初高中数学公式大全3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学公式表
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的
一半L=(a+b)÷2 S=L×h
83 (1)比例的基本性质如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理三条平行线截两条直线,所得的对应
线段成比例
87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
121①直线L 和⊙O 相交 d <r ②直线L 和⊙O 相切 d=r ③直线L 和⊙O 相离 d >r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离 d >R+r ②两圆外切 d=R+r ③两圆相交 R-r <d <R+r(R >r)
④两圆内切 d=R-r(R >r) ⑤两圆内含d <R-r(R >r) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n 边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n 边形的每个内角都等于(n-2)×180°/n
140定理 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形
表示边长)正三角形面积为a a S (431422
=
143如果在一个顶点周围有k 个正n 边形的角,由于这些角的和应为
360°.
180144R
n L π=
弧长计算公式:
lR
R n S 21
3601452==π扇扇形的面积公式:
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
高中数学常用公式
1 元素与集合的关系:U ,U .
2 集合12{,,
,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集
有22n
-个.
3 二次函数的解析式的三种形式:
(1) 一般式2
()(0)f x ax bx c a =++≠;
(2) 顶点式2
()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,
设为此式)
(4)切线式:02
()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的
横坐标为0x 时,设为此式)
4 真值表: 同真且真,同假或假 5
6 )
是p 的必要条件;
(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;
4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
7 函数单调性:
增函数:(1)、文字描述是:y 随x 的增大而增大。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的
1212
,,x x D x x ∈<且,都有
12()()
f x f x <成立,则就叫f (x )在x ∈D 上是增函数。
D 则就是f (x )的递增区间。
减函数:(1)、文字描述是:y 随x 的增大而减小。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的
1212
,,x x D x x ∈<且,都有
12()()
f x f x >成立,则就叫f (x )在x ∈D 上是减函数。
D 则就是f (x )的递减区间。
单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;
(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;
注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。
复合函数的单调性:
(1)设[]1212,,,x x a b x x ∈≠那么
[]1212()()()0x x f x f x -->⇔
[]b a x f x x x f x f ,)(0)
()(2
121在⇔>--上是增函数;
[]1212()()()0x x f x f x --<⇔
[]b a x f x x x f x f ,)(0)
()(2
121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数:
定义:在前提条件下,若有()()()()0f x f x f x f x -=--+=或, 则f (x )就是奇函数。
性质:(1)、奇函数的图象关于原点对称;
(2)、奇函数在x >0和x <0上具有相同的单调区间;
(3)、定义在R 上的奇函数,有f (0)=0 . 偶函数:
定义:在前提条件下,若有()()f x f x -=,则f (x )就是偶函数。
性质:(1)、偶函数的图象关于y 轴对称;
(2)、偶函数在x >0和x <0上具有相反的单调区间; 奇偶函数间的关系:
(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;
(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的) (5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 9函数的周期性: 定义:对函数f (x ),若存在T ≠0,使得f (x+T )=f (x ),则就叫f (x )是周期函数,其中,T 是f (x )
的一个周期。
周期函数几种常见的表述形式:
(1)、f (x+T )= - f (x ),此时周期为2T ;
(2)、 f (x+m )=f (x+n ),此时周期为2m n - ;
(3)、1
()()
f x m f x +=-
,此时周期为2m 。
10常见函数的图像:
11 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2
b
a x +=;两个函数)(a x f y +=与)(x
b f y -= 的图象关于直线2
b a
x -=对称. 12 分数指数幂与根式的性质:
(1)m n
a
=0,,a m n N *>∈,且1n >).
(2
)1
m n
m n
a
a
-
=
=
(0,,a m n N *
>∈,且1n >).
(3
)n a =.
(4)当n
a =;当n
,0
||,0a a a a a ≥⎧==⎨
-<⎩
.
13 指数式与对数式的互化式: log b a N b a N =⇔=(0,1,0)a a N >≠>.
