装配尺寸链_计算方法
装配尺寸链建立方法及计算方法
相关的零件尺寸与相互位置关系可以形成尺寸链,这在机器装配关系中称为装配尺寸链。
装配的封闭尺寸链是保证装备精度指标的基本要求,它会直接影响到装配精度,零、部件尺寸和位置关系。
那么,装配尺寸链如何建立、如何计算呢?1、装配精度为了保证设备的正常使用,装配精度是装配工作中十分重要的一方面。
装配精度不仅影响机器或者部件的工作性能,还会影响它们的使用寿命;对于机床,装配精度也会直接影响到被加工的零件精度。
装配精度主要有以下几个方面:·相互位置精度:产品中相关零部件之间的距离精度以及相互位置精度。
·相对运动精度:又被称为传动精度。
产品中零部件之间相互运动时在运动方向以及运动速度上的精度,运动方向的精度通常会表现为部件之间相对运动的平行度和垂直度。
·相互配合精度:这个精度内容包括配合表面的配合质量以及接触质量。
2、装配尺寸链的分类(1)直线尺寸链:主要由长度尺寸组成,各环尺寸会保持彼此平行。
(2)角度尺寸链:由角度、平行度以及垂直度构成。
(3)平面尺寸链:由成角度关系的长度尺寸构成,各环要处于同一或平行的平面内。
2、装配尺寸链的查找方法(1)装配尺寸链的查找方法:封闭环的确定要根据装配精度要求来进行,将封闭环两端任一零件作为起点,按照装配精度要求的方向,用装配基准面作为查找线索,找出影响装配精度要求的相关零件。
(2)装配尺寸链查找注意事项:装配尺寸链要适当进行简化,要遵循环数最少的原则。
查找装配尺寸链的时候多个相关的零部件只有一个尺寸作为组成环列,这样成环的数目是有关零部件的数目。
3、装配尺寸链的计算方法装配尺寸链的计算方法与装配方法有很大的关系,同一个装配精度,如果采取不同的装配方法,那么装配的计算方法也会有所差别,一般在装配中,我们常使用到的计算方法有两种:·正计算:已知的条件为装配精度相关的各零部件的基本尺寸和偏差,计算得出装配精度要求的基本尺寸及偏差。
·反计算:已知的条件为装配精度要求基本尺寸及偏差,计算得出装配精度有关的零部件的基本尺寸及偏差。
装配尺寸链计算-例1
装配尺寸链计算-例1一个键装入轴的槽中,根据设计要求,需要保持一定的间隙。
设201=A mm ,202=A mm ,20.005.000++=A mm(设计要求)。
要求根据生产类型和具体条件确定装配方法,并计算出1A 和2A 的上下偏差。
解:(1)完全互换法首先考虑完全互换法,计算平均精度:()075.01305.020.010=−−=−=n A T T 平均mm 因为尺寸1A 是外尺寸,2A 为内尺寸,前者比后者容易加工,故将公差按生产经验分配,先确定()1.02=A T mm ,然后试计算出()1A T :()()()()05.01.015.0201=−=−=A T A T A T mm因为涉及上对2A 的公差分布并无规定要求,故可按加工的“入体”习惯方法,即内尺寸采用单向正公差,所以尺寸2A 及其偏差可预先确定为:1.00220+=A mm 画尺寸链:0A 为封闭环,2A 为增环,1A 为减环因为()()()120A EI A ES A ES −=所以()()()()10.020.010.0021−=−=−=A ES A ES A EI mm 因为()()()120A ES A EI A EI −=所以()()()()05.005.00021−=−=−=A EI A EI A ES mm 于是得到05.010.0120−−=A mm因为用了经济公差,所以不论哪一种生产类型,这种装配方法都是合适的。
下面按概率计算法来估计实际生产中的间隙0A 的分布范围。
()()()()112.01.005.02222211120≈+=+==∑−=A T A T A T A T n i imm ()()()[]075.021.005.021111−=−−=+=∆A EI A ES A mm ()()()[]05.0201.021222=+=+=∆A EI A ES A mm ()()()()[]125.0075.005.0120=−−=∆−∆=∆A A A mm()()()181.02112.0125.02000=⎟⎠⎞⎜⎝⎛+=+∆=A T A A ES mm ()()()069.02112.0125.02000=⎟⎠⎞⎜⎝⎛−=−∆=A T A A EI mm 即按概率法计算时,间隙尺寸的实际分布是:181.0069.000++=A mm这说明:在实际中,尺寸0A 的波动范围要比按极大极小计算的范围小一些(图3)。
装配尺寸链_计算方法
目录
01.
