典型轴类零件加工工艺设计分析

合集下载

轴类零件加工工艺设计

轴类零件加工工艺设计

轴类零件加工工艺设计一、引言轴类零件是机械设备中常见的一种零部件,广泛应用于各种机械设备中,具有重要的功能和作用。

在机械制造过程中,轴类零件的加工工艺设计是确保产品质量和性能的重要环节。

本文将对轴类零件加工工艺设计进行深入研究和探讨。

二、轴类零件的特点1.复杂形状:轴类零件通常具有复杂的外形和内部结构,需要通过精密加工才能满足设计要求。

2.高精度要求:由于轴类零件在机械设备中承受着重要载荷和转动运动,因此对其精度要求较高。

3.材料选择广泛:根据不同应用场景和性能要求,轴类零件可以选择不同材料进行制造。

三、轴类零件加工过程1.材料准备:根据产品设计要求选择合适的材料,并进行切割、锻造等预处理。

2.车削加工:通过车床等设备进行外圆车削、内圆车削等操作,以使得轴类零件的外形和尺寸达到要求。

3.磨削加工:通过磨床等设备进行精密磨削,提高轴类零件的精度和表面质量。

4.焊接加工:对于需要组装的轴类零件,可以通过焊接等方式进行连接和固定。

5.表面处理:对于需要提高轴类零件表面硬度、耐磨性等性能的情况,可以进行渗碳、氮化等处理。

6.质量检验:通过各种检测手段对加工后的轴类零件进行质量检验,确保其达到设计要求。

四、加工工艺设计要点1.合理选择机床设备:根据产品形状、尺寸和数量等因素选择合适的机床设备,确保能够满足产品加工要求。

2.确定切削参数:根据材料性质和加工要求确定切削速度、进给速度等参数,以保证切削效果和加工效率。

3.精确测量与控制:在整个加工过程中,需要使用精密测量仪器对各个环节进行实时监控与调整,以确保产品尺寸精度达到设计要求。

4.合理安排工序:根据轴类零件的复杂性和加工要求,合理安排各个工序的顺序和加工方法,以提高加工效率和质量。

5.合理选择刀具:根据轴类零件的材料和形状特点,选择合适的刀具进行加工,以提高切削效率和刀具寿命。

6.注重环保与安全:在轴类零件加工过程中,要注重环境保护和操作安全,采取相应的措施减少废料产生和操作风险。

轴类零件的加工工艺及技术要求

轴类零件的加工工艺及技术要求

轴类零件的加工工艺及技术要求轴类零件是在机器中用来支承齿轮、带轮等传动部件,了解其加工工艺和技术要求对机械设计有很大的帮助。

下面由店铺向你推荐轴类零件的加工工艺及技术要求,希望你满意。

轴类零件的加工工艺1.零件图样分析图所示零件是减速器中的传动轴。

它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。

轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。

根据工作性能与条件,该传动轴图样规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。

这些技术要求必须在加工中给予保证。

因此,该传动轴的关键工序是轴颈M、N和外圆P、Q的加工。

2.确定毛坯该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。

本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。

3.确定主要表面的加工方法传动轴大都是回转表面,主要采用车削与外圆磨削成形。

由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra值(Ra=0.8 um)较小,故车削后还需磨削。

外圆表面的加工方案可为:粗车→半精车→磨削。

4.确定定位基准合理地选择定位基准,对于保证零件的尺寸和位置精度有着决定性的作用。

由于该传动轴的几个主要配合表面(Q、P、N、M)及轴肩面(H、G)对基准轴线A-B均有径向圆跳动和端面圆跳动的要求,它又是实心轴,所以应选择两端中心孔为基准,采用双顶尖装夹方法,以保证零件的技术要求。

粗基准采用热轧圆钢的毛坯外圆。

中心孔加工采用三爪自定心卡盘装夹热轧圆钢的毛坯外圆,车端面、钻中心孔。

但必须注意,一般不能用毛坯外圆装夹两次钻两端中心孔,而应该以毛坯外圆作粗基准,先加工一个端面,钻中心孔,车出一端外圆;然后以已车过的外圆作基准,用三爪自定心卡盘装夹(有时在上工步已车外圆处搭中心架),车另一端面,钻中心孔。

轴类零件的加工工艺分析及夹具设计论文

轴类零件的加工工艺分析及夹具设计论文

轴类零件的加工工艺分析及夹具设计论文摘要:本论文主要研究了轴类零件的加工工艺分析及夹具设计。

通过对轴类零件的特点进行分析,提出了适合轴类零件加工的工艺流程,并给出了一种有效的夹具设计方案。

实验证明,该工艺流程和夹具设计方案能够大大提高轴类零件的加工效率和质量。

1. 引言轴类零件是机械中常用的零件之一,广泛应用于汽车、机械、航空等领域。

由于轴类零件长且细,加工难度较大,对加工工艺和夹具设计提出了新的要求。

2. 轴类零件加工工艺分析2.1 轴类零件特点分析轴类零件具有长、细、对称等特点,加工过程中易产生变形和振动。

这些特点使得轴类零件的加工过程较为困难,需要采用适当的工艺方法来解决这些问题。

2.2 轴类零件加工流程分析根据轴类零件的特点,我们提出了一种加工流程。

该流程分为粗加工、精加工和表面处理三个阶段。

粗加工阶段主要进行外形修整和粗留余量的加工;精加工阶段采用滚刀进行细加工,以提高加工质量和表面光洁度;表面处理阶段主要进行抛光和涂漆等表面处理操作。

3. 轴类零件夹具设计3.1 夹具设计原则根据轴类零件的特点和加工流程,夹具设计应遵循以下原则:(1)稳定性原则:夹具应能够牢固固定轴类零件,防止产生振动和变形。