指数性质: (1)1、1p
p
a
a
-=
; (2)、0
1a =(0a ≠) ; (3)、()mn m n a a = (4)、(0,,)r
s
r s
a a a a r s Q +⋅=>∈ ; (5)
、m n
a = ;
指数函数:
(1)、 (1)x
y a a =>在定义域内是单调递增函数;
(2)、 (01)x
y a a =<<在定义域内是单调递减函数。
注: 指数函数图象都恒过点(0,1) 对数性质:
(1)、 log log log ()a a a M N MN += ;(2)、 log log log a a a M
M N N
-= ; (3)、 log log m a a b m b =⋅ ;(4)、 log log m n
a a n
b b m
=⋅ ; (5)、 log 10a = (6)、 log 1a a = ; (7)、 log a b
a b =
对数函数:
(1)、 log (1)a y x a => 在定义域内是单调递增函数;
(2)、log (01)a y x a =<<在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0) (3)、 log 0,(0,1),(1,)a x a x a x >⇔∈∈+∞或
(4)、log 0(0,1)(1,)a x a x <⇔∈∈+∞则 或 (1,)(0,1)a x ∈+∞∈则
14 对数的换底公式 :log log log m a m N
N a
=
(0a >,且1a ≠,0m >,且1m ≠, 0N >).
对数恒等式:log a N
a
N =(0a >,且1a ≠, 0N >).
推论 log log m n
a a n
b b m
=
(0a >,且1a ≠, 0N >). 15对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则
(1)log ()log log a a a MN M N =+; (2) log log log a
a a M
M N N
=-; (3)log log ()n
a a M n M n R =∈; (4) log log (,)m
n a a n
N N n m R m
=∈。
16 平均增长率的问题(负增长时0p <):
如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x
y N p =+. 17 等差数列:
通项公式: (1) 1(1)n a a n d =+- ,其中1a 为首项,d 为公差,n 为项数,n a 为末项。
(2)推广: ()n k a a n k d =+-
(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)
前n 项和: (1)1()
2
n n n a a S +=
;其中1a 为首项,n 为项数,n a 为末项。
(2)1(1)
2
n n n S na d -=+ (3)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) (4)12n n S a a a =++
+ (注:该公式对任意数列都适用)
常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a +=+ ;
注:若,m n p a a a 是的等差中项,则有2m n p a a a =+⇔n 、m 、p 成等差。
(2)、若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列。
(3)、{}n a 为等差数列,n S 为其前n 项和,则232,,m m m m m S S S S S --也成等差数列。
(4)、,,0p q p q a q a p a +===则 ; (5) 1+2+3+…+n=
2
)
1(+n n 等比数列:
通项公式:(1) 1
*11()n n
n a a a q
q n N q
-==
⋅∈ ,其中1a 为首项,n 为项数,q 为公比。
(2)推广:n k n k a a q -=⋅
(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)
前n 项和:(1)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用)
(2)12n n S a a a =++
+ (注:该公式对任意数列都适用)
(3)1
1(1)(1)
(1)
1n n na q S a q q q =⎧⎪
=-⎨≠⎪-⎩
常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a ⋅=⋅ ;
注:若,m n p a a a 是的等比中项,则有 2m n p a a a =⋅⇔n 、m 、p 成等比。
(2)、若{}n a 、{}n b 为等比数列,则{}n n a b ⋅为等比数列。
18分期付款(按揭贷款) :每次还款(1)(1)1
n n
ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 19三角不等式:
(1)若(0,)2
x π
∈,则sin tan x x x <<.
(2) 若(0,
)2
x π
∈
,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.
20 同角三角函数的基本关系式 :22
sin cos 1θθ+=,tan θ=
θ
θ
cos sin , 21 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 22 和角与差角公式
sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβ
αβ±=;
tan tan tan()1tan tan αβ
αβαβ
±±
=
.
sin cos a b αα+)αϕ+
(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b
a
ϕ= ). 23 二倍角公式及降幂公式
sin 2sin cos ααα=22tan 1tan α
α
=
+.
