《高等数学》教学大纲

合集下载

高等数学教学大纲

高等数学教学大纲

高等数学教学大纲一、课程概述高等数学是高等院校理工科及经济管理等专业的一门重要基础课程,它为学生学习后续专业课程提供必要的数学理论和方法,培养学生的逻辑思维能力、抽象概括能力、运算能力和创新能力。

二、课程目标1、使学生掌握高等数学中的基本概念、基本理论和基本方法,为后续课程的学习和今后的工作打下坚实的数学基础。

2、培养学生的逻辑思维能力、抽象概括能力、运算能力和空间想象能力,提高学生的数学素养。

3、使学生能够运用所学的数学知识和方法解决实际问题,培养学生的创新意识和应用能力。

三、课程内容1、函数与极限函数的概念及性质数列的极限函数的极限无穷小与无穷大极限的运算法则两个重要极限函数的连续性与间断点2、导数与微分导数的概念导数的几何意义函数的求导法则高阶导数隐函数及由参数方程所确定的函数的导数函数的微分3、微分中值定理与导数的应用微分中值定理洛必达法则函数的单调性与极值函数的凹凸性与拐点函数图形的描绘曲率4、不定积分不定积分的概念与性质换元积分法分部积分法有理函数的积分5、定积分定积分的概念与性质微积分基本公式定积分的换元法和分部积分法反常积分6、定积分的应用平面图形的面积体积平面曲线的弧长功、水压力和引力7、向量代数与空间解析几何向量及其运算空间直角坐标系平面与直线曲面与空间曲线8、多元函数微分法及其应用多元函数的基本概念偏导数全微分多元复合函数的求导法则隐函数的求导公式多元函数的极值及其求法9、重积分二重积分的概念与性质二重积分的计算法三重积分重积分的应用10、曲线积分与曲面积分对弧长的曲线积分对坐标的曲线积分格林公式及其应用对面积的曲面积分对坐标的曲面积分高斯公式与斯托克斯公式11、无穷级数常数项级数的概念和性质正项级数审敛法任意项级数的绝对收敛与条件收敛幂级数函数展开成幂级数12、常微分方程微分方程的基本概念可分离变量的微分方程齐次方程一阶线性微分方程可降阶的高阶微分方程高阶线性微分方程常系数齐次线性微分方程常系数非齐次线性微分方程四、教学方法1、课堂讲授:通过讲解、演示和推导,使学生理解和掌握高等数学的基本概念、基本理论和基本方法。

高等数学的教学大纲(最新完整版)

高等数学的教学大纲(最新完整版)

高等数学的教学大纲(最新完整版)高等数学的教学大纲高等数学是大学本科公共基础课程,内容主要包括极限与连续、微积分、线性代数、概率论和数理统计等方面。

具体的教学大纲可能会因学校、地区或教师而有所不同,以下是一般高等数学的大致内容:1.极限与连续:包括极限的定义、性质和计算,以及连续的概念和应用。

2.导数与微分:包括导数的定义、性质和计算,以及微分的概念和应用。

3.积分学:包括不定积分、定积分的定义、性质和计算,以及积分的应用。

4.线性代数:包括行列式、矩阵、向量空间、线性方程组等概念和应用。

5.概率论:包括概率、条件概率、随机变量、期望和方差等概念和应用。

6.数理统计:包括基本概念、参数估计、假设检验、回归分析等应用。

除了以上内容,高等数学的教学大纲还包括数学建模、数学软件应用等方面的内容,以培养学生的数学思维和应用能力。

教育部大学数学教学大纲教育部大学数学教学大纲是指教育部制定的大学数学课程的教学大纲,包括高等数学、线性代数、概率论与数理统计等。

这些大纲规定了大学数学课程的教学内容、教学要求、教学时数等方面的内容,是大学数学教师进行教学的重要依据。

教育部大学数学教学大纲的内容包括:高等数学:一、函数与极限;二、导数与微分;三、导数的应用;四、不定积分;五、定积分;六、定积分的应用;七、微分方程;八、向量代数与空间解析几何;九、多元函数微分学;十、重积分;十一、曲线积分与曲面积分;十二、无穷级数。

