第3章 线路平面和纵断面设计

合集下载

隧道工程第三章隧道线路及断面设计(1)

隧道工程第三章隧道线路及断面设计(1)

2.3.2 隧道围岩分级的方法
对隧道围岩的分级时,应注意以下几点: ➢首先应考虑选择对围岩稳定性有重大影响的主要因素,如 岩石强度、岩体的完整性、地下水、地应力、结构面产状、 以及他们的组合关系作为分级指标; ➢其次选择测试设备比较简单、人为因素小、科学性较强的 定量指标; ➢在考虑分级指标要有一定的综合性,如复合指标等。
44
秦岭隧道平面位置的方案比选
15.40km
19.40km
F2
F5
F3
F1
F4
西安安康线初测阶段秦岭地段
45
雅西高速——双螺旋隧道
46
47
起初的几条线路,虽然充分地利用了地形,却始终无法避 开安宁河大断裂,工程地质条件并不好。为了减少连续纵坡, 也为了规避不良地质和自然保护区,公路史上首座双螺旋隧道 诞生了。双螺旋隧道最大的妙处就在于,以长度换取高度。 48
什么叫做分水岭?
分水岭是指分隔 相邻两个流域的 山岭或高地,河 水从这里流向两 个相反的方向。 在自然界中,分 水岭较多的是山 岭、高原。
秦岭是长江和黄河的分水岭
长江流域图
什么叫做傍山隧道?
山区道路通常傍山沿河而行,山区河流的特点是河 床狭窄、弯曲,经过常年的河水侵蚀和风化作用, 地势往往变得陡峻。为改善线形、提高车速、缩短 里程、节省时间,常需修建隧道,这种隧道叫做傍 山隧道,或称河谷线隧道。
隧道方案优缺点: ➢ 优点:能使线路平缓顺直,病害少,缩短线路, 节省运输时间,不需用较大的坡度,不需设置太多、 太急的曲线,还能最大限度地减少道路修建对自然 植被的破坏。 ➢ 缺点:造价高、施工进度慢。
一般情况下,采用隧道方案是比较有利的。当线 路遇到地形高程障碍时,应该优先考虑隧道方案。

第三章:线路设备标准和修理要求

第三章:线路设备标准和修理要求

第三章:线路设备标准和修理要求第三章线路设备标准和修理要求第⼀节线路平⾯第3.1.1条在线路直线地段,两股钢轨顶⾯应位于同⼀⽔平。

在线路曲线地段,应根据曲线半径和实测⾏车速度,在外股钢轨合理设置超⾼(允许速度⼤于120 km/h线路宜按旅客的舒适条件进⾏检算和调整超⾼值)。

超⾼按下列公式计算:H = 11.8υj=式中H——超⾼(mm);υj——平均速度(km/h);R——曲线半径(m);N i——⼀昼夜各类列车次数(列);Q i——各类列车质量(t);υi——实测各类列车速度(km/h)。

按上式算出后,对未被平衡⽋超⾼和未被平衡过超⾼分别按下列公式检算:H c=11.8 - HH g=H - 11.8式中H——实设超⾼(mm);H c——未被平衡⽋超⾼(mm);H g——未被平衡过超⾼(mm);υmax——线路允许速度(km/h);υH——货物列车平均⾏车速度(km/h)。

未被平衡⽋超⾼不应⼤于75 mm,困难情况下不应⼤于90 mm,但允许速度⼤于120 km/h线路个别特殊情况下已设置的90(不含)~110 mm的⽋超⾼可暂时保留,但应逐步改造;未被平衡过超⾼不应⼤于30mm,困难情况下不应⼤于50mm,允许速度⼤于160km/h线路的个别特殊情况下不应⼤于70 mm。

实设超⾼在满⾜上述条件下,货物列车较多时,宜减⼩H g,旅客列车较多时宜减⼩H c。

有砟轨道实设最⼤超⾼,在单线上不得⼤于125 mm,在双线上不得⼤于150 mm。

⽆砟轨道实设最⼤超⾼不得⼤于175mm。

第 3.1.2条如⾏车条件有较⼤变化,或曲线发⽣⽊枕压切、混凝⼟枕挡肩破损、钢轨不正常磨耗等情况,应根据实测⾏车速度和实际牵引质量,重新计算和调整超⾼。

第3.1.3条两线路中⼼距离在5 m以下的曲线地段,内侧曲线超⾼不得⼩于外侧曲线超⾼的⼀半,否则,必须根据计算加宽两线的中⼼距离。

第3.1.4条曲线超⾼顺坡。

⼀、曲线超⾼应在整个缓和曲线内顺完,允许速度⼤于160 km/h线路,超⾼必须在整个缓和曲线内顺完;允许速度⼤于120 km/h线路,顺坡坡度不应⼤于1/(10υmax);允许速度不⼤于120km/h线路,顺坡坡度不应⼤于1/(9υmax)。

线路平面和纵断面

线路平面和纵断面

第一章 线路平面和纵断面运行列车和机车车辆的线路称为铁路线路,简称线路。

线路是机车车辆和列车运行的基础,它是由路基、桥隧建筑物、轨道组成的一个整体的工程结构。

为使列车按规定的最高速度安全、平稳和不间断地运行,铁路线路必须经常保持完好状态。

铁路线路的平面与纵断面不但确定了其在空间的位置,同时也为路基、桥涵、隧道及站场等其他设备的设置提供依据,对铁路通过能力及输送能力都有直接影响。

从运营的观点来看,最理想的线路是既平又直,但是天然地面情况复杂多变,有山、水、沙漠、森林、矿区、城镇等障碍物和建筑物,如果把铁路修得过于平直,就会造成工程数量和工程费用的增加,并且将会延长工期。