02.
03.
04.
05.
Байду номын сангаас
尺寸链:由一组相互关联的尺寸组成的封闭尺寸组 装配尺寸链:在产品装配过程中用于保证产品功能要求的尺寸链 组成:封闭的尺寸组由一个或多个零件的尺寸和位置关系组成 作用:用于控制和保证产品装配精度确保产品功能要求
组成元素:零件尺寸、公差和 其它因素
计算步骤:确定封闭环、列出尺寸链中的所有组成环、对所有组成环进行定性和定量的分析、根据需要 选择合适的计算方法(如极值法或概率法)进行计算。
实例说明:以某机械装配为例需要保证两个零件和B之间的距离为10mm已知零件的孔距为10mm零件 B的孔距为10.05mm通过简单的尺寸链计算可以确定零件和零件B之间的装配关系。
选择合适的计算方法
打开软件并导入装配尺寸链 数据
输入相关参数并进行计算 查看计算结果并进行调整
应用领域:机械、建筑、电 子等工程设计领域
软件名称:uCD
功能特点:具备强大的绘图、 编辑、标注等功能支持多种文
件格式导入导出
应用实例:某机械部件装配尺 寸链计算通过软件实现快速准
确的计算和分析
目的:确定各零件尺寸和公差 之间的关系
建立方法:根据零件之间的装 配关系列出尺寸链图
作用:确保产品装配精度和性 能
确定封闭环 判断组成环的性质
查找组成环 建立尺寸链线图
定义:极值法是 一种确定装配尺 寸链的方法通过 确定各零件尺寸 的极值来计算装 配尺寸链。
适用范围:适用 于零件尺寸变化 范围较大或对装 配精度要求较高 的装配尺寸链计 算。
结论:通过简单装配尺寸链计算可以确定零件之间的装配关系保证产品性能和精度要求。
装配尺寸链计算
?
0.025mm
各组成环的平均公差
? 根据基本尺寸的大小和加工的难易程度,调整各 组成环的公差为:
T(A1)=0.049mm, T(A2)=T(A4)=0.018mm,
10
第六章 装配工艺基础
? 计算“相依尺寸”公差为:
T(A3)= T(A∑) -[ T(A1)+ T(A2)+ T(A4)] = [ 0.1 – (0.049 + 0.018 + 0.018 )] mm = 0.015mm
= 0.25 –
? 封闭环尺寸(略)
15
? 计算“相依尺寸”偏差源自列尺寸链竖式解得:A3
?
7 mm ?0.050 ? 0.065
11
第六章 装配工艺基础
2.概率法(又称不完全互换法)
? 极值法的优点是简单、可靠,缺点是当封闭 环公差较小、组成环较多时,各组成环公差 将很小,给制造带来困难,使成本增加。加 工尺寸处于公差带中间部分的是多数,处于 极限尺寸的是极少数,装配时同一部件的各 组成环恰好都处于极限尺寸的情况就更少见。 因此,大批量生产中,装配精度要求高、组 成环数目多时,应用概率法解算尺寸链较合 理。
3.特点
除有一般尺寸链的特点外,还有: ? 封闭环十分明显,一定是机器产品或部件的
某项装配精度; ? 封闭环在装配后才能形成,不具有独立性
(装配精度只有装配后才能测量); ? 各组成环不是仅在一个零件上的尺寸,而是
在几个零件或部件间与装配精度有关的尺寸; ? 装配尺寸链形式较多,有线性尺寸链、角度
尺寸链、平面尺寸链、空间尺寸链。
13
第六章 装配工艺基础
?已知:A1=60(+0.20)mm, A2=57(-0.20mm), A3=3(-0.10)mm, 各组成环均呈正态分布,即 分布中心与公差带中心重合
尺寸链及尺寸链计算