(2)可调性原则:夹具设计应能够根据不同的轴类零件进行调整,满足加工要求。

(3)易操作性原则:夹具应设计成易于操作和安装的形式,提高工人的工作效率。

3.2 夹具设计方案根据夹具设计原则和轴类零件的特点,本文提出了一种夹具设计方案。

该方案采用了中心定位夹具和两个侧面固定夹具的结构,能够稳定地固定轴类零件并保证加工精度。

4. 实验结果与分析通过对轴类零件的加工工艺分析及夹具设计方案的实验,比较了不同加工工艺和夹具设计方案对加工质量和效率的影响。

实验结果表明,本文提出的加工工艺流程和夹具设计方案能够显著提高轴类零件的加工效率和质量。

5. 结论本论文通过对轴类零件加工工艺分析及夹具设计的研究,提出了一种适合轴类零件加工的工艺流程和夹具设计方案。

典型轴类零件数控加工工艺分析

典型轴类零件数控加工工艺分析

典型轴类零件数控加工工艺分析摘要: 随着数控技术的不断发展和应用领域的扩大,数控技术的应用给传统制造业带来了革命性的变化,因为效率、质量是先进制造业的主体。

高速、高精加工技术可极大地提升效率,提高产品的品质,缩短生产周期和提高市场竞争能力。

而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,制定合理的加工方案,选择合适的道具,确定科学的切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些分析处理。

并在加工过程掌握控制精度的方法,才能加工出合格的产品。

关键词: 工艺分析;加工方案;加工路线;控制尺寸一、零件加工工艺分析图1-1 典型轴类零件图1、零件技术要求(1)锐角倒钝;(2)未注形位公差应符合GB1184-80的要求;(3)未注长度尺寸运供需偏差±0.2mm;(4)不准使用锉刀、纱布进行修磨工件表面。

该零件由圆柱、圆弧、圆锥、槽、螺纹、内孔等表面组成。

选用毛培为45#钢,Φ50×130m m,无热处理和硬度要求。

2、确定加工方法加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。

由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸大小和形位公差要求等全面考虑。

考虑加工的效率和加工的经济性,最理想的加工方式为车削,采用数控车床。

3、分析图样尺寸考虑到采用数控车床,在图样中有几个点的坐标值要加以确定如图1-2所示:需要确定的坐标有a点、b点、c点。

在确定三点坐标之前,先确定工件坐标系。

暂时以工件的右端面回转中心为工件坐标系的坐标原点O。

A点的计算 z值-13,x值23(半径值)B点的计算 z值(13+L1),x值13L1值的计算:462 -132 = L1 2 L1=18.973B点z值=(13+L1)=13+18.9763=31.973B点坐标Z-31.973 , X13C点的计算Z值-42, X值(23-L2)L2值的计算:cos10。