所以,铁路线路平面与纵断面必须按线路等级和《铁路线路设计规范》规定的技术标准,结合具体情况设置。

第一节 线路平面铁路线路在空间的位置用它的中心线表示。

线路中心线在水平面上的投影,叫做铁路线路的平面。

线路平面能够表明线路的直、曲变化状态。

在线路平面设计时,为缩短线路长度和改善运营条件,应尽可能设计较长的直线段,但当线路遇到地形、地物等障碍时,为减少工程造价和运营支出,还应适当设置曲线。

为使列车由曲线到直线或由直线到曲线运行平稳,还应设置缓和曲线。

所以线路平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。

一、圆曲线铁道线路在转向处所设的曲线为圆曲线,如图1-1所示,其基本要素有:曲线半径R ,曲线转角α,曲线长度L ,切线长度T 。

在线路设计时,一般是先设计出α和R ,再按下式算出T 及L :tan2T R α=⨯ (m ) (1-1)π180L R α=⋅⋅(m ) (1-2)图1-1 圆曲线要素图曲线转角 的大小由线路走向、绕过障碍物的需要等确定。

圆曲线半径的大小,反映了曲线弯曲度的大小。

圆曲线半径愈小,弯曲度愈大,行车速度愈低,工程费用愈低。

反之,圆曲线半径愈大,弯曲度愈小,行车速度愈高,工程费用愈高。

因此,正确地选用曲线半径就显得十分重要。

《城市轨道交通线路与站场设计》教学课件 模块三 线路纵断面设计

《城市轨道交通线路与站场设计》教学课件 模块三 线路纵断面设计
模块三 线路纵断面设计
任务一 了解线路的纵断面
知识储藏
线路纵断面图是用一定的比例尺和规定的 符号,把平面图上的线路中心线展直后投影到 铅垂面上,并标有线路平面和纵断面有关资料 的图。线路的纵断面图显示了线路坡度的变化, 主要有上、下两局部组成:上局部主要是线路 图局部,表示线路纵断面概貌和沿线主要建筑 物特征;下局部主要是纵断面栏目局部,显示 了纵断面图中的主要数据。
同时长大坡段不宜与平面小半径曲线重叠。对于联络线、 出入线来讲,由于列车速度较慢,故其最大坡度可采用40‰。
任务二 线路纵坡设计
二、线路最大坡度
在实际工程中,对于每一条线路的最大坡度有一定的区别, 通常城市轨道交通最大坡度标准确实定以适应地形、跨越控制 高程的需要为目的。
一般而言,对于地面线和地下线,城市轨道交通系统沿线 地形平坦,高程控制问题不太突出,无需采用大坡度。但是对 于高架线,即使是地形平坦的地区,也应该选择较大的纵断面 最大坡度。因为如果最大坡度标准较小,整条线路的平均高度 就可能增加,从而导致工程造价增加。
任务一 了解线路的纵断面
二、纵断面栏目内容
〔8〕平面曲线。
该栏中显示的是平面线形的示意图,线路平面曲线由凸起和 凹下的折线组成。其中,凸起表示线路右转,凹下表示线路左转。 凸起和凹下局部的转折点分别代表平面曲线的各个主点。曲线要 素要标注在曲线内侧,包括曲线转角值、圆曲线半径以及切线长 等。相邻曲线间的水平线为夹直线段,要标注其长度。从图中可 以对应看出线路平面与纵断面组合情况。
轨面设计标高为轨顶高程。一般地铁线路纵断面设计高程应 为轨面设计标高。
任务一 了解线路的纵断面
二、纵断面栏目内容
〔5〕设计坡度和设计坡长。
该栏目中,向上或向下的斜线表示上坡道或下坡道,水平线 表示平道,斜线交接的位置表示变坡点。线上数字表示坡度的千 分数,单位为‰,坡度值一般为整数。线下数字表示坡段长度。 初步设计以及以前各设计阶段,坡段长度宜为50 m的倍数,变坡 点一般落在百米里程及50 m里程处。施工图设计设计阶段,坡段 长度一般取整为10 m的倍数,变坡点落在10 m里程上。

