最新五年级数学奥数题专项练习(超全含答案)

合集下载

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

(完整版)小学五年级奥数测试题(含答案)

(完整版)小学五年级奥数测试题(含答案)

(完整版)小学五年级奥数测试题(含答案)(完整版)小学五年级奥数测试题(含答案)第一部分:选择题1. 下面哪个数是完全平方数?a) 16b) 20c) 25d) 302. 一个长方形的长是15厘米,宽是8厘米,它的面积是多少?a) 113平方厘米b) 120平方厘米c) 122平方厘米d) 128平方厘米3. 某个数的百位是3,十位是7,个位是9,该数是多少?a) 379b) 937c) 793d) 3974. 形状相同的立方体A和B,A的体积是B的8倍,那么A的边长是B的几倍?a) 4倍b) 6倍c) 8倍d) 12倍5. 有一个长度为100米的绳子,需要分成20段,每段多长?a) 2米b) 4米c) 5米d) 10米6. 一根铁丝长24厘米,需要剪成3段,每段长几厘米才能剪成相等的长度?a) 4厘米b) 6厘米c) 8厘米d) 12厘米7. 14减去3的两倍等于多少?b) 11c) 14d) 178. 一个数加7等于15,这个数是多少?a) 7b) 8c) 15d) 229. 一条铁链长度为36厘米,其中一段铁链长度是14厘米,另一段是8厘米,那么剩下的铁链有多长?a) 14厘米b) 18厘米c) 22厘米d) 28厘米10. 9的平方根是多少?a) 2b) 3c) 4第二部分:填空题1. 32 + 18 = ____2. 5 × 7 = ____3. 78 - 45 = ____4. 6 × 9 - 20 = ____5. 95 ÷ 5 = ____6. 36 ÷ 4 + 7 = ____7. 4 × (6 - 3) = ____8. 52 ÷ 13 = ____9. (18 + 3) ÷ 7 = ____10. 20 ÷ (2 × 5) = ____第三部分:解答题1. 请计算:7的平方 + 3的平方 = ____2. 将一个长为20厘米,宽为15厘米,高为10厘米的长方体完全填满边长为2厘米的小正方体,最少需要多少个小正方体?3. 一个半径为4厘米的圆的面积是多少?(需保留到小数点后一位)4. 小红和小明合力推一辆小车,小红用3牛的力推,小明用5牛的力推,他们合力推的力有多大?5. 一个三位数,个位数是奇数,如果各位数字倒过来得到的数比原数大36,这个数是多少?【答案部分】第一部分:选择题1. a) 162. b) 120平方厘米3. a) 3794. c) 8倍5. d) 10米6. c) 8厘米7. b) 118. b) 89. d) 28厘米10. b) 3第二部分:填空题1. 502. 353. 334. 345. 196. 167. 128. 49. 310. 1第三部分:解答题1. 58(7的平方是49,3的平方是9,相加得到58)2. 6000个小正方体(长方体体积=长×宽×高,20×15×10=3000,小正方体的体积=2×2×2=8,3000÷8=375,但需要填满,所以6000个小正方体)3. 50.3平方厘米圆的面积计算公式为:π × 半径的平方 = 3.14 × 4 × 4 = 50.24平方厘米(保留一位小数)4. 8牛合力为两个力的和,所以合力为3牛+5牛=8牛5. 187设三位数为XYZ,Y为奇数,倒过来得到的数为ZYX,题目中给出ZYX - XYZ = 36,即(100Z + 10Y + X) - (100X + 10Y + Z) = 36,化简得99(Z - X) = 36,因为99不能整除36,所以无解。

5年级奥数题及答案

5年级奥数题及答案

5年级奥数题及答案题目一:数字逻辑题一个数字由5个不同的数字组成,其中每个数字都不相同,且这个数字可以被3或9整除。

这个数字是什么?解答:首先,我们知道一个数字如果能被3整除,那么这个数字的各位数字之和必须能被3整除。

其次,一个数字如果能被9整除,那么这个数字本身必须能被9整除。

考虑到这个数字由5个不同的数字组成,我们可以从1到9中选择5个不同的数字。

由于数字由5位组成,我们可以通过排除法来找到符合条件的数字。

我们可以从最小的5位数开始尝试,即10234,但这个数字不能被9整除。

继续尝试,直到我们找到符合条件的数字。

经过尝试,我们发现数字12346可以被3整除(1+2+3+4+6=16,16可以被3整除),同时也能被9整除(因为12346本身可以被9整除)。

所以这个数字是12346。

题目二:几何题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么新的长方形的面积比原来的长方形面积大85平方厘米。

求原来的长方形的长和宽。

解答:设原来的长方形的宽为x厘米,那么长就是2x厘米。

原来的面积是x * 2x = 2x^2平方厘米。

增加5厘米后,新的长为2x + 5厘米,新的宽为x + 5厘米,新的面积是(2x + 5) * (x + 5)平方厘米。

根据题意,新的面积比原来的面积大85平方厘米,所以我们有方程:(2x + 5) * (x + 5) - 2x^2 = 85展开并简化方程:2x^2 + 10x + 25 + 5x + 25 - 2x^2 = 8515x + 50 = 8515x = 35x = 35 / 15x = 7 / 3由于长和宽必须是整数,我们可以得出x = 3厘米(因为7 / 3不是整数,我们取最接近的整数3)。

那么原来的长方形的长是2 * 3 = 6厘米。

题目三:组合问题有5个不同的小球,分别标记为A、B、C、D和E。

现在要将这5个小球放入3个不同的盒子中,每个盒子至少有一个小球。

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。

题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。

一共可以截成:(120 + 180 + 300) ÷60 = 10 段。

题目3:一间教室长8 米,宽6 米,高4 米。

要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。

题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。

把一块石头浸入水中后,水面升到16 厘米,求石块的体积。

答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。

题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。

题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。

题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全1.五年级小学生奥数题及答案大全篇一1、火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2、甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3、小方从家到学校,每分钟走60米,要14分钟,如果她每分钟多走10米,需要多少分钟?参考答案:1、200+200÷4=250(千米)2、210÷(210÷6+7)=5(小时)3、60×14÷(60+10)=12(分钟)2.五年级小学生奥数题及答案大全篇二1、一个平行四边形,四条边长度相等,都是5厘米,高是3厘米求这个平行四边形面积是多少?2、一个长方形长是18厘米,宽是长的一半多2厘米,求这个长方形面积和周长分别是多少?3、一个正方形边长9厘米,把它分成四个相等大小的小正方形,请问小正方形的面积是多少?参考答案:1、5×3=15(平方厘米)2、18÷2+2=11(厘米)面积是:18×11=198(平方厘米)周长是:(18+11)×2=58(厘米)3、9×9÷4=20.25(平方厘米)3.五年级小学生奥数题及答案大全篇三1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米4.五年级小学生奥数题及答案大全篇四1、将一个四位数的数字顺序颠倒过来,得到一个新的四位数。

