磨削裂纹产生的原因及措施
磨削裂纹产生的原因及措施
磨削裂纹产生的原因及措施淬火工件磨削加工过程中,磨削部位容易产生浅、细长、肉眼几乎无法辨别的磨削裂纹,常见的磨削裂纹有三种形状:龟裂或网状裂纹、直线状和弧状。
磨削裂纹产生的原因是:1、热处理热处理过程中,淬火温度高,产生过热组织;回火不充分,存在较大的内应力和较多的残余奥氏体;渗碳件渗碳层中的网状碳化物析出严重等,造成工件在后续磨削过程中产生磨削裂纹。
2、冷却磨削过程中,工件表面瞬间温度高达820℃,冷却不充分时,磨削产生的热量会使磨削表面薄层重新奥氏体化,随后在自身基体的激冷作用下,再次淬火为马氏体,表面层产生附加的组织应力,磨削是交替重复过程,累计的拉应力超过工件表面抗拉强度时,会产生龟裂或网状裂纹。
3、磨削过程中进刀量过大磨削进刀量太大,温度剧烈升高,表层达到约300℃左右,则发生第二次收缩,产生第二种磨削裂纹;与磨削方向基本垂直的、有规则排列条状裂纹。
如果局部严重磨削烧伤出现,则产生弧形裂纹。
4、磨料选择砂轮磨料种类有刚玉、碳化硅、金刚石、氮化硼等,当选择的与工件不匹配时,会产生裂纹。
磨削裂纹的控制措施是:1、正确操作热处理时严格按工艺规程操作;建立磨削加工操作规程,严格控制磨削进刀量,磨削时冷却充分;操作正应注意工作经验的总结。
2、砂轮选择1)尽可能选用锋利的砂轮,切削速度快,磨削效率高,磨削表面不易过热。
2)正确选择砂轮结构和硬度级别,以获得自由磨削效应。
3)陶瓷和金属作粘结剂的砂轮,适用于磨削热较高的场合;树脂粘结砂轮,适用磨削热较小的场合。
脆性较大的粘结剂,磨粒容易脱落,有利于使砂轮保持锐利状态。
4)SiC磨料磨削钢和铁基耐热合金时,产生强烈的化学磨损,刚玉类磨料磨削钢时无此反应。
相反,刚玉类磨料磨削玻璃、硅酸盐类陶瓷涂层时,会产生强烈的化学反应,SiC磨料无此反应。
3、如果已产生磨削裂纹,如果未超过加工余量,可进行多次低温回火,去除磨削应力,再按正确的磨削加工方法加工,磨去裂纹深度进行挽救。
磨床磨削裂纹原因的分析与对策
磨床磨削裂纹的产生原因分析与对策分析磨削裂纹的产生原因,与磨削前各加工过程所产生的缺陷,如材料表层中存在网状碳化物、非金属夹杂、组织疏松、成分偏析、晶界上的淬火变形等有关;裂纹通常与烧伤同时出现。
当工件表层的残余拉应力超过材料的抗拉强度时,就会产生磨削裂纹。
磨削裂纹的产生原因和减小磨削裂纹的方法如下:1、正确选用砂轮,例如可采用颗粒较粗、较软、组织较疏松的砂轮;保证修整后砂轮的锋利。
2、保证磨削时的冷却条件,设法使冷却液能有效地渗透到工件的磨削区中。
3、合理选择磨削用量,例如提高工件的转速,采用较小的径向进给量等。
磨削时如果磨削工艺参数选择或操作不当,工件表面温度达到150~200度时表面因马氏体分解,体积缩小,而中心马氏体不收缩,使表层承受拉应力而开裂,产生的裂纹会与磨削方向垂直,裂纹相互平行。
当磨削温度在200度以上时,表面由于产生索氏体或托氏体,这时表层发生体积收缩,而中心则不收缩,使表层拉应力超过脆断抗力而出现龟裂现象。
4、工件表面渗层碳浓度过高,会使工件表面产生过多的残余奥氏体.从而容易导致产生烧伤和裂纹。
因此,表面碳浓度增加,则降低了磨削性能,一般表面碳浓度应控制在0.75%-0.95%范围以内。
5、碳化物分布应均匀,粒度平均直径不大于0.001m;碳化物形态应为球状、粉状或细点状沿网分布,不允许有网状或角状碳化物。
6、热处理时.表面或环境保护不当会产生表面氧化,这样在工件上就会产生一层薄的脱碳层,这层软的脱碳层会引起砂轮过载或过热,从而造成表面回火,工件磨削时容易出现裂纹。
7、如果冷却不充分,磨削时零件表面温度有时可能高达820~840度或更高,则由于磨削形成的热量足以使表面薄层重新奥氏体化,并再次淬火而形成淬火马氏体,表面形成二次淬火的金相组织。
此外,磨削形成的热量使零件表面温度升高极快,这种组织应力和热应力导致磨削表面出现磨削裂纹。
8、使用金刚滚轮修整砂轮的内滚道磨床加工的零件有裂纹,还与配置的金刚滚转速、转向、金刚石的粒度、磨损情况、修砂轮时电主轴的转速、修砂轮时与滚轮磨合停留的时间等因素有关。
磨削烧伤裂纹的产生及控制
磨削烧伤裂纹的产生及控制文章简述了磨齿的原理和方法,主要研究磨削裂纹的形态及产生裂纹的原因,及提出提高含碳量从标准的0.8%~0.9%提高到1%~2%。
并从热处理和冷加工方面,如工艺参数、冷却介质、工作环境,磨具等方面提出一系列防止磨齿裂纹的措施。
标签:磨削烧伤;裂纹;塑性变形;磨削余量;磨削用量磨齿是齿轮精加工的一种方法,磨齿不仅能纠正齿轮预加工产生的各项误差,而且能加工淬硬的齿轮,加工精度高。
1 磨齿的原理和方法锥砂轮磨齿原理。
在这里我们提到的都是指外齿轮,锥砂轮磨齿是按照齿轮和齿条的啮合原理进行的。
砂轮相当于假象齿条上的一个齿,齿轮的节圆沿齿条的节线作纯滚动。