输电线路纵断面图及平面图

输电线路纵断面图及平面图

一、纵断面图及平面图纵断面图是沿线路中心线的剖面图,表示沿中心线的地形、被跨越物的位置和高程。

而平面图则表示沿线路中心线左右各20-50m宽地带的地形平面图。

平面图和断面图都展成直线画在一张图上,简称平断面图。

当线路遇到有转角时,在平面图上标出转角方向,并注明转角的度数。

地形复杂时,例如当线路中心与边线高差较大,边线对地限距有可能不满足要求时,还需画出局部横断面图。

纵断面图比例一般水平方向为1:5000、垂直方向为1:500;对于地形复杂的地区或要求精度比较高时,水平方向为1:2000,垂直方向为1:200。

在平断面图的下方,应填上桩号、标高和桩距。

并应留有填写杆塔形式、杆塔编号和档距等的空栏,备定位时使用。

图4-2示出了某条线路的一段平断面图。

图4-2 线路平断面图二、定位模板曲线模板曲线就是最大弧垂气象条件下按一定比例尺绘制的导线的悬垂曲线。

它是在最大弧垂的时候,导线悬挂在空中的相似形状,绘制模板曲线是用于进行杆塔定位的。

已知导线悬挂曲线的平抛方程为;根据悬链线方程的展开式,取前两项为或用导线的悬链线方程,即令:(4-3)显然,在一定气象条件下,K是个常数。

则导线悬垂曲线的前述三种方程分别变为:(4-4)或(4-5)或(4-6)在绘制定位模板曲线时,上列各式中g—最大垂直弧垂时的比载(N/m·mm2);σ0—最大垂直弧垂时的导线水平应力(MPa)式(4-4)~式(4-6)所表示的曲线叫最大垂直弧垂曲线,也叫模板曲线,把它按一定比例尺刻在透明的赛璐珞板(1-2mm厚)上,就是弧垂模板,称为通用弧垂模板(也叫热线板)。

应当注意,模板曲线的比例尺应和所用平断面图的比例尺相同。

模板曲线通常绘制成和纵轴对称形式,横方向的总长度约为代表档距的2-3倍,一般平原地区可取±400m.。

模板上应标明K值和比例尺。

模板的形状示于图4-3。

图4-3 模板曲线由式(4-4)~式(4-6)可知,当系数K或比值为一定值时,导线悬垂的形状(弯曲度)也就确定了。

铁路线路的平面和纵断面

铁路线路的平面和纵断面

第二节铁路线路的平面和纵断面(于本章最后讲)铁路线路在空间的位置是用它的中心线来表示的。

线路中心线是指距外轨半个轨距的铅垂线 AB 与两路肩边缘水平连线 CD 交点 O 的纵向连线。

如下图所示:线路横断面线路中心线在水平面上的投影,叫做铁路线路的平面,表明线路的直、曲变化状态;线路中心线展直后在铅垂面上的投影,叫铁路线路的纵断面,表明线路的坡度变化。

一、铁路线路的平面及平面图线路的平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。

(一)曲线铁路线路在转向处所设的曲线为圆曲线,其基本组成要素有:曲线半径 R ,曲线转角α ,曲线长 L ,切线长度 T ,如下图所示:圆曲线要素在线路设计时,一般是先设计出α和 R,在按下式计算出T及L:曲线半径愈大,行车速度愈高,但工程量愈大,工程费用愈高。

(二)缓和曲线为保证列车安全,使线路平顺地由直线过渡到圆曲线或由圆曲线过渡到直线,以避免离心力的突然产生和消除,常需要在直线与圆曲线之间设置一个曲率半径变化的曲线,这个曲线称为缓和曲线,如下图所示为设有缓和曲线的铁路曲线。

铁路曲线缓和曲线的特征为:从缓和曲线所衔接的直线一端起,它的曲率半径ρ 由无穷大逐渐减小到它所衔接的圆曲线半径 R 。

它可以使离心力逐渐增加或减小,不致造成列车强烈的横向摇摆,如图所示。

离心力变化示意图(三)夹直线两相邻曲线,转向相同,称为同向曲线;转向相反,称为反向曲线。

两条相邻曲线间应设置一定长度的直线,以保证列车运行的平稳,如下图所示。

车辆运行在同向曲线上,因相邻曲线半径不同,超高高度不同,车体内倾斜度不同;车辆运行在反向曲线上,因两曲线超高方向不同,车体时而向左倾斜,时而向右倾斜。

这两种情况都会造成车体摇晃震动。

夹直线愈短,摇晃振动愈大。

相邻曲线间的夹直线根据运营实践,为保证旅客舒适,夹直线长度应保持 2 ~ 3 辆客车长度,困难条件下,也不应短于 1 辆客车长度。

因此《铁路线路设计规范》规定各级铁路线路两相邻曲线间夹直线最小长度,如下表所示。

铁路线路的平面和纵断面

铁路线路的平面和纵断面

铁路线路的平面和纵断面3.1 平面3.1.1 线路平面的圆曲线半径应结合工程条件、路段设计速度以及减少维修等因素,因地制宜,合理选用。

曲线半径宜采用以下序列值:12000m、10000m、8000m、7000m、6000m、5000m、4500m、4000m,3500m、3000m、2800m、2500m、2000m、1800m、1600m、1400m、1200m、1000m、800m、700m、600m、550m、500m。

不同设计路段的曲线半径应优先选用表3.1.1规定范围内的序列值;困难条件下,可采用规定范围内10m的整倍数。

表3.1.1 线路平面曲线半径优先取值范围3.1.2 线路平面的最小曲线半径应根据路段设计速度、工程条件以及运输性质和运输需求比选确定,但不得小于表3.1.2规定的数值。