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

小学五年级奥数题(含答案)

小学五年级奥数题(含答案)

小学五年级奥数题(含答案)1.小学五年级奥数题(含答案) 篇一1、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7 那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时2、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米2.小学五年级奥数题(含答案) 篇二一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。

这时拿出1副同色的后4个抽屉中还剩3只手套。

再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。

这时拿出1副同色的后,4个抽屉中还剩下3只手套。

根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。

以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。

3.小学五年级奥数题(含答案) 篇三分母不大于60,分子小于6的最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个)。

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。

实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。

照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。

实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。

现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。

快车每小时行42千米,慢车每小时行35千米。

两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。

两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。

甲每小时做124个,乙每小时做136个。

他们合做了8小时,超额完成120个。

他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。

客船开出4小时与货船相遇。

货船每小时行18千米,客船每小时行27千米。

两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。

(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。

(完整)小学五年级奥数题100道带答案有解题过程

(完整)小学五年级奥数题100道带答案有解题过程

(完整)小学五年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一个数的3倍加上6,再减去9,结果是12,求这个数。

解:先从结果逆推,12加上9得到21,再减去6得15,最后除以3得到这个数是5。

思路:按照运算的逆顺序逐步还原。

2.有五个连续自然数的和是100,这五个连续自然数分别是多少?解:设中间的数为x,则这五个数依次是x-2,x-1,x,x+1,x+2,它们的和为5x=100,解得x=20,所以这五个连续自然数是18,19,20,21,22。

思路:利用连续自然数的特点设中间数简化计算。

3.一个长方形的周长是30厘米,长是宽的2倍,求这个长方形的面积。

解:设宽为x厘米,则长为2x厘米,根据周长公式可得(x+2x)×2=30,解得x=5,长为10厘米,面积为5×10=50平方厘米。

思路:根据周长公式列方程求解长和宽,再计算面积。

4.甲乙两数的和是25,甲数比乙数的2倍大1,求甲乙两数分别是多少?解:设乙数为x,则甲数为2x+1,根据和是25可列方程x+2x+1=25,解得x=8,甲数为17。

思路:通过设未知数表示甲乙两数,依据和的关系列方程。

5.一个三角形的面积是36平方厘米,底是9厘米,求高是多少厘米?解:根据三角形面积公式,面积×2÷底=高,即36×2÷9=8厘米。

思路:运用三角形面积公式的变形来求解高。

6.有一堆苹果,平均分给8个人,每人分5个后还剩下3个,这堆苹果一共有多少个?解:8×5+3=43个。

思路:先算出分出去的苹果数再加上剩余的。

7.小明和小红同时从相距500米的两地相向而行,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?解:根据相遇时间=路程÷速度和,500÷(60+40)=5分钟。

思路:运用相遇问题的公式求解。

(word完整版)五年级奥数题100题(附答案)

(word完整版)五年级奥数题100题(附答案)

五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

小学数学五年级下奥数题专项训练(附答案)

小学数学五年级下奥数题专项训练(附答案)

小学数学五年级下奥数题专项训练(附答案)一、工程问题1、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2、修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3、一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4、一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5、师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6、一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7、一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8、某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9、两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二、鸡兔同笼问题1、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三、数字数位问题1、把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2、A和B是小于100的两个非零的不同自然数。

五年级小学奥数题应用题100道及答案解析

五年级小学奥数题应用题100道及答案解析

五年级小学奥数题应用题100道及答案解析1. 商店有一批白糖和红糖,红糖的质量是白糖的3 倍,卖出红糖380 千克、白糖110 千克后,红糖和白糖质量相等。

商店原有红糖和白糖各多少千克?解:设原有白糖x 千克,则原有红糖3x 千克。

3x - 380 = x - 1102x = 270x = 135原有红糖:3×135 = 405(千克)2. 甲、乙两筐苹果,甲筐苹果的质量是乙筐的3 倍,如果从甲筐取出28 千克,从乙筐取出6 千克,两筐剩下的苹果质量相等。

甲、乙两筐原来各有苹果多少千克?解:设乙筐原有苹果x 千克,则甲筐原有3x 千克。

3x - 28 = x - 62x = 22x = 11甲筐原有:3×11 = 33(千克)3. 有两根绳子,第一根长56 厘米,第二根长36 厘米。

同时点燃后,平均每分钟都烧掉2 厘米。

多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?解:设x 分钟后,第一根绳子的长度是第二根绳子长度的3 倍。

56 - 2x = 3×(36 - 2x)56 - 2x = 108 - 6x4x = 52x = 134. 学校买了一批图书,故事书的本数是科技书的 2 倍多60 本,已知故事书比科技书多200 本,科技书和故事书各买了多少本?解:设科技书买了x 本,则故事书买了2x + 60 本。

2x + 60 - x = 200x = 140故事书:2×140 + 60 = 340(本)5. 果园里苹果树的棵数是梨树的3 倍,管理人员每天能给25 棵苹果树和15 棵梨树喷农药,几天后,当梨树喷完农药时,苹果树还有140 棵没有喷药。

果园里这两种树共有多少棵?解:设喷了x 天。

3×15x = 25x + 14045x = 25x + 14020x = 140x = 7梨树:15×7 = 105(棵)苹果树:105×3 = 315(棵)共有:105 + 315 = 420(棵)6. 甲仓库存粮是乙仓库的3 倍,如果从甲仓库运出90 吨,从乙仓库运出10 吨,则两仓库存粮相等。