一、尺寸链及尺寸链计算公式1、尺寸链的定义在工件加工和机器装配过程中,由相互联系的尺寸,按一定顺序排列成的封闭尺寸组,称为尺寸链。
尺寸链示例2、工艺尺寸链的组成环:工艺尺寸链中的每一个尺寸称为尺寸链的环。
工艺尺寸链由一系列的环组成。
环又分为:(1)封闭环(终结环):在加工过程中间接获得的尺寸,称为封闭环。
在图b所示尺寸链中,A0是间接得到的尺寸,它就是图b所示尺寸链的封闭环。
(2)组成环:在加工过程中直接获得的尺寸,称为组成环。
尺寸链中A1与A2都是通过加工直接得到的尺寸,A1、A2都是尺寸链的组成环。
1)增环:在尺寸链中,自身增大或减小,会使封闭环随之增大或减小的组成环,称为增环。
表示增环字母上面用--> 表示。
2)减环:在尺寸链中,自身增大或减小,会使封闭环反而随之减小或增大的组成环,称为减环。
表示减环字母上面用<-- 表示。
3)怎样确定增减环:用箭头方法确定,即凡是箭头方向与封闭环箭头方向相反的组成环为增环,相同的组成环为减环。
在图b所示尺寸链中,A1是增环,A2是减环。
4)传递系数ξi:表示组成环对封闭环影响大小的系数。
即组成环在封闭环上引起的变动量对组成环本身变动量之比。
对直线尺寸链而言,增环的ξi=1,减环的ξi=-1。
3.尺寸链的分类4.尺寸链的计算尺寸链计算有正计算、反计算和中间计算等三种类型。
已知组成环求封闭环的计算方式称作正计算;已知封闭环求各组成环称作反计算;已知封闭环及部分组成环,求其余的一个或几个组成环,称为中间计算。
尺寸链计算有极值法与统计法(或概率法)两种。
用极值法解尺寸链是从尺寸链各环均处于极值条件来求解封闭环尺寸与组成环尺寸之间关系的。
用统计法解尺寸链则是运用概率论理论来求解封闭环尺寸与组成环尺寸之间关系的。
5.极值法解尺寸链的计算公式(4)封闭环的中间偏差(5)封闭环公差(6)组成环中间偏差Δi=(ES i+EI i)/2(7)封闭环极限尺寸(8)封闭环极限偏差6.竖式计算法口诀:封闭环和增环的基本尺寸和上下偏差照抄;减环基本尺寸变号;减环上下偏差对调且变号。
机械制造工艺学课件--装配尺寸链计算案例
内容提纲1、装配尺寸链1装配尺寸链2、保证机器装配精度的方法2保证机器装配精度的方法当遇到有些要求较高的装配精度,如果完全靠相关零件的制造精度来直接保证,则零件的加工精度将会很高,给加工带来较大困难。
一、装配尺寸链1.装配尺寸链的概念装配尺寸链是以某项装配精度指标(或装配要求)作为封闭环,查找所有与该项精度指标(或装配要求)有关零件的尺寸(或位置要求)作为组成环而形成的尺寸链。
☞装配尺寸链的封闭环、组成环●封闭环:是间接保证的。
装配尺寸链的封闭环→产品或部件的装配精度要求。
如装配间隙、过盈量、装配后的位置要求。
一个装配精度要求就可以建立一个装配尺寸链。
●组成环:对装配精度要求有直接影响的那些零、部件上的尺寸和位置关系。
分为增环和减环(定义及判断方法同工艺尺寸链)。
2. 装配尺寸链的分类◆分类:根据各环的几何特征及所处的空间位置线性尺寸链→所有环为长度或精度的尺寸链,各环→所有环为长度或精度的尺寸链各环位于同一平面且彼此平行。
角度尺寸链→垂直度、平行度等平面尺寸链空间尺寸链装配尺寸链的建立步骤建3. 装配尺寸链的建立步骤一般按下列步骤建立尺寸链。
1、确定封闭环2、查找组成环(1)查找相关零件(2)确定相关零件上的相关尺寸3、画尺寸链图并确定组成环的性质(1)几何公差环的特点何差几何公差环可看做公称尺寸为零的尺寸环。