轴类零件的数控加工工艺编制及分析

轴类零件的数控加工工艺编制及分析

轴类零件的数控加工工艺编制及分析
一、数控加工
数控加工是目前机械加工中最先进的技术之一,它直接控制各个加工部位进行机械加工。

数控加工的技术日趋成熟,其特点在于:
1、高精度:数控加工采用计算机控制,控制仪器与机床相结合,使制件加工精度得以提高,达到高精度的要求。

2、快速加工:数控机床的运动时间可达到毫秒级,从而避免了传统机床的缓慢、繁琐的移动,大大减少了生产时间,实现快速加工。

3、精密控制:将刀具的转速、进给速率、切深等与加工步骤参数精确设定,使加工速度、深度和质量得以控制,实现精密控制。

4、自动化:数控机床可以实现自动换刀和加工路径的编程,实现自动换刀,避免了传统机床的人工操作,大大提高了生产效率。

二、工艺编制
1、选择加工工件:根据轴类零件的形状、尺寸及加工要求。

2、选择机床:根据加工工件的规格及加工要求,选择适合的机床。

3、选择刀具:根据加工工件的材质及加工要求,选择适合的刀具。

4、编制数控程序:根据轴类零件的图纸及加工要求,编制数控加工程序,指定参数,如转速、进给速度、刀具位置等,并将程序输入到计算机中。

数控机床轴类零件加工工艺分析的毕业设计

数控机床轴类零件加工工艺分析的毕业设计

数控机床轴类零件加工工艺分析的毕业设计一、引言数控机床轴类零件是制造业中常见的零部件之一,其制作过程对零件的质量和性能有着至关重要的影响。

本毕业设计旨在通过对数控机床轴类零件加工工艺的分析与研究,提出一种适用于轴类零件加工的工艺方案,以提高加工效率和零件质量。

二、加工工艺分析1.材料选择:轴类零件通常采用钢材料,如45钢、40Cr钢等。

材料的选择应根据零件的使用要求、受力情况和表面要求等进行确定。

2.工艺路线:对于轴类零件的加工,一般可采用车削、切割、铣削等工艺。

具体的工艺路线应根据零件的形状特点、工艺要求和机床的能力等确定。

3.外形加工:轴类零件的外形加工一般采用车削工艺。

先进行粗加工,然后进行精加工。

车削时要注意刀具的选择、进给速度和切削深度的控制,以确保零件的精度和表面质量。

4.内孔加工:对于具有内孔的轴类零件,在加工过程中可以采用钻削、铰削、镗削等工艺。

在内孔加工时,要注意刀具的选择和冷却液的使用,以防止刀具磨损和加工过程中的热变形。

5.表面处理:轴类零件的表面处理包括磨削、抛光、镀铬等工艺。

这些工艺可以提高零件的表面质量和耐磨性,同时还可以实现美观的外观效果。

三、工艺方案设计与分析1.工艺路线设计:根据轴类零件的形状特点和工艺要求,设计合理的工艺路线,确定每道工序的加工方法和顺序。

在设计工艺路线时,要考虑到加工效率、加工精度和零件变形等因素。

2.工艺参数确定:根据材料的性质和加工要求,确定合适的切削参数,如切削速度、进给速度和切削深度等。

在确定工艺参数时,要充分考虑刀具的耐用性和加工质量的要求。

3.设备选择:根据工艺路线和工艺参数的要求,选择合适的数控机床设备。

设备的选择应考虑到加工范围、加工精度和生产效率等因素。

4.工艺试验分析:在进行实际加工前,进行工艺试验,验证设计的工艺方案的可行性和有效性。

根据试验结果,对工艺进行优化和调整,以提高加工效率和零件质量。

四、结论通过对数控机床轴类零件加工工艺的分析与研究,我们可以得出以下结论:1.合理的工艺路线设计和工艺参数确定对于零件的加工质量和生产效率具有重要影响;2.合适的设备选择能够提高零件的加工精度和生产效率;3.工艺方案设计和工艺试验分析是确保零件加工质量和提高生产效率的重要环节。

典型轴类零件的加工工艺

典型轴类零件的加工工艺

典型轴类零件的加工工艺典型轴类零件的加工工艺设计能通过运用机械制造工艺学课程中的基本理论以及在生产实习中学到实践知识,正确的解决一个零件在加工过程中的定位.夹紧以及工艺路线安排.工艺尺寸确定等问题,保证零件的加工质量本文选择了轴的加工工艺设计这一课题,主要阐述了对轴类零件的加工工艺过程,主要表现在从毛坯到成品的的过程它分为零件的热处理,大部分采用的是常见的四把火和调制处理.对典型的轴比如机床主轴、汽车半轴、内燃机曲轴、阶梯轴和CA6140主轴的热处理和加工工艺都有很明确的方案及选材。

对轴的加工工艺流程分为:下料→锻造→正火→机械加工→调质→粗车—半精车—精车—粗磨—精磨—光整加工—终检。

对工件的装夹都采取一次性装夹满足基准重合和基准统一或者互为基准。

对不同的工件采取的加工工艺有所不同。

以上此法操作简便、工效提高、节省材料,能保证加工精度。

对它的工艺性能也有明显的提高和使用寿命长等优点。

关键词:热处理工艺轴加工工艺轴的装夹定位Through the use of machinery manufacturing technology courses in basic theory and practice in the production of learned practical knowledge, the correct solution to a part in the positioning process. Clamping and routing process. Process to determine issues such as size, to ensure that the processing of parts qualityThis article has chosen the design process of the axis of the subject, the main shaft of the machining process, mainly in the finished product from rough to divide it into parts of the process of heat treatment, most commonly used is the four - to deal with fire and modulation. For example, a typical machine tool spindle axis, automotive axle, the internal combustion engine crankshaft, stepped shaft and spindle CA6140 process of heat treatment and processing of the program are very clear and material selection.Processing process of the axis is divided into: forging → → Cutting machining normalizing → → → Rough quenched - semi-refined car - Finish - coarse grinding - Grinding - Finishing - the end of the seizure. Clamping of the work piece clamping has been taken to meet the benchmark one-time overlap and complement each other or to benchmark thebenchmark reunification. Different parts of the process taken to be different. Above this method is simple, to improve work efficiency, saving materials, can guarantee the processing precision. The performance of its technology has improved and the advantages of long life.Key words: heat treatment process processing shaft axis positioning of the clamping目录第一章前言 (1)第二章轴类零件的分类和技术要求 (2)第一节轴类零件的功用与结构特点 (2)第二节主要技术要求 (3)第三节轴类零件的材料和毛坯 (3)第四节轴类零件的预加工 (4)第三章典型主轴类零件加工工艺分析 (5)第一节轴类零件加工的工艺路线 (5)第二节轴类零件加工的定位基准和装夹 (5)第四章轴类零件选材及工艺设计 (7)第一节机床主轴 (7)第二节汽车半轴 (9)第三节内燃机曲轴 (10)第四节阶梯轴的加工工艺过程 (10)第五节CA6140主轴加工工艺过程 (11)第五章检验 (17)第一节加工中的检验 (17)第二节加工后的检验 (17)结束语 (18)谢辞 (19)参考文献 (20)[1]邱宣怀.机械设计[M].北京:高等教育出版社,1997.. (20)[2]范文慧谭建荣.基于图形单元技术的轴类零件的设计[J].机械设计2001 (20)[3]西北工业大学机械原理及机械零件教研室.机械原理[M].北京:高等教育出版社,1987. 20 [4]机械设计手册编委会.机械设计册[M].北京:接写工业出版社2004 (20)第一章前言在机床、汽车、拖拉机等制造工业中,轴类零件是另一类用量很大,且占有相当重要地位的结构件。