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。

同时点燃后,平均每分钟都烧掉2 厘米。

多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。

则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。

56 - 2x = 3×(36 - 2x),解得x = 13 。

2. 鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。

因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。

3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。

求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。

40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。

4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。

那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。

5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。

答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。

x + x + 4 + x + 8 = 105 ,解得x = 31 。

6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。

几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。

小学五年级奥数题50道及答案

小学五年级奥数题50道及答案

小学五年级奥数题50道及答案1. 一个数加上10,再乘以10,然后减去10,最后除以10,结果是100。

求这个数是多少?答案:这个数是11。

2. 一个数的两倍加上5等于这个数的三倍减去5,求这个数。

答案:这个数是10。

3. 一个数的平方加上这个数等于2015,求这个数。

答案:这个数是43或-44。

4. 一个数的三分之一加上这个数的五分之一等于这个数的四分之一,求这个数。

答案:这个数是0。

5. 一个数除以5的商加上这个数除以5的余数等于7,求这个数。

答案:这个数是35。

6. 一个数的一半加上这个数的四分之一等于这个数的三分之二,求这个数。

答案:这个数是任意数。

7. 一个数的平方等于这个数的两倍加上1,求这个数。

答案:这个数是1或-1。

8. 一个数的四倍加上这个数等于35,求这个数。

答案:这个数是5。

9. 一个数的三分之一减去这个数的五分之一等于2,求这个数。

答案:这个数是15。

10. 一个数的平方减去这个数等于81,求这个数。

答案:这个数是9或-9。

11. 一个数的六分之一加上这个数的八分之一等于这个数的四分之一,求这个数。

答案:这个数是24。

12. 一个数的平方加上这个数等于121,求这个数。

答案:这个数是10或-11。

13. 一个数加上它的相反数等于0,求这个数。

答案:这个数是0。

14. 一个数的一半加上这个数的三分之一等于这个数的三分之二,求这个数。

答案:这个数是任意数。

15. 一个数的平方是它本身,求这个数。

答案:这个数是0或1。

16. 一个数的两倍减去这个数等于18,求这个数。

答案:这个数是18。

17. 一个数的三分之一加上这个数的四分之一等于这个数的五分之二,求这个数。

答案:这个数是30。

18. 一个数的平方加上这个数的两倍等于37,求这个数。

答案:这个数是5或-7。

19. 一个数的一半加上这个数的三分之一等于这个数的四分之三,求这个数。

答案:这个数是任意数。

20. 一个数的平方减去这个数等于16,求这个数。

最新五年级数学奥数题专项练习(超全含答案)

最新五年级数学奥数题专项练习(超全含答案)

十七变换和操作(B)年级班姓名得分一、填空题1.对于324和612,把第一个数加上3,同时把第二个数减3,这算一次操作,操作_____次后两个数相等.2. 对自然数n,作如下操作:各位数字相加,得另一自然数,若新的自然数为一位数,那么操作停止,若新的自然数不是一位数,那么对新的自然数继续上面的操作,当得到一个一位数为止,现对1,2,3…,1998如此操作,最后得到的一位数是7的数一共有_____个.3. 在1,2,3,4,5,…,59,60这60个数中,第一次从左向右划去奇数位上的数;第二次在剩下的数中,再从左向右划去奇数位上的数;如此继续下去,最后剩下一个数时,这个数是_____.4. 把写有1,2,3,…,25的25张卡片按顺序叠齐,写有1的卡片放在最上面,下面进行这样的操作:把第一张卡片放到最下面,把第二张卡片扔掉;再把第一张卡片放到最下面,把第二张卡片扔掉;…按同样的方法,反复进行多次操作,当剩下最后一张卡片时,卡片上写的是_____.5. 一副扑克共54张,最上面的一张是红桃K.如果每次把最上面的4张牌,移到最下面而不改变它们的顺序及朝向,那么,至少经过_____次移动,红桃K才会出现在最上面.6. 写出一个自然数A,把A的十位数字与百位数字相加,再乘以个位数字,把所得之积的个位数字续写在A的末尾,称为一次操作.如果开始时A=1999,对1999进行一次操作得到19992,再对19992进行一次操作得到199926,如此进行下去直到得出一个1999位数为止,这个1999位数的各位数字之和是_____.7. 黑板上写有1987个数:1,2,3,…,1986,1987.任意擦去若干个数,并添上被擦去的这些数的和被7除的余数,称为一个操作.如果经过若干次这种操作,黑板上只剩下了两个数,一个是987,那么,另一个数是_____.8.下图中有5个围棋子围成一圈.现在将同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,然后将原来的5个拿掉,剩下新放入的5个子中最多能有_____个黑子.9.6再重复这一过程5次,_____.10. 在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作,那么最多经过_____次操作,黑板上就会出现2.二、解答题11.甲盒中放有1993个白球和1994个黑球,乙盒中放有足够多个黑球.现在每次从甲盒中任取两球放在外面,但当被取出的两球同色时,需从乙盒中取出一个黑球放入甲盒;当被取出的两球异色时,便将其中的白球再放回甲盒,这样经过3985次取、放之后,甲盒中剩下几个球?各是什么颜色的球?12.如图是一个圆盘,中心轴固定在黑板上,开始时,圆盘上每个数字所对应的黑板处均写着0,然后转动圆盘,每次可以转动 90的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置.将圆盘上的数加到黑板上对应位置的数上,问:经过若干次后,黑板上的四个数是否可能都是1999? 13. 有三堆石子,每次允许由每堆中拿掉一个或相同数目的石子(每次这个数目不一定相同),或由任一堆中取一半石子(如果这堆石子是偶数个)放入另外任一堆中,开始时三堆石子数分别为1989,989,89.如按上述方式进行操作,能否把这三堆石子都取光?如行,请设计一种取石子的方案,如不行,说明理由.14. 如图,圆周上顺次排列着1、2、3、……、12这十二个数,我们规定:相邻的四个数a1、a2、a3、a4顺序颠倒为a4、a3、a2、a1,称为一次“变换”(如:1、2、3、4变为1、1、2变为2、1、12、11).9、1、00 10 0 2 3493 522、3、……8、10、11、12(如图)?请说明理由. ———————————————答案——————————————————————1. 48每操作一次,两个数的差减少6,经(612-324)÷6=48次操作后两个数相等.2. 222由于操作后所得到的数与原数被9除所得的余数相同,因此操作最后为7的数一定是原数除以9余7的数,即7,16,25,…,1996,一共有(1996-7)÷9+1=222(个)3.32第一次操作后,剩下2,4,6,…,60这30个偶数;第二次操作后,剩下4,8,12,…,60这15个数(都是4的倍数);第三次操作后,剩下8,16,24,…,56这7个数(都是8的倍数);第四次操作后,剩下16,32,48这3个数;第五次操作后,剩下一个数,是32.4. 19第一轮操作,保留1,3,5,…,25共13张卡片;第二轮保留3,7,11,15,19,23这6张卡片;第三轮保留3,11,19这3张卡片;接着扔掉11,3;最后剩下的一张卡片是19.5. 27次因为[54,4]=108,所以移动108张牌,又回到原来的状况.又因为每次移动4张牌,所以至少移动108÷4=27(次).6. 66按照操作的规则,寻找规律知,A=1999时得到的1999位数为:1999266864600…0.其各位数字和为1+9+9+9+2+6+6+8+6+4 +6=667. 0黑板上的数的和除以7的余数始终不变.(1+2+3+…+1987)7=282154又1+2+3+…+1987=219881987⨯=1987⨯994=1987⨯142⨯7是7的倍数.所以黑板上剩下的两个数之和为7的倍数.又987=7⨯141是7的倍数,所以剩下的另一个数也应是7的倍数,又这个数是某些数的和除以7的余数,故这个数只能是0.8. 4个提示:因为5个子不可能黑白相间,所以永远不会得到5个全是黑子.9. 5103记第i次操作后,圆周上所有数的和为ai,依题意,得ai+1=2ai+ai=3ai.又原来三数的和为a0=1+2+4=7,所以a1=3a0=21,a2=3a1=63,a3=3a2=189,a4=3a3=567,a5=3a4=1701,a6=3a5=510 3,即所有数的和为5103.10. 2如果写的是奇数,只需1次操作;如果写的是大于2的偶数,经过1次操作变为奇数,再操作1次变为2.11. 由操作规则知,每次操作后,甲盒中球数减少一个,因此经过3985次操作后,甲盒中剩下1993+1994-3985=2个球.每次操作白球数要么不变,要么减少2个.因此,每次操作后甲盒中白球数的奇偶性不变;即白球数为奇数.因此最后剩下的2个球中,白球1个,故另一个必为黑球.12. 每次加上的数之和是1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍.因此,无论如何操作,黑板上的四个数不可能都是1999.13. 要把三堆石子都取光是不可能的.按操作规则,每次拿出去的石子总和是3的倍数,即不改变石子总数被3除的余数.而1989+989+89=3067被3除余1,三堆石子取光时总和被3除余0.所以,三堆石子都取光是办不到的.14. 能、12三个数3次这样的两次变换,10、11、12三个数又被顺时针移动了六个位置,变为下图,图中十二个数的顺序符合题意.题目:客、货两车分别从A 、B 两地同时相对开出,已知客、货两车的速度比是4 :5.两车在途中相遇后继续行驶。