若几何公差的上、下极限偏差对称分布,如同轴度和对称度等那么无论把该环定为增环是减环它们对封称度等,那么无论把该环定为增环还是减环,它们对封闭环的影响将是相同的。
因此,上、下极限偏差对称分布的几何公差环,可以不必判定其是增环还是减环,任意假定都可以。
若几何公差的上下极限偏差虽是对称分布而若几何公差的上、下极限偏差虽是对称分布,而实际上是只允许单向极限偏差的环,那么就必须判定其是增环还是减环并限制其出现另一方向的极限偏差还是减环,并限制其出现另一方向的极限偏差。
判定方法见角度尺寸链。
(2)配合间隙环的特点间隙配合间隙环是指间隙配合时,因轴比孔小,引起轴的轴线和孔的轴线的偏移量。
用概率法求解装配尺寸链的装配方法
用概率法求解装配尺寸链的装配方法
装配尺寸链是指由多个零件组成的装配系统,其中每个零件的尺寸都有一定的偏差。
采用概率法求解装配尺寸链的装配方法可以通过以下步骤进行:
1. 确定装配尺寸链的目标:比如确定装配尺寸链的总体装配尺寸范围或者确定特定的装配尺寸要求。
2. 收集零件尺寸数据:收集零件尺寸的相关数据,包括每个零件的标准尺寸和尺寸偏差。
3. 建立概率模型:根据零件尺寸数据,建立概率模型来描述零件尺寸的分布情况。
常用的概率分布有正态分布、均匀分布等。
4. 计算总体装配尺寸分布:根据概率模型,计算不同组合零件的总体装配尺寸分布情况。
可以用概率密度函数或者累积分布函数表示。
5. 确定装配尺寸范围:根据装配尺寸链的目标,确定满足要求的装配尺寸范围。
可以根据总体装配尺寸分布的累积分布函数计算。
6. 选择装配方法:根据确定的装配尺寸范围,选择合适的装配方法。
可以根据装配尺寸的偏差大小,选择适当的调整方法,比如调整零件尺寸、采用适当的装配顺序等。
7. 进行装配实验:根据选择的装配方法,进行实际的装配实验,验证装配尺寸链的装配效果。
需要注意的是,概率法求解装配尺寸链的装配方法是一种统计方法,结果可能存在一定的误差。
因此,在实际应用中,需要根据具体
情况进行合理的调整和优化。
装配尺寸链与其计算
解:
(3)确定协调环
A0max=A1max+A2max-A3min-A4min-A5min A4min=A1max+A2max-A3min-A5min-A0max =122.02+28.10-4.95-4.95-0.7 =139.70(mm)
解:
(3)确定协调环
A0min=A1min+A2min-A3max-A4max-A5max A4max=A1min+A2min-A3max-A5max-A0min =122+28-5-5-0.2 =139.80(mm) 0.20 故: A4 140 0.30 (mm)
定义:根据装配精度(即封闭环公差)对装 配尺寸链进行分析,并合理分配各组成环公 差的过程,称解装配尺寸链。
等公差原则 当已知封闭环公差求组成环公差时,应先按 “等公差原则”(即每个组成环分得的公差相等) 结合各组成环尺寸的大小和加工的难易程度,将 封闭环公差值合理分配给各组成环,调整后的各 组成环公差值和仍等于封闭环公差。
中间计算可用于设计计算与工艺计算,也可用于验算。
• 例题1:如图所示齿轮轴装配中,要求装配后齿轮端面和箱 0.01 体凸台面之间具有0.1-0.3mm的间隙。已知B1= 800 0 mm,B2= 600.06 mm,问B3尺寸应控制在什么范围内才能 满足装配要求?