2
2
2
2
cos 2cos sin 2cos 112sin ααααα=-=-=-22
1tan 1tan α
α
-=+. 22tan tan 21tan ααα=-. sin 21cos 2tan 1cos 2sin 2αα
ααα
-==+
24 三角函数的周期公式
函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期
2||T πω=
;函数tan()y x ωϕ=+,,2
x k k Z π
π≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 三角函数的图像:
25 正弦定理 :2sin sin sin a b c
R A B C
===(R 为ABC ∆外接圆的半径). 26余弦定理:
2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.
27面积定理:
(1)111
222a b c S ah bh ch =
==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111
sin sin sin 2
22S ab C bc A ca B ===.
(3)OAB S ∆=28三角形内角和定理 :
在△ABC 中,有()A B C C A B ππ++=⇔=-+
222
C A B π+⇔
=-222()C A B π⇔=-+. 29实数与向量的积的运算律:设λ、μ为实数,那么: (1) 结合律:λ(μa )=(λμ) a ;
(2)第一分配律:(λ+μ) a =λa +μa ;
(3)第二分配律:λ(a +b )=λa +λb .
30a 与b 的数量积(或内积):a ·b =|a ||b |cos θ。
31平面向量的坐标运算:
(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.
(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.
(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +. 32 两向量的夹角公式:
121
cos ||||
a b
a b x θ⋅=
=
⋅+a =11(,)x y ,b =22(,)x y ).
33 平面两点间的距离公式:
,A B d =||AB AB AB =
⋅(=11(,)x y ,B 22(,)x y ).
34 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则:
a ||
b ⇔b =λa 12210x y x y ⇔-=.(交叉相乘差为零)
a ⊥
b (a ≠0)⇔ a ·b =012120x x y y ⇔+=.(对应相乘和为零)
35 线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且1
2PP PP λ=,则12
12
11x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩
⇔1
21OP OP OP λλ+=
+ ⇔12(1)OP tOP t OP =+-(1
1t λ
=
+). 36三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC
的重心的坐标是123123
(
,)33
x x x y y y G ++++. 37三角形五“心”向量形式的充要条件:
设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则
(1)O 为ABC ∆的外心222
OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.
(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 38常用不等式:
(1),a b R ∈⇒2
2
2a b ab +≥(当且仅当a =b 时取“=”号).
(2),a b R +
∈
⇒
2
a b
+≥(当且仅当a =b 时取“=”号). (3)333
3(0,0,0).a b c abc a b c ++≥>>>
(4)b a b a b a +≤+≤-.
(5
)22ab a b a b +≤≤≤
+当且仅当a =b 时取“=”号)。
39极值定理:已知y x ,都是正数,则有
(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值24
1s . (3)已知,,,a b x y R +
∈,若1ax by +=则有
21111()()by ax ax by a b a b x y x y x y
+=++=+++≥++=。
(4)已知,,,a b x y R +
∈,若1a b x y
+=则有
40 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2
ax bx c ++同号,则
其解集在两根之外;如果a 与2
ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即:
121212()()0()x x x x x x x x x <<⇔--<<;
121212,()()0()x x x x x x x x x x <>⇔--><或.
41 含有绝对值的不等式 :当a> 0时,有
22x a x a a x a <⇔<⇔-<<.
22x a x a x a >⇔>⇔>或x a <-.
42 斜率公式 :
21
21
y y k x x -=
-(111(,)P x y 、222(,)P x y ).
43 直线的五种方程:
(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).
(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式
11
2121
y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (1212,x x y y ≠≠)).
两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)
1+r 2
r 2-r o
(4)截距式
1x y
a b
+=(a b 、分别为直线的横、纵截距,00a b ≠≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).
直线0Ax By C ++=的法向量:(,)l A B '=,方向向量:(,)l B A =-
44 夹角公式:
(1)21
21
tan |
|1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)
(2)12
21
1212
tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是
2
π. 45 1l 到2l 的角公式:
(1)21
21
tan 1k k k k α-=
+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)
(2)1221
1212
tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).