五年级数学奥数题100道及答案

五年级数学奥数题100道及答案

五年级数学奥数题100道及答案1. 计算:\( 123456789 \times 987654321 \)答案:\( 123456789 \times 987654321 = 121932631958377880 \)2. 一个数列的前四项是 1, 11, 21, 1211,求第5项。

答案:第5项是 1112213. 一个长方形的长是宽的两倍,如果长增加10厘米,宽增加6厘米,面积增加了100平方厘米。

求原长方形的长和宽。

答案:设原长方形宽为 \( x \) 厘米,则长为 \( 2x \) 厘米。

根据题意,\( (2x + 10)(x + 6) - 2x \cdot x = 100 \) 解得 \( x = 5 \) 厘米,所以原长方形的长为 10 厘米,宽为 5 厘米。

4. 一个数加上 100 后是一个完全平方数,这个数加上 144 后也是一个完全平方数,求这个数。

答案:设这个数为 \( n \),根据题意,\( n + 100 = a^2 \) 且\( n + 144 = b^2 \),其中 \( a \) 和 \( b \) 是整数。

根据平方差公式,\( b^2 - a^2 = 44 \),即 \( (b + a)(b - a) = 44 \)。

由于 \( b - a = 1 \),可得 \( b + a = 44 \),解得 \( b = 22 \),\( a = 21 \),所以 \( n = 21^2 - 100 = 441 \)。

5. 有 100 个球,其中 10 个是红色的,90 个是蓝色的。

如果随机抽取 10 个球,求至少抽到 1 个红球的概率。

答案:用 1 减去没有抽到红球的概率,即 \( 1 - \frac{C(90,10)}{C(100, 10)} \),计算得概率约为 0.982。

6. 一个数的平方加上这个数的两倍等于 2015,求这个数。

答案:设这个数为 \( x \),根据题意,\( x^2 + 2x = 2015 \),即\( x^2 + 2x - 2015 = 0 \),解得 \( x = 45 \) 或 \( x = -45 \)。

小学五年级数学上下册奥数题应用题100道及答案解析

小学五年级数学上下册奥数题应用题100道及答案解析

小学五年级数学上下册奥数题应用题100道及答案解析1. 小明买了5 个笔记本和7 支铅笔,共花费25 元。

已知一个笔记本3 元,一支铅笔多少钱?答案:(25 - 5×3)÷7 = (25 - 15)÷7 = 10÷7 = 1.43(元)解析:先算出5 个笔记本的价钱为5×3 = 15 元,然后用总花费减去笔记本的花费得到铅笔的总花费为25 - 15 = 10 元,最后除以铅笔的数量7 支,得到一支铅笔约1.43 元。

2. 学校图书馆新购进一批图书,其中故事书有150 本,科技书比故事书的2 倍少30 本,科技书有多少本?答案:150×2 - 30 = 300 - 30 = 270(本)解析:科技书的数量是故事书的 2 倍少30 本,所以科技书的数量为150×2 - 30 = 270 本。

3. 有一块长方形菜地,长18 米,宽12 米,如果每平方米收菜20 千克,这块地一共可以收菜多少千克?答案:18×12×20 = 216×20 = 4320(千克)解析:先算出长方形菜地的面积为18×12 = 216 平方米,然后乘以每平方米收菜的重量20 千克,得到这块地一共收菜4320 千克。

4. 一辆汽车从甲地开往乙地,每小时行驶60 千米,5 小时到达。

如果要4 小时到达,每小时需要行驶多少千米?答案:60×5÷4 = 300÷4 = 75(千米)解析:根据路程= 速度×时间,先算出甲地到乙地的路程为60×5 = 300 千米,如果要 4 小时到达,速度= 路程÷时间,即300÷4 = 75 千米/小时。

5. 果园里有苹果树280 棵,比梨树的2 倍多40 棵,梨树有多少棵?答案:(280 - 40)÷2 = 240÷2 = 120(棵)解析:苹果树280 棵比梨树的 2 倍多40 棵,那么280 - 40 就是梨树的2 倍,所以梨树的数量为(280 - 40)÷ 2 = 120 棵。

小学五年级奥数题库100道及答案(完整版)

小学五年级奥数题库100道及答案(完整版)

小学五年级奥数题库100道及答案(完整版)题目1:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 120,所以被减数= 60。

又因为减数是差的3 倍,设差为x,则减数为3x,所以4x = 60,x = 15,即差等于15。

题目2:有三个连续的偶数,它们的和比其中最大的一个偶数大18,这三个连续偶数分别是多少?答案:设中间的偶数为x,则这三个连续偶数分别为x - 2,x,x + 2。

