钙钛矿型金属氧化物的光催化性能研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以半导电性材料为催化剂,利用太阳能光催化

氧化有毒污染物质是近20年来研究的热门课题之一.目前使用较普遍的为结构和光、化学性能均稳定且无毒的TiO2[1 ̄3],然而难于回收分离以及只对紫外光响应制约了它的应用和发展,开发新型可见光催化剂以及有效地提高催化剂的回收处理成为当今光催化材料研究的主要方向.钙钛矿型金属氧化物是继二氧化钛之后被提出的另一类新型光催化剂.钙钛矿型金属氧化物因其独特的结构逐渐成为国内外光催化领域研究的热点.作为优异的光催化剂,目前它的应用主要集中在光解水制氢气和氧气、有色有机物染料的降解、气相有机污染物的降解等方面.本文主要介绍钙钛矿型光催化剂的结构、制备方法及其应用进展.

1钙钛矿型金属氧化物结构特征

钙钛矿型金属氧化物因具有天然钙钛矿(CaTiO3)结构而命名,其化学组成通常可用ABO3来表达,一般A位是半