线性代数:一、行列式;二、矩阵;三、向量;四、线性方程组;五、矩阵的特征值和特征向量;六、二次型。

概率论与数理统计:一、概率论的基本概念;二、随机变量及其分布;三、多维随机变量及其分布;四、随机变量的数字特征;五、大数定律和中心极限定理;六、样本及抽样分布;七、参数估计;八、假设检验。

高等数学实验教学大纲高等数学实验教学大纲是指为了更好地指导学生进行实验,所编写的指导性文件。

以下是部分高等数学实验的教学大纲:1.极限与连续__极限的定义与计算__极限存在性定理__无穷小与无穷大的性质__连续函数的定义与性质__极限与连续的应用2.导数与微分__导数的定义与计算__导数的应用__微分的定义与计算__微分的应用3.积分学__不定积分与定积分的定义与计算__积分的应用__微积分基本定理__积分学的学习方法4.微分方程__微分方程的定义与计算__微分方程的应用__常微分方程的解法__微分方程的学习方法5.向量代数与空间解析几何__向量代数的基础知识__向量代数在几何中的应用__空间解析几何的基础知识__空间解析几何在几何中的应用6.多重积分与曲线积分__多重积分的基础知识__多重积分的计算与应用__曲线积分的基础知识__曲线积分的计算与应用高等数学教学大纲撰写意见根据《大学数学教学基本要求》,结合《高等数学》课程特点,对教学大纲的撰写提出以下意见:1.课程概述:简要介绍高等数学的基本内容、课程目标、学习方法等,突出高等数学在自然科学、工程技术和经济生活中的重要地位,强调数学素质的培养对学生全面发展的重要性。

高等数学一教学大纲

高等数学一教学大纲

高等数学一教学大纲一、课程简介高等数学一是理工科专业的一门核心数学课程。

本课程旨在为学生提供基础的数学理论和方法,培养学生的数学思维能力和解决实际问题的能力。

通过学习本课程,学生将掌握微积分、方程与不等式、数列与级数等基础知识,为进一步学习高等数学二打下坚实的基础。

二、课程目标1. 培养学生的抽象思维和逻辑推理能力,使其具备解决数学问题的能力;2. 培养学生的数学模型建立和运用能力,使其能够将数学知识应用于实际问题的解决;3. 培养学生的数学推理和证明能力,使其具备严密的数学思维和分析问题的能力;4. 培养学生的团队合作和沟通能力,使其能够与他人合作解决复杂的数学问题。

三、教学内容和大纲1. 微积分1.1 函数与极限1.2 连续与间断1.3 导数与微分1.4 微分中值定理1.5 不定积分1.6 定积分与积分中值定理2. 方程与不等式2.1 一元二次方程与不等式2.2 二元一次方程组2.3 二次三项式与高次方程3. 数列与级数3.1 数列的概念与性质3.2 通项公式与递推公式3.3 等差数列与等比数列3.4 级数的概念与性质3.5 收敛与发散的判定四、教学方法1. 讲授法:通过系统的理论讲解,向学生介绍各个知识点的概念、性质和定理,并讲解基本的解题思路和方法;2. 例题分析法:通过分析典型的例题,引导学生掌握解题方法和技巧,培养学生独立解题的能力;3. 练习巩固法:通过大量的练习题,让学生在实践中掌握所学知识,提高解题能力和应用能力;4. 讨论互动法:组织学生进行小组讨论和互动,促进学生彼此之间的交流与思考,加深对知识的理解和掌握。

五、考核方式1. 课堂表现:包括课堂积极参与、提问与回答等;2. 作业完成情况:完成课后作业的质量和准时程度;3. 平时测试:包括小测验、月考等;4. 期末考试:综合考核学生对课程学习内容的掌握程度。

六、教材推荐1. 《高等数学》(上册),同济大学出版社2. 《高等数学解题方法与技巧》,清华大学出版社七、学习建议1. 注重理论与实践相结合,理解知识点的同时进行大量的练习;2. 主动参与课堂,积极提问和回答问题,提高对知识点的理解深入程度;3. 组织学习小组,相互合作、讨论,互相帮助提高解题能力;4. 善于总结知识,建立起知识体系,做好复习和巩固工作;5. 利用教师提供的教学资源,积极参与相关的学术讲座和研讨会。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