表3.1.2 最小曲线半径注:特殊困难条件下,在列车进、出站等必须减、加速地段有充分技术经济依据时,可采用与行车速度相匹配的曲线半径。

改建既有线或增建第二线时,最小曲线半径应结合既有线特征和工程条件比选确定。

困难条件下,按上述标准改建将引起巨大工程的小半径曲线可经技术经济比选确定改建方案。

3.1.3 双线铁路两线线间距不变的并行地段的平面曲线,宜设计为同心圆。

双线同心圆和改建既有线的曲线半径可为零数。

3.1.4 新建铁路不应设计复曲线。

改建既有线在困难条件下,为减少改建工程,可保留复曲线;增建与之并行的第二线,如有充分技术经济依据,也可采用复曲线。

3.1.5 直线与圆曲线间应采用三次抛物线型缓和曲线连接。

缓和曲线的长度应符合下列规定:1 缓和曲线长度应根据曲线半径、路段旅客列车设计行车速度和工程条件确定,应优先采用表3.1.5-1规定的数值。

但最小缓和曲线长度不得小于表3.1.5-2规定的数值表3.1.5-1 缓和曲线长度(m)表3.1.5-2 最小缓和曲线长度(m)注:当采用表列数值间的曲线半径时,其相应的缓和曲线长度可采用线性内插值,并进整至10m。

铁路线路的平面及纵断面

铁路线路的平面及纵断面

铁路线路的平面及纵断面
2. 变坡点和竖曲线
铁路线路纵断面上坡度的变化点,称为变坡点。相 邻变坡点间的距离,称为坡段长度。从运营角度来看, 纵断面坡段应尽量长些,以利于行车平顺和减少变坡点, 但也应考虑地形条件及工程量的大小。一般情况下,纵 断面坡段的长度不短于远期列车长度的一半,使一个列 车长度范围内不超过两个变坡点,以减少变坡点附加力 的叠加影响所引起列车运行的不平稳。
铁路线路的平面及纵断面
线路中心线在水平面上 的投影叫作铁路线路的平面, 线路中心线(展直后)在垂 直面上的投影叫作铁路线路 的纵断面。
铁路线路的平面及纵断面
1.1 铁路线路的平面及平面图
1. 铁路线路的平面 铁路线路的平面能够表明线路的直、曲变化状态。在进行 铁路线路平面设计时,为了缩短线路长度和改善运营条件,应 尽可能地设计较长的直线段;但当线路遇到地形、地物等障碍 时,为了减少工程造价和运营支出,还应适当地设置曲线。为 了使列车由曲线到直线或由直线到曲线运行平稳,还应设置缓 和曲线。所以,铁路线路的平面由直线、曲线及连接直线与曲 线的缓和曲线组成。这里重点介绍曲线与缓和曲线。
铁路线路的平面及纵断面
(1)曲线。
①圆曲线。铁路线路在
转向处所设的曲线为圆曲线,
其基本组成要素有曲线半径
R
α
长L、切线长度T,如图2-1
所示。
图2-1 圆曲线的基本组成要素
铁路线路的平面及纵断面
在线路设计时,一般是先设计出α和R,再 按式(2-1)和式(2-2)计算出T及L:
曲线半径越大,行车速度越高;工程量越大, 工程费用越高。
铁路线路的平面及纵断面
在设计铁路线路平面时,必须根据铁路所允许的 旅客列车的最高运行速度,由大到小地选用曲线半径。 为了测设、施工和养护的方便,曲线半径一般应取 50 m、100 m的整倍数。为了保证线路的通过能力, 并有一个良好的运营条件,《铁路线路设计规范》 (GB 50090—2006)对区间线路平面的最小曲线 半径做了具体的规定,如表2-2所示。

铁路线路平面和纵断面

铁路线路平面和纵断面

1.1线路平面
根据中国铁路总公司《铁路技术管理规程》的规定,新建客货共线铁路区间正线的最小曲线 半径如表所示。
1.1线路平面
客运专线铁路区间线路的最小曲线半径为2 800 m,在困难情况下为2 200 m。
高速铁路的最小曲线半径应保证满足旅客列车最高行车速度300 km/h以上的要求。世界几个 主要国家高速铁路的最小曲线半径为:法国的TGV大西洋干线6 000 m;德国的 ICE 7 000 m; 日本的东海道干线2 500 m,其他干线4 000 m。
铁路运输设备
铁路线路平面 和纵断面
铁路线路平面和纵断面
在进行工程设计时,铁路线路在空间的位置是以其中心线来表示的。线路中心线是指过距外 轨半个轨距的铅垂线AB与两路肩边缘水平连线CD交点O的纵向连线,如图所示。线路中心线 在水平面上投影的轨迹称为线路平面,由直线和曲线组成,表明线路的直、曲变化状态。线 路中心线纵向展直后,其路肩标高在垂直面上投影的轨迹称为线路纵断面,由不同坡度的坡 道组成,表明线路的坡度变化。
1.1线路平面
线路平面标准包括最小曲线半径、夹直线、缓和曲线、超高、欠超高、过超高等。 1.最小曲线半径
1.1线路平面
最小曲线半径是线路平面设计时允许选用的曲线半径最小值,是限制列车最高速度的主要因 素之一,对工程费和运营费都有很大影响。因此,合理选择最小曲线半径是线路设计的重要 任务之一,它与铁路运输模式、速度目标值、旅客乘坐舒适度和列车运行平稳度有关。 铁路线路的曲线半径应根据地形、铁路等级、列车通过曲线时最大允许速度等因素,由大到 小选用。我国铁路正线的圆曲线半径一般是4 000 m、3 000 m、2 500 m、2 000 m、1 500 m、1 200 m、1 000 m、800 m、700 m、600 m、550 m、500 m、450 m、400 m、 350 m和 300 m 共16种。当地形较平坦、线路位置及曲线半径的选择受地形限制较少时,应 尽量选择较大的半径,以保证良好的运营条件。在地形困难的地段,最小曲线半径应能满足 规定的列车最高行车速度的要求,其关系式为