被磨齿轮装在头架的主轴上,沿节线一面作横向往复移动,一面通过传动机构使被磨齿轮随主轴绕自身轴线作反复转动,被磨齿轮的移动和转动必须保持一定的相对关系,齿轮旋转一转,其移动距离应等于被磨齿轮节圆的圆周长,这样就可以磨出要求的渐开线齿形。
在磨斜齿轮时,砂轮和齿轮的相对运动相当于斜齿条的啮合原理进行的。
斜齿条的倾斜角等于斜齿轮的螺旋角,砂轮往复运动的斜线和齿轮轴线之间的夹角也应等于这一倾斜角;砂轮锥面的角度应等于斜齿条的法向齿形角。
磨完一个齿槽后,应进行分度磨下一个齿槽,工件的分度运动是当工件从一端展成到另一端时,进行一次分度,也可以进行双行程分度,即当工件展成一个往复后,进行一次分度。
为了磨出齿轮整个宽度上的齿面,砂轮还必须沿齿轮轴向进行往复运动。
2 磨齿烧伤裂纹的产生我们公司使用从德国引进的数控磨齿机,这种磨齿机的生产效率低于其他磨齿机,可以同时磨削轮齿的两面,砂轮刚性好,磨削用量也较大,所以难免产生磨削烧伤、裂纹。
这两种常见现象均属于磨齿工序的表面质量问题,它是由齿轮的材料、热处理的方式和磨削三个方面的原因所产生的现象。
从表面上看这一问题与生产效率相矛盾,然而没有质量就没有效益,这是我们都清楚的,众所周知的。
所以它是对应统一的关系。
磨齿过程中,裂纹主要是金属晶体产生塑性变形。
磨削裂纹的产生与防止
切深以 0.02mm为宜。,并增加对砂轮刃口的修磨次数。
发现粗磨的初始阶段是磨裂的关键时刻,绝大多数裂纹是在这阶段产生的,如初始阶段未产生裂纹,随
后即使采用更大的磨削用量,也不会形成裂纹。相反,初始阶段已发现磨裂,随后即使改用更小的切深量
(0.01~0.02mm),往往也难以把裂纹磨除。此时施行 160~200℃,8~12h低温回火,会顺利地把裂纹
火(<Ac1)烧伤区呈暗黑色(黑斑、黑烧伤),在二次淬火(>Ac1)烧伤区呈亮白色(白斑、“白烧伤”),磁粉探 伤无法显示烧伤。较严重的裂纹显龟甲状(封闭网络状),其深度大致为 0.03~0.15mm,用酸浸蚀,裂纹显
而易见。第二种磨削裂纹是典型的表面裂纹,其垂直深度一般不超过 0.5mm,最浅的仅 10~20μm,而深的
减少磨削热的产生)、合理选用和修整砂轮、采用良好的冷却措施、磨削分两步进行(粗磨和精磨)。充分消
除内应力后磨削。凡是砂轮太细、太钝、太硬、进刀量太大、冷却不良等,均易引起磨削裂纹,裂纹一般细而密
集。
热处理方面:材料与热处理是影响磨削裂纹的重要因素。碳素工具钢、刃具钢、模具钢、轴承钢等淬火低
温回火件、渗碳淬回火、表面淬回火、铸铁淬回火件易出现磨削裂纹。热处理涉及到的显微组织状况(马氏
磨除。
·薄鑫涛·
《热处理》 2019年第 34卷 第 1期
·51·
体、残留奥氏体、碳化物)、回火是否充分及含氢量等均对磨削裂纹有一定的影响。热处理应力大,引起的磨
削裂纹一般比较稀疏粗长。
3 已形成磨削裂纹的工件处置
已经形成的磨削裂纹,有时可在随后改用更小的磨削切深的办法予以磨除。磨除前,工件先进行一次低
温回火,或 160℃热油中时效 12h,效果更佳。磨削方向与原来的垂直,尤是平行状的裂纹,更应如此。磨削
磨削裂纹产生的原因是磨削力过大
磨削裂纹产生的原因是磨削力过大、冷却不充分,工件表面温度过高,而导致工件表面烧伤或产生淬火组织,并以下参数选择有关:1.与砂轮的选择有关,渗碳淬火件宜采用硬度较的的磨轮。
可选用棕刚玉砂轮,粒度为80-100,硬度为K-M,陶瓷5-6粘结剂。
2.冷却必须充分。
3.进刀量应尽量小,一般一次磨量不宜超过0.02mm(单边)。
磨削裂纹有两类:一类是磨削热使工件温度升高至180℃左右(与回火第一阶段相对应),裂纹与磨削进给方向垂直且呈平行线状,这种裂纹叫做第一类磨削裂纹;另一类是磨削热使工件温度升高到250~300℃左右(与回火第二阶段相对应),裂纹呈网状,这种裂纹叫做第二类磨削裂纹。
检查磨削裂纹可以利用热酸蚀法,这时的显微组织为屈氏体或索氏体。
磨削热是在砂轮与钢的接触和挤压摩擦条件下产生的,因此,砂轮的种类和粒度以及钢种均对磨削热产生影响。
钢件硬度越高,硬质碳化物数量越多或导热系数越低,越易产生较多的磨削热而使工件温度升高。
含碳量高且含有铬和钼的合金钢也易产生大量的磨削热使工件温度升高。
①材料缺陷:材料本身存在严重的非金属夹杂物(如硫和磷)和碳化物偏析等内部缺陷(一般不超过2.5级)。
例如,硫在钢中以FeS的形式存在,FeS与Fe形成易溶共晶体,其中熔点为985℃,分布与晶界。
由于材料局部含硫较多,具有热脆性,当高温淬火时,由于材料热应力和组织应力的变化,则会因这种热脆性而导致开裂。
②碳和合金元素的影响。
淬火马氏体是碳在a铁中的过饱和固溶体,过高的碳量增加了马氏体组织中碳的过饱和度,增大了马氏体组织应力,降低了组织的塑性,导致淬火层脆性增加,引起工件开裂。
试验证明,含碳量不同的材质所制成的试样,经表面淬火后出现以下情况:含碳量0.54~0.46%的50MnSi和5CrMnMo。