高等数学V课程教学大纲-医学院药学专业

高等数学V课程教学大纲-医学院药学专业

《高等数学Ⅴ》课程教学大纲(Advanced Mathematics Ⅴ)一、课程基本信息课程编号:17082008课程类别:学科基础课适用专业:医科类药学专业学分:4学分总学时:64学时其中理论学时:64学时, 实验学时:0学时先修课程:无后续课程:无课程简介:本课程系统介绍一元函数的极限、连续、导数、微分及其应用、不定积分、定积分及其应用。

部分专业可根据专业需要,对教学内容作适当调节(课时相应作结构性调整)。

主要教学方法与手段:以讲授为主,辅之以多媒体教学、习题课和课外辅导,注重理论联系实际。

选用教材:蒋国强蔡蕃.高等数学(第4版)[M].北京:机械工业出版社,2010;必读书目:无选读书目:[1] 刘金林主编.高等数学(经济管理类)[M].北京:机械工业出版社,2013;[2] 同济大学数学教研室主编.《高等数学》(第六版),[M].北京:高等教育出版社,2007;[3] 同济大学数学教研室主编.《高等数学》(本科少课时类型)(第三版)[M].北京:高等教育出版社;[4][美] Morris Kline著.古今数学思想(英文版,1-2)[M].上海:上海科技出版社;二、课程总目标本课程是高等学校本科医科类药学专业必修的重要基础课。

通过本课程的学习,使学生对高等数学的基本概念、基本理论、基本方法有比较基本的认识,构建必要的知识基础。

适当了解相关的古今中外的数学发展史。

逐步培养学生抽象概括问题的能力、一定的辩证思维能力和逻辑推理能力、比较熟练的运算能力和自学能力,提高学生在数学方面的素质和修养,培养学生综合运用所学知识分析问题、解决问题的能力,学会运用本课程提供的数学思想、数学方法解决简单的应用问题,激发学生的探索与创新意识,为学习其它基础课程和专业课程打下基础。

三、课程教学内容与教学要求1、教学内容与学时分配课程总学时:64学时,其中讲授学时:64 学时;实验(上机)学时:0学时2本课程是高等学校的一门必修的重要基础课。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

(完整版)《高等数学》(经管类)教学大纲

(完整版)《高等数学》(经管类)教学大纲

《高等数学》(经管类)教学大纲大纲说明课程代码:4915001总学时:128学时(讲课128学时)总学分:8分课程类别:必修适用专业:经管类本科一年级学生预修要求:初等数学一、课程性质、目的、任务本课程是本科经管类各专业的一门公共基础课,教学内容主要有一元与多元微积分;级数;常微分方程初步。

本课程教学目的是使学生获得从事经济管理和经济研究所必需的微积分方面的知识;学会应用变量数学的方法分析研究经济现象中的数量关系;培养抽象思维和逻辑推理的能力;树立辩证唯物主义的观点,同时,本课程也是后继经济应用数学(如概率统计等)的必要基础。

二、课程教学的基本要求:1、正确理解下列基本概念和它们之间的内在联系:函数、极限、无穷小、连续、导数、微分、不定积分、定积分、曲面的方程、偏导数、全微分、二重积分、常微分方程、无穷级数的收敛与发散性、边际、弹性。

2、正确理解下列基本定理和公式并能正确应用:极限的主要定理、罗尔定理、拉格朗日中值定理、柯西中值定理、定积分作为变上限的函数及其求导的定理、牛顿—莱布尼兹公式。

3、牢固掌握下列基本公式:基本初等函数的导数公式、基本积分公式、函数e x 、sinx 、cosx 、α)1(x +、ln(1+x)的幂级数展开式。

4、熟练运用下列法则和方法函数的和、差、积、商求导法则与复合函数的求导法则、隐函数的求导法、反函数的求导法、直接积分法、换元积分法、分部积分法、二重积分计算法、级数收敛性的比较判别法,达朗贝尔判别法、莱布尼兹判别法、幂级数收敛半径的求法、变量可分离的一阶微分方程的解法、一阶线性微方程的解法、二阶常系数线性微分方程的解法、拉格朗日乘数法、最小二乘法。