解: 1)根据题意绘制尺寸简图 2)确定封闭环为B0,增环
(2)大数互换法 条件: •设各环尺寸正态分布,尺寸分布中心与公差带中心重合。 •相关零件公差平方之和的平方根小于或等于装配允许公差
m n i 1
T0
Ti
2
实质是将组成环公差适当放大,零件容易加工。但有极少 数产品精度超差。只有大批量生产时,加工误差才符合概 率规律。故统计互换装配法常用于大批量生产、装配精度 要求较高环数较多(大于4)的情况。
第8章第3节装配尺寸链
Fig. 8 - 18
Table 8-2
选用分组装配时的原则如下:
(1) 配合件的公差值应相等,公差增大要同方向增大,增大倍数 就是分组数,以保证分组后各组的配合性质、精度与原来要求相 同。
结束
(2) 分布规律要相同。零件的尺寸分布符合正态分布且分布中心处 于理想位置,零件分组后可以互相配套。
Relative to group 1
T0 m
0 . 25 5
mm 0 . 11 mm
A3为包容(孔、槽)尺寸,较其他零件难加工。现选
A3为协调环,则应以平均统计公差为基础,参考各零
件尺寸和加工难度,从严选取各组成环公差。
T1=0.14mm,T2=T5=O.08mm,其公差等级为IT11。
A 4 3 0 .05 mm
0
(标准件),T4 = 0.05 mm,
除协调环外,其余按“入体原则(基准制)”标
注,来确定极限偏差。入体方向不明的尺寸,按“对
称偏差”标注。
选择尺寸链中的一环作为协调环,其公差带的位置 由尺寸链求得,以保证装配精度要求。 标准件或公共环不能作为协调环。
(2)大数互换装配法(概率法)
大数互换装配法相对于完全互换装配法,可以增
加组成环公差,降低加工成本,但可能会出现少量不
合格品。 对于正态分布的直线尺寸链,各组成环平均统计公 差为
T avqA TA 0 m
(8—3)
例8—1
如图8—17所示齿轮与轴组件装配,齿轮空套在
轴上,要求齿轮与挡圈的轴向间隙为0.1~0.35mm。
已知各相关零件的基本尺寸为:A1=30mm,A2=5mm,
A3=43mm,A4= 3 0 mm (标准件),A5=5mm。试用完 0 . 05 全互换装配法确定各组成环的偏差。
尺寸链—计算方法
尺寸链—计算方法宝子们!今天咱们来唠唠尺寸链的计算方法呀。
尺寸链呢,就像是一个链条,环环相扣的。
那它的计算方法有两种主要类型哦。
一种是极值法。
这就像是走极端一样。
比如说,我们要确定一个装配体的总尺寸,极值法就是把各个组成环的最大极限尺寸或者最小极限尺寸加起来,得到封闭环的极限尺寸。
就像搭积木,把每块积木最大或者最小的情况考虑进去,这样就知道整个搭出来的东西最大或者最小能是啥样。
这种方法很简单直接,但是呢,它有点保守,因为在实际生产中,各个尺寸都取到极限值的情况比较少啦,不过在一些对精度要求不是超级高,但是要保证能装配上的情况,还是很好用的呢。
还有一种是概率法哦。
这个就比较有趣啦,它像是在玩概率游戏。
它考虑到各个组成环的尺寸是按照一定的概率分布的,不是总是取到极限值。
比如说,在生产很多零件的时候,每个零件的尺寸在一定范围内波动,概率法就是根据这些波动的概率来计算封闭环的尺寸。
这就好比是算一群小伙伴的平均身高,不是只看最高和最矮的,而是综合考虑大家的身高分布情况。
概率法算出的结果呢,通常会比极值法更接近实际情况,而且在大批量生产的时候,能更好地利用零件的加工精度,不会像极值法那样过于保守,能提高生产效率和降低成本呢。
在计算尺寸链的时候呀,我们得先搞清楚哪些是组成环,哪些是封闭环。
封闭环就是我们最终要确定尺寸的那个环,就像是链条的最后一环。
而组成环呢,就是那些影响封闭环尺寸的环啦。
宝子们可别搞混咯。
不管是用极值法还是概率法,目的都是为了在生产中能准确地控制尺寸,让产品能够顺利装配,而且还能保证质量呢。
这尺寸链的计算虽然有点小复杂,但是只要我们理解了它的原理,就像掌握了一个小魔法,能让我们在生产制造的世界里游刃有余哦。
希望宝子们都能对尺寸链的计算方法有个新的认识呀。
。
装配尺寸链和装配方法
环尺寸等于所有增环基本尺寸之和减去所有减环基本
尺寸之和。
一、尺寸链的概念