线路平面和纵断面设计

线路平面和纵断面设计
定性。
考虑地形地貌
设计时应充分考虑地形地貌特点, 合理利用地形,减少工程量和投资。
保证排水顺畅
纵断面设计应确保排水顺畅,防止 积水和冲刷对线路造成不良影响。
纵断面设计要素
设计标高
根据地形、水文条件和规 范要求,合理确定各点的 设计标高。
纵坡
在保证排水顺畅的前提下, 尽量采用较缓的纵坡,以 减少工程量。
纵断面与平面协调设计
平面与纵断面协调
在平面设计时,应考虑纵断面的设计要素,使二者相互协调。对于复杂地形, 可采用曲线型纵断面以适应地形变化。
排水与防护工程协调
纵断面设计应考虑排水和防护工程的要求,确保排水顺畅并防止水土流失对线 路造成危害。对于需要设置防护工程的地段,纵断面设计应满足防护工程的要 求。
排水系统的功能
收集、输送、排放和处理道路表面的 雨水、雪水等,确保道路通行安全, 防止水损害。
道路排水设施类型选择及布局规划
排水设施类型
根据道路等级、地形、气候等条件,选择合适的排水设施类型,如明沟、暗管、 雨水口等。
布局规划
遵循“高水高排、低水低排”的原则,合理规划排水设施的布局,确保排水顺畅 。
综合考虑地形、地质、水文等因素,确定隧道洞口位置,确保洞 口安全、稳定。
洞身结构设计
根据地质勘察资料,进行隧道洞身结构设计,包括支护结构、排水 系统等。
隧道通风与照明设计
根据隧道长度、交通量等因素,进行通风与照明设计,确保隧道内 空气流通、光线充足。
特殊结构物施工方法简介
1 2
桥梁施工方法
包括支架现浇法、悬臂浇筑法、转体施工法等, 根据桥梁类型和施工条件选择合适的施工方法。
全面的地质信息。
不良地质条件分析

济南市中考满分作文-选线第3-5章复习思考及练习题

济南市中考满分作文-选线第3-5章复习思考及练习题

选线设计(三~五章)复习思考与练习题第三章3-1.分析线路中心线的概念;3-2.线路平面和纵断面设计必须满足哪些基本要求?3-3.简述列车运行轨迹的基本特征;3-5.分析确定相邻两曲线间夹直线最小长度的基本要求;3-6.简述曲线超高设置的作用;3-7.绘图分析轨道交通曲线最大超高的限制条件;3-8.简述缓和曲线的作用;列式分析缓和曲线的计算条件。

3-4.铁路设计中为什么要进行最大坡度折减?分析最大坡度折减条件、原则及折减方法。

3-5.何谓“加力坡度”?简述采用加力坡度的条件。

3-6.何谓“分方向选择限制坡度”?简述采用分方向限制坡度的条件。

3-7.分析限制坡度、最小曲线半径、坡段长度大小对工程和运营的影响。

3-8.何为铁路线间距?如何确定直线地段线间距?3-9.简述曲线地段线间距加宽的原因及加宽值计算方法。

3-10.推导曲线超高、欠超高和过超高的计算公式。

3-11.已知某高速客运专线的技术条件为:V max=350km/h,V Z=200km/h,h max=180mm,h QY=150mm,h GY=70mm,按旅客舒适条件和钢轨磨耗条件,计算并确定该线的最小曲线半径。

3-12.某设计线路段旅客列车设计行车速度为160km/h,线路平面上两相邻曲线的交点JD1与JD2之间的距离为1705.00,已知曲线资料为α1=30°,R1=2000m,α2=40°,R2=2500m;计算该两曲线间的夹直线长度,并检查其最小夹直线长度是否满足标准的要求(查教材表3-1)。

3-13.试推导米轨和宽轨铁路的曲线限速公式:米轨:S=1060mm,h max=100mm,h QY=80mm;宽轨:S=1530mm,h max=150mm,h QY=67.5mm。

3-14.某客货共线铁路单线区间曲线半径为R=2000m,路段最高速度为Vmax=160km/h,一昼夜各类列车通过次数、列车重量及平均速度如下表:1)计算通过该曲线列车的均方根速度;2)按均方根速度计算确定该曲线的实设超高、最大欠超高和最大过超高;3)计算该曲线应设置的缓和曲线长度。

