-①当3c ->即3c <-时,原不等式的解集为{|3}x x c <<-;②当3c -<即3c >-时,原不等式的解集为{|3}x c x -<<;③当3c -=即3c =-时,原不等式的解集为∅;综上所述:当3c <-时,原不等式的解集为{|3}x x c <<-;当3c >-时,原不等式的解集为{|3}x c x -<<;当3c =-时,原不等式的解集为∅;【点睛】本题考查一元二次不等式的解法与应用问题,考查运算求解能力,求解时注意进行分类讨论.26.(1)答案见解析;(2)6.【分析】(1)根据函数2()2(2)f x x a x a =-++的解析式,可将()0f x >化为(2)(1)0x a x -->,分类讨论可得不等式的解集.(2)由方程()1f x x =+有两个正实数根1x ,21x a ⇒>,利用韦达定理可得2222211212121212123()()21422141a x x x x x x x x a x x x x x x a a +++--+===-=+--,再结合均值不等式即可. 【详解】(1)由()0f x >得(2)(1)0x a x -->,当2a >时,原不等式的解集为(-∞,1)(2a ⋃,)+∞, 当2a =时,原不等式的解集为{|1}x x ≠,当2a <时,原不等式的解集为(-∞,)(12a ⋃,)+∞; (2)方程()1f x x =+有两个正实数根1x ,2x ,等价于22(3)10x a x a -++-=有两个正实数根1x ,2x ,∴()()2121238103012102a a a x x a a x x ⎧⎪=+--≥⎪+⎪+=>⇒>⎨⎪-⎪=>⎪⎩, 则2222211212121212123()()211622[(1)]21212a x x x x x x x x a a x x x x x x a +++-+===-=-++--12?62≥+= 当且仅当5a =时取等号,故2112x x x x +的最小值为6. 【点睛】本题考查了二次函数的性质、解含参数一元二次不等式、韦达定理、均值不等式,属于综合题.。
高中数学 第三章3.3.2随堂即时巩固 苏教版必修5
一、填空题1.不等式组⎩⎪⎨⎪⎧y >x ,x +y ≥1,y ≤3,表示的平面区域为E ,点P 1(0,2),P 2(0,0),则P 1,P 2与E 的关系为________.答案:P 1∈E ,P 2∉E2.图中阴影部分可用二元一次不等式组表示为________.答案:⎩⎪⎨⎪⎧x ≤0y ≥-12x -y +2≥03.在直角坐标系中,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是________.答案:(2)4.表示如图阴影部分的二元一次不等式组是________.解析:图中两直线方程分别为x +y -1=0和x -2y +2=0.阴影部分在x +y -1=0的右上方,x -2y +2=0的右下方,所以x +y -1≥0,x -2y +2≥0.答案:⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≥05.由直线x +y +2=0,x +2y +1=0和2x +y +1=0围成的三角形区域(包括边界)用不等式组可表示为________.解析:画出三条直线,并用阴影表示三角形区域,如图所示.取原点(0,0),将x =0,y =0代入x +y +2得2>0;代入x +2y +1得1>0;代入2x +y +1得1>0.结合图形可知,三角形区域用不等式组可表示为⎩⎪⎨⎪⎧x +y +2≥0,x +2y +1≤0,2x +y +1≤0.答案:⎩⎪⎨⎪⎧x +y +2≥0x +2y +1≤02x +y +1≤06.(2009年高考安徽卷)不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4所表示的平面区域的面积等于________.解析:不等式组所表示的平面区域是一个三角形,三个顶点的坐标分别是(0,43),(0,4),(1,1),所以三角形的面积S =12×(4-43)×1=43.答案:43二、解答题7.画出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1<0,x +y ≤1表示的平面区域.解:作出不等式组表示的平面区域,如图所示.8品种 电力/kW ·h 煤/t 工人/人 甲 2 3 5 乙 8 5 2该厂有工人200150 t ,请在直角坐标系中画出每天甲、乙两种产品允许的产量范围. 解:设每天分别生产甲、乙两种产品x t 和y t ,生产x t 的甲产品和y t 乙产品的用电量是(2x +8y )(kW ·h ),根据条件,有2x +8y ≤160;用煤量为(3x +5y )(t ),根据条件,有3x +5y ≤150; 用工人数为(5x +2y )(人),根据条件,有5x +2y ≤200; 另外,还有x ≥0,y ≥0.综上所述,x 、y 应满足以下不等式组 ⎩⎪⎨⎪⎧2x +8y ≤160,3x +5y ≤150,5x +2y ≤200,x ≥0,y ≥0.甲、乙两种产品的产量范围是这组不等式表示的平面区域,即如图所示的阴影部分(含边界).。
(典型题)高中数学必修五第三章《不等式》测试(含答案解析)(1)
一、选择题1.已知2244x y +=,则2211x y+的最小值为( ) A .52B .9C .1D .942.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .33.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+4.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-5.某校的一个者愿者服务队由高中部学生组成,成员同时满足以下三个条件:(1)高一学生人数多于高二学生人数;(2)高二学生人数多于高三学生人数;(3)高三学生人数的3倍多于高一高二学生人数之和.若高一学生人数为7,则该志愿者服务队总人数为( ) A .15人B .16人C .17人D .18人6.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .17.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6548.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( )A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞9.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .610.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.已知函数()()log 310,1a y x a a =-+>≠的图像恒过定点A ,若点A 在一次函数2m y x n =+的图像上,其中0,0m n >>,则12m n +的最小值是__________.15.若实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则1x y x ++的取值范围为_____.16.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.17.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 18.已知正项等比数列{}n a 满足:28516a a a ,35+20a a =,若存在两项,m n a a使得,则14m n+的最小值为______ 19.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.20.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的3倍.若存在正实数x ,y 使得12(2)(1)AC AB AD x y=-+-成立,则x y +的最小值为___________. 三、解答题21.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题: (1)已知正数x 、y 满足21x y +=,求12x y+的最小值.甲给出的解法是:由21x y +=≥,则128x y +≥=≥,所以12x y +的最小值为8.而乙却说这是错的.请你指出其中的问题,并给出正确解法; (2)结合上述问题(1)的结构形式,试求函数()1310122f x x x x ⎛⎫=+<< ⎪-⎝⎭的最小值. 22.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.23.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?24.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为111623,,;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布和均值E (X 1),E (X 2);(2)当E (X 1)<E (X 2)时,求p 的取值范围.25.某公司生产某种产品,其年产量为x 万件时利润为()R x 万元,当035x <≤时,年利润为21()2R x x =-20250x ++,当35x >时,年利润为()18005202R x x x=--+. (1)若公司生产量在035x <≤且年利润不低于400万时,求生产量x 的范围;(2)求公司年利润()R x 的最大值.26.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344zy x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).3.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()121223888348a b a b a b a b a b ⎛⎫+=++=++≥+=+=+ ⎪⎝⎭仅当34b a b a =,即13,46a b -==时等号成立,故12a b +的最小值为8+ 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.C解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b +的最小值. 【详解】由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根,由韦达定理可得22a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数,所以,()141141419552222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝. 当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.D解析:D 【分析】设高二学生人数为x ,高三学生人数为y ,根据题意列不等式组,画出不等式组表示的平面区域,根据不等式的解为整数,可得结果. 【详解】设高二学生人数为x ,高三学生人数为y , 则737y x y x<<⎧⎨≥+⎩,画出不等式组表示的平面区域,如图阴影部分,根据不等式的解为整数,则阴影部分只有()6,5A 满足,6,5x y ∴==, 该志愿者服务队总人数为76518++=人. 故选:D. 【点睛】本题主要考查二元一次不等式组的解的问题,于基础题.6.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解.【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.7.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值.【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅=,当且仅当16 nmm n=,即4n m=时取等号,因为m、n*N∈,所以1m=,4n=,所以116m n+的最小值为5.故选:A.【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.8.B解析:B【分析】由约束条件作出可行域,再由指数函数的图象经过A,B两点求得a值,则答案可求.【详解】解:由约束条件40,20,1xyy x-⎧⎪-⎨⎪+⎩作出可行域如图:当1x=时,2y a=≤;当4x=时,42y a=≥,则42a≥故a的取值范围为42,2⎡⎤⎣⎦.故选:B.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.9.B解析:B【分析】由等比中项定义得1ab=,再由基本不等式求最值.【详解】,a b的等比中项是1,∴1ab=,∴m+n=1ba++1ab+=a ba bab+++ =2()a b+≥44ab= .当且仅当1a b==时,等号成立.故选B.【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,4t bc =最后通过基本不等式求得AD 的最大值。