封闭环的最大极限尺寸 当所有增环都为最大尺寸,
而所有减环都为最小极限尺寸时,封闭环为最大极限
尺寸,可用下式表示 :
一、尺寸链的概念
封闭环最小极限尺寸——当所有增环都为最小极限尺
寸,而所有减环都是最大极限尺寸时,则封闭即为最
小极限尺寸,公式如下:
适用于单件和小批量生产以及装配 精度高的场合。
适用于除必须采用分组装配的精 密配件以外的各种装配场合
四、装配尺寸链解法 根据装配精度对有关尺寸
链进行正确分析,并合理分配
各组成环公差的过程,称为解 尺寸链。如图所示齿轮装配示 意图中,B1=150mm,B2= 70mm,B3=50mm,B4=30mm, 若装配后轴向间隙要求为0.05 -0.24mm,试用完全互换法 解该装配尺寸链。
装配尺寸链的计算
一、尺寸链的概念 影响某一装配精度的各有关尺寸所组成的尺寸组称为装 配尺寸链。
装配尺寸链
一、尺寸链的概念
尺寸链简图
一、尺寸链的概念
封闭环 减环 构成尺寸链的每一个尺 寸都称为环,每个尺寸链 最少有3个环。 组成环 增环
一、尺寸链的概念
封闭环的基本尺寸 由尺寸链简图可以看出,封闭
五、装配尺寸链解法
1、根据题意画出尺寸链简图,并确 定增环、减环、封闭环 A1为增环,A2、A3、A4为减环, A0为封闭环, 2、计算封闭环公差 4、计算协调环的极限尺寸 T0=0.24-0.05=0.19 3、确定各组环尺寸公差及极限尺寸,∵A0max=A1max-A2min-A3min-A4min 因为T0=T1+T2+A3+A4=0.19 合理 ∴A3min=A1max-A2min-A4min-A0max =150.08-69.96-29.97-0.24=49.91 分配各环公差 ∵A0min=A1min-A2max-A3max-A4max T1=0.08 T2=0.04 T3=0.04 ∴A3max=A1min-A2max-A4max-A0min T4=0.03 =150-70-30-0.05=49.95 按入体原则确定各环极限尺寸 A1=150 A2=70 A4=30 A3为协调 ∴A3=50 答:A1=150 A2=70 A3=50 A4=30 环
装配尺寸链的计算方法
装配尺寸链的计算方法
装配尺寸链是指将多个零件按照一定规律组装在一起时所需要
的尺寸链,也称为装配尺寸序列。
它是用来确保装配质量的重要工具,通过计算装配尺寸链可以帮助工程师预测和解决零件装配过程中可
能出现的问题,从而提高装配质量和效率。
计算装配尺寸链的方法如下:
1. 确定装配关系:首先确定零件的装配关系,即哪些零件应该放在一起装配,哪些零件先装配,哪些后装配。
2. 确定重要特征:确定装配过程中的重要特征,如轴承孔、轴承外径等。
3. 确定公差:根据设计要求和实际情况确定零件和重要特征的公差。
4. 计算尺寸链:按照装配关系逐步计算各个零件和重要特征的尺寸链,即从一个零件的基准面到下一个零件的基准面的距离。
5. 验证尺寸链:对计算出来的尺寸链进行验证,确保其符合设计要求并且能够实现装配。
除了以上的方法,还有一些常用的计算尺寸链的工具和软件,如CATIA、Pro/E、SolidWorks等,它们能够帮助工程师更快速、更准确地计算出尺寸链。
总之,计算装配尺寸链是一个非常重要的工作,它能够帮助工程师预测和解决零件装配过程中可能出现的问题,从而提高装配质量和效率。
台阶孔同轴度装配尺寸链计算
台阶孔同轴度装配尺寸链计算(实用版)目录1.台阶孔同轴度装配尺寸链计算的背景和意义2.台阶孔同轴度装配尺寸链的定义和组成3.台阶孔同轴度装配尺寸链的计算方法和步骤4.台阶孔同轴度装配尺寸链计算的实际应用案例5.结论和未来发展趋势正文1.台阶孔同轴度装配尺寸链计算的背景和意义在现代工业生产中,为了保证产品的质量和性能,装配精度的控制是非常重要的。
其中,台阶孔同轴度装配尺寸链计算是保证装配精度的重要手段之一。
它是通过计算各个零件的尺寸公差和装配间隙,以确保零件在装配后能够达到预期的同轴度要求。
这种方法广泛应用于各种机械设备的制造和装配过程中。
2.台阶孔同轴度装配尺寸链的定义和组成台阶孔同轴度装配尺寸链是指由多个零件组成的一个装配尺寸链,其中每个零件的孔径和轴径都有一个同轴度要求。