5、会运用微积分和常微分方程的方法解决一些简单的经济问题。

6、在学习过程中,逐步培养熟练的运算能力,抽象的思维能力,逻辑推理能力、空间想象能力。

知识的获得与能力的培养是同一过程的两个侧面,知识是发展能力的内容,能力是掌握知识的条件,我们既努力获得新知识,同时也注意不断提高分析问题和解决问题的能力。

高等数学教学大纲

高等数学教学大纲

高等数学教学大纲1. 课程简介高等数学作为理工科学生的重要课程之一,是一门基础性较强的数学课程。

本课程为学生打下坚实的数学基础,为进一步的学习和研究提供必备的数学工具。

本课程涉及到的内容较为广泛,包括微积分、线性代数、概率论等多个学科,具有重要的理论意义和实际应用价值。

本教学大纲旨在规范本课程的教学内容和教学要求,提高教学质量。

2. 教学目标•熟悉微积分和线性代数的基本概念、理论和方法•掌握微积分和线性代数的基本技能和方法•具备初步的应用能力•培养科学素养和数学思维,提高学习兴趣3. 课程要求3.1 基本知识要求1.掌握微积分基本概念,包括极限、导数、微分、积分、级数等2.掌握线性代数基本概念,包括向量、矩阵、行列式、特征值和特征向量等3.熟悉概率论和数理统计的基本概念3.2 基本技能要求1.能够通过计算求解微积分中的基本问题2.能够通过矩阵计算求解线性代数中的基本问题3.熟练掌握微积分和线性代数在实际问题中的应用3.3 常识与思维1.具有科学素养和数学思维,能够进行数学推理和证明2.能够认识和理解现代科学技术在广泛领域的应用3.具有独立思考和创新能力,尊重知识和事实,积极探索和实践4. 教学内容及进度安排课程内容学时第一章极限与连续12学时第二章导数及其应用12学时第三章积分12学时第四章常微分方程与级数16学时第五章方程组与矩阵论(含行列式、矩阵、特征值和特征向量、线性方程组等内容)18学时课程内容学时第六章多元函数微分学8学时第七章重积分与曲线积分10学时第八章曲面积分与高斯公式6学时第九章常微分方程8学时第十章概率论和数理统计16学时总计教学总学时108学时5. 学生评估1.平时成绩:包括作业、课堂表现等,占总成绩的30%;2.期末成绩:占总成绩的70%。

6. 教学方法1.授课:以讲授为主,充分发挥教师在教育教学中的主导作用;2.课堂互动:教师和学生进行互动,促进学生思考和表达;3.实例分析:通过实例展示,让学生了解案例应用和解决问题的方法;4.课堂练习和作业:通过课堂练习和作业巩固学生基础知识和解决问题的能力;5.课后辅导:提供个性化辅导,提高学生学习效果。

高等数学教学大纲(2024年版)

高等数学教学大纲(2024年版)

高等数学教学大纲(2024年版)1. 引言本教学大纲旨在为高等数学课程提供清晰、详细的指导,确保教学内容的系统性和连贯性,帮助学生掌握高等数学的核心概念和方法,培养其分析和解决问题的能力。