(压轴题)高中数学必修五第三章《不等式》检测卷(包含答案解析)(1)
一、选择题1.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .12.已知2244x y +=,则2211x y +的最小值为( ) A .52B .9C .1D .943.若正实数a ,b 满足lg a +lg b =1,则25a b+的最小值为( ) AB .CD .24.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .4 5.已知x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .326.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D7.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .48.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >nD .不确定9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.16.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.17.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.20.已知二次函数2()f x ax bx c =++,满足940a c -<,对任意的x ∈R 都有()0f x >恒成立,则12(2)2(1)(0)⎛⎫ ⎪⎝⎭-+f f f f 的取值范围是_________. 三、解答题21.已知函数()()212log 1f x x =+,()26g x x ax =-+.(1)若关于x 的不等式()0g x <的解集为{}|23x x <<,当1x >时,求()1g x x -的最小值;(2)若对任意的1[1,)x ∈+∞、2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.22.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围. 23.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 24.已知函数()()231f x x a x b =-++.(1)当1a =,5b =-时,解不等式()0f x >;(2)当222b a a =+时,解关于x 的不等式()0f x <(结果用a 表示).25.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前(N )n n +∈年的材料费、维修费、人工工资等共为(2552n n +)万元,每年的销售收入55万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】利用22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.D解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25a b +≥. 【详解】∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>,∴252a b +≥=当且仅当2,5a b ==时等号成立. ∴25a b +的最小值为2. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值, 又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.6.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴121121414(2)4422444n m n m m n m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.8.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综上可得m >n ,故选C .9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示, 目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,4t bc =最后通过基本不等式求得AD 的最大值。
(压轴题)高中数学必修五第三章《不等式》检测(答案解析)(1)
一、选择题1.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B .4C .8D .92.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-3.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R4.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225495.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤ B .3c 6<≤ C .6c 9<≤D .c 9>6.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .68.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .29.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<10.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =11.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .6012.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .12二、填空题13.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 14.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________.17.已知点(3,A ,O 是坐标原点,点(),P x y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.18.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省? 22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 23.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 24.已知函数2()(3)22f x x a x a b =+-+++,,a b ∈R .(1)若关于x 的不等式()0f x >的解集为{|4x x <-或2}x >,求实数a ,b 的值; (2)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围. 25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D .【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题;(3)距离型:形如z Ax By C =++的形式,转化为z =题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.3.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.4.C解析:C 【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值. 【详解】 由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩. 画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=125=, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭.故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.5.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.8.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大, 此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.9.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的10.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确;D项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.11.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以22949(3)(8)(4)(9)3737249b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.12.C解析:C 【分析】画出不等式组表示的平面区域,将2z x y =+转化为斜截式,即22x zy =-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y =+转化为斜截式,即22x z y =-+,平移直线2xy =-,由图可知当直22x zy =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩,所以2z x y =+的最大值为0248+⨯=. 故选:C. 【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.二、填空题13.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】变换得到22816132s ts s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,2221172832116321616162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立.故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力.14.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.15.【解析】由题意知且2和3是方程的两个根即答案为7【点睛】本题考查一元二次不等式的解法与应用问题解题的关键是根据一元二次不等式与对应方程之间的关系求出的值 解析:7【解析】由题意知0a > 且2和3是方程250ax x b -+=的两个根,5321,7632a a a b b b a=,=⎧+⎪=⎧⎪∴∴+=⎨⎨=⎩⎪⨯⎪⎩. 即答案为7.【点睛】本题考查一元二次不等式的解法与应用问题,解题的关键是根据一元二次不等式与对应方程之间的关系,求出a b ,的值16.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即解析:3 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论. 【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122zy x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=. 即目标函数521z x y =+-的最小值为3. 故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.17.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题 解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围. 