城市轨道交通概论第三章城市轨道规划与设计

城市轨道交通概论第三章城市轨道规划与设计

闭合曲线,外 高内低
等高线凸向低处,中 间高于两侧
常见地形特征
等高线向高处 凸出,中间低 于两侧
两组表示山峰的 等高线之间的区 域,呈8字型
多条等高线重 叠在一起处
认 识 线 路 平、 纵 断 面 图
16
一、 城市轨道线路设计主要技术标准
城市轨道交通线路设计分平面、纵断面、横断面三个部
分。 从平面上看,线路是由直线和曲线组成。曲线包括圆曲 线和缓和曲线。其平面设计的主要技术要素有最小曲线半径、 夹直线最小长度、最小圆曲线长度、缓和曲线线型和长度。 从纵断面上看,线路包括坡段及坡段间的连接。纵断面设计 的主要技术要素有最大坡度、坡度代数差、竖曲线线型和曲 线半径。横断面设计则要满足线路各个断面列车通过的限界
线路中心线:路基横断面上距外轨半个轨距的铅垂线与路肩
水平线的交点。也称为中线。
路基宽度
A
C D 路肩高程
O
B
线路平面:线路中心线在水平面上的投影。 线路空间位置 线路纵断面:沿线路中心线所作的铅垂剖面展直 后,线路中心线的立面图,表示线路起伏情况, 其标高为路肩标高或轨顶标高。
·
常见地形特征
闭合曲线,内 高外低。
13.竖曲线。两相邻坡段间坡度代数差大于或等于 2‰时,应 设圆曲线形的竖曲线连接。
线路类别 正线 区间 车站端部 一般情况(m) 困难情况(m) 5000 3000 3000 2000
辅助线
车场线
2000
2000
第一节 线路平面设计
一、线路平面组成
直线 线路平面 曲线 缓和曲线
圆曲线
29
二、平面曲线要素
4、路网中的线路布置要均匀、线密度要适当、乘客换乘方 便、换乘次数要少。

108-演示文稿-隧道位置和洞口位置设计以及隧道平纵断面设计

108-演示文稿-隧道位置和洞口位置设计以及隧道平纵断面设计

重点、难点内容
1. 隧道具体位置选择的影响因素有哪些? 2. 越岭隧道与河谷隧道有何区别?它们在位置的选
择上各采取什么原则? 3. 地质条件对隧道位置选择有哪些影响? 4. 隧道洞口位置的选择应遵循哪些原则?确定洞口
位置考虑哪些因素? 5. 隧道长度的定义。
重点、难点内容
6. 道路隧道平面设计时应考虑哪些问题? 7. 隧道的纵断面的坡度类型有哪几种?各有什么优
第三章 隧道线路及断面设计
(2) 要考虑河岸冲刷对山体和洞身稳定的影响。
t a
b 侧蚀
第三章 隧道线路及断面设计
(3) 应考虑施工和既有便道设置的位置,应注意边 坡的可能坍塌对洞身稳定的影响。
便道
第三章 隧道线路及断面设计
乐 昌
坪石 南岭煤矿
九峰
坪石
预留水库西岸双绕岐门 跨武水越岭方案
预留 水库 大瑶 山 14.3 公里 长隧 道方 案
第二节 隧道洞口位置的选择
隧道长度为其进出口洞门墙外表面与线路内轨顶 面标高线交点之间的距离
洞口位置选择好坏,将直接影响隧道施工、造价 、工期和运营安全。选择时要结合洞口的地形,地 质条件、施工、运营条件以及洞口的相关工程(桥 涵、通风设施等)综合考虑。
第三章 隧道线路及断面设计
洞口部分在地质上通常是不稳定的。一般应设在 山体稳定,地质条件好,排水有利的地方。隧道宜 长不宜短,应“早进洞,晚出洞”,尽量避免大挖大 刷,破坏山体稳定。
(8) 当洞口附近遇有水沟或水渠横跨线路时,可设 置拉槽开沟的桥梁或涵洞,排泄水流
第三章 隧道线路及断面设计
(9) 长大隧道在洞门附近应考虑施工场地、弃渣场 以及便道等的位置。
总之,隧道洞口位置的选择,应根据地形、地质条 件,考虑边坡、仰坡的稳定,结合洞外有关工程及 施工难易程度,本着“早进晚出”的指导思想,全面 综合地分析确定。

隧道工程第3章 隧道线路及断面设计-2

隧道工程第3章  隧道线路及断面设计-2

1210 1110
1875
轨面
2250
4000
2250
8500
新建或改建行驶电力机车的单(双)线隧道限界
‹#›
‹#›
4.直线隧道净空
考虑避让等安全空间、救援通道及技术作业空间 不同围岩压力下,衬砌结构的合理受力形状 施工方便
120km/h单线铁路隧道衬砌轮廓
‹#›
120km/h双线铁路隧道衬砌轮廓
2 R

l2 8R
l — 车辆转向架中心距,取18m R— 曲线半径,单位m
车辆长度(L=26m) 车辆前后转向架间距(l=18m)
D a/2
车辆中心线 线路中心线
d内 d外
a
曲线半径(R)
则:
d内1