本大纲适用于我国高等教育阶段理科、工科、经济管理类等专业的本科生。

2. 教学目标通过本课程的研究,学生应达到以下目标:1. 掌握高等数学的基本概念、理论和方法。

2. 能够运用高等数学知识解决实际问题。

3. 培养逻辑思维、创新能力和团队合作精神。

4. 提高数学素养,为后续专业课程和研究生阶段的研究打下坚实基础。

3. 教学内容高等数学教学内容主要包括以下几个部分:3.1 极限与连续1. 极限的概念与性质2. 极限的计算方法3. 无穷小与无穷大4. 函数的连续性5. 极限与连续在实际问题中的应用3.2 导数与微分1. 导数的概念与性质2. 导数的计算方法3. 高阶导数4. 隐函数求导与参数方程求导5. 微分学在实际问题中的应用3.3 积分与面积1. 不定积分与定积分的概念与性质2. 积分计算方法3. 换元积分与分部积分4. 定积分的应用5. 面积与体积的计算3.4 微分方程1. 微分方程的基本概念与分类2. 一阶微分方程的解法3. 高阶微分方程的解法4. 常微分方程的应用5. 线性微分方程与非线性微分方程3.5 级数1. 数项级数的概念与性质2. 收敛性与发散性判断3. 幂级数与泰勒公式4. 傅里叶级数5. 级数在实际问题中的应用3.6 向量与空间解析几何1. 向量的概念与运算2. 空间解析几何的基本概念3. 线性空间与线性变换4. 向量空间的应用5. 坐标变换与几何变换3.7 线性代数1. 矩阵的概念与运算2. 线性方程组3. 特征值与特征向量4. 二次型5. 线性代数在实际问题中的应用4. 教学方法与手段1. 采用讲授、讨论、自学相结合的教学方法,引导学生主动探究、积极思考。

2. 使用多媒体课件、板书等多种教学手段,提高教学效果和学生的研究兴趣。

《高等数学》教学大纲

《高等数学》教学大纲

《高等数学》教学大纲一、课程基本信息课程名称:高等数学课程类别:公共基础课课程学分:_____课程总学时:_____授课对象:_____先修课程:_____二、课程性质与任务高等数学是高等院校各专业学生必修的一门重要基础理论课,它不仅为学生学习后续课程和解决实际问题提供了必不可少的数学基础知识和数学方法,而且在培养学生的创新思维能力、逻辑推理能力、空间想象能力以及分析问题和解决问题的能力等方面都起着重要的作用。

本课程的主要任务是使学生掌握高等数学的基本概念、基本理论和基本方法,培养学生运用数学知识解决实际问题的能力,为学生学习后续课程以及今后从事科学研究和实际工作打下坚实的数学基础。

三、课程教学目标1、知识目标使学生掌握函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本方法。

了解数学建模的基本思想和方法,能够运用所学的数学知识建立简单的数学模型,并求解实际问题。

2、能力目标培养学生的逻辑推理能力、抽象思维能力和空间想象能力。

提高学生的运算能力和综合运用所学知识分析问题、解决问题的能力。

培养学生的创新意识和创新能力。

3、素质目标培养学生的科学态度和严谨的治学精神。

提高学生的数学素养和文化素质。

培养学生的团队合作精神和沟通能力。

四、课程教学内容与要求(一)函数、极限与连续1、函数理解函数的概念,掌握函数的表示方法。

了解函数的单调性、奇偶性、周期性和有界性。

掌握基本初等函数的性质和图形,了解初等函数的概念。

2、极限理解数列极限和函数极限的概念。

掌握极限的性质和运算法则,会求数列和函数的极限。

了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。

3、连续理解函数连续的概念,掌握函数在一点连续的充要条件。

了解函数的间断点及其类型,会判断函数的间断点。

掌握初等函数的连续性,会利用连续性求函数的极限。

(二)一元函数微分学1、导数与微分理解导数的概念,掌握导数的几何意义和物理意义。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。

本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。

2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。

2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。

3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。

4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。

4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。

4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。

5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》教学大纲学时:175 学分:11 适用专业:电子信息工程一、课程性质高等数学课程是高等院校电子信息工程专业学生的一门必修的重要基础理论课,为进一步学习电子信息工程专业课程奠定的必要的数学基础。

二、课程教学目的和要求(1)通过本课程教学要使学生掌握高等数学的基本概念、基本理论和基本运算,在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,要特别重视理论联系实际以提高学生的分析问题和解决问题的能力。

(2)通过本课程的教学使学生理解和掌握一元函数微积分、向量代数和空间解析几何、多元函数微积分、无穷级数、常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