裂纹敏感性较强,棱角、尖角几乎都有裂纹;含碳量0.45~0.46%的50钢和50Mn要好些,但也有少量裂纹,而含碳量0.38~0.45%的40Cr和42CrMo的试样,经一次淬火均未发现裂纹,仅在重复淬火时才出现裂纹。
整体硬质合金刀具磨削裂纹的原因分析及其工艺改进
整体硬质合金刀具磨削裂纹的原因分析及其工艺改进1 引言整体硬质合金刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。
在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。
而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整体硬质合金刀具表面的质量情况越来越受到重视。
众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。
这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。
这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。
因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。
2 整体硬质合金刀具磨削裂纹的原因分析1.整体硬质合金刀具的磨削加工特点硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。
硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。
因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。
一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。
浅析整体硬质合金刀具磨削裂纹的产生及其工艺改进措施
引 言
高效率 高精度硬质合 金刀具是一种 以高性能硬质合金材料
1 . 3 砂轮原 因
整体硬质合金刀具磨刃过程 中, 砂轮 的线速 度和径 向进给量
砂轮硬度越高 、 粒度越细 、 磨损得越厉害 , 都使磨削温度升 为基础的精密刀具 ,是钨材 料产业链 中技术 含量和 附加价值最 越 大, 高得很快, 则越容 易使硬质合金 刀具产生磨削裂纹及磨 削烧伤 。 高的产品之一, 也 是 支 持 先 进 加 工 制造 技术 发 展 的关 键 工 具 。因 砂轮修整 不合格 , 工作表 面产生较大 的跳 动 , 或者在 进行 为硬 质 合 金 刀 具 有 比较 大 的脆 性 , 容易发生裂纹现象 , 所 以 必 须 此 外 , 刃磨时振动过于猛烈 ,那么硬质合金 刀具就很容易产生崩刃等 在刀刃磨削的过程 中注意控 制温度 ,并且选 择合适的砂轮 以及
金磨削表面 的瞬 时温度会 达到很高 ,在温度 的快速增长 下将 导 要求相对较高的加工场合很难进行运用 。使用晶须增韧补强技
致热变形 的产 生。此 外, 又 因为硬 质合金 的抗弯 强度 比较低 , 有 术可 以对这个 问题进行有效 的解 决。在硬质合金刀具材料 中加 很大的刚性模量 , 在正常温度 下根 本没有塑性 , 无法通过 自身的 入晶须能对裂纹扩展 的能量进行 吸收,吸收能量的大小决定于 塑 性 变 形 来 消 除热 应 力 , 因而 在 磨 削 热 的 作 用 下 , 将 使 得 硬 质 合 晶须与基体的结合状 态 。晶须增韧补强技术 能全 面提高整体硬 金刀具的磨削表面产 生局 部热应力值高 于硬 质合金 自身 的强度 质合金刀具材料的硬度、 韧性等综合性能。 极限, 从 而 导 致 裂 纹 的产 生 。 2 . 1 . 1 晶须 的 选 用及 添加 方 式
磨削裂纹的形成与分析
磨削裂纹的形成:发动机上用的各种轴类零件如驱动轴、凸轮轴、曲轴、摇臂轴等在加工过程中需要热处理,但热处理后淬硬或经过渗碳淬火的轴类零件,在磨削过程中由于表面显微组织发生转变而形成大量的裂纹,即磨削裂纹。
下面就磨削裂纹的形成及特征加以阐述。
一、磨削裂纹的产生:(一)磨削裂纹的生成轴类零件在磨削过程中要产生大量的热量,这些热量只限于表面极薄的区域内,它足以使其表面温度达到800℃以上,而且升温极快。
如果磨削时冷却不够充分,将导致表面层的显微组织重新奥氏体化,并再次淬火成为马氏体。
因而使工件表面层产生极大的附加组织应力,同时由于表面温升极快,造成很大的热应力,当组织应力和热应力叠加超过了材料的强度极限时,被磨削的表面就会出现磨削裂纹。
(二)磨削裂纹形成的影响因素:1、组织结构所谓组织结构方面的影响因素有碳化物的形态与分布,残余奥氏体的数量以及非金属夹杂物。