轴类零件加工工艺分析设计

轴类零件加工工艺分析设计

轴类零件加工工艺分析设计
轴类零件加工工艺分析设计是指对轴类零件进行加工过程的分析和设计。

轴类零件是一种常见的机械零件,广泛应用于各个领域,如机械制造、汽车、航空航天等行业。

轴类零件的加工工艺设计直接关系到产品的质量和加工效率。

轴类零件加工工艺设计的主要内容包括以下几个方面:
1. 零件结构分析:首先需要对轴类零件的结构进行分析,包括外形、尺寸、材料等方面的特点。

通过对零件的结构进行分析,可以确定合理的加工方法和工艺参数。

2. 加工工艺选择:根据轴类零件的结构和要求,选择适合的加工工艺。

常用的加工工艺包括车削、铣削、刨削、磨削等。

在选择加工工艺时需要考虑到经济性、加工精度和工艺可行性等因素。

3. 工艺路线设计:确定轴类零件的加工工艺路线,包括各个工序的加工方法、工艺参数和刀具选择等。

在设计工艺路线时需要考虑加工顺序、切削路径和刀具寿命等因素。

4. 加工工艺参数设计:确定每个工序的加工工艺参数,包括切削速度、进给量、切削深度等。

合理的工艺参数设计能够保证零件的加工质量和提高生产效率。

5. 刀具选择和刀具路径设计:选择合适的切削刀具,并设计刀具的路径。

刀具选择和刀具路径设计直接影响到加工质量和工
艺效率。

通过对轴类零件加工工艺的分析和设计,可以提高产品的加工质量和生产效率,降低生产成本,满足客户的要求。

轴类零件加工工艺毕业设计

轴类零件加工工艺毕业设计

轴类零件加工工艺毕业设计轴类零件加工工艺毕业设计在机械制造领域中,轴类零件是一种常见且重要的零件类型。

轴类零件的加工工艺对于产品的质量和性能有着直接的影响。

因此,对轴类零件的加工工艺进行深入研究和设计是非常有必要的。

本文将从加工工艺的选定、工艺流程的设计以及加工设备的选择等方面,探讨轴类零件加工工艺的毕业设计。

一、加工工艺选定轴类零件的加工工艺选定是毕业设计的核心部分。

在进行加工工艺选定时,需要考虑到零件的材料、形状、尺寸以及产品要求等因素。

首先,对于不同材料的轴类零件,其加工工艺会有所不同。

例如,对于钢材轴类零件,常见的加工工艺包括车削、铣削、钻削等;而对于铝合金轴类零件,则可以采用铣削、钻削、镗削等加工工艺。

其次,零件的形状和尺寸也会对加工工艺的选定产生影响。

对于较为复杂的形状和大尺寸的轴类零件,可能需要采用多道工序进行加工。

最后,根据产品要求,还需要考虑到表面光洁度、精度要求等因素,选择适合的加工工艺。

二、工艺流程设计在确定加工工艺选定后,需要进行工艺流程的设计。

工艺流程设计是将加工工艺按照一定的顺序组合起来,形成一条完整的加工流程。

在进行工艺流程设计时,需要考虑到加工工艺之间的先后关系、工艺之间的依赖关系以及工艺之间的协调性。

例如,对于一个轴类零件的加工工艺流程,可能包括车削、铣削、钻削等多个工艺。

在进行工艺流程设计时,需要确保各个工艺之间的顺序正确,避免出现工艺之间的冲突和矛盾。

此外,还需要考虑到工艺之间的依赖关系,确保前一道工艺的加工结果能够满足后一道工艺的要求。

最后,还需要考虑到工艺之间的协调性,确保整个加工流程的高效和稳定。

三、加工设备选择加工设备的选择是轴类零件加工工艺设计的重要环节。

在进行加工设备选择时,需要根据零件的形状、尺寸以及加工工艺的要求来确定合适的设备。

例如,对于较为复杂的形状和大尺寸的轴类零件,可能需要选择五轴联动加工中心或者数控车床等高精度加工设备。

而对于形状简单且尺寸较小的轴类零件,则可以选择普通车床或者铣床等设备。

毕业设计---轴类零件加工工艺设计

毕业设计---轴类零件加工工艺设计

毕业设计---轴类零件加工工艺设计导言随着制造业对高质量、高精度和高效率的要求越来越高,加工工艺成为制造业中不可或缺的环节。

轴类零件是机械制造中常见的一种零件,其加工工艺设计是影响零件质量和生产效率的重要因素。

本文将围绕轴类零件的加工工艺设计展开论述。

一、轴类零件的定义轴类零件指由旋转运动的轴承受机械力并把力传递到其他部件的零件。

它是机械设备中重要的零件之一,广泛应用于各种机械设备中,包括汽车、工业机械、农业机械等领域。

二、轴类零件的加工过程轴类零件一般经过以下加工过程:1.材料准备:根据轴类零件的不同需求,选用不同的材料。

常用的材料有碳钢、合金钢、不锈钢、铜、铝等。

2.锻造或铸造:将选好的材料加热至适当温度,然后通过锻造或铸造的方式将材料制成原始形状。

3.粗加工:使用车床或铣床等工具对轴类零件进行粗加工,形成大致的形状和尺寸。

4.精加工:使用磨床或刀具等工具对轴类零件进行精加工,达到高精度的尺寸和表面光洁度。

5.热处理:根据轴类零件的要求,进行热处理,提高其强度、硬度和耐磨性。

6.表面处理:使用电镀、喷涂等方式对轴类零件进行表面处理,提高其耐腐蚀性和美观度。

三、轴类零件加工工艺设计轴类零件的加工工艺设计是提高零件精度和生产效率的关键,下面将介绍几个常见的加工工艺设计方法。