同轴度装配尺寸链由以下几个部分组成:基准零件、基准面、装配零件和装配间隙。
3.台阶孔同轴度装配尺寸链的计算方法和步骤计算台阶孔同轴度装配尺寸链的主要目的是确定每个零件的尺寸公差,以保证装配后的同轴度要求。
计算方法和步骤如下:(1)确定基准零件和基准面:选择一个具有较高精度的零件作为基准零件,并确定其上的一个平面或轴线作为基准面。
(2)分析装配关系:根据装配图纸,分析各个零件之间的装配关系,确定装配间隙和同轴度要求。
(3)计算尺寸公差:根据装配间隙和同轴度要求,分别计算每个零件的孔径公差和轴径公差。
(4)确定尺寸链:将各个零件的孔径公差和轴径公差组成一个尺寸链,以保证装配后的同轴度要求。
4.台阶孔同轴度装配尺寸链计算的实际应用案例以汽车发动机装配为例,发动机的曲轴和轴承座之间的装配就需要考虑台阶孔同轴度装配尺寸链。
通过计算,可以确定轴承座的孔径公差和曲轴的轴径公差,以保证装配后的同轴度要求,从而确保发动机的性能和寿命。
5.结论和未来发展趋势随着现代工业生产的发展,对装配精度的要求越来越高。
台阶孔同轴度装配尺寸链计算作为保证装配精度的重要手段,其应用将越来越广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32
33
34
固定调整法-2
35
9
36
37
38
394041Fra bibliotek 4243
44
在机器装配中,通过调整被装零件的相对位置,使 误差相互抵消,可以提高装配精度,这种装配方法
称为误差抵消调整法。
它在机床装配中应用较多,例如,在车床主轴装配
中通过调整前后轴承的径跳方向来控制主轴的径向
跳动;在滚齿机工作台分度蜗轮装配中,采用调整 蜗轮和轴承的偏心方向来抵消误差,以提高工作台 主轴的回转精度
装配工人技术水平要求高。修配装配法常用于单件小
批生产中装配那些组成环数较多而装配精度又要求较
高的机器结构。
23
调整法装配计算实例-2 装配时用改变调整件在机器结构中的相对位置或选 用合适的调整件来达到装配精度的装配方法,称为 调整装配法。
24
25
固定调整法-1
26
8
27
28
29
30
31
4
5
5
6
7
8
修配法装配 在单件生产、小批生产中装配那些装配精度要求高、
组成环数又多的机器结构时,常用修配法装配。采用
修配法装配时,各组成环均按加工经济精度加工,装
配时封闭环所积累的误差通过修配装配尺寸链中某一
组成环尺寸(此组成环称为修配环)的办法,达到规 定的装配精度要求。选择修配环的一般原则是:选择 易于加工且装拆方便的零件作修配环,不选同属几个 尺寸链的公共环作修配环。
9
修配法装配计算实例-1
10
6
为减环
11
12
修配法装配计算实例-1
13
14
修配法装配计算实例-2
15
7
16
17
18
19
20
21
22
修配装配法的主要优缺点 修配装配法的主要优点是:
组成环均能以加工经济精度制造,但却可获得较高
的装配精度。
不足之处是:增加了修配工作量,生产效率低,对
2
采用分组法装配,要求两相配件的尺寸分布曲线具有 完全相同的对称分布曲线;如果尺寸分布曲线不相同 或不对称,则将导致各尺寸组相配零件数不等而不能 完全配套,造成浪费。 采用分组法装配,零件的分组数以3-5组为宜;分组数 过多,会因零件测量、分类和存贮工作量的增大而使 生产组织工作变得复杂。
3
分组法装配法实例
45
46
47
调整法的优缺点 调整装配法的主要优点是:组成环均能以加工经济 精度制造,但却可获得较高的装配精度;装配效率
比修配装配法高。
不足之处是要另外增加一套调整装置。可动调整法
和误差抵消调整法适于在成批生产中应用,固定调
整法则主要用于大批量生产。
48
内容简介
装配尺寸链的计算:完全互换法尺寸链、统计互换法尺 寸链、分组装配法、修配装配法、固定调整法尺寸链的 解算及设计尺寸公差的确定原则。
1
分组装配法 采用分组装配法装配时,组成环仍按加工经济精度制
造,不同的是要对组成环的实际尺寸逐一进行测量并
按尺寸大小分组,装配时被装零件按对应组号配对装 配,最终达到规定的装配精度要求。