显微组织中碳化物的形态、分布影响着磨削裂纹的生成,如果碳化物数量较多,颗粒较大,分布不均或集聚存在时,将明显地分割金属的基体,降低其强度。
尤其当以断续网状析出时,则会严重地削弱晶间结合力,明显地影响热传导,从而加剧磨削裂纹生成。
如果碳化物细小、分布均匀,则有利于分散磨削应力,从而减少生成磨削裂纹的机率。
零件磨削时显微组织中的残余奥氏体因受磨削热的影响必将发生分解,逐渐转变为马氏体,引起工件表面体积膨胀,而导致组织应力的产生,进而促进裂纹的形成。
因此,工件内部残余奥氏体量较高时,易于产生磨削裂纹。
2、热处理工艺经过淬火而不进行回火的轴件,对磨削裂纹的形成是非常敏感的。
因为磨削时产生的磨削热足以使表层淬火马氏体发生转变,碳化物析出,体积减少。
造成了工件表面与内部的比容差,引起较大的内应力,进而形成裂纹。
轴件有时回火不足,在磨削时也容易形成裂纹。
由此可见,对淬火后的零件必须进行充分地回火。
但是为了保证工件达到一定硬度的要求,回火温度不能任意提高。
因此必须采用合适的磨削工艺,使工件表面受热的温度不超过回火温度。
砂轮磨削出现裂纹的原因
砂轮磨削出现裂纹的原因
砂轮磨削出现裂纹的原因可能包括以下几个方面:
1. 过度受热:在高速旋转过程中,砂轮的摩擦会产生大量的热量,如果不能及时散热,砂轮就会过热,导致内部的结构发生改变,从而产生裂纹。
2. 砂轮质量问题:如果砂轮的质量不过关,材料不均匀或者存在内部缺陷,就容易在使用过程中出现裂纹。
3. 使用过度:砂轮的寿命是有限的,如果过度使用或者使用强度过大,砂轮就会承受过大的力量,从而导致裂纹的出现。
4. 不当使用:如果使用砂轮时,施加的力量不均匀或者施力方向不正,就容易导致砂轮承受不均匀的力量,从而引发裂纹。
5. 砂轮装配不当:如果砂轮安装时未正确安装或者固定牢固,就容易在使用过程中发生晃动或者偏移,从而导致砂轮产生裂纹。
6. 砂轮敲击:如果砂轮在使用过程中受到硬物的敲击或者撞击,就容易引发裂纹的产生。
以上是一些可能导致砂轮磨削出现裂纹的原因,使用砂轮时应注意避免以上情况的发生,确保砂轮的正常使用和寿命。
蜗杆类零件磨削裂纹及对策
2018年 第7期热加工H热处理eatTreatment59蜗杆是机床回转部件中的重要零件,工作时蜗杆螺旋表面与蜗轮齿面相对滑动,容易发生磨损,因此蜗杆常用渗碳钢经渗碳淬火处理,以获得较高的硬度,防止蜗杆螺旋表面发生磨损。
蜗杆类零件的精度要求很高,加工工艺复杂、工序长,如在加工过程中出现问题,将造成重大损失。
我公司一种蜗杆零件在磨削加工时出现磨削裂纹,导致零件报废,严重影响了生产进度。
1. 蜗杆材料及主要工艺流程此蜗杆材料为20CrMnTiH ,形状如图1所示,热处理要求为渗碳淬火,渗碳层深1.1~ 1.5m m ,淬火后表面硬度58HRC 。
蜗杆加工工艺流程:下料→锻造→正火→粗车→除应力→精车→渗碳→螺纹处去碳→淬火→粗磨→无损检测→时效→精磨。
热处理过程:锻件正火→渗碳→淬火→低温回火→矫直→除蜗杆类零件磨削裂纹及对策■ 贾云峰摘要:20CrMnTiH 钢制蜗杆经渗碳淬火后磨削时发现裂纹,经分析认为,淬火温度偏高,淬火后残留奥氏体较多,在回火不充分时,在磨削热的影响下残留奥氏体发生转变,产生较大内应力,导致磨削时形成裂纹。
通过增加回火时间、增加冰冷定性,可有效解决这一现象。
关键词:蜗杆;磨削;裂纹;残留奥氏体扫码了解更多应力→低温时效。
热处理工艺过程曲线如图2所示。
渗碳淬火后,经检验碳化物1级,渗碳层深1.32mm ,表面硬度59~60HRC 。
2. 裂纹现象描述粗磨后蜗杆齿面出现磨削裂纹,裂纹极细,直线状,深度较浅,形态为通常所说的“发纹”,裂纹不平行,呈散射线状,如图3所示。
3. 磨削裂纹产生原因分析磨削裂纹与一般淬火裂纹明显不同,淬火裂纹粗而深,数量少;磨削裂纹只发生在磨削面上,数量较多,深度较浅,且深度基本一致。
较轻的磨削裂纹垂直于或接近垂直于磨削方向呈条状裂纹。
此蜗杆齿面是螺旋状曲面,磨削方向如图3中箭头所图 1图 22018年 第7期 热加工H热处理eatTreatment60示,裂纹垂直于磨削方向,符合磨削裂纹的特征。
磨削烧伤、磨削裂纹及控制措施
磨削烧伤、磨削裂纹及控制措施1、磨削烧伤磨削工件时,当工件表面层温度达到或超过金属材料的相变温度时,表层金属材料的金相组织将发生变化,表层显微硬度也相应变化,并伴随有残余应力产生,甚至消失微裂纹,同时消失彩色氧化膜,这种现象称磨削烧伤。
2、磨削裂纹一般状况下磨削表面多呈残余拉应力,磨削淬火钢、渗碳钢及硬质合金工件时,经常在垂直于磨削的方向上产生微小龟裂,严峻时进展成龟壳状微裂纹,有的裂纹不在工件外表面,而是在表面层下用肉眼根本无法发觉。
裂纹的方向常与磨削方向垂直或呈网状,并且与烧伤同时消失。
其危害是降低零件的疲惫强度,甚至消失早期低应力断裂。