【详解】作出可行域,如图所示cos 3OA OP z OA AOP AOP OP⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-. 【点睛】本题考查简单的线性规划和向量的投影,属于中档题.18.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案. 【详解】0a >,0b >,且a ,1,b 依次成等差数列, ∴2a b +=,∴()41141141941(52222b a a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)s t s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立.2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由题易得然后由基本不等式可得最后可求得的最小值【详解】将式子变形为即因为所以(当且仅当时等号成立)所以有即故所以则的最小值是故答案为:【点睛】本题考查利用基本不等式求最值考查逻辑思维能力和运解析:5【分析】由题易得()2222x y xy +=-,然后由基本不等式可得()()222224x y x y ++≥-,最后可求得2x y +的最小值. 【详解】将式子22462x y xy ++=变形为()2222x y xy ++=,即()2222x y xy +=-,因为0x >,0y >, 所以()()222222222224x y x y x y xy ++⎛⎫+=-≥-=- ⎪⎝⎭(当且仅当2x y =时,等号成立), 所以有()()222224x y x y ++≥-,即()25224x y +≥,故()2825x y +≥,所以2x y +≥,则2x y +.. 【点睛】本题考查利用基本不等式求最值,考查逻辑思维能力和运算求解能力,属于常考题.三、解答题21.铁盒底面的长与宽均为5cm 时,用料最省. 【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值. 【详解】解法1:设铁盒底面的长为xcm ,宽为25x,则.. 表面积251002544425S x x x x=++⨯=++..2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65.所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省. 解法2:设铁盒底面的长为xcm ,宽为25x,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++> 22210041004x y x x -'=-=.. 令2241000x y x-'==得,5x =. 当()0,5x ∈时,0y '<,函数224100x y x -'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x-'=为增函数; 所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省. 22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.23.(1)[-4,1];(2)-3. 【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件. 【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.24.(1)1,12a b ==-;(2)[)(]3,410,11.【分析】(1)由一元二次不等式的解集与一元二次方程的根的关系,应用韦达定理可求得,a b ; (2)易得方程()12f x b =+的解为2x =和5x a =-,由一元二次不等式的解与一元二次方程的根的关系可得5a -的范围,从而得结论. 【详解】(1)因为函数2()(3)22,,f x x a x a b a b =+-+++∈R ,()0f x >的解集为{|4x x <-或2}x >,所以4-,2是方程2(3)220x x a a b +-+++=的两根.由42(3)4222a a b -+=--⎧⎨-⨯=++⎩,解得112a b =⎧⎨=-⎩.(2)由()12f x b <+,得2(3)2100x a x a +-+-<.令2()(3)210h x x a x a =+-+-,则()()()[25h x x x a =---],所以()20h =.故()0h x <的解集中的3个整数只能是3,4,5或1-,0,1. 若解集中的3个整数是3,4,5, 则556a <-≤,得1011a <≤; 若解集中的3个整数是1-,0,1, 则251a -≤-<-,得34a ≤<.综上,实数a 的取值范围为[)(]3,410,11.【点睛】本题考查解一元二次不等式,掌握一元二次不等式与一元二次方程、二次函数的关系是解题关键.25.(1)4;(2)4. 【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值. 【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号), ∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥, ∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号), 所以x y +的最小值为4. 【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力.26.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析 【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数;(2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论. 【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩, 由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用, 即需4y ≥, 则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y ,则()1220(8)26 16168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦, 当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L . 【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键.。
(压轴题)高中数学必修五第三章《不等式》测试题(答案解析)(4)
一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤3.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .324.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6545.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-6.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .89.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<10.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-11.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 15.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 16.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.17.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 18.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.19.实数,x y 满足2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y =+-的最大值是___.20.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________.三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 23.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.24.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 25.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 3.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.4.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.5.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+=⎪⎝⎭ 故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.9.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的10.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,222178321163216162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立. 故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 15.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)559a b a b +=-+-+≥=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =213A C A C C C A C -≤++-=【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.18.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x yx+-=⎧⎨=⎩,得172xy=⎧⎪⎨=⎪⎩即71,2A⎛⎫⎪⎝⎭所以此时斜率为()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.19.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21【分析】画出,x y满足的可行域,当目标函数24z x y=+-经过点()7,9B时,z取得最大值,求解即可.【详解】画出,x y满足的可行域,由20250x yx y-+=⎧⎨--=⎩解得点()7,9B,则目标函数24z x y=+-经过点()7,9B时,z取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.20.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭,两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根 ∴223823x x a x ++=+ 令2238()23x x g x x ++=+ 令()()23,00,5t x =+∈-∞ 则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.23.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥ 所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞. 24.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增,∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.25.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围.【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。