它们的和为3x。

根据题意可得3x - (x + 2) = 18,解得x = 10。

所以这三个连续偶数分别是8、10、12。

题目3:两个数相除,商是4,余数是10,被除数、除数、商和余数的和是174,被除数是多少?答案:设除数为x,则被除数为4x + 10。

由题意可得4x + 10 + x + 4 + 10 = 174,解得x = 30。

所以被除数为4×30 + 10 = 130。

题目4:一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形,原来长方形的面积是多少平方厘米?答案:设正方形的边长为x 厘米。

则原来长方形的长为(x - 2)厘米,宽为(x - 5)厘米。

可列方程:x ²- (x - 2)(x - 5) = 60,解得x = 10。

原来长方形的长为8 厘米,宽为5 厘米,面积为40 平方厘米。

题目5:甲、乙两数的和是162.8,乙数的小数点向右移动一位就等于甲数,求甲、乙两数各是多少?答案:乙数的小数点向右移动一位就等于甲数,说明甲数是乙数的10 倍。

设乙数为x,则甲数为10x,10x + x = 162.8,解得x = 14.8,甲数为148。

题目6:有一堆苹果,如果平均分给 4 个小朋友,剩下2 个;如果平均分给5 个小朋友,也剩下2 个。

这堆苹果至少有多少个?答案:求出4 和5 的最小公倍数为20,再加上2,这堆苹果至少有22 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十七变换和操作(B)年级班姓名得分一、填空题1.对于324和612,把第一个数加上3,同时把第二个数减3,这算一次操作,操作_____次后两个数相等.2. 对自然数n,作如下操作:各位数字相加,得另一自然数,若新的自然数为一位数,那么操作停止,若新的自然数不是一位数,那么对新的自然数继续上面的操作,当得到一个一位数为止,现对1,2,3…,1998如此操作,最后得到的一位数是7的数一共有_____个.3. 在1,2,3,4,5,…,59,60这60个数中,第一次从左向右划去奇数位上的数;第二次在剩下的数中,再从左向右划去奇数位上的数;如此继续下去,最后剩下一个数时,这个数是_____.4. 把写有1,2,3,…,25的25张卡片按顺序叠齐,写有1的卡片放在最上面,下面进行这样的操作:把第一张卡片放到最下面,把第二张卡片扔掉;再把第一张卡片放到最下面,把第二张卡片扔掉;…按同样的方法,反复进行多次操作,当剩下最后一张卡片时,卡片上写的是_____.5. 一副扑克共54张,最上面的一张是红桃K.如果每次把最上面的4张牌,移到最下面而不改变它们的顺序及朝向,那么,至少经过_____次移动,红桃K才会出现在最上面.6. 写出一个自然数A,把A的十位数字与百位数字相加,再乘以个位数字,把所得之积的个位数字续写在A的末尾,称为一次操作.如果开始时A=1999,对1999进行一次操作得到19992,再对19992进行一次操作得到199926,如此进行下去直到得出一个1999位数为止,这个1999位数的各位数字之和是_____.7. 黑板上写有1987个数:1,2,3,…,1986,1987.任意擦去若干个数,并添上被擦去的这些数的和被7除的余数,称为一个操作.如果经过若干次这种操作,黑板上只剩下了两个数,一个是987,那么,另一个数是_____.8.下图中有5个围棋子围成一圈.现在将同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,然后将原来的5个拿掉,剩下新放入的5个子中最多能有_____个黑子.9.6再重复这一过程5次,_____.10. 在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作,那么最多经过_____次操作,黑板上就会出现2.二、解答题11.甲盒中放有1993个白球和1994个黑球,乙盒中放有足够多个黑球.现在每次从甲盒中任取两球放在外面,但当被取出的两球同色时,需从乙盒中取出一个黑球放入甲盒;当被取出的两球异色时,便将其中的白球再放回甲盒,这样经过3985次取、放之后,甲盒中剩下几个球?各是什么颜色的球?12.如图是一个圆盘,中心轴固定在黑板上,开始时,圆盘上每个数字所对应的黑板处均写着0,然后转动圆盘,每次可以转动 90的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置.将圆盘上的数加到黑板上对应位置的数上,问:经过若干次后,黑板上的四个数是否可能都是1999? 13. 有三堆石子,每次允许由每堆中拿掉一个或相同数目的石子(每次这个数目不一定相同),或由任一堆中取一半石子(如果这堆石子是偶数个)放入另外任一堆中,开始时三堆石子数分别为1989,989,89.如按上述方式进行操作,能否把这三堆石子都取光?如行,请设计一种取石子的方案,如不行,说明理由.14. 如图,圆周上顺次排列着1、2、3、……、12这十二个数,我们规定:相邻的四个数a1、a2、a3、a4顺序颠倒为a4、a3、a2、a1,称为一次“变换”(如:1、2、3、4变为1、1、2变为2、1、12、11).9、1、00 10 0 2 3493 522、3、……8、10、11、12(如图)?请说明理由. ———————————————答案——————————————————————1. 48每操作一次,两个数的差减少6,经(612-324)÷6=48次操作后两个数相等.2. 222由于操作后所得到的数与原数被9除所得的余数相同,因此操作最后为7的数一定是原数除以9余7的数,即7,16,25,…,1996,一共有(1996-7)÷9+1=222(个)3.32第一次操作后,剩下2,4,6,…,60这30个偶数;第二次操作后,剩下4,8,12,…,60这15个数(都是4的倍数);第三次操作后,剩下8,16,24,…,56这7个数(都是8的倍数);第四次操作后,剩下16,32,48这3个数;第五次操作后,剩下一个数,是32.4. 19第一轮操作,保留1,3,5,…,25共13张卡片;第二轮保留3,7,11,15,19,23这6张卡片;第三轮保留3,11,19这3张卡片;接着扔掉11,3;最后剩下的一张卡片是19.5. 27次因为[54,4]=108,所以移动108张牌,又回到原来的状况.又因为每次移动4张牌,所以至少移动108÷4=27(次).6. 66按照操作的规则,寻找规律知,A=1999时得到的1999位数为:1999266864600…0.其各位数字和为1+9+9+9+2+6+6+8+6+4 +6=667. 0黑板上的数的和除以7的余数始终不变.(1+2+3+…+1987)7=282154又1+2+3+…+1987=219881987⨯=1987⨯994=1987⨯142⨯7是7的倍数.所以黑板上剩下的两个数之和为7的倍数.又987=7⨯141是7的倍数,所以剩下的另一个数也应是7的倍数,又这个数是某些数的和除以7的余数,故这个数只能是0.8. 4个提示:因为5个子不可能黑白相间,所以永远不会得到5个全是黑子.9. 5103记第i次操作后,圆周上所有数的和为ai,依题意,得ai+1=2ai+ai=3ai.又原来三数的和为a0=1+2+4=7,所以a1=3a0=21,a2=3a1=63,a3=3a2=189,a4=3a3=567,a5=3a4=1701,a6=3a5=510 3,即所有数的和为5103.10. 2如果写的是奇数,只需1次操作;如果写的是大于2的偶数,经过1次操作变为奇数,再操作1次变为2.11. 由操作规则知,每次操作后,甲盒中球数减少一个,因此经过3985次操作后,甲盒中剩下1993+1994-3985=2个球.每次操作白球数要么不变,要么减少2个.因此,每次操作后甲盒中白球数的奇偶性不变;即白球数为奇数.因此最后剩下的2个球中,白球1个,故另一个必为黑球.12. 每次加上的数之和是1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍.因此,无论如何操作,黑板上的四个数不可能都是1999.13. 要把三堆石子都取光是不可能的.按操作规则,每次拿出去的石子总和是3的倍数,即不改变石子总数被3除的余数.而1989+989+89=3067被3除余1,三堆石子取光时总和被3除余0.所以,三堆石子都取光是办不到的.14. 能、12三个数3次这样的两次变换,10、11、12三个数又被顺时针移动了六个位置,变为下图,图中十二个数的顺序符合题意.题目:客、货两车分别从A 、B 两地同时相对开出,已知客、货两车的速度比是4 :5.两车在途中相遇后继续行驶。