3、磨削烧伤、磨削裂纹的掌握措施(1)正确选择砂轮为避开产生烧伤,应选择较软的砂轮。
选择具有肯定弹性的结合剂(如橡胶结合剂,树脂结合剂),也有助于避开烧伤现象的产生。
(2)合理选择磨削用量从减轻烧伤而同时又尽可能地保持较高的生产率考虑,在选择磨削用量时,应选用较大的工件速度vw和较小的磨削深度ap 。
(3)改善冷却条件① 采纳高压大流量法此法不但可以增加冷却作用,而且也增加了对砂轮的冲洗作用,使砂轮不易堵塞。
② 安装带空气挡板的喷嘴此法可以减轻高速回转砂轮表面处的高压附着气流作用,使磨削液能顺当喷注到磨削区。
③ 采纳磨削液雾化法或内冷却法采纳特地装置将磨削液雾化,使其带走大量磨削热,增加冷却效果;也可采纳内冷却砂轮,其工作原理如图所示。
经过严格过滤的磨削液由锥形套1经空心主轴法兰套2引入砂轮的中心腔3内,由于离心力的作用,磨削液经由砂轮内部有径向小孔的薄壁套4的孔隙甩出,直接浇注到磨削区。
图内冷却砂轮结构1-锥形盖2-主轴法兰套3-砂轮中心腔4-薄壁套。
渗碳淬火齿轮磨削裂纹产生原因及预防方法
渗碳淬火齿轮磨削裂纹产生原因及预防方法摘要:针对20CrMnTi渗碳淬火齿轮在磨齿过程中容易产生磨削裂纹而报废的现象,通过对其热处理过程中的组织变化,表层应力的消除方法,机加工过程中的磨削参数选择、砂轮的选择、磨削液的选择等进行分析,提出了防止磨削裂纹产生的措施.关键字:魔削裂纹磨削热组织结构磨削条件矿山机械上使用的重载齿轮的制造关键在于如何提高其承载能力及表面耐磨性,而采用高精度、硬齿面、齿廓和齿形修形的齿轮是提高齿轮承载能力及表面耐磨性的有效措施。
磨齿是有可能使上述措施同时实现的重要工艺手段。
在磨齿轮工艺中长期存在一个严重问题-裂纹,磨削裂纹是指发生在磨削面上,深度较浅,并且深度基本一致,方向垂直于齿向,即垂直于砂轮往复运动的方向,规则排列的条状裂纹,用肉眼便可观察到。
对渗碳淬火钢齿轮磨削裂纹的产生原因及防治措施进行研究十分必要。
一、裂纹产生的原因及防止其产生的有效措施1.1 裂纹产生的原因(1)齿轮热处理的质量是造成磨裂的内在因素磨削裂纹产生的根本原因是磨削热。
齿轮在渗碳过程中,其渗层组织中容易形成网状碳化物或过多的游离碳化物。
由于各物质硬度都极高,在磨削过程中,砂轮和齿面接触的瞬间,磨削区的温度很高,可能出现局部过热倾向和发生表面回火,使金相组织发生变化。
渗碳淬火齿轮,因磨削裂纹而报废在许多工厂都有发生,有时甚至很严重。
几年来国家重点工程仪征涤纶设备制造中,有较大批量精度要求高的渗碳淬火齿轮需加工,解决磨齿裂纹成为生产关键。
为此我厂组织冷、热工艺及测试人员共同攻关,并参阅有关文献经过多次试验,对磨裂的原因有了初步理性认识并采取了相应的工艺改进措施,终于解决了。
根据俄罗斯学者试验,当砂轮速度v=18mPs,磨削深度t=0.05mm时,磨削区的温度达900~1100℃,所以渗碳淬硬的齿面在磨削时,表面一薄层内的回火马氏体组织变成了较高温度(300℃以上)回火组织。
马氏体析出碳化物,残留奥氏体进一步分解为回火马氏体或回火屈氏体,在随后的冷却过程中不再发生组织变化。
磨削裂纹产生和解决方法
磨削裂纹产生和解决方法平面磨削产生的磨削裂纹(黑色碎点),并不是蓦地裂天形成的,而是零星地显现于工件表面。
虽说磨削裂纹,但新手还是难以辨别的。
用特别药品处理的磨削液裂纹并不深,一般深度只有0.05~0.25mm。
磨削裂纹产生的原因可能有以下几种:工件有表层内应力超过了断裂的极限,即工件由于以前加工磨削或热处理而在表层残留有机械应力和热应力。
由于磨削时磨掉了这刚刚好能保持平衡的应力,导致其残余应力超过了工件的强度,由些便产生了磨削裂纹。
在全部原因中,“由磨削产生裂纹”是问题的关键所在。
最大的问题就是磨削热产生的应力。
由于磨削热,工件表面的局部温度快速上升,这个会进行回火或者其他热处理。
由于内部结构的变化和表面的收缩,而在拉应力的作用下产生了裂纹。
1、砂轮的进给量和残余应力之间关系的例子。
①拉应力随着砂轮的进给气力的加添会渐渐变大,渐渐接近工件材料的抗拉强度。
一旦超过工件材料的抗拉强度时便会产生裂纹。
②压应力不会变化太大,由于刻度和试验条件的不同所以无法进行比较,但是几乎不变的是背吃刀量为0.05mm的时候,残留的拉应力最大,即使切得再深残留拉应力也不会大太大了。
一般认为这是磨粒落的原因。
2、通过更改砂轮的进给量,测量磨削后残余应力的一个例子。
①砂轮的进给量越大,残余应力存在的深度越深。
②表面的残余应力作为拉应力在作用磨削方向的同时,还可以以压力的形式作用于磨削方向的垂直方向,而且向内部越深,应力便会急剧削减。
③作用于沿磨削方向和垂直方向时,先变成压应力而后蓦地变成与磨削方向一致的拉应力。
当达到最大值时渐渐削减,最后成为微小的压应力。
砂轮的硬度和残留拉就力的关系,硬度在G、H、I、J之间,硬度越高,残留的残余应力也就越大。
砂轮的速度(圆周速度)对残余应力的影响。