直线12
l l ⊥时,直线l 1到l 2的角是
2
π. 46 点到直线的距离 :d =(点00(,)P x y ,直线l :0Ax By C ++=).
47 圆的四种方程:
(1)圆的标准方程 2
2
2
()()x a y b r -+-=.
(2)圆的一般方程 2
20x y Dx Ey F ++++=(22
4D E F +->0).
(3)圆的参数方程 cos sin x a r y b r θ
θ=+⎧⎨
=+⎩
.
(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).
48点与圆的位置关系:点00(,)P x y
与圆2
2
2
)()(r b y a x =-+-的位置关系有三种:
若d =d r >⇔点P 在圆外;
d r =⇔点P 在圆上; d r <⇔点P 在圆内.
49直线与圆的位置关系:直线0=++C By Ax 与圆2
22)()(r b y a x =-+-的位置关系有三种
(22B
A C Bb Aa d +++=):
0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .
50 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:
条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;
条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ;
无公切线内含⇔⇔-<<210r r d .
51 椭圆22221(0)x y a b a b +=>
>的参数方程是cos sin x a y b θθ
=⎧⎨=⎩. 离心率c e a ==,
准线到中心的距离为2a c
,焦点到对应准线的距离(焦准距)2
b p
c =。
过焦点且垂直于长轴的弦叫通经,其长度为:2
2b a
.
52 椭圆22
221(0)x y a b a b
+=>>焦半径公式及两焦半径与焦距构成三角形的面积:
21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221||tan 2
F PF P F PF
S c y b ∆∠==。
53椭圆的的内外部:
(1)点00(,)P x y 在椭圆22
221(0)x y a b a b +=>>的内部22
00
221x y a b ⇔
+<. (2)点00(,)P x y 在椭圆22
221(0)x y a b a b
+=>>的外部2200
22
1x y a b ⇔
+>. 54 椭圆的切线方程:
(1) 椭圆22
221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b
+=.
(2)过椭圆22
221x y a b +=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b +=.
(3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222
A a
B b c +=.
55 双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应
准线的距离(焦准距)2b p c =。
过焦点且垂直于实轴的弦叫通经,其长度为:2
2b a .
焦半径公式21|()|||a PF e x a ex c
=+=+,2
2|()|||a PF e x a ex c =-=-,
两焦半径与焦距构成三角形的面积122
1cot 2
F PF F PF S b ∆∠=。
56 双曲线的方程与渐近线方程的关系:
(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a
b
y ±=.
(2)若渐近线方程为x a
b
y ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .
(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22
22b
y a x
(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 。
57双曲线的切线方程:
(1)双曲线22
221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是.
(2)过双曲线22221x y a b -=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y
a b -=.
(3)双曲线22221x y a b
-=与直线0Ax By C ++=相切的条件是22222
A a
B b c -=.
58抛物线px y 22
=的焦半径公式:
抛物线2
2(0)y px p =>焦半径02
p CF x =+. 过焦点弦长p x x p
x p x CD ++=+++
=21212
2. 59二次函数22
24()24b ac b y ax bx c a x a a
-=++=++(0)a ≠的图象是抛物线: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是241
4ac b y a
--=.
60 直线与圆锥曲线相交的弦长公式 AB =
或1212||AB x x y y ==-=-
(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨
⎧=+=0
)y ,x (F b kx y 消去y 得到02
=++c bx ax
0∆>,α为直线AB 的倾斜角,k 为直线的斜率,12||x x -=61证明直线与平面的平行的思考途径:
(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.
62证明直线与平面垂直的思考途径:
(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。
63证明平面与平面的垂直的思考途径:
(1)转化为判断二面角是直二面角; (2)转化为线面垂直;
(3) 转化为两平面的法向量平行。
64 向量的直角坐标运算:
设a =123(,,)a a a ,b =123(,,)b b b 则: (1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 65 夹角公式:
设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=.