货车把速度提高20%,客车速度不变,再行4小时后,货车到达A 地,而客车离B 地还有112千米。

A 、B 两地相距多少千米?本题解法使用比例知识和分数知识的有关内容比例知识:时间一定,行驶的路程和对应的速度成正比例,也就是行驶的路程的比等于对应的速度的比分数知识:找112千米与单位“1”也就是全程的关系 列式为:解:设客车第二次行的路程与全程的关系为X X :4/9 = 4 :【5×(1+20%)】X = 8/27112÷(5/9 - 8/27)= 432(千米)十七变换和操作(A)年级班姓名得分一、填空题1. 黑板上写着8,9,10,11,12,13,14七个数,每次任意擦去两个数,再写上这两个数的和减1.例如,擦掉9和13,要写上21.经过几次后,黑板上就会只剩下一个数,这个数是_____.2. 口袋里装有99张小纸片,上面分别写着1~99.从袋中任意摸出若干张小纸片,然后算出这些纸片上各数的和,再将这个和的后两位数写在一张新纸片上放入袋中.经过若干次这样的操作后,袋中还剩下一张纸片,这张纸片上的数是_____.3. 用1~10十个数随意排成一排.如果相邻两个数中,前面的大于后面的,就将它们变换位置.如此操作直到前面的数都小于后面的数为止.已知10在这列数中的第6位,那么最少要实行_____次交换.最多要实行_____次交换.4. 一个自然数,把它的各位数字加起来得到一个新数,称为一次变换,例如自然数5636,各位数字之和为5+6+3+6=20,对20再作这样的变换得2+0=2.可以证明进行这种变换的最后结果是将这个自然数,变成一个一位数.对数123456789101112…272829作连续变换,最终得到的一位数是_____.5. 5个自然数和为100,对这5个自然数进行如下变换,找出一个最小数加上2,找出一个最大数减2.连续进行这种变换,直至5个数不发生变化为止,最后的5个数可能是_____.6. 在黑板上写两个不同的自然数,擦去较大数,换成这两个数的差,我们称之为一次变换.比如(15,40),40-15=25,擦去40,写上25,两个数变成(15,25),对得到的两个数仍然可以继续作这样的变换,直到两个数变得相同为止,比如对(15,40)作这样的连续变换:(15,40) (15,25) (15,10) (5,10) (5,5).对(1024,111…1)作这样的连续变换,最后得到的两个相同的20个1数是_____.7. 在一块长黑板上写着450位数123456789123456789…(将123456789重复50次).删去这个数中所有位于奇数位上的数字:再删去所得的数中所有位于奇数位上的数字:再删去…,并如此一直删下去.最后删去的数字是_____.8. 将100以内的质数从小到大排成一个数字串,依次完成以下五项工作叫做一次操作:①将左边第一个数码移到数字串的最右边;②从左到右两位一节组成若干这两位数;③划去这些两位数中的合数;④所剩的两位质数中有相同者,保留左边的一个,其余划去;⑤所余的两位质数保持数码次序又组成一个新的数字串。