(压轴题)高中数学必修五第三章《不等式》测试题(包含答案解析)(1)
一、选择题1.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .12.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .33.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+4.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .47.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[ 8.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 10.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1++∞ C .(1,3)D .(3,+∞)11.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.15.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.16.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.17.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.18.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.19.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值. 22.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 23.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.24.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 25.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.26.(1)已知()2f x kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z yx =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).3.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭,当且仅当34b a b a =,即3133,46a b --==时等号成立,故12a b +的最小值为843+. 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.6.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.7.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.8.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
(压轴题)高中数学必修五第三章《不等式》测试(有答案解析)(3)
一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .365.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-16.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D7.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+8.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6 B .7 C .8 D .99.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+- C≥D .3322a b ab +≥10.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+11.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,312.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-二、填空题13.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.14.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.15.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________.16.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______. 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141xy x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若x ,y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为______.19.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .20.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元. 三、解答题21.在平面直角坐标系中,圆C 是以(1,1)为圆心、半径为1的圆,过坐标原点O 的直线l 的斜率为k ,直线l 交圆C 于P ,Q 两点,点A(1)写出圆C 的标准方程; (2)求△APQ 面积的最大值. 22.已知函数()f x =(1)若()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,求实数a 的值;(2)若()f x 的定义域为R ,求实数a 的取值范围.23.已知关于x 的不等式2430ax x -+<的解集为{}|1x x b <<. (1)求a ,b 的值;(2)求关于x 的不等式()20ax ac b x bc +--<的解集.24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值.25.已知函数2(4)()x f x x +=(0)x >. (1)解不等式:f (x )>503; (2)求函数f (x )的最小值.26.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6, 此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意, 当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.4.A解析:A 【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解. 【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166zy x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值,又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A ,所以目标函数的最大值为666430z x y =+=+⨯=. 故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距zb的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解; (3)斜率型:形如y bz x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解.5.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.6.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.A解析:A 【分析】当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x9x+)min,利用基本不等式可求得(x9x+)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.8.C解析:C【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.9.D解析:D 【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误. 详解:332222()()a b ab a b a ab b +-=-+-, 51a b -<<有3322a b ab <+, 故D 项错误,其余恒成立:11122,a a a a a a+≥⋅=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时2220a b a b ab a b a b b a b a b ---+≥---+=⇒-当a b <0a b a b ->>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.10.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt(,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .11.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.12.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.二、填空题13.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==, 所以2222212log log log 3a b a b x y+=+==-, 所以218a b =,由均值不等式知,2a b +≥=,当且仅当2a b =,即a =,b =.故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.15.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一解析:11【分析】 由题得1x yx y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解.【详解】由110,0,1x y x y >>+=, 得1x yx y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++=()2223636x y xy x xy y xy xy+-++++==()236361111xy xy xy xy xy -+==+-≥=,当且仅当6xy =时等号成立,此时33x y ⎧=+⎪⎨=⎪⎩33x y ⎧=-⎪⎨=+⎪⎩则2236x y y xy++的最小值是11.故答案为:11. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.17.①③【分析】结合基本不等式对四个函数逐个分析可得出答案【详解】对于①函数是定义域为的偶函数当时当且仅当时等号成立根据对称性可知函数的最小值为2满足题意;对于②因为所以则当且仅当即时等号成立所以即函数解析:①③ 【分析】结合基本不等式,对四个函数逐个分析,可得出答案. 