66 异面直线间的距离 :
||
||
CD n d n ⋅=
(12,l l 是两异面直线,其公垂向量为n ,C D 、是12,l l 上任一点,d 为12,l l 间的距离). 67点B 到平面α的距离:
||
||
AB n d n ⋅=
(n 为平面α的法向量,A α∈,AB 是α的一条斜线段). 68球的半径是R ,则其体积343
V R π=,其表面积2
4S R π=.
69球的组合体:
(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体
的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3)球与正四面体的组合体: 棱长为a
(正四面体高3a 的14),外接球的半径为4a (正四面体高3
a 的34).
70 分类计数原理(加法原理):12n N m m m =+++. 分步计数原理(乘法原理):12n N m m m =⨯⨯⨯.
71排列数公式 :m
n A =)1()1(+--m n n n =!
!)(m n n -.(n ,m ∈N *,且m n ≤).规定1!0=.
72 组合数公式:m n C
=
m n m
m
A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *
,m N ∈,且m n ≤). 组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C 1+.规定10
=n C .
73 二项式定理 n
n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;
二项展开式的通项公式r
r n r n r b a C T -+=1)210(n r ,,,
=. 2012()()n n n f x ax b a a x a x a x =+=++++的展开式的系数关系:
012(1)n a a a a f ++++=; 012(1)(1)n n a a a a f -++
+-=-;0(0)a f =。
74 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B).
n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 75 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B).
n 个独立事件同时发生的概率:P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).
76 n 次独立重复试验中某事件恰好发生k 次的概率:()(1)
.k k n k
n n P k C P P -=- 77 数学期望:1122n n E x P x P x P ξ=++++
数学期望的性质
(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1
()(,)k P k g k p q p ξ-===,则1E p
ξ=
. 78方差:()()()2
2
2
1122n n D x E p x E p x E p ξξξξ=-⋅+-⋅+
+-⋅+
标准差:σξ=ξD . 方差的性质:
(1)()2
D a b a D ξξ+=;
(2)若ξ~(,)B n p ,则(1)D np p ξ=-.
(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ
-===,则2
q D p ξ=
. 方差与期望的关系:()2
2
D E E ξξξ=-.
79正态分布密度函数:(
)()()2
2
26,,x f x x μ--
=
∈-∞+∞,
式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差. 对于2
(,)N μσ,取值小于x 的概率:()x F x μσ-⎛⎫
=Φ
⎪⎝⎭
. 80 )(x f 在0x 处的导数(或变化率):
00000()()()lim
lim x x x x f x x f x y
f x y x x
=∆→∆→+∆-∆''
===∆∆. 瞬时速度:00()()
()lim lim
t t s s t t s t s t t t
υ∆→∆→∆+∆-'===∆∆. 瞬时加速度:00()()
()lim lim
t t v v t t v t a v t t t
∆→∆→∆+∆-'===∆∆. 81 函数)(x f y =在点0x 处的导数的几何意义:
函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 82 几种常见函数的导数:
(1) 0='C (C 为常数).(2) 1
()()n n x nx
n Q -'=∈.(3) x x cos )(sin ='.
(4) x x sin )(cos -='. (5) x x 1
)(ln =';1(log )log a a x e x
'=.
(6) x x e e =')(; a a a x
x ln )(='.
83 导数的运算法则:
(1)'
'
'
()u v u v ±=±.(2)'
'
'
()uv u v uv =+.(3)''
'2
()(0)u u v uv v v v
-=≠. 84 判别)(0x f 是极大(小)值的方法:
当函数)(x f 在点0x 处连续时,
(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 85 复数的相等:,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈) 86 复数z a bi =+的模(或绝对值)||z =||a bi +
. 87 复平面上的两点间的距离公式:
12||d z z =-=111z x y i =+,222z x y i =+).
88实系数一元二次方程的解
实系数一元二次方程2
0ax bx c ++=,
①若2
40b ac ∆=->,
则1,2x =②若2
40b ac ∆=-=,则122b x x a
==-;
③若2
40b ac ∆=-<,它在实数集R 内没有实数根;在复数集C
内有且仅有两个共轭复数根
240)x b ac =-<.。