转速(圆周速度)一旦超过去1500m/min,残余应力就会急剧加大。
此外,由于工件的材料不同也有易发生磨削裂纹和不易发生磨削裂纹的差别。
感应淬火曲轴磨削裂纹原因分析
感应淬火曲轴磨削裂纹原因分析摘要:淬火曲轴作为发动机的核心部件之一,其质量和可靠性直接影响汽车的安全性和性能。
曲轴的磨削过程是其制造过程中的重要环节之一,但在磨削过程中常常出现裂纹现象,大大降低了曲轴的质量和寿命。
本文通过对淬火曲轴磨削裂纹的原因分析,旨在为曲轴生产厂家提供技术参考和改进方向,进一步提高淬火曲轴的质量和可靠性。
关键词:淬火曲轴;磨削;裂纹;原因分析正文:一、淬火曲轴磨削裂纹的原因在磨削淬火曲轴的过程中,裂纹是经常出现的一种质量问题。
其原因主要有以下几个方面:1.材料质量问题淬火曲轴的材料通常采用高强度钢材,但由于制造过程中的管制不够严格,很容易出现材料的强度、硬度不一致的情况,从而导致曲轴表面的磨削裂纹问题。
2.磨削工艺问题磨削淬火曲轴需要考虑到工艺的严谨性和合理性,如果磨削速度过快,磨削力度过大,很容易引起曲轴表面的变形和热裂纹;同时磨削过程中必须保证润滑剂充足,否则会因为摩擦产生高温而导致热裂纹。
3.工艺温度不合适淬火曲轴的磨削需要在特定的温度环境下进行,如果温度过高或者过低,都会导致材料的变形和热裂纹。
二、解决淬火曲轴磨削裂纹的措施磨削淬火曲轴时出现裂纹问题,不利于提高曲轴的质量和可靠性,因此有必要采取相应的措施来解决。
在实践中,可以采用以下方法:1.材料选择和管制生产厂家需要对材料进行选择和管制,确保曲轴的材料质量达标,硬度、强度等参数的一致性和稳定性。
2.改进磨削工艺厂家需要对磨削工艺进行改进,严格控制磨削速度、力度和润滑剂的充足性,避免产生高温而导致热裂纹。
3.控制磨削温度生产厂家需要对磨削温度进行严格控制,避免温度过高或过低而产生变形和热裂纹。
三、结论淬火曲轴作为发动机的核心部件之一,其质量和可靠性直接影响汽车的安全性和性能。
磨削淬火曲轴时出现裂纹问题,严重降低了曲轴的质量和寿命。
通过对淬火曲轴磨削裂纹原因的分析和解决方法的探讨,可以为曲轴生产厂家提供一定的技术参考和改进方向,进一步提高淬火曲轴的质量和可靠性。
钛合金的磨削烧伤和磨削裂纹
钛合金的磨削烧伤和磨削裂纹钛合金的磨削烧伤是指在磨削过程中,钛合金材料表面出现的局部熔融、汽化或化学反应等现象。
这些烧伤不仅影响工件表面的完整性,还会降低其疲劳强度和耐腐蚀性能。
磨削烧伤的主要原因是磨削参数选择不当,如磨削速度过快、磨削力过大等。
工件材料表面存在杂质、锈蚀或氧化层等也会导致烧伤。
为了预防钛合金的磨削烧伤,可以采取以下措施:优化磨削参数:根据钛合金的特性和加工要求,合理选择磨削速度、进给速度和磨削深度等参数,以降低磨削热和磨削力。
加强工件前处理:去除工件表面杂质、锈蚀或氧化层,确保表面清洁度。
使用合适的磨料:选用具有高硬度、高热稳定性和优良磨削性能的磨料,以保证磨削效果和工件表面质量。
冷却液使用:采用有效的冷却液,降低磨削温度和减轻工件热损伤。
钛合金的磨削裂纹是指磨削过程中产生的微观裂纹。
这些裂纹通常在材料表层以下扩展,对其疲劳强度和耐腐蚀性能产生不利影响。
磨削裂纹的主要原因是磨削应力超过材料承受能力,导致微观结构发生变化或产生残余应力。
工件材料硬度不均、存在内应力或刀具材质不合适等因素也可能导致磨削裂纹。
为了预防钛合金的磨削裂纹,可以采取以下措施:选用合适的刀具材质:针对钛合金的特性,选用具有高硬度、高热稳定性和优良耐磨性的刀具材质,以减少刀具磨损和避免工件表面粗糙。
降低磨削应力:优化磨削参数,采用低磨削速度、小进给量和浅磨削深度等措施,减少磨削应力和工件热损伤。
工件装夹优化:确保工件装夹牢固、稳定,以减少加工过程中的振动和变形。
冷却液使用:采用有效的冷却液,降低磨削温度和减轻工件热损伤,避免因局部高温而产生的微观结构变化和残余应力。
去应力处理:通过适当的热处理或振动消除工件内部的残余应力,提高工件的抗裂性能。
在实际案例中,钛合金的磨削烧伤和磨削裂纹可能同时存在。
例如,某航空制造企业采用数控磨床加工钛合金叶片时,就曾遇到这两种问题。
通过分析症状、表现及诊断方法,工程师们发现磨削烧伤主要原因是磨削参数选择不当,而磨削裂纹主要是因为刀具材质不合适。
轴承零件磨削裂纹防止措施
轴承零件磨削裂纹防止措施轴承零件作为机械设备中不可或缺的组成部分,其质量的好坏直接影响着整个设备的使用寿命和性能。
而磨削裂纹作为轴承零件在加工和使用过程中常见的缺陷,不仅会降低轴承的承载能力和使用寿命,还会对设备的安全性产生潜在威胁。
因此,采取有效的措施防止轴承零件磨削裂纹对于保障设备的正常运转和延长设备的使用寿命具有重要意义。
一、轴承零件磨削裂纹的成因轴承零件在加工和使用过程中,由于材料的缺陷、加工工艺的不当、使用条件的恶劣等原因,容易出现磨削裂纹。