【详解】对于①,函数1y x x=+是定义域为()(),00,-∞+∞的偶函数,当()0,x ∈+∞时,12x x +≥=,当且仅当1x =时等号成立, 根据对称性可知,函数1y x x=+的最小值为2,满足题意; 对于②,11123214124212112y x x x x x x ⎛⎫=++=-++=--+- ⎪---⎝⎭, 因为12x <,所以120x ->, 则11244212x x -+-≥=--,当且仅当11212x x -=-,即0x =时等号成立, 所以1124212y x x ⎛⎫=--+-≤ ⎪-⎝⎭,即函数1123212y x x x ⎛⎫=++< ⎪-⎝⎭的最大值为2,没有最小值,不满足题意;对于③,222114144141x x xy x x x x x +⎛⎫=++=+ ⎪++⎝⎭,因为1x >,所以2104x x+>,所以2214241x x y x x +=+≥=+,当且仅当221441x x x x +=+,即2x =所以()2114141xy x x x x ⎛⎫=++> ⎪+⎝⎭的最小值为2,符合题意; 对于④,22221sin cos sin cos y x x x x=+,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以sin cos 0x x >,所以22221sin cos 2sin cos x x x x +≥=,当且仅当22221sin cos sin cos x x x x=,即sin cos 1x x =时等号成立,因为11sin cos sin 222x x x =≤,所以sin cos 1x x ≠, 即函数22221sin cos sin cos y x x x x=+的最小值不是2,不符合题意;故答案为:①③. 【点睛】本题考查函数的最值,考查基本不等式的应用,考查学生的推理能力与计算能力,属于中档题.18.1【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则表示直线在轴的截距当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划问题意在考查学生的解析:1 【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =+,则y x z =-+,z 表示直线在y 轴的截距,当直线过点()0,1时,即0,1x y ==时,z 有最大值为1. 故答案为:1.【点睛】本题考查了线性规划问题,意在考查学生的应用能力,画出图像是解题的关键.19.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.20.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.三、解答题21.(1)()()22111x y -+-=;(2)212+ 【分析】(1)根据圆心和半径,即可直接写出圆C 的方程;(2)联立直线l 方程和圆方程,求得k 的范围,结合弦长公式,求得PQ ,再利用点到直线的距离公式,即可求得点A 到直线l 的距离,结合基本不等式,即可求得面积的最大值.【详解】(1)根据题意可得,圆C 的圆心为()1,1,半径1r =, 故圆方程为:()()22111x y -+-=;(2)设直线l 的方程为y kx =,联立圆C 方程可得:()()2212210k x k x +-++=,因为直线l 圆交于两点,故可得()()22Δ22410k k =+-+>,解得0k >;又圆心()1,1到直线l的距离d =故可得PQ ==;又点A 到直线l的距离h =故三角形APQ的面积)()21112212121k S PQ h k k k +=⨯⨯==≤=++++-+. 当且仅当1k=时取得面积的最大值12+. 【点睛】本题考查圆方程的求解,涉及直线截圆的弦长求解,涉及基本不等式的应用,属综合中档题.22.(1) 2a = (2) 7,19a ⎡⎤∈-⎢⎥⎣⎦【分析】(1)根据题意定义域为2,13⎡⎤-⎢⎥⎣⎦,可知不等式()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦,根据一元二次不等式解集与一元二次方程根的关系即可求解. (2)()f x 的定义域为R ,可知不等式()()221120a x a x ---+≥恒成立,然后讨论二次项系数,借助二次函数的性质即可求解. 【详解】解:(1)()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,即()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦, 故()()()()22210221*********a a a a a ⎧-<⎪⎪⎛⎫-⋅---+=⎨ ⎪⎝⎭⎪⎪---+=⎩,解得2a =;(2)()f x 的定义域为R ,即()()221120ax a x ---+≥恒成立,当210a -=时,1a =±,经检验只有1a =满足条件;当210a -≠时,()()222101810a a a ⎧->⎪⎨∆=---≤⎪⎩,解得7,19a ⎡⎫∈-⎪⎢⎣⎭, 综上,7,19a ⎡⎤∈-⎢⎥⎣⎦. 【点睛】本题主要考查函数的定义域、一元二次不等式的解法、一元二次不等式与二次函数的关系,综合性比较强. 23.(1)13a b =⎧⎨=⎩;(2)分类讨论,答案见解析. 【分析】(1)根据题意利用根与系数的关系列方程求出a 、b 的值;(2)不等式化为2(3)30x c x c +--<,求出对应方程的解,利用分类讨论写出不等式的解集. 【详解】(1)由题意知:0a >且b 和1是方程2430ax x -+=的两根,由根与系数的关系有4131b ab a⎧=+⎪⎪⎨⎪=⨯⎪⎩,解得13a b =⎧⎨=⎩.(2)不等式2()0axac b x bc +--<可化为2(3)30x c x c +--<,即(3)()0x x c -+<.其对应方程的两根为13x =,2x c =-①当3c ->即3c <-时,原不等式的解集为{|3}x x c <<-; ②当3c -<即3c >-时,原不等式的解集为{|3}x c x -<<; ③当3c -=即3c =-时,原不等式的解集为∅;综上所述:当3c <-时,原不等式的解集为{|3}x x c <<-;当3c >-时,原不等式的解集为{|3}x c x -<<;当3c =-时,原不等式的解集为∅;【点睛】本题考查一元二次不等式的解法与应用问题,考查运算求解能力,求解时注意进行分类讨论.24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-. 【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解.【详解】(1)当2a =时,不等式为23440x x -++>,所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-. 【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)8|03x x ⎧<<⎨⎩或}6x >;(2)16 【分析】 (1)令2(4)503x x +>,解得x 的范围与0x >求交集即可得解集. (2)将2(4)()x f x x+=展开整理,然后用基本不等式求最值. 【详解】(1)220(4)50()(4)5033x x f x x x x >⎧+⎪=>⇔⎨+>⎪⎩, 208|03264803x x x x x >⎧⎧⇔⇔<<⎨⎨-+>⎩⎩或}6x >. (2)22(4)81616()8816x x x f x x x x x +++===++≥=, 当且仅当16x x =,即4x =时函数2(4)()x f x x+=取得最小值16. 【点睛】本题主要考查了分式不等式的解法,和基本不等式求最值,属于基础题.26.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数; (2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论.【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用,即需4y ≥,则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y ,则()1220(8)26 16168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦,当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L .【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键.。
高一数学必修五第三章试题(带答案)
高一数学必修五第三章试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点P (x 0,y 0)和点A (1,2)在直线l :3x +2y -8=0的异侧,则( ) A .3x 0+2y 0>0 B .3x 0+2y 0<0 C .3x 0+2y 0<8 D .3x 0+2y 0>82.设M =2a (a -2)+7,N =(a -2)(a -3),则有( ) A .M >N B .M ≥N3.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1 D .a 2+b 22<ab <14.若a >b >0,全集U =R ,A ={x |ab <x <a },B ={x |b <x <⎭⎬⎫a +b 2,则(∁U A )∩B 为( ) A .⎩⎨⎧⎭⎬⎫x |b <x ≤ab B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ab <x <a +b 2 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪b <x <a +b 2 D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a +b2或x ≥a5.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32B .23C .43D .346.若x ∈0,12时总有log a 2-1(1-2x )>0,则实数a 的取值范围是( )A .|a |<1B .|a |<2C .|a |> 2D .1<|a |<27.已知正实数a ,b 满足4a +b =30,当1a +1b取最小值时,实数对(a ,b )是( )A .(5,10)B .(6,6)C .(10,5)D .(7,2)8.已知正数x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,则z =4-x·12y 的最小值为( )A .1B .1324C .116D .1329.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC→)的最小值是( ) A .-2 B .-32 C .-43D .-110.若ax 2+bx +c >0的解集为{x |-2<x <4},那么对于函数f (x )=ax 2+bx +c 应有( )A .f (5)<f (-1)<f (2)B .f (2)<f (-1)<f (5)C .f (-1)<f (2)<f (5)D .f (5)<f (2)<f (-1)11.以原点为圆心的圆全部都在平面区域 ⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2≥0内,则圆面积的最大值为( ) A .18π5 B .9π5C .2π D.π 12.设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z二、填空题(本大题共4小题,每小题5分,共20分)13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是________. 14.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7.设这所学校今年计划招聘教师最多x 名,则x =________.15.已知不等式xy ≤ax 2+2y 2,若对任意x ∈[1,2],且y ∈[2,3],该不等式恒成立,则实数a的取值范围是________.16.已知函数f(x)=x+1x+b(b为常数).当x∈[-1,2]时,f(x)>-1x+b2恒成立,则b的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设函数f(x)=4x2+ax+2,不等式f(x)<c的解集为(-1,2).(1)求a的值;(2)解不等式4x+mf x-4x2>0.18.(本小题满分12分)设x1,x2是关于x的一元二次方程x2-2kx+1-k2=0的两个实根,求x21+x22的最小值.19.(本小题满分12分)在△ABC中,A(3,-1),B(-1,1),C(1,3),写出△ABC区域所表示的二元一次不等式组(包括边界).20.(本小题满分12分)已知函数y=ax2+2ax+1的定义域为R,解关于x 的不等式x2-x-a2+a<0.21.(本小题满分12分)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的往返营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?22.