1.粗加工的切削方式选择轴类零件的切削方式对于粗加工的质量影响较大。

在选择切削方式时,需根据轴类零件的材料、形状、尺寸等因素综合考虑。

常用的切削方式包括顺削、反削、倒切、半倒切等。

顺削适用于中低硬度的材料;反削适用于具有棱角明显的零件;倒切适用于加工直径较大的轴类零件;半倒切适用于某些形状复杂的轴类零件。

综合考虑后,应选择尽可能少的切削次数,降低成本,提高效率。

2.精加工的刀具选择精加工是轴类零件加工过程中最重要的环节之一。

在精加工时,我们需要选择一种合适的刀具,以确保零件的精度和表面光洁度。

一般来说,刀具的选择要根据工件材料、形状、尺寸等因素来确定。

轴类零件数控加工工艺分析

轴类零件数控加工工艺分析

轴类零件数控加工工艺分析一、概述当我们谈论轴类零件的数控加工工艺,其实就是在说一种非常专业的制造过程。

那么什么是轴类零件呢?简单来说轴类零件就是形状像柱子一样的零件,有着各种各样的用途。

它们可能是机器的核心部分,支撑着整个机器的运行。

而数控加工呢,就是一种用计算机来控制机器进行加工的方式,精度高效率高。

轴类零件的数控加工工艺分析,主要就是分析如何更好地用数控加工技术来制作轴类零件。

这个过程涉及到很多方面,包括材料的选择、设计的考虑、加工的工具、加工的方法等等。

这个过程可不是简单的把材料切掉一部分就完事的,它需要我们深入理解材料特性,精心设计加工方案,精确控制每一个加工环节。

只有这样我们才能制造出高质量、高精度的轴类零件。

可以说轴类零件的数控加工工艺分析,既是一种技术,也是一种艺术,是对细节的追求,也是对品质的追求。

接下来我们就来详细聊聊这个工艺分析的过程。

1. 介绍轴类零件的重要性及其应用领域轴类零件的重要性体现在它的应用广泛性上,从家庭电器到大型机械设备,甚至是我们仰望的宇宙飞船,几乎都有轴类零件的身影。

每当启动一台机器时,背后都是轴类零件在默默转动,驱动整个机器运行。

因此了解和掌握轴类零件的数控加工工艺,对我们来说是十分重要的。

这样不仅能提高生产效率,还能确保机器运行的安全和稳定。

所以啊咱们接下来就好好聊聊轴类零件的数控加工工艺分析吧!2. 简述数控加工技术在轴类零件加工中的应用及发展趋势轴类零件是机械设备中不可或缺的一部分,数控加工技术为其加工带来了革命性的变革。

接下来让我们来探讨一下数控加工技术在轴类零件加工中的应用及发展趋势。

数控加工技术的应用在轴类零件加工中十分广泛,随着科技的发展,数控加工技术已经成为现代制造业的核心技术之一。

它的出现使得轴类零件的加工变得更加精确、高效。

利用数控机床,我们可以控制刀具的运动轨迹,精确地切削出轴类零件的各种形状和尺寸。

而且数控加工技术还可以实现自动化生产,大大提高了生产效率。

轴类零件加工工艺分析设计

轴类零件加工工艺分析设计

任务1:公差等级的分析与选用
公差等级的选用
1)IT01、IT0、IT1级公差一般用于高精度量块和其它精密标 准量块的尺寸。 2)IT2~IT5级公差用于特别精密的零件尺寸。 3)IT5(孔到IT6)级公差用于高精度和重要表面的配合尺寸; 4)IT6(孔到IT7)级公差用于零件较精密的配合尺寸; 5)IT7~IT8级用于一般精度要求的配合尺寸; 6)IT9~IT10级常用于一般要求的配合尺寸,或精度要求较高 的与键配合的槽宽尺寸。 7)IT11~IT12级公差用于不重要的配合尺寸。 8)IT12~IT18级公差用于未注公差的尺寸。
1.定向位置公差—平行度
被测实际要素相对于基准要素的方向成0º的要求。
以平面为基准的平行度公差带
2. 垂 直 度
垂直度是指零件上被测要素 (面或直线)相对于基准要素 (面或直线)垂直的程度。
定向位置公差—垂直度
被测实际要素相对于基准要素的方向成90º的要求。
以轴线为基准的 垂直度公差带
3. 同 轴 度
同轴度是指零件上被测回转表面 的轴线相对于基准轴线同轴的程度。
定位位置公差—同轴度
要求被测实际要素与基准要素同轴。
同轴度公差带
4. 圆 跳 动
圆跳动是指零件上被测回转 表面相对于以基准轴线为轴线的 理论回转面的偏离度。
5. 对称度

对称度常用在具有对称结构的
沟或槽处,例如轴系传动中的轴径
与轴上零Байду номын сангаас的配合。例如当齿轮、
❖ 对于一般精度的轴颈,几何形状误差应限制 在直径公差范围内,要求高时,应在零件图 样上另行规定其允许的公差值。
❖ 3)相互位置精度 ❖ 轴类零件中的配合轴颈(装配传动件的轴颈)相对

数控加工工艺大作业典型轴类零件的数控加工工艺设计.doc

数控加工工艺大作业典型轴类零件的数控加工工艺设计.doc

目录1.零件图工艺分析2设备选择3确定零件的定位基准和装夹方式4确定加工顺序及进给路线5刀具的选择6确定切削用量7填写数控加工工艺文件轴类零件的数控加工工艺的编制及加工图1.零件图工艺分析零件车削工艺分析如图1-1所示,零件材料处理为:45钢,下面对该零件进行数控车削工艺分析。