182 8R
100

4050 R
(cm)
‹#›
(2) 外轨超高使车体向曲线内侧倾斜偏移
d内2=
0.75
8.00
/ 0.25
0.75
7.50
0.25
0.75
9.00
0.25
0.75
7.00
0.25
7.00
0.25
0.75
7.00
0.25
7.00
0.25
7.00/4.50
0.25
9.75
9.25
10.25
9.25
9.25
8.75
9.50
10.5
7.50
8.50
7.50
8.50
7.50
8.50
7.50
H E 150
(cm)
d内2
内2
H — 隧道限界控制点自轨面起的高度,cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⒋选用——结合半径、设计速度、地形选用,尽量选 用较长的。
⒌两缓和曲线间圆曲线的最小长度——与夹直线相同
2.3.5线间辆限界——机车车辆不同部位宽度和高度的 最大轮廓尺寸线。 直线建筑接近限界——铁路两侧建筑物和设备在 任何情况下不得侵入的轮 廓尺寸线。 隧道建筑限界 桥梁建筑限界
⑵行车平稳要求 ①夹直线太短—→列车同时在相邻曲线上运行—→ 车辆左右摇摆 R不同,超高不同 要求:为保证行车平稳舒适,夹直线不短于2~3节客车长, 即51~76.5米 ②通过夹直线前后ZH、HZ点时,轮轨冲击—→转向架 弹簧产生振动 要求:为保证振动不叠加,旅客乘坐舒适,夹直线应足够 长,客车通过夹直线的时间要大于弹簧振动消失的 时间。
⒊ 曲线半径对运营的影响 ⑴增加轮轨磨耗 轮轨间的纵向横向滑动、挤压,使磨耗增加。半径越小, 磨耗越大。
⑵维修工作量加大 小半径曲线地段,轨距、方向容易错位
⑶行车费用增加 ①小半径曲线限制列车速度 列车通过曲线时,需要减速、限速、加速,机车需要 额外做功,使得运行时分和行车费用增加。 ②小半径曲线使线路加长、总偏角加大,导致曲线阻力 功加大,行车费用增加。
⒉选用原则 ⑴因地制宜,由小到大合理选用 ⑵结合纵断面特点合理选用 ①坡度平缓地段和凹形纵断面坡底,列车速度高, 半径宜大 ②长大坡道、凸形纵断面的坡顶及双方向均需停车的 大站两端,半径可以小一些 ③足坡长大坡道顶部和进站前用足坡度上坡的地段, 半径不宜过小 ④小半径曲线宜集中设置
2.3.4缓和曲线——保证行车平顺
⒉影响限坡选择的因素 限制坡度是影响铁路全局的主要技术标准之一,它对线 路的走向、长度、车站分布和工程投资,以及铁路的输 送能力、运营指标都有很大的影响,并且一经修建就不 易改动。因此设计线的限制坡度应根据铁路等级和远期 输送能力的要求,结合地形条件、机车类型、邻接线的 牵引定数等情况,拟定不同的限坡方案,经过比选确定。
① Rmin
过超高≤允许值
2 11.8VH hG hsh Rmin
2 2 11.8(Vmax VJF ) (m) hQ
2 2 11.8(VJF VH ) (m) hG

Rmin
Rmin} 进整为50米的整倍 取 max{

Rmin
①+②
2 2 11.8(Vmax VH ) (m) hQ hG
具体设计时,若夹直线长度不够,则要修改线路的平面 位置。 修改措施: a 减小R,l。,使曲线长度变短 b 改移夹直线位置 c 用一个曲线代替几个同向曲线
2.3圆曲线
设置目的:改变线路方向 列车靠钢轨导向。通过曲线时,轮轨间产生很强的作用 力。摇摆、振动、撞击、挤压主要与半径R有关,而半径与 工程量有很大关系。
⒊加宽方法 ⑴对于新建双线并行地段的曲线,加长内侧曲线的缓 和曲线长度,外侧缓和曲线长度lw取规定值。 2 lw 内移距 pw (m)
24Rw
线距加宽
pn pw pn pw (m)
所以内侧缓和曲线长度l n 24Rn * pn (m) 取为10米的整倍数
⑵曲线毗连地段,夹直线较短,偏角过大,不能过多 加长内侧线的缓和曲线长。 内外线采用相同的缓和曲线长度,加宽曲线两端夹 直线段的线间距。
2.3.1曲线半径对工程和运营的影响
⒈曲线限制速度 ⒉曲线半径对工程的影响 小半径曲线的优点: 更好地适应地形变化,减少路基、桥涵、隧道、挡墙 的工程数量 小半径曲线的缺点: ⑴增加线路长度
⑵降低粘着系数 机车通过时,车轮在钢轨上的纵向、横向滑动加剧,粘 着系数降低
⑶轨道需要加强 R<600时,横向冲击力加大,轨道要加强,要设置轨撑、 轨距杆来增加外侧道床的宽度 ⑷增加接触导线的支柱数量 R越小,中心线与接触导线的矢度越大,支柱间间距应该 减小
⒈作用 ⑴ 缓和曲线地段,半径由无穷大变到一个定值,离心力 逐渐增加 ⑵ 缓和曲线地段,外轨超高由零变动到园曲线上的超高, 向心力逐渐增加
⑶ 半径小于350米时,轨距由标准轨距变动到加宽后的轨 距
⒉线型——直线型超高顺坡的三次抛物线
⒊长度
⑴保证超高顺坡不致使车轮脱轨 ⑵保证超高时变率不致影响旅客舒适 ⑶保证欠超高时变率不致影响旅客舒适 取三个计算值中的较大者
3.1线路的最大坡度
首先必须明确限制坡度、加力牵引坡度、地面平均自然 坡度等几个概念。 最大坡度,在单机牵引的路段称为限制坡度;在两台及 以上机车牵引的路段称为加力牵引坡度。地面平均自然 坡度是指两点之间地面高程与距离的比值。 注意:纵断面的设计坡度不得大于最大坡度值。若超过 了最大坡度,牵引质量按限坡计算的货物列车,在持续 上坡道上,会低于计算速度运行,发生运缓或途停事故。
⑶运营费用 由前面的分析可知,采用大的限坡,则牵引质量相应 减少。为了完成既定的运输任务,满足输送能力的需 要,必须增加列车对数,使得通过能力加大,机车台 数、车站数目、工作人员增多,从而使运营费用大幅 度增加。 通常情况下,应采用较小的限制坡度,但在地面自然 纵坡陡峻地区,宜采用与地形相适应的较大的限坡, 可以缩短展线长度,节省工程投资。
平面图
纵断面图
⒉设计内容
区间线路平面设计 区间线路纵断面设计 车站、桥梁、隧道 地段 平、纵面设计
线路的平面组成和曲线要素 平面设计 直线、圆曲线、缓和曲线 的设计 最大坡度 坡段长度 坡段连接 坡度折减 线路平面图
⒊设计成果
纵断面设计
线路纵断面图
⒋设计要求
满足《铁路线路设计规范》要求 桥、隧、站和建筑物与线路的协调配合 工程造价省 优化设计 有利于运营
每吨列车克服的曲线阻力功
Ar r * L y
600 g R * 10.5 g ( J / t ) R 180
⒋夹直线长度不应短于规定长度 夹直线——前一曲线终点与后一曲线起点间所夹直线
夹直线长度的确定 ⑴满足线路养护要求 列车通过反向曲线路段时,频繁转向,车轮对钢轨的横向推 力加大。若夹直线太短,则正确位置不易保持,维修工作量 加大,危及行车安全,运费增加。 要求:不宜短于50~75米,最短不短于25米。
2 11.8Vmax ( m) h hQ
⑵轮轨磨耗条件 确定因素:行车速度,实设超高
外轨超高
2 11.8VJF hsh (m m) Rmin
均方根速度
VJF
NGV 2 (km / h) NG
客车速度Vmax 欠超高≤允许值
2 11.8Vmax hQ hsh Rmin
货车速度Vh
§2 区间线路平面设计 2.1平面组成和曲线要素
直线
线路平面 圆曲线 曲线 缓和曲线
⒈曲线要素 ⑴未加设缓和曲线的曲线 (概略定线) 偏角α —平面图上量得 半径 R—选配
切线长
T y R * tan