经过1997次操作,所得的数字串是_____.9. 一个三角形全涂上黑色,每次进行一次操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色,经过5次操作后,黑色部分是整个三角形的_____.张,从口袋里任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回口袋内.经过若干次这样的操作后,口袋内还剩下两张红色卡片和一张黄色卡片.已知这两张红色卡片上写的数分别是19和97.那么这张黄色卡片上写的数是_____.二、解答题11.请说明例1中,对1980的连续变换中一定会出现重复.对其它的数作连续变换是不是也会如此?12. 将3 3方格纸的每一个方格添上奇数或偶数,然后进行如下操作:将每个方格里的数换成与它有公共边的几个方格里的数的和,问是否可以经过一定次数的操作,使得所有九个方格里的数都变成偶数?如果可以,需要几次?13. 在左下图中,对任意相邻的上下或左右两格中的数字同时加1或减1算作一次操作,经过若干次操作后变为下图.问:下图A格中的数字是几?为什么?14.个按钮,,改变一次状态,即由亮变不亮,不亮变亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮? ———————————————答案——————————————————————1. 71所剩之数等于原来的七个数之和减6,故这个数是(8+9+10+11+12+13+14)-6=71.2. 50每次操作都不改变袋中所有数之和除以100的余数,所以最后一张纸片上的数等于1~99的和除以100的余数.(1+2+…+99)÷100=299)991(⨯+÷100 =4950÷100=49⨯100+50故这张纸片上的数是50.3. 4次;40次.当排列顺序为1,2,3,4,5,10,6,7,8,9时,交换次数最少,需交换4次;当排列顺序为9,8,7,6,5,10,4,3,2,1时,交换次数最多,需交换40次.4. 3一个整数被9除的余数等于它的各位数字之和被9除的余数,如果这个整数不是9的倍数,就可以根据这一点来确定题目要求的一位数.(1+2+…+9)⨯3+1⨯10+2⨯10被9除余3,可见最终得到的一位数是3.5. 20,20,20,20,20,或19,20,20,20,21或19,19,20,21, 21.仿例2,5个数的差距会越来越小,最后最大与最小数最多差2.最终的5个数可能是20,20,20,20,20,或者19,20,20,20,21或19,19,20,21,21.6. 1变换中的两个数,它们的最大公约数始终末变,是后得到的两个相同的数即为它们的最大公约数.因为1024=210,而11 (1)20个1没有质因子2,它们是互质的.所以最后得到的两个相同的数是1.7. 4事实上,在第一次删节之后.留下的皆为原数中处于偶数位置上的数;在第二次删节之后,留下的数在原数中所处的位置可被4整除;如此等等.于是在第八次删节之后,原数中只留下处于第28⨯k=256k号位置上的数,这样的数在所给的450位数中只有一个,即第256位数.由于256=9⨯28+4,所以该数处于第29组“123456789”中的第4个位置上.即为4.8. 1731第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173;以下以4为周期循环,即4k次操作均为1173.1996=4⨯499,所以第1996次操作得数字串1173,因此第1997次操作得数字串1731.9. 1024234 每一次黑三角形个数为整个的43,所以5次变换为4343⨯⨯4343⨯⨯43=1024243 10. 3卡片上的数字之和除以17的余数始终不变.(1+2+3+…+135)÷17=9180÷17=540.(19+97)÷17=116÷17=6……14,因为黄色卡片上的数都小于17,所以黄色卡片上的数是17-14=3.11. 对1980的连续变换中,每个数都不大于1980+1991=3971,所以在3971步之内必定会出现重复,对其它的数作连续变换也会如此.12. 如图,用字母a,b,c,d,e,f,g,h,I 代表9个方格内的数字,0代表偶数.a b c b+d a+e+c b+f g+c b+h a+i d e f a+e+g d+b+h+f c+e+i d+f 0 d+f g h i d+h g+e+i h+f a+i b+h g+c d+f+b+h g+c+a+i b+h+d+f 0 0 0 g+c+a+i 0 g+c+a+i 0 0 0d+f+b+h a+I+g+c b+h+d+f 0 0 0 可见经过四次操作后,所有九个方格中的数全变为偶数.13. 每次操作都是在相邻的两格,我们将相邻的两格染上不同的颜色(如右下图),因为每次操作总是一个黑格与一个白格同时加1或减1,所以无论进行多少次操作,白格内的数字之和减去黑格内的数字之和总是常数.由原题左图知这个常数是8,再由原题右图可得(A+7)-8=8,由此解得A=9.14. 1997次将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.十六追及问题(B)年级班姓名得分一、填空题1.狗追狐狸,狗跳一次前进1.8米,狐狸跳一次前进1.1米.狗每跳两次时狐狸恰好跳3次.如果开始时狗离狐狸有30米,那么狗跑米才能追上狐狸.2.B处的兔子和A处的狗相距56米,兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳前进2米,狗跳3次时间与兔子跳4次时间相同,兔子跳出112米到达C处,狗追上兔子,问兔子一跳前进多少米?3.甲、乙两地相距60千米.小王骑车以每小时行10千米的速度上午8点钟从甲地出发去乙地.过了一会儿,小李骑车以每小时15千米的速度也从甲地去乙地.小李在途中M地追上小王,通知小王立即返回甲地.小李继续骑车去乙地.各自分别到达甲、乙两地后都马上返回,两人再次见面时,恰好还在M地.小李是时出发的.4.甲、乙两地相距20公里,A、B、C三人同时从甲地出发走往乙地(他们速度保持不变),当A到达乙地时,B、C两人离乙地分别还有4公里和5公里,那么当B到达乙地时,C 离乙地还有公里.5.甲、乙二人在周长是120米的圆形池塘边散步,甲每分走8米,乙每分走7米.现在从同一地点同时出发,相背而行,出发后到第二次相遇用了多少时间?6.右图的两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行.当小圆上的甲虫爬了圈时,两只甲虫相距最远.7.如图是一.中心部分路面宽20米,AB=CD=100.现有.甲车速56千米/小时,乙车速分钟.(圆周率取8乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇.这花圃的周长是米.9.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时,已爬行的时间是秒.10.甲乙两个同学分别在长方形围墙外的两角(如下图所示).如果他们同时开始绕着围墙反时针方向跑,甲每秒跑5米,乙每秒跑4米,那么甲最少要跑秒才能看到乙.二、解答题11400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇,如果两人甲从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?12.小强和小江进行百米赛跑.已知小强第1秒跑1米,以后每秒都比前面1秒多跑0.1米;小江则从始至终按每秒1.5米的速度跑,问他们二人谁能取胜?简述思维过程.13.A,B 两地相距105千米,甲、乙两人骑自行车分别从两地同时相向而行,出发后经431小时相遇,接着二人继续前进,在他们相遇3分钟后,一直以每小时40千米速度行驶的甲在途中与迎面而来的丙相遇,丙在与甲相遇后继续前进,在C 地赶上乙.如果开始时甲的速度比原速每小时慢20千米,而乙的速度比原速度每小时快2千米,那么甲、乙就会在C 地相遇.求丙的骑车速度是每小时多少千米?14.甲、乙两名运动员在周长400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分跑400米,乙每分跑360米,当甲比乙领先整整一圈时,两人同时加速,乙的速度比原来快41,甲每分比原来多跑18米,并且都以这样的速度保持到终点.问:甲、乙两人谁先到达终点?———————————————答 案——————————————————————1. 