零件如图:图1-1 零件图1.1数控加工工艺基本特点数控机床加工工艺与普通机床加工原则上基本相同,但数控机床是自动进行加工,因而有如下特点:①数控加工的工序内容比普通机床的加工内容复杂,加工的精度高,加工的表面质量高,加工的内容较丰富。

②数控机床加工程序的编制比普通机床工艺编制要复杂些。

这是因为数控机床加工存在对刀、换刀以及退刀等特点,这都无一例外的变成程序内容,正是由于这个特点,促使对加工程序正确性和合理性要求极高,不能有丝毫的差错。

否则加工不出合格的零件。

在编程前我们一定要对零件进行工艺分析,这是必不可少的一步,如图1-1我要对该零件进行精度分析,选择加工方法、拟定加工方案、选择合理的刀具、确定切削用量。

该零件由螺纹、圆柱、圆锥、圆弧等表面组成。

可控制球面形状精度、30°的锥度等要求。

经上面的分析,我可以采用以下工艺措施:(1)为便于装夹,为了保证工件的定位准确、稳定,夹紧方面可靠,支撑面积较大,零件的左端是最大直径圆柱ф85mm,中段的圆柱ф80mm。

右端是螺纹,应先装夹毛坯加工出左端圆弧及圆柱ф85mm、ф80mm调头装夹ф80mm的圆柱加工右端螺纹、圆柱及锥面,毛坯选ф85×350mm。

1.2设备选择根据该零件的外形是轴类零件,只有在数控车床上加工才能保证其加工的尺寸精度和表面质量。

我选择在本校的数控机床HNC-CK6140加工该零件。

1.3确定零件的定位基准和装夹方式1.3.1粗基准选择原则(1)为了保证不加工表面与加工表面之间的位置要求,应选不加工表面作粗基准。

(2)合理分配各加工表面的余量,应选择毛坯外圆作粗基准。

典型轴类零件加工工艺

典型轴类零件加工工艺

典型轴类零件加工工艺一、引言典型轴类零件是机械装置中常见的零部件之一,其加工工艺对于保证零件的精度和质量具有重要意义。

本文将介绍典型轴类零件的加工工艺流程和常见的加工方法。

二、加工工艺流程1. 材料准备典型轴类零件的材料通常采用优质的金属材料,如钢材、铝材等。

在加工前,需要对材料进行切割、锻造或铸造等工艺,以得到符合要求的材料坯料。

2. 粗加工粗加工是对材料坯料进行初步成型的阶段。

常见的粗加工方法包括车削、铣削、锯割等。

其中,车削是最常用的粗加工方法之一,通过车床将材料坯料固定在主轴上,并利用刀具对其进行旋转切削,以得到所需的外形和尺寸。

3. 热处理热处理是为了改善材料的力学性能和组织结构,提高轴类零件的硬度和耐磨性。

常见的热处理方法包括淬火、回火、正火等。

在热处理过程中,需要控制加热温度、保温时间和冷却速度等参数,以确保零件的质量。

4. 精加工精加工是在粗加工的基础上对零件进行精细加工的阶段。

常见的精加工方法包括磨削、镗削、拉削等。

其中,磨削是最常用的精加工方法之一,通过磨床将零件与磨削工具接触,以去除表面的凸起部分,提高零件的精度和表面质量。

5. 表面处理表面处理是为了提高零件的耐腐蚀性和美观度。

常见的表面处理方法包括镀层、喷涂、抛光等。

其中,镀层是最常用的表面处理方法之一,通过将零件浸泡在镀液中,使其表面形成一层保护性的金属膜,以提高零件的耐腐蚀性。

6. 检测和检验检测和检验是为了保证零件的质量和精度。

常见的检测和检验方法包括尺寸测量、外观检查、硬度测试等。

其中,尺寸测量是最常用的检测和检验方法之一,通过测量零件的尺寸和形状,以判断其是否符合设计要求。

7. 组装和调试组装和调试是将已加工好的轴类零件按照设计要求进行组装,并进行必要的调试和试运行。

通过组装和调试,可以确保零件的相互配合和工作正常,以保证整个机械装置的正常运行。

三、常见加工方法1. 车削车削是通过车床将材料坯料固定在主轴上,并利用刀具对其进行旋转切削的方法。

轴类零件的加工工艺资料分析

轴类零件的加工工艺资料分析

轴类零件的加工工艺绪论本课题主要研究轴类零件加工过程,加工工艺注意点及改进的方法,通过总结非标件的加工以及典型半成品轴类零件的加工实例来加以说明。

现在许多制造最终成品的工厂为了提高机器的某些性能或者降低成本,需要找机械加工厂定做的,常常会因为设备、技术或者工艺规程制定的不是很好,加工出来的部件无法满足使用要求,所以需要一次次的总结,改进加工工艺,从而完善产品。

经过总结了生产上出现的问题,写下了这篇论文。

轴类零件是机器中经常遇到的典型零件之一。

它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。

按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。

图轴的种类a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴h)曲轴 i) 凸轮轴1 轴类零件的功用、结构特点轴类零件是机器中经常遇到的典型零件之一。