其中,主要的成因有以下几个方面:1.材料缺陷:轴承零件的材料中可能存在着一些内部缺陷,如气孔、夹杂、夹砂等,这些缺陷在加工和使用过程中会被放大和扩展,形成磨削裂纹。
2.加工工艺不当:在轴承零件的加工过程中,如果切削工具的选择、切削参数的设置、切削液的使用等方面不当,会导致轴承零件表面出现过度磨削或者热损伤,从而形成磨削裂纹。
3.使用条件恶劣:轴承零件在使用过程中,如果受到过大的载荷、振动、冲击等外力作用,会导致其表面出现微小的裂纹,随着使用时间的增长,这些裂纹会逐渐扩展和加深,最终形成磨削裂纹。
二、磨削裂纹对轴承零件的影响轴承零件中的磨削裂纹会直接影响其承载能力和使用寿命,具体表现在以下几个方面:1.降低承载能力:磨削裂纹会导致轴承零件的强度和韧性降低,从而使其在受到载荷时容易发生断裂或疲劳破坏,降低其承载能力。
2.影响使用寿命:磨削裂纹会使轴承零件的表面粗糙度增加,从而导致摩擦系数增大,摩擦热增加,最终使轴承零件的使用寿命缩短。
3.安全风险增加:磨削裂纹会在轴承零件受到过载、振动等作用时进一步扩展和加深,最终导致轴承零件的断裂,从而对设备的安全性产生潜在威胁。
三、轴承零件磨削裂纹防止措施为了有效地防止轴承零件的磨削裂纹,可以采取以下措施:1.合理选择材料:在选择轴承零件材料时,要选择质量好、无内部缺陷的材料,以减少磨削裂纹的产生。
2.优化加工工艺:在轴承零件的加工过程中,要根据不同的工件材料和零件结构合理选择切削工具和切削参数,同时要加强切削液的使用,以减少磨削裂纹的产生。
磨削裂纹的产生
磨削裂纹的产生:磨削时,当工件磨削表面的热应力大于工件材料的强度时,就会产生龟裂,即磨削裂纹。
它在工件表面成不规则的网状,其深度约为0.5mm。
产生裂纹的主要原因时受热而产生的热应力,部分也由于磨削热度使磨削表面产生残余应力而致裂。
它与工件材料性质(如化学成分,脆性,热处理组织)等有关。
一般来说,工件材料含碳量越高,脆性越大,就容易产生磨削裂纹。
简单介绍在生产中消除齿轮轴端面磨削炸纹的方法:1、调砂轮头架半度,使砂轮侧面与工件表面有半度夹角,利于散热。
2、把砂轮侧面修成凹形,使砂轮外圆最宽,减小接触面,也利于散热。
3、减小磨削断面的磨量,缩短加工时间。
4、操作时,手腕用力要柔,使砂轮缓慢接触工件表面,减小瞬间产生的较大磨削热。
5、合理选用冷却液,并充分浇注到磨削面上。
6、磨削完成时,注意光刀,这样即保尺寸,又不易出裂纹。
也应注意,天气冷暖,温度高低,热胀冷缩对裂纹产生也有着重大影响。
磨床安全操作规程:1、工作时要穿工作服,女工要戴安全帽,不能戴手套,夏天不得穿凉鞋进入车间。
2、应根据工件材料,硬度及磨削要求,合理选择砂轮。
一般60粒度。
新砂轮要用木锤轻敲检查有否裂纹,有裂纹的砂轮严禁使用。
3、安装砂轮时,在砂轮与法兰盘之间要垫衬纸,砂轮安装后要做两次静平衡。
(可说原因)4、砂轮最高工作速度应符合所用机床的使用要求。
高速磨床特别要注意校核,以防发生砂轮破裂事故。
5、开机前应检查磨床的机械、液压和电气等传动系统是否正常。
砂轮、卡盘、挡铁、砂轮罩壳等是否坚固,防护装置是否齐全。
启动砂轮时,人不应正对砂轮站立。
6、砂轮应经过2~5分钟空运装试验,确定正常时才能使用。
7、干磨的磨床在修整砂轮时要带口罩并开启吸尘器。
8、修整砂轮时,金刚笔轴线向下倾斜5°~10°,也就是笔尖要低于砂轮中心1~2mm。
以防金刚石振动面扎入砂轮。
9、不得在加工中测量。
测量工件尺寸时,要将砂轮退离工件。
10、磨削带有花键‘键槽等间断工件时,背吃刀量不得过大。
产生齿轮磨削裂纹的影响因素及措施
产生齿轮磨削裂纹的影响因素及措施摘要:采掘设备中所用齿轮为重载齿轮,为了提高齿轮承载力和耐磨性,通常轮齿采取渗碳淬火的热处理方式,再经过成型磨齿加工而成。
长期以来,在齿轮加工中存在一个突出的问题——磨削裂纹。
本文对产生齿轮磨削裂纹的影响因素及措施进行分析。
关键词:齿轮磨削;裂纹;影响因素;措施1齿轮磨削裂纹的形态特征磨削裂纹特有的征状是裂纹与磨削道痕相垂直,一般情况下磨削裂纹细、密、浅。
但在某些情况下(如深层渗碳的齿轮),在成型磨齿机上磨齿时,其磨削裂纹有会呈现出粗、深、长的特点,出现的磨削裂纹可能与磨削道痕平行分布。
在产生磨削裂纹的齿面必定伴随磨削烧伤,对产生磨削裂纹的齿面经4%硝酸酒精浸蚀后,由于回火烧伤而呈深黑色,此处硬度明显降低。
更严重的经浸蚀后在齿面黑色区域中间有白色区域,白色区域为磨削过程中产生再硬化(二次硬化),此处硬度很高。
2磨削裂纹的形成对于渗碳淬火硬齿面齿轮,产生磨削裂纹的主要原因是热应力和组织应力在齿面表层上瞬时剧烈变化,造成表面组织内应力不平衡。
(1)磨齿裂纹形成的内因是齿轮的渗碳淬火质量。
齿轮在渗碳淬火过程中,在渗碳层中易形成网状和过多游离碳化物。
这些物质硬度极高,磨削过程中磨削区的温度剧增,容易出现局部过热导致表面回火,使齿轮内部金相组织发生变化。