360狗跳2次前进 1.8⨯2=3.6(米),狐狸跳3次前进1.1⨯3=3.3(米),它们相差3.6-3.3=0.3(米),也就是说狗每跑3.6米时追上0.3米.300.3=100,即狗跳100⨯2=200(次)后能追上狐狸.所以,狗跑1.8⨯200=360(米)才能追上狐狸.2. 1根据追及问题可知,兔跳112米时,狗跳56+112=168(米).因此,狗一共跳了1682=84(次).由狗跳3次的时间与兔跳4次的时间相同的条件,可知兔跳了4⨯(843)=112(次)所以,兔跳一次前进112112=1(米).3. 8点48分.从小李追上小王到两人再次见面,共行了60⨯2=120(千米),共用了120(15+10)=4.8(小时),所以,小王从乙地到M 点共用了4.82=2.4(小时), 甲地到M 点距离2.4⨯10=24(千米)小李行这段距离用了2415=1.6(小时)比小王少用了2.4-1.6=0.8(小时)所以,小李比小王晚行了0.8小时,即在8点48分出发. 4. 411(公里)当A 到达乙地时,A 行了20公里,B 、C 两人离乙地分别还有4公里和5公里,也就是B 行了(20-4)=16公里,C 行了(20-5)=15公里,所以C 的速度是B 的1615.当B 行完最后剩下的4公里时,C 行了4⨯4331615=(公里),这时C 距乙地还有5-433=411(公里). 5. 16第二次相遇两人共行两周,需120⨯2(8+7)=16(分钟). 6. 4圆内的任意两点,以直径两端点的距离最远.如果沿小圆爬行的甲虫爬到A 点,沿大圆爬行的甲虫恰好爬到B 点,二甲虫的距离便最远.小圆周长为π⨯30=30π,大圆周长为48π,一半便是24π.问题便变为求30π和24π的最小公倍数问题了.30π和24π的最小公倍数,相当于30与24的最小公倍数再乘以π.30与24的最小公倍数是120, 12030=4 12024=5.所以小圆上甲虫爬4圈后,大圆上爬行了5个21圆周长,即是爬到了B 点.7. 2.62依交通规则甲车行进路线为A B C D(其中 表示沿狐线行进),因而两车初始相距. 200+π21⨯220100-=200+3.1⨯20=262米. 现甲车每小时比乙车多行6千米,所以每分钟甲车可追及乙车606000=100米. 所以,262100=2.62分. 即甲车至少需要经过2.62分钟才能追及乙车.8. 8892依题意作下图.由已知可知,甲先与乙相遇,后与丙相遇.当甲与乙相遇时,他们三人所在位置情况如下图所示; 由图示可知乙、丙在同一时间()里,所行路程之差等于甲、丙在3分钟内相向行程的路程之和. (40+36)) 这样,根据乙、丙在同一时间(甲、乙相遇时间)是所行路程之差与它们单位时间内速度之差,求出甲、乙相遇时间.228(38-36)=2282=114(分钟)所以,花圃的周长为(40+38)⨯114=78⨯114=8892(米).9. 49根据相向行程问题若它们一直保持相向爬行直至相遇所B CDA •出发点 甲 乙丙 乙 相遇点 A 2020 甲 乙 DB CA需的时间是100⨯1.26⨯21(5.5+3.5)=7(秒)由爬行规则可知第一轮有效前进时间是1秒钟,第二轮有效前进时间是5-3=2(秒),……,如下图所示:所用时间 有效时间 1 1 3+5=8 5-3=2 7+9=16 9-7=2 11+13=24 13-11=2由上表可知实际耗时为1+8+16+24=49(秒)相遇有效时间为1+2⨯3=7(秒)所以,它们相遇时爬行的时间是49秒.10. 17甲要看到乙,甲乙间的最大距离为20米,即甲最少要比乙多跑15米,这需跑154515=-(秒) 但还须验证:甲跑15秒时是刚好处于B 点或D 点(如下图所示),实际上,甲跑15秒时跑了75米,这时他在AB 边上,距B点10米处.因此甲只要再跑2秒即可到达B 点,此时甲乙间的距离已小于20米,乙在BC 边上,所以甲最少要跑17秒才能相遇点乙2 2 2 1 35791113看到乙.11. 由两人从同一地点出发背向而行,经过2分钟相遇知两人每分钟共行 4002=200(米)由两人从同一地点出发同向而行,经过20分钟相遇知甲每分钟比乙多走 40020=20 (米)根据和差问题的解法可知甲的速度是每分钟(200+20)2=110(米)乙的速度为每分钟110-20=90(米).12. 小江每秒跑1.5米,所以,小江跑100米需 100 1.5=3266(秒) 小强第十一秒跑1+0.1 10=2(米)小强前11秒的平均速度为每秒(1+1.1+1.2+……+1.9+2)11=1.5(米)所以,前11秒钟小强跑的路程与小江前11秒钟跑的路程相等.11秒以后,小江仍以每秒1.5米的速度前进,但小强第十二秒跑(2+0.1)=2.1米,第十三秒跑(2.1+0.1)=2.2米,第十四秒跑(2.2+0.1)=2.3米,……,小强越跑越快,大大超过小江的速度,故小强一定能取胜.13. 乙的速度为105431-40=20(千米/时). 如上图所示,D 为甲、乙相遇点,E 为甲、丙相遇点.D 距A: 4070431=(千米), C 距A: 105[(40-20)+(20+2)]20=50(千米), E 距A: 70+40603=72(千米).甲、丙在E 相遇时,乙在丙前面(20+40)603=3(千米),丙在C 处赶上乙,所以丙的速度是 20193231922=(千米/时). 14. 从起跑到甲比乙领先一圈,所经过的时间为400(400-360)=10(分).甲到达终点还需要跑的时间为(10000-40010)(400+18)=2097414(分); 乙追上甲一圈所需的时间为400[360(411+)-418]=12.5(分). 因为12.5<2097414,所以乙先到达终点. 十六 追及问题(A )年级 班 姓名 得分 甲 乙、丙 50 70 72 A C D EB1.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先米.2.一只兔子奔跑时,每一步都跑0.5米;一只狗奔跑时,每一步都跑1.5米.狗跑一步时,兔子能跑三步.如果让狗和兔子在100米跑道上赛跑,那么获胜的一定是 .3.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要分钟,电车追上骑车人.4.亮亮从家步行去学校,每小时走5千米.回家时,骑自行车,每小时走13千米.骑自行车比步行的时间少4小时,亮亮家到学校的距离是 .5.从时针指向4点开始,再经过分钟,时钟与分针第一次重合.6.甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙.乙每分钟跑米.十五相遇问题(A)年级班姓名得分1. 两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长_____米.2. 甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午______点出发.3. 甲乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米.4. 甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站______千米.5. 列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,又知列车的前方有一辆与它行驶方向相同的货车,货车车身长320米,速度为每秒17米,列车与货车从相遇到离开需______秒.6. 小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处.甲、乙两地的距离是______米.7. 甲、乙二人分别从B A,两地同时相向而行,乙的速度是甲2,二人相遇后继续行进,甲到B地、乙到A地后都立的速度的3即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么B A,两地相距______千米.8. B A,两地间的距离是950米.甲、乙两人同时由A地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B地最近,距离是______米.9. B A,两地相距540千米.甲、乙两车往返行驶于B A,两地之间,都是到达一地之后立即返回,乙车比甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么,到两车第三次相遇为止,乙车共走了______千米.10. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.二、解答题11. 甲、乙两地相距352千米.甲、乙两汽车从甲、乙两。

相关文档
最新文档