(本小题满分12分)已知函数f(x)=x2+2x+a,g(x)=f x x.(1)若不等式f(x)<0的解集是{x|a<x<1},求a的值;(2)若x<0,a=4,求函数g(x)的最大值;(3)若对任意x∈[1,+∞),不等式g(x)>0恒成立,求实数a的取值范围.一、选择题 1. 答案 D解析 ∵3×1+2×2-8=-1<0,P 与A 在直线l 异侧,∴3x 0+2y 0-8>0. 2. 答案 A解析 M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=a +122+34>0,∴M >N .3. 答案 B 解析 ∵ab ≤a +b 22,a ≠b ,∴ab <1.又∵a 2+b 22>a +b 2>0,∴a 2+b 22>1,∴ab <1<a 2+b 22.4. 答案 A解析 ∁U A ={x |x ≤ab 或x ≥a },又B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫b <x <a +b 2且a >b >0, ∴ab >b ,a +b 2<a .∴(∁U A )∩B ={x |b <x ≤ab }.故选A .5.答案 C解析 作出平面区域如图所示为△ABC , 由⎩⎪⎨⎪⎧x +3y -4=0,3x +y -4=0, 可得A (1,1), 又B (0,4),C 0,43,∴S △ABC =12·|BC |·|x A |=12×4-43×1=43.故选C .6. 答案 D解析 ∵x ∈0,12,∴0<1-2x <1.又∵此时总有log a 2-1(1-2x )>0, ∴0<a 2-1<1,∴1<|a |<2. 7. 答案 A解析 1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·130·30=130⎝ ⎛⎭⎪⎫1a +1b (4a +b )=130⎝ ⎛⎭⎪⎫5+b a +4a b≥130⎝⎛⎭⎪⎫5+2b a ·4a b =310.当且仅当⎩⎨⎧b a =4a b,4a +b =30,即⎩⎪⎨⎪⎧a =5,b =10时取等号.故选A . 8.答案 C解析 由于z =4-x·12y =2-2x -y,又不等式组表示的平面区域如图所示.易知m =-2x -y 经过点A 时取得最小值,由⎩⎪⎨⎪⎧2x -y =0,x -3y +5=0,得A (1,2),所以z min =2-2×1-2=116.故选C . 9. 答案 B解析 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标系,则A (0,3),B (-1,0),C (1,0).设P (x ,y ),所以PA →=(-x ,3-y ),PA →·(PB →+PC →)=2PA →·PD →=2x 2-2y (3-y )=2x 2+2⎝⎛⎭⎪⎫y -322-32≥-32,当P ⎝ ⎛⎭⎪⎫0,32时,所求的最小值为-32.故选B .10. 答案 A解析 由已知可得⎩⎪⎨⎪⎧b =-2a ,c =-8a ,且a <0.∴f (x )=ax 2-2ax -8a =a (x -1)2-9a , ∴其图象开口向下,对称轴为x =1, ∴f (-1)=f (3).∴f(5)<f(-1)<f(2).故选A.11.答案C解析作出不等式组表示的平面区域如图所示,由图可知,最大圆的半径为点(0,0)到直线x-y+2=0的距离,即|0-0+2|12+-12=2,所以圆面积的最大值为π×(2)2=2π.故选C.12.答案D解析令2x=3y=5z=k(k>1),则x=log2k,y=log3k,z=log5k,∴2x3y=2lg klg 2·lg 33lg k=lg 9lg 8>1,则2x>3y,2x 5z=2lg klg 2·lg 55lg k=lg 25lg 32<1,则2x<5z.故选D.二、填空题13.答案(-∞,2]∪[4,+∞)解析x=1是不等式k2x2-6kx+8≥0的解,把x=1代入不等式得k2-6k +8≥0,解得k≥4或k≤2.14.答案13解析由题意得x=a+b,如图所示,画出约束条件所表示的可行域,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x 取最大值,∴x =a +b =13.15.答案 [-1,+∞)解析 依题意得,当x ∈[1,2],且y ∈[2,3]时,不等式xy ≤ax 2+2y 2,即a ≥xy -2y 2x 2=y x -2⎝ ⎛⎭⎪⎫y x 2=-2⎝ ⎛⎭⎪⎫y x -142+18. 在坐标平面内画出不等式组⎩⎪⎨⎪⎧1≤x ≤2,2≤y ≤3表示的平面区域,注意到y x 可视为该区域内的点(x ,y )与原点连线的斜率,结合图形可知,y x的取值范围是[1,3],此时-2⎝ ⎛⎭⎪⎫y x -142+18的最大值是-1,因此满足题意的实数a 的取值范围是[-1,+∞).16.答案 b >1解析 ∵f (x )>-1x +b 2,∴x +1x +b >-1x +b 2⇔(x +b )(x +1)>-1且x +b ≠0,(※)易知当x =-1时,不等式(※)显然成立;当-1<x ≤2时,b >-1x +1-x =1-⎝ ⎛⎭⎪⎫1x +1+x +1,∵x+1>0,∴1x+1+(x+1)≥21x+1·x+1=2,当且仅当x=0时,等号成立,故b>-1.而-b ∉[-1,2],故b <-2或b >1.综上所述,b >1.三、解答题17.解 (1)∵函数f (x )=4x 2+ax +2,不等式f (x )<c 的解集为(-1,2),∴-1+2=-a 4,∴a =-4. (2)不等式转化为(4x +m )(-4x +2)>0,可得m =-2,不等式的解集为∅;m <-2,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <-m 4; m >-2,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-m 4<x <12. 18.解 由题意,得x 1+x 2=2k ,x 1x 2=1-k 2. Δ=4k 2-4(1-k 2)≥0,∴k 2≥12. ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2)=6k 2-2≥6×12-2=1. ∴x 21+x 22的最小值为1.19.解 由两点式,得AB ,BC ,CA 的直线方程并化简为AB :x +2y -1=0,BC :x -y +2=0,CA :2x +y -5=0,如图所示,可得不等式组为⎩⎪⎨⎪⎧ x +2y -1≥0,x -y +2≥0,2x +y -5≤0.20.解 ∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1. 综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴(1)当1-a >a ,即0≤a <12时,a <x <1-a ; (2)当1-a =a ,即a =12时,x -122<0,不等式无解; (3)当1-a <a ,即12<a ≤1时,1-a <x <a . ∴原不等式的解集为:当0≤a <12时,原不等式的解集为{x |a <x <1-a }; 当a =12时,原不等式的解集为∅; 当12<a ≤1时,原不等式的解集为{x |1-a <x <a }. 21.解 设应配备A 型车、B 型车分别为x 辆,y 辆,营运成本为z 元;则由题意得,⎩⎪⎨⎪⎧ x +y ≤21,y -x ≤7,36x +60y ≥900,x ∈N ,y ∈N ;z =1600x +2400y ;作平面区域如图,故联立⎩⎪⎨⎪⎧ y =x +7,y =15-0.6x ,解得x =5,y =12; 此时,z =1600x +2400y 有最小值1600×5+2400×12=36800元. 22.解 (1)根据题意,方程x 2+2x +a =0的两根分别为a 和1,将1代入得a =-3.(2)由a=4,则g(x)=f xx=x2+2x+4x=x+4x+2,因为x<0,所以-x+4-x≥2-x·4-x=4,所以g(x)≤-4+2=-2.当且仅当x=4x,即x=-2(舍去正值)时,等号成立.所以g(x)的最大值为-2.(3)依题意当x∈[1,+∞)时,x2+2x+a>0恒成立,所以a>-(x2+2x),令t=-(x2+2x),x∈[1,+∞),则t=-(x2+2x)=1-(x+1)2,所以当x=1时,t max=1-(1+1)2=-3,所以a>-3.如有侵权请联系告知删除,感谢你们的配合!。
(压轴题)高中数学必修五第三章《不等式》测试题(答案解析)(1)
一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4192.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .83.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .54.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-5.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-6.若实数,x y 满足121x y y x -+<⎧⎨≥-⎩,则22x y +的取值范围是( ) A.1[2B .1[,13)4C. D .1[,13)57.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .18.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞9.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .210.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( )A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤11.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .6412.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.设x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,则z x y =+的最大值是________.14.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 15.实数,x y 满足约束条件20,10,0,x y x y y -≥⎧⎪--≤⎨⎪≥⎩若目标函数(0,0)z ax by a b =+>>的最大值为4,则ab 的最大值为______16.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.17.已知二次函数2()f x ax bx c =++,满足940a c -<,对任意的x ∈R 都有()0f x >恒成立,则12(2)2(1)(0)⎛⎫ ⎪⎝⎭-+f f f f 的取值范围是_________.18.已知x ,y 是正数,121x y +=,则21x y xy ++的最小值为________. 19.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.(1)若0x >,0y >,1x y +=,求证:114x y+≥. (2)已知实数0a >,0b >,且1ab =,若不等式()a bx y m x y+⋅+>(),对任意的正实数,x y 恒成立,求实数m 的取值范围.22.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围.24.某校食堂需定期购买大米.已知该食堂每天需用大米0.6吨,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为()()*z 9x x 1x N =+∈,每次购买大米需支付其他固定费用900元.()1该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?()2若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠(即原价的80%),该食堂是否应考虑接受此优惠条件?请说明理由. 25.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.26.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 2.C解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.3.