2
( m)
曲线长
Ly
R
180
( m)
⑵加设缓和曲线的曲线 (详细定线) 曲线要素:偏角α , 半径 R,缓和曲线长L。(选配), 切线长,曲线长
3.1.1限制坡度
⒈限制坡度对工程和运营的影响
⑴输送能力 由输送能力计算公式可知,输送能力取决于通过能力和牵 引质量。在牵引种类和机车类型一定的情况下,由牵引质 量计算公式可知,牵引质量由限制坡度决定。
⑵工程数量 在平原地区,限坡大小对工程数量影响不大。
在丘陵和越岭地区,限坡对工程数量影响很大。在丘陵地 区采用大的限坡,可使线路标高升降较快,更好地适应地 形起伏,从而避免较大的填挖方,减少桥梁高度,缩短隧 道长度,使工程数量减少,工程造价降低。 在地面自然纵坡较陡的越岭地段,若采用的限坡小于地面 自然纵坡,则线路要迂回展长,才能达到预定标高,使得 工程数量和造价大幅增加。
影响限坡选择的因素如下:
⑴铁路等级 铁路等级高,则线路的意义、作用大,客货运量大, 安全舒适性要求高,运营条件要好,运输成本要低, 因此宜采用较小的限制坡度。
⑵牵引种类和机车类型 电力牵引比内燃牵引的计算牵引力大,计算速度高, 牵引定数大,满足相同运能要求时的限坡比内燃牵 引的大。大功率机车的牵引力大,牵引定数大,满 足相同运能要求时的限坡比小功率机车的为大。
㈢区间曲线地段线距加宽 ⒈加宽原因 车体长 L 26 m 转向架中心距 Z 18 m 曲线半径为R ⑴车辆在曲线上时,车辆中部向内凸W1,两端向外凸W2
Z 2 40500 W1 (m m) 8R R
L2 Z 2 44000 W2 (m m) 8R R
⑵曲线上设有外轨超高,使车体向内侧倾斜W3
§3
区间线路纵断面设计
重要概念:坡段长度,坡度 坡段长度——坡段前后两个变坡点之间的水平距离 坡度——坡段两端变坡点之间的高程差除以坡段长度 坡度值符号规定:上坡取正值,下坡取负值
Hi i 1000 (‰) Li
设计步骤: ⒈在平面设计一栏中,填入平面设计的资料,按纵断面图的格 式,绘制线路平面图。 ⒉根据平面图的等高线,将千(百)米标及地形变化点点绘在 纵断面图上,连成地面线。 ⒊用直尺沿地面线上下移动,使填挖方较小,从而定出坡段长 度和坡度值。 以上为纵断面设计的大致步骤,具体设计时,还包括确定最大 坡度、坡段长度、坡段连接和坡度折减等一系列具体问题,需 要在设计过程中进一步协调配合。
㈡区间直线地段的线距 ⒈第一、二线的线距
mm 最小线距: 2 1700 100 400 4000 其中 1700—机车车辆的限界半宽 100—信号限界宽 400—不限速会车的安全量
⒉第二、三线的线距 2 2440 410 5290 mm 取为5.3m 其中 2440—直线建筑接近限界半宽 410—信号机最大宽度
⒉选定最小曲线半径的影响因素 ⑴路段设计速度——最小曲线半径要满足各个路段的需要 ⑵货车通过速度 坡度越陡,列车速度越慢。曲线上,外轨超高受允许过超高 的制约 ⑶地形条件 平原微丘——R宜大 山岳地区——R宜小 用足坡度地段——R越小,线路额外展长,工程费用增加
相关文档
最新文档