三、基本内容及要求第一学期90学时(一)函数与极限(26学时)1.函数的概念。

2.数列的极限。

3.函数的极限。

4.无穷小量与无穷大量。

5.函数连续。

6.函数的间断点。

7.闭区间上连续函数的性质。

要求:1.理解函数概念。

2.了解函数奇偶数、单调性、周期性和有界性。

3.理解复合函数的概念,了解反函数的概念。

4.掌握基本初等函数的性质及其图形。

5.会建立简单实际问ε-、εδ-定义可在学习过程中逐步题中的函数关系式。

6.理解极限的概念(对极限的N加深理解,对于给出ε求N或δ不作过高要求)。

7.掌握极限四则运算法则。

8.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。

9.了解无穷小、无穷大,以及无穷小的阶的概念。

掌握无穷小的比较方法,会用等价无穷小求极限。

10.理解函数在一点连续的概念。

11.了解间断点的概念,并会判别间断点的类型。

12.了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。

(二)微分学(26学时)1.导数的概念。

2.导数的基本公式与运算法则。

3.复合函数的导数。

4.反函数和隐函数的导数。

5.高阶导数。

6.微分概念。

7.微分公式和运算法则。

8.高阶微分。

9.微分在近似计算中的应用。

10.中值定理。

11.洛比塔法则。

12.泰勒公式。

13.导数的应用。

要求:1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。

2.会用导数描述一些物理量。

3.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的公式。

了解微分的四则运算法则和一阶微分形式不变性。

4.了解高阶导数的概念。

5.掌握初等函数一阶、二阶导数的求法。

6.会求隐函数和参数式所确定的函数的一阶、二阶导数。

会求反函数的导数。

7.理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理。

8.了解柯西(Cauchy)定理和泰勒(Taylor)定理。

9.理解函数的极值概念,并掌握用导数判断函数的单调性和求极值的方法。

10.会用导数判断函数图形的凹凸性;会求拐点;会描绘函数的图形(包括水平和铅直渐近线)。

会求解较简单的最大值和最小值的应用问题。

11.会用罗必塔(L’Hospilal)法则求不定式的极限。

12.了解曲率和曲率半径的概念并会计算曲率和曲率半径。

13.了解方程近似解的二分法和切线法。

(三)不定积分(14学时)1.不定积分的概念。

2.基本积分公式及不定积分的运算法则。

3.换元积分法。

4.分部积分法。

5.有理函数的积分法。

6.三角函数有理式的积分法。

7.简单无理函数的积分。

要求:1.理解原函数、不定积分的概念。

2.理解积分上限函数的定义及其求导公式。

3.掌握不定积分性质;掌握不定积分的基本公式。

4.掌握换元积分法与分部积分法。

5.会求有理函数的积分及简单无理函数的积分。

(四)定积分(12学时)1.积分问题举例。

2.定积分的定义与性质。

3.微分学基本定理。

4.定积分的换元积分法和分部积分法。

5.定积分的几何应用:平面图形的面积,旋转曲体的体积。

6.定积分在物理方面的应用。

7.无穷积分。

8.无界函数的积分(瑕积分)。

9.г-函数与B-函数(欧拉积分)。

要求:1.理解定积分的概念,了解定积分的性质及定积分中值定理。

2.了解牛顿-莱布尼茨公式的证明;掌握牛顿(Newton)一莱布尼兹 (Leibniz)公式。

3.掌握定积分的换元积分法与分部积分法。

4.掌握平面图形的面积与旋转曲体的体积的求法。

5.了解定积分的近似计算法(梯形法和抛物线法)。

6.掌握定积分在物理方面的应用。

7.掌握无穷积分的概念。

8.掌握无界函数的积分(瑕积分)的概念。

9.了解г-函数与B-函数(欧拉积分)。

(五)向量代数与空间解析几何(16学时)1.空间直角坐标系。

2.向量及向量的运算(数量积、向量积、混合积)。

3.空间中的平面与直线。

4.二次曲面。

要求:1.理解空间直角坐标系,理解向量的概念及其表示。

2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。

3.掌握单位向量,方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。

4.掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题。

5.理解曲面的方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

6.掌握空间曲线的参数方程和一般方程。