它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。

按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。

它主要用来支承传动零部件,传递扭矩和承受载荷。

轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。

根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。

轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。

1.1轴类零件的毛坯和材料1.1.1轴类零件的毛坯轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。

毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。

根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。

中小批生产多采用自由锻,大批大量生产时采用模锻。

1.1.2轴类零件的材料轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。

轴类零件加工工艺设计

轴类零件加工工艺设计

轴类零件加工工艺设计轴类零件是机械制造行业中常见的零件类型之一,广泛应用于液压机械、风机、飞机、汽车、重型设备等领域。

轴类零件通常具有高强度、低摩擦、高转速、高精度等特点,因此加工工艺设计对于保证产品质量、提高生产效率具有重要意义。

一、工艺路线设计轴类零件的加工路线设计是加工工艺设计的第一步。

一般的加工路线包括:原材料选择、加工方法选择、制造精度要求、热处理要求、表面处理要求、质量检验要求等。

在考虑这些因素的基础上设计出最优的加工路线,能够提高产品加工效率和质量稳定性。

同时,加工路线的合理设计也可以节省成本,提高企业的经济效益。

二、切削加工工艺设计切削加工是轴类零件加工中常用的方法之一,常见的加工方式包括铣削、车削、镗削、齿轮加工等。

在加工轴类零件时,需要考虑到零件材料的切削性能、切削工艺参数的选择、切削刀具的选择、切削冷却液的选择等。

在切削加工工艺设计中,应该尽可能减小切削阻力、减小加工表面粗糙度、提高加工精度和表面质量。

三、热处理工艺设计轴类零件通常具有高强度、高精度等特点,因此热处理工艺设计也是加工工艺设计的关键环节之一。

常见的热处理方法包括淬火、回火、正火、调质等。

在设计热处理工艺时,需要考虑零件的材料、零件的用途、零件的精度等因素。

正确的热处理工艺设计能够保证轴类零件的高强度和精度稳定性。

四、表面处理工艺设计表面处理工艺设计是为了提高轴类零件表面的质量稳定性,一般包括磨削、腐蚀、电镀、喷涂、喷砂等。

在表面处理工艺设计中,需要考虑到零件材料、表面处理后的表面粗糙度、表面处理后的尺寸变化、表面层的耐腐蚀性等因素。

正确的表面处理工艺能够为轴类零件提供更好的耐腐蚀和耐磨性。

五、质量检验工艺设计由于轴类零件常常用于高精度和高转速的场合,因此对质量的要求非常高。

对于轴类零件加工环节的质量检验需要做到全过程的,包括材料的质量控制、加工中的尺寸控制、工艺检验及表面质量检验等。

质量检验工艺设计需要制定有效的检验程序,做到从加工开始就保证零件的质量的可追溯性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶梯轴加工工艺过程分析图6—34为减速箱传动轴工作图样。

表6—13为该轴加工工艺过程。

生产批量为小批生产。

材料为45热轧圆钢。

零件需调质。

(一)结构及技术条件分析该轴为没有中心通孔的多阶梯轴。

根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。

(二)加工工艺过程分析1.确定主要表面加工方法和加工方案。

传动轴大多是回转表面,主要是采用车削和外圆磨削。

由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。

其加工方案可参考表3-14。

2.划分加工阶段该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。

各加工阶段大致以热处理为界。

3.选择定位基准轴类零件的定位基面,最常用的是两中心孔。

因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。

而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。

但下列情况不能用两中心孔作为定位基面:(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。

(2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。

为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。

①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;②当轴有圆柱孔时,可采用图6—35a所示的锥堵,取1∶500锥度;当轴孔锥度较小时,取锥堵锥度与工件两端定位孔锥度相同;当轴通孔的锥度较大时,可采③用带锥堵的心轴,简称锥堵心轴,如图所示。

35b6—使用锥堵或锥堵心轴时应注意,一般中途不得更换或拆卸,直到精加工完各处加工面,不再使用中心孔时方能拆卸。

4.热处理工序的安排该轴需进行调质处理。

它应放在粗加工后,半精加工前进行。

如采用锻件毛坯,必须首先安排退火或正火处理。

该轴毛坯为热轧钢,可不必进行正火处理。

5.加工顺序安排除了应遵循加工顺序安排的一般原则,如先粗后精、先主后次等,还应注意:(1)外圆表面加工顺序应为,先加工大直径外圆,然后再加工小直径外圆,以免一开始就降低了工件的刚度。

(2)轴上的花键、键槽等表面的加工应在外圆精车或粗磨之后,精磨外圆之前。

轴上矩形花键的加工,通常采用铣削和磨削加工,产量大时常用花键滚刀在花键铣床上加工。

以外径定心的花键轴,通常只磨削外径,而内径铣出后不必进行磨削,但如经过淬火而使花键扭曲变形过大时,也要对侧面进行磨削加工。

以内径定心的花键,其内径和键侧均需进行磨削加工。

(3)轴上的螺纹一般有较高的精度,如安排在局部淬火之前进行加工,则淬火后产生的变形会影响螺纹的精度。

因此螺纹加工宜安排在工件局部淬火之后进行。

二、带轮轴加工工艺过程分析图6 —36 为带轮轴工作图样。

带轮轴中的主要技术条件有两项:一为渗碳层深度,应控制在 1.2— 1.5 mm 范围内;二为外圆¢22 f 7 需经渗碳淬火,其硬度为HRC58 ~63 。

可以看出只有¢22 f 7 处需渗碳处理,其余部分均不可渗碳。

零件上不需渗碳的部分,可用加大余量待渗碳后车去渗碳层或在不需渗碳处涂防渗材料。

加工余量应单面略大于渗碳深度,故右端直径取¢25 mm ,单面去碳余量为2.5 mm ,总长两端也应放去渗碳余量各 3 mm 。

在磨外圆前由于已经过淬火工序,两端中心孔在淬火时易产生氧化皮及变形,故增加一道研磨中心孔的工序。

14 为带轮轴的加工工艺过程。

—表6三、细长轴加工工艺特点(一)细长轴车削的工艺特点很容易因切削力及重力的作用而发车削时装夹不当, 1 .细长轴刚性很差,生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。

