弹性力学学习心得

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学学习心得

孙敬龙S4

大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。

弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。

弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在•柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求解泛

函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。

弹性力学开始的时候感觉很难,但是慢慢地看进去了,它具有特殊性;一般情况下,数学知识要具备,对于工程人员来讲,必要的方程解法是必须的;而且书上的例题是应该一步一步做。仔细研究一本弹力书即可。力学解决的是在外力作用下结构的响应,即求内力与变形;力学需要解决三方面的问题:(1)材料本构关系,它解决的是应力与应变之间的关系,对于弹性力学而言是线弹性的,满足虎克定律;二维平面应力与平面应变的本构(物理)方程是三维块体的特殊形式;(2)几何关系:应变与位移之间的关系;(3)平衡方程:内外力之间的平衡关系。如何建立外力与变形的关系,从一下关系可知:外力<=[平衡]=>内力<=[本构]=>应变<=[几何]=>变形为了消除刚体位移,还要引入边界条件,至此弹性力学问题变成了数学的偏微分方程,但直接求解还是有相当难度的;半解析法还是需要一些力学分析。弹性力学有大部分内容是涉及求解的,如平面应力(变)、轴对称、空间问题讲的都是解法,因此需要一定的数学功底。

通过对弹性力学的学习,我感觉整本书主要针对微分方程解未知数而剩下的问题就是如何求解这些方程的问题,这也是数学和力学结合最紧密的地方。而求解的方法无外乎两种:基于位移的求解和基于应力的求解,而前人的研究大部分都是如何使这些方程求解起来更方便。例如,应力函数的引入就是因为同时满足平衡方程和应力表达的相容方程是很难找到的再例如伽辽金位移函数它使得原本要求的方程(非齐次微分方程)转化为求拉普拉期方程,而拉普拉斯方程在数学上已经研究的很透彻因而大大简化了求解的难度,而近代即二十世纪以来发展起来的能量法更是如此:对位移的变分方程代替了以位移表达的平衡方程及应力边界条件,对应力的变分代替了相容方程及位移边界条件,这无疑都大大简化了弹性力学基本方程的求解过程。二十一世纪随着计算机的发展,人们已经借助计算机避免了繁琐的计算,因而会有更多更精确的方法被发现(例如有限单元法.这使得许多从前很难解决的问题基本上都能获得满足工程精度的解答。弹性力学的发展会更加迅速,它的应用范围更加广泛,前景是非常可观的.

参考资料:[1] 秦飞等.2011.弹性与塑性性理论基础.

[2]徐芝纶.2003.弹性力学简明教程.第三版.

[3] 弹性力学发展简史.

相关文档
最新文档