(2)磨齿裂纹形成的外因成型磨齿产生的热应力。
磨削过程会产生的大量热量,部分被冷却液带走,部分被传入齿轮齿面的浅表层内,并使浅表层温度快速升高。
超过原始回火温度,即会导致回火烧伤。
在磨削工况发生较严重异常时(比如变形较大或磨削进给量大等),齿面温度甚至达到相变温度,经冷却液冷激而导致二次淬火,形成严重的淬火烧伤,严重时会形成磨削裂纹。
3产生齿轮磨削裂纹的影响因素3.1首次磨齿切削量成型磨齿一般采用双面磨削,加工前由于留有磨量且热处理过程会有变形,由于机床对中时所测磨削余量不准确,造成首次切削量比较大,导致磨齿过程齿面热急增,引起齿面表层回火或二次淬火。
砂轮磨削出现裂纹的原因
砂轮磨削出现裂纹的原因砂轮是一种常用的磨削工具,广泛应用于机械加工、金属加工等领域。
然而,在实际应用中,我们有时会发现砂轮磨削时出现裂纹的情况,这不仅会降低砂轮的使用寿命,还会对工件的加工质量造成影响。
本文将从多个方面探讨砂轮磨削出现裂纹的原因。
砂轮材料的质量问题是导致砂轮磨削出现裂纹的一个重要原因。
砂轮一般由磨料、结合剂和孔道三部分组成。
磨料的质量直接关系到砂轮的磨削效果和寿命。
如果磨料中存在杂质或颗粒分布不均匀,就容易导致砂轮在使用过程中出现裂纹。
此外,结合剂的选择和配比也会对砂轮的质量产生重要影响。
结合剂过硬或过软都会导致砂轮裂纹的发生。
因此,在选择砂轮时,应选择质量可靠的产品,确保砂轮材料的质量符合要求。
使用过程中的操作不当也是砂轮磨削出现裂纹的一个重要原因。
操作人员在使用砂轮时,如果施加过大的压力或过快的磨削速度,就容易导致砂轮过热,从而引发砂轮裂纹。
此外,如果操作人员使用过程中频繁地改变砂轮的切削方向,也会增加砂轮裂纹的风险。
因此,在使用砂轮时,应严格按照操作规程进行操作,确保操作的稳定性和规范性。
砂轮的使用环境也会对其产生影响。
砂轮在高温、潮湿或腐蚀性环境下使用,都容易导致砂轮表面产生裂纹。
高温会使得砂轮结合剂变得脆性,失去原有的强度和韧性,从而容易出现裂纹。
潮湿环境会使砂轮的磨料松动,从而增加砂轮裂纹的风险。
腐蚀性环境中的化学物质会侵蚀砂轮表面,导致砂轮强度降低,容易发生裂纹。
因此,在使用砂轮时,要注意避免将砂轮暴露在恶劣的环境中,选择合适的使用条件。
砂轮的维护保养也是避免砂轮裂纹的重要措施。
砂轮在使用过程中,由于磨削时产生的热量和金属屑的堆积,会使砂轮表面堆积灰尘和金属屑,影响砂轮的正常使用。
如果不及时清理砂轮表面的污物,就会增加砂轮在使用过程中产生裂纹的风险。
此外,砂轮的存放也需要注意,在存放过程中,要避免砂轮受到外力的挤压或碰撞,以免造成裂纹。
砂轮磨削出现裂纹的原因主要包括砂轮材料质量问题、操作不当、使用环境和维护保养等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淬火工件磨削加工过程中,磨削部位容易产生浅、细长、肉眼几乎无法辨别的磨削裂纹,常见的磨削裂纹有三种形状:龟裂或网状裂纹、直线状和弧状。
磨削裂纹产生的原因是:
1、热处理
热处理过程中,淬火温度高,产生过热组织;回火不充分,存在较大的内应力和较多的残余奥氏体;渗碳件渗碳层中的网状碳化物析出严重等,造成工件在后续磨削过程中产生磨削裂纹。
3、如果已产生磨削裂纹,如果未超过加工余量,可进行多次低温回火,去除磨削应力,再按正确的磨削加工方法加工,磨去裂纹深度进行挽救。
2)正确选择砂轮结构和硬度级别,以获得自由磨削效应。
3)陶瓷和金属作粘结剂的砂轮,适用于磨削热较高的场合;树脂粘结砂轮,适用磨削热较小的场合。脆性较大的粘结剂,磨粒容易脱落,有利于使砂轮保持锐利状态。
4)SiC磨料磨削钢和铁基耐热合金时,产生强烈的化学磨损,刚玉类磨料磨削钢时无此反应。相反,刚玉类磨料磨削玻璃、硅酸盐类陶瓷涂层时,会产生强烈的化学反应,SiC磨料无此反应。
2、冷却
磨削过程中,工件表面瞬间温度高达820℃,冷却不充分时,磨削产生的热量会使磨削表面薄层重新奥氏体化,随后在自身基体的激冷作用下,再次淬火为马氏体,表面层产生附加的组织应力,磨削是交替重复过程,累计的拉应力超过Байду номын сангаас件表面抗拉强度时,会产生龟裂或网状裂纹。
3、磨削过程中进刀量过大
磨削进刀量太大,温度剧烈升高,表层达到约300℃左右,则发生第二次收缩,产生第二种磨削裂纹;与磨削方向基本垂直的、有规则排列条状裂纹。如果局部严重磨削烧伤出现,则产生弧形裂纹。
4、磨料选择
砂轮磨料种类有刚玉、碳化硅、金刚石、氮化硼等,当选择的与工件不匹配时,会产生裂纹。
磨削裂纹的控制措施是:
1、正确操作
热处理时严格按工艺规程操作;建立磨削加工操作规程,严格控制磨削进刀量,磨削时冷却充分;操作正应注意工作经验的总结。
2、砂轮选择
1)尽可能选用锋利的砂轮,切削速度快,磨削效率高,磨削表面不易过热。