.细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。

如 2果轴的两端为固定支承,则工件会因伸长而顶弯。

3 .由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。

4 .车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。

若压力过小或不接触,就不起作用,不能提高零件的刚度;若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形,如图 6 —37 所示。

(二)细长轴的先进车削法——反向走刀车削法图6––38 为反向走刀车削法示意图,这种方法的特点是:1 .细长轴左端缠有一圈钢丝,利用三爪自定心卡盘夹紧,减小接触面积,使工件在卡盘内能自由地调节其位置,避免夹紧时形成弯曲力矩,在切削过程中发生的变形也不会因卡盘夹死而产生内应力。

2 .尾座顶尖改成弹性顶尖,当工件因切削热发生线膨胀伸长时,顶尖能自动后退,可避免热膨胀引起的弯曲变形。

3 .采用三个支承块跟刀架,以提高工件刚性和轴线的稳定性,避免“竹节”形。

4 .改变走刀方向,使床鞍由主轴箱向尾座移动,使工件受拉,不易产生弹性弯曲变形。

轴类零件加工工艺传动轴机械加工工艺实例轴类零件是常见的典型零件之一。

按轴类零件结构形式不同,一般可分为光轴、阶梯轴和异形轴三类;或分为实心轴、空心轴等。

它们在机器中用来支承齿轮、带轮等传动零件,以传递转矩或运动。

台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。

下面就以减速箱中的传动轴为例,介绍一般台阶轴的加工工艺。

1.零件图样分析图A-1传动轴图A-1所示零件是减速器中的传动轴。

它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。

轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。

根据工作性能与条件,该传动轴图样(图A-1)规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。

这些技术要求必须在加工中给予保证。

因此,该传动轴的关键工序是轴颈M、N和外圆P、Q的加工。

2.确定毛坯该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。

本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。

3.确定主要表面的加工方法传动轴大都是回转表面,主要采用车削与外圆磨削成形。

由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra值(Ra=0.8 um)较小,故车削后还需磨削。

外圆表面的加工方案(参考表A-3)可为:粗车→半精车→磨削。

4.确定定位基准合理地选择定位基准,对于保证零件的尺寸和位置精度有着决定性的作用。

由于该传动轴的几个主要配合表面(Q、P、N、M)及轴肩面(H、G)对基准轴线A-B均有径向圆跳动和端面圆跳动的要求,它又是实心轴,所以应选择两端中心孔为基准,采用双顶尖装夹方法,以保证零件的技术要求。

粗基准采用热轧圆钢的毛坯外圆。

中心孔加工采用三爪自定心卡盘装夹热轧圆钢的毛坯外圆,车端面、钻中心孔。

但必须注意,一般不能用毛坯外圆装夹两次钻两端中心孔,而应该以毛坯外圆作粗基准,先加工一个端面,钻中心孔,车出一端外圆;然后以已车过的外圆作基准,用三爪自定心卡盘装夹(有时在上工步已车外圆处搭中心架),车另一端面,钻中心孔。

如此加工中心孔,才能保证两中心孔同轴。

5.划分阶段对精度要求较高的零件,其粗、精加工应分开,以保证零件的质量。

该传动轴加工划分为三个阶段:粗车(粗车外圆、钻中心孔等),半精车(半精车各处外圆、台阶和修研中心孔及次要表面等),粗、精磨(粗、精磨各处外圆)。

各阶段划分大致以热处理为界。

6.热处理工序安排轴的热处理要根据其材料和使用要求确定。

对于传动轴,正火、调质和表面淬火用得较多。

该轴要求调质处理,并安排在粗车各外圆之后,半精车各外圆之前。

综合上述分析,传动轴的工艺路线如下:下料→车两端面,钻中心孔→粗车各外圆→调质→修研中心孔→半精车各外圆,车槽,倒角→车螺纹→划键槽加工线→铣键槽→修研中心孔→磨削→检验。

7.加工尺寸和切削用量传动轴磨削余量可取0.5mm,半精车余量可选用1.5mm。

加工尺寸可由此而定,见该轴加工工艺卡的工序内容。

车削用量的选择,单件、小批量生产时,可根据加工情况由工人确定;一般可由《机械加工工艺手册》或《切削用量手册》中选取。

8.拟定工艺过程定位精基准面中心孔应在粗加工之前加工,在调质之后和磨削之前各需安排一次修研中心孔的工序。

调质之后修研中心孔为消除中心孔的热处理变形和氧化皮,磨削之前修研中心孔是为提高定位精基准面的精度和减小锥面的表面粗糙度值。

拟定传动轴的工艺过程时,在考虑主要表面加工的同时,还要考虑次要表面的加工。

在半精加工¢52mm、¢44mm及M24mm外圆时,应车到图样规定的尺寸,同时加工出各退刀槽、倒角和螺纹;三个键槽应在半精车后以及磨削之前铣削加工出来,这样可保证铣键槽时有较精确的定位基准,又可避免在精磨后铣键槽时破坏已精加工的外圆表面。

在拟定工艺过程时,应考虑检验工序的安排、检查项目及检验方法的确定。

综上所述,所确定的该传动轴加工工艺过程见表A-1。

进步。

们共同惯,坚持下去,让我种非常见或建过后,。

阅读希望您提出保贵的意议。

阅读和学习是一好的习接打印改,也文档可本读我的您好,欢迎您阅文章,WORD编辑修可以直。

相关文档
最新文档