第二学期85学时(六)多元函数微分学(16学时)1.多元函数。

2.二元函数的概念。

3.二元函数的极限与连续。

4.偏导数与全微分。

5.复合函数的微分法。

6.隐函数的微分法。

7.偏导数的应用。

8.二元函数的极值,条件极值(Lagrange乘数法)。

要求:1.理解多元函数的概念2.了解二元函数的极限与连续性的概念,以及有界闭域上连续函数的性质。

3.理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件。

4.了解方向导数与梯度的概念及其计算方法。

5.掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。

6.会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。

7.了解曲线的切线和法平面及曲面的切平面与法线,并会求出它们的方程。

8.理解多元函数极值和条件极值的概念,会求二元函数的极值。

了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。

(七)重积分(15学时)1. 二重积分的概念。

2. 二重积分的计算。

3. 三重积分的概念。

4. 三重积分的计算。

5. 重积分的应用。

要求:1. 理解二重积分的概念。

2.了解二重积分的性质。

3. 掌握二重积分的计算方法(直角坐标、极坐标)。

4.理解三重积分的概念,了解三重积分的性质。

5. 掌握三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。

6. 会用重积分求一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量等)。

(八)曲线积分曲面积分(16学时)1. 第一型曲线积分。

2. 第二型曲线积分。

3. 格林(Green)公式。

4. 第一型曲面积分。

5. 第二型曲面积分。

6. 高斯(Gauss)、斯托克斯(Stoles)公式。

要求:1.理解两类曲线积分的概念。

2.了解两类曲线积分的性质及两类曲线积分的关系。

3.会计算两类曲线积分。

4..掌握格林(Green)公式。

5.会使用平面曲线积分与路径无关的条件。

6.了解两类曲面积分的概念。

7.了解高斯(Gauss)、斯托克斯(Stoles)公式并会计算两类曲面积分。

9. 了解方向导数和梯度、矢量场的流量与散度、环流与旋度、几种重要的矢量场。

(九)级数(20学时)1.级数的概念及基本性质。

2.正项级数及任意级数。

3.函数的幂级数展开式。

4.函数的幂级数展开式的应用。

5.傅里叶级数。

要求:1.理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。

2.掌握几何级数和P一级数的收敛性。

3.了解正项级数的比较审敛法,掌握正项级数的比值审敛法。

4.了解交错级数的莱布尼兹定理。

5.了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。

6.了解函数项级数的收敛域及和函数的概念。

7.掌握比较简单的幂级数收敛区间的求法。

8.了解幂级数在其收敛区间内的一些基本性质。

9.了解函数展开为泰勒级数的充分必要条件。

10.会利用x e ,x sin ,x cos ,)1ln(x +和α)1(x +的麦克劳林(Maclaurin)展开式将一些简单函数间接展开成幂级数。

11.了解幂级数在近似计算上的简单应用。

12.了解函数展开为傅里叶(Fourier)级数的狄里克莱(Dirichlet)条件,会将定义在,ππ-()和,l l -()上的函数展开为正弦或余弦级数,并会将定义在0,l ()上的函数展开为正弦或余弦级数。

(十)常微分方程(18学时)1.微分方程的基本概念。

2.可分离变量的微分方程。

3.一阶微分方程。

4.二阶常系数线性微分方程。

5.微分方程的应用。

要 求:1.理解线性微分方程解的性质。

2.了解微分方程及其解、阶、通解、初始条件和特解等概念。

3.掌握变量可分离的方程的解法。

4.掌握一阶线性方程的解法。

5.掌握二阶常系数线性微分方程的解法。

6.会用微分方程(或方程组)解决一些简单的应用问题。

四、课内实践教学要求本课程无课内实践要求。

五、考核形式考试(闭卷)六、学时分配本课程的总学时数为175学时,其中第一学期90学时,第二学期85学时,共11学分。

七、本课程与其它课程的联系先修课程:中学数学。

后续课程:工程数学。

八、建议教材及教学参考书(1)《高等数学》(上下册),同济大学数学教研室主编,高等教育出版社。

(2)《高等数学》(一二三册),四川大学数学系教研室编(第三版),高等教育出版社。

(3)《微积分》,朱来义主编,高等教育出版社。

(4)《高等数学》(上、中、下册),文丽等主编,北京大学出版社。

相关文档
最新文档