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.6.D解析:D 【详解】根据实数,x y 满足121x y y x -+<⎧⎨≥-⎩,画出可行域如图所示22x y +表示可行域内的点与坐标原点O 距离的平方,O 与直线AB :210x y +-=22001521⨯+-=+, O 与(2,3)C 222313+= ∵可行域不包含(2,3)C∴21135r ≤<,即22x y +的取值范围是1[,13)5 故选:D 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122zy x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x=-,由图象可知当直线122zy x=-过点C时,直线122zy x=-的截距最大,此时z最小,420xx y=⎧⎨--=⎩,解得()4,2A.代入目标函数2z x y=-,得4220z=-⨯=,∴目标函数2z x y=-的最小值是0.故选:C.【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.8.B解析:B【分析】由约束条件作出可行域,再由指数函数的图象经过A,B两点求得a值,则答案可求.【详解】解:由约束条件40,20,1xyy x-⎧⎪-⎨⎪+⎩作出可行域如图:当1x=时,2y a=≤;当4x=时,42y a=≥,则42a≥故a的取值范围为42,2⎡⎤⎣⎦.故选:B.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.9.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】111()2()22f x x b k f b b b x b b''=+-∴==+≥⋅= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.B解析:B 【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内 即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.11.D解析:D 【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.12.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.8【分析】根据xy 满足的约束条件画出可行域然后平移直线当直线在y 轴上截距最大时目标函数取得最大值【详解】依题意xy 满足约束条件可行域如图所示阴影部分:易得点平移直线(图中虚线)当直线经过C 点时在y 轴解析:8 【分析】根据x ,y 满足的约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩画出可行域,然后平移直线0x y +=,当直线在y 轴上截距最大时,目标函数取得最大值. 【详解】依题意x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩可行域如图所示阴影部分:易得点()2,2A -、()2,2B 、()10,2C -,平移直线0x y +=(图中虚线),当直线0x y +=经过C 点时,在y 轴上的截距最大, 目标函数z x y =+有最大值,1028max z =-=, 所以目标函数z x y =+的最大值是8. 故答案为:8. 【点睛】方法点睛:本题考查线性规划求最值,考查数形结合思想. 线性规划问题考查的方式是由二元一次不等式组给出线性约束条件确定可行域,求可行域的面积、或确定形状;或者是在线性约束条件下求目标函数的取值范围、最值或取得最值时的点的坐标的确定以及由此衍生出来的其他相关问题,比如直线的斜率、平面距离的最值等问题.14.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案.【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()3199933366212b a a a b b a b a b a b a b a b ⎛⎫++=+++=++≥+⋅=⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.15.2【分析】作出不等式对应的平面区域利用z 的几何意义确定取得最大值的条件然后利用基本不等式进行求可得的最大值【详解】作出不等式对应的平面区域由得则目标函数对应直线的斜率平移直线由图象可知当直线经过点A解析:2 【分析】作出不等式对应的平面区域,利用z 的几何意义确定取得最大值的条件,然后利用基本不等式进行求,可得ab 的最大值. 【详解】作出不等式对应的平面区域,由(0,0)z ax bya b =+>>得a zy x b b=-+,则目标函数对应直线的斜率0a b -<,平移直线ay x b=-, 由图象可知当直线经过点A 时,直线的截距最大,此时z 最大. 由2010x y x y -=⎧⎨--=⎩解得(2,1)A此时z 的最大值为2422z a b ab =+=,当且仅当2,1b a ==时取等号.24ab ∴解2ab 故答案为: 2. 【点睛】本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.16.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元.故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.17.【分析】用abc 把各函数值表示出来再由已知条件得到abc 之间的关系进而得到不等式恒成立即可求范围【详解】∵∴又由二次函数对任意的都有恒成立知:而∴故∴令即∴若有即可而在上无最大值无最小值但∴故答案为解析:1(,)2+∞【分析】用a 、b 、c 把各函数值表示出来,再由已知条件得到a 、b 、c 之间的关系,进而得到不等式恒成立,即可求范围 【详解】 ∵1(0),(),(1),(2)42242a bf c f c f a b c f a b c ==++=++=++ ∴1()2412242(2)2(1)(0)422()884a b f ca b c b c f f f a b c a b c c a a+++++===+-+++-+++ 又由二次函数2()f x ax bx c =++对任意的x ∈R 都有()0f x >恒成立知:2400b ac a ⎧∆=-<⎨>⎩,而940a c -<∴94c b a -<<>,故b a -<<∴2242c b c c a a a ++>>-32t => 即22222422t t b c t t a ++>>- ∴22111211()()228422b c t t a ++>+>-,若221111()(),()()2222f t tg t t =+=- 有max min 12()()84b c f t g t a +>+>即可,而在3,2()t ∈+∞上()f t 无最大值,()g t 无最小值但31()()22g t g >=∴1()12(2)2(1)(0)2f f f f >-+故答案为:1(,)2+∞ 【点睛】本题考查了一元二次函数、一元二次不等式以及一元二次方程根与系数关系,首先由各函数值的表达式代入目标式并化简,再由一元二次方程根与系数关系确定系数间的不等关系,进而构造一元二次函数,根据不等式恒成立,求目标式范围18.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果. 【详解】由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号,所以有1108xy <≤,19118xy <+≤,18191xy ≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号,故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.19.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:⎡⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=,由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.20.【分析】由题易得然后由基本不等式可得最后可求得的最小值【详解】将式子变形为即因为所以(当且仅当时等号成立)所以有即故所以则的最小值是故答案为:【点睛】本题考查利用基本不等式求最值考查逻辑思维能力和运【分析】由题易得()2222x y xy +=-,然后由基本不等式可得()()222224x y x y ++≥-,最后可求得2x y +的最小值. 【详解】将式子22462x y xy ++=变形为()2222x y xy ++=,即()2222x y xy +=-,因为0x >,0y >, 所以()()222222222224x y x y x y xy ++⎛⎫+=-≥-=- ⎪⎝⎭(当且仅当2x y =时,等号成立), 所以有()()222224x y x y ++≥-,即()25224x y +≥,故()2825x y +≥,所以25x y +≥,则2x y +.故答案为:5. 【点睛】本题考查利用基本不等式求最值,考查逻辑思维能力和运算求解能力,属于常考题.三、解答题21.(1)见解析;(2)(,4)-∞. 【详解】试题分析:(1)第(1)问,利用常量代换和基本不等式证明. (2)第(2)问,利用基本不等式求解. 试题(1)证明:∵1,0,0x y x y +=>>∴0,0y x x y >> ∴11224x y x y y x x y x y x y+++=+=++≥+= 当且仅当12x y ==时,等号成立. (2)因为,,,a b x y 为正实数,所以()a b ay bxx y a b a b x y x y ⎛⎫+⋅+=+++≥++≥=⎪⎝⎭4=,当且仅当a b =,ay bxx y=,即a b =,x y =时等号成立,故只要4m <即可,所以实数m 的取值范围是(),4-∞22.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<, 当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m -<<; 当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m >; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭; 当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或; 当0m =时,不等式的解集为{}3x x -; 当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭. 点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立,∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.24.(1)10天购买一次大米;(2)见解析.【分析】 ()1根据条件建立函数关系,结合基本不等式的应用求最值即可;()2求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可.【详解】解:()1设每天所支付的总费用为1y 元, 则()11900y 9x x 19000.660009x 3609360936091803789x x ⎡⎤=+++⨯=++≥++=⎣⎦, 当且仅当9009x x=,即x 10=时取等号, 则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少.()2若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x ,()x 35≥天购买一次大米,平均每天支付的总费用为2y , 则()21900y 9x x 19000.660000.89x 2889x x⎡⎤=+++⨯⨯=++⎣⎦, 设()900100f x 9x 9x x x ⎛⎫=+=+ ⎪⎝⎭,x 35≥,则()f x 在x 35≥时,为增函数,则当x 35=时,2y 有最小值,约为3229.7,此时3229.73789<,则食堂应考虑接受此优惠条件.【点睛】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题. 25.(1)(0,2);(2)当0a >时,解集为(,3)a a -;当0a =时,解集为空集;当0a <时,解集为(3,)a a -.【分析】(1)解一元二次不等式可得;(2)分类讨论,根据两根据的大小分类讨论.【详解】(1)当1a =时,2()2f x x x =-,所以()0f x <,即220x x -<解得02x <<.所以()2f x 的解集为(0,2).(2) 由2()3f x a <,得 22230x ax a --<,所以 (3)()0x a x a -+<,当0a >时,解集为(,3)a a -;当0a =时,解集为空集;当0a <时,解集为(3,)a a -.【点睛】本题考查解一元二次不等式,对含参数的不等式一般需要分类讨论,分类的层次有三个:一是最高次项系数的正负或者是0,二是对应的一元二次方程有无实数解,三是方程有实数解,方程两根的大小关系.26.(1)4;(2)4.【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值.【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号),∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥,∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号),所以x y +的最小值为4.【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力.。
高中数学 第三章32随堂即时巩固 必修5 试题
卜人入州八九几市潮王学校一、填空题1.不等式x(3-x)≥x(x+2)+1的解集是________.解析:x(3-x)≥x(x+2)+1⇒3x-x2≥x2+2x+1⇒2x2-x+1≤0.∵Δ=1-4×2=-7<0,又二次函数图象开口向上.∴原不等式无解.∴原不等式的解集为∅.答案:∅2.不等式-6x2+x+1≥0的解集是________.答案:{x|-≤x≤}3.x=1是不等式k2x2-6kx+8≥0(k≠0)的解,那么k的取值范围是________.解析:由题意,k2-6k+8≥0,解得k≥4或者k≤2.又k≠0,∴k的取值范围是k≥4或者k≤2,且k≠0.答案:(-∞,0)∪(0,2]∪[4,+∞)4.设集合A={x|x2-5x-6<0},B={x|x2-a2>0}.假设A∩B=∅,那么a的取值范围为________.答案:a≤-6或者a≥65.不等式ax2+bx+c>0的解集为{x|-1<x<2},那么a(x2+1)+b(x-1)+c>2ax的解集为________.解析:∵ax2+bx+c>0的解集为{x|-1<x<2},∴a<0,且,∴,代入a(x2+1)+b(x-1)+c>2ax,得a(x2+1)-a(x-1)-2a>2ax.∵a<0,∴x2+1-(x-1)-2<2x,∴x2+1-x+1-2-2x<0,∴x2-3x<0,∴0<x<3.答案:{x|0<x<3}6.不等式(m-2)x2+2(m-2)x-4<0对一实在数x都成立,那么实数m的取值范围为________.解析:假设m-2=0,即m=2时,不等式可化为-4<0,这个不等式与x无关,即对一切x∈R都成立.假设m-2≠0,即m≠2时,不等式为一元二次不等式.由解集为R,知二次函数y=(m-2)x2+2(m-2)x-4开口向下,且与x轴无交点,故有,即,解得-2<m<2.综上所述,m的取值范围是-2<m≤2.答案:(-2,2]二、解答题7.解以下不等式:(1)2+3x-2x2>0;(2)x(3-x)≤x(x+2)-1;(3)x2-2x+3>0.解:(1)原不等式可化为2x2-3x-2<0,∴(2x+1)(x-2)<0.故原不等式的解集是{x|-<x<2}.(2)原不等式可化为2x2-x-1≥0,∴(2x+1)(x-1)≥0,故原不等式的解集为{x|x≤-或者x≥1}.(3)因为Δ=(-2)2-4×3=-8<0,故原不等式的解集是R.8.方程x2+(m-3)x+m=0的两根满足:(1)都是正根;(2)都在(0,2)内.分别务实数m的取值范围.解:(1)设方程的两根为x1,x2,那么由题意可得:解得m的取值范围是(0,1].(2)设f(x)=x2+(m-3)x+m,由题意得解得m的取值范围是(,1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高二数学同步测试一(必修5第三章)第Ⅰ卷(选择题共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.若a <b ,d <c,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a 、b 、c 、d 的大小关系是 ( ) A .d <a <c <b B.a <c <b <d C.a <d <b <c D.a <d <c <b2.若实数a 、b 满足a +b =2,是3a +3b的最小值是 ( )A .18B .6C .23D .2433.f x a x a x ()=+-21在R 上满足f x ()<0,则a 的取值范围是 ( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a 4.若关于x 的方程94340xxa ++⋅+=()有解,则实数a 的取值范围是 ( )A .(][)-∞-+∞,,80B .()-∞-,4C .[)-84,D .(]-∞-,85.如果方程02)1(22=-+-+m x m x 的两个实根一个小于‒1,另一个大于1,那么实数 m 的取值范围是 ( D )A .)22(,-B .(-2,0)C .(-2,1)D .(0,1)6.在的条件下,,00>>b a 三个结论:①22b a b a ab +≤+,②,2222b a b a +≤+ ③b a ba ab +≥+22,其中正确的个数是 ( )A .0B .1C .2D .37.若角α,β满足-2π<α<β<2π,则2α-β的取值范围是(C ) A .(-π,0)B .(-π,π)C .(-23π,2π) D .(-π23,23π) 8.设x y R、∈+且x y x y -+=()1,则( )A .x y +≥+221()B .x y ≤+21C .x y +≤+()212D .x y ≥+221()9.目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值10.设M=)11)(11)(11(---cb a ,且a+b+c=1,(a 、b 、c ∈R +),则M 的取值范围是( D )A .[0,81] B .[81,1] C .[1,8] D .[8,+∞)第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.设0<|x |≤3,1<|y |≤2005,是|x -y |的最大值与最小值的和是 . 12.设.11120,0的最小值,求且yx y x y x +=+>> 223+ .13.若方程x x a a 22220-+-=l g ()有一个正根和一个负根,则实数a 的取值范围是__________________.14.f(x)的图象是如图两条线段,它的定义域是]1,0()0,1[ -,则不等式1)()(->--x f x f 的解集是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)(1)设a ,b ,x ,y ∈R ,且a 2+b 2=1,x 2+y 2=1,求证:|ax +by |≤1;(2已知a 、b 是不等正数,且a 3-b 3= a 2-b 2 求证:1< a +b <34.16.(12分)解关于x 的不等式ax 2-(a +1)x +1<0.17.(12分)(1)求y x x =++2254的最小值;(2)若a b >>00,,且a b 2221+=,求a b 12+的最大值.18.(12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x >0满足).()()(y f x f yxf -= (1)求)1(f 的值; (2)若1)6(=f ,解不等式.2)1()3(<-+xf x f19.(14分)要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表所示:类型A规格B规格C规格第一种钢板 1 2 1第二种钢板 1 1 3 每张钢板的面积,第一种为21m,第二种为22m,今需要A、B、C三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小?20.(14分)(1)设不等式2x -1>m (x 2-1)对满足|m |≤2的一切实数m 的取值都成立,求x 的取值范围;(2)是否存在m 使得不等式2x -1>m (x 2-1)对满足|x |≤2的一切实数x 的取值都成立.参考答案(一)一、ABDDD DCACD二、11.2008;12.223+;13.)1,21()0,21(⋃-;14.]1,0()21,1[⋃--。
三、15.(1)证明:∵a 2+x 2≥2ax ,b 2+y 2≥2by ,∴a 2+x 2+b 2+y 2≥2(ax +by ),∴ax +by ≤211+=1。
y(t)1 2O t又∵a 2+x 2≥-2ax ,b 2+y 2≥-2by ,∴a 2+x 2+b 2+y 2≥-2(ax +by ),∴ax +by ≥-211+=-1。
∴|ax +by |≤1。
(2)证明:2222233)(b a b a b ab a b a b a +⇒+=++⇒-=-122>+⇒+=++>b a b a b ab a002)(4)2(3)(4)(3342222222>-⇐>+-⇐++<++⇐+<+⇐<+b a b ab a b ab a b ab a b a b a b a 16.解:当a =0时,不等式的解为x >1;当a ≠0时,分解因式a (x -a 1)(x -1)<0当a <0时,原不等式等价于(x -a 1)(x -1)>0,不等式的解为x >1或x <a 1;当0<a <1时,1<a 1,不等式的解为1<x <a 1;当a >1时,a 1<1,不等式的解为a 1<x <1;当a =1时,不等式的解为。
17.解:(1)解法一:)1(41444522222t t x x x x x y +=++++=++=令)2(42≥+=t x t ,则)2(012≥=+-t yt t令)2(1)(2≥+-=t yt t t f ,1)0(=f显然012=+-yt t 只有一个大于或等于2的根,0)2(≤∴f即250124)2(≥⇒≤+-=y y f ,即4522++=x x y 的最小值是25。
解法二:)1(41444522222t t x x x x x y +=++++=++=令)2(42≥+=t x t利用图象迭加,可得其图象(如下图)2≥t当2≥t 时,t t y 1+=递增,25212min =+=∴y 。
22b==当⎪⎪⎪⎩⎪⎪⎪⎨⎧>>=++=0012212222b a b a b a ,2223==⇒b a ,时,21b a +的最大值为42318.解: (1).0x y =>令,则()()()0,(1)0x f f x f x f y=-== 1(2).(6)1,22(6),(3)()2(6)f f f x f f x=∴=+-≤即3()2(6),((3))(6)(6)1x f f f x x f f x+<+-<∴()3(6),6x x f f +⎡⎤<⎢⎥⎣⎦又()f x 在()0,∞是增函数,则103317300(3)66x x x x x ⎧>⎪⎪-++>⇒<<⎨⎪+⎪<⎩ .19.解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积为2zm ,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,0,273,152,12y x y x y x y x作出可行域(如图) 目标函数为y x z 2+=作出一组平行直线t y x =+2(t 为参数).由⎩⎨⎧=+=+12,273y x y x 得),215,29(A 由于点)215,29(A 不是可行域内的整数点,而在可行域内的整数点中,点(4,8)和点(6,7)使z 最小,且20726824min =⨯+=⨯+=z .答:应截第一种钢板4张,第二种钢板8张,或第一种钢板6张,第二种钢板7张,得所需三种规格的钢板,且使所用的钢板的面积最小.20.(1)解:令f (m )=2x -1-m (x 2-1)=(1-x 2)m +2x -1,可看成是一条直线,且使|m |≤2的一切实数都有2x -1>m (x 2-1)成立。
所以,⎩⎨⎧ 02)f( 0)2(>->f ,即⎩⎨⎧032x 2x 012x 2x 22<-+>--,即⎪⎪⎩⎪⎪⎨⎧271x 271x 231x 231+->或--<+<<-所以,213x 217+<<-。
(2) 令f (x )= 2x -1-m (x 2-1)= -mx 2+2x +(m -1),使|x |≤2的一切实数都有2x -1>m (x 2-1)成立。
当0=m 时,f (x )= 2x -1在221<≤x 时,f (x )0≥。
(不满足题意)当0≠m 时,f (x )只需满足下式:⎪⎪⎩⎪⎪⎨⎧>--≤<>-0)2(21)0(,0f m m m 或⎪⎪⎩⎪⎪⎨⎧<∆<<-<>-0012)0(,0m m m 或⎪⎩⎪⎨⎧>->><-0)2(0)2()0(,0f f m m 解之得结果为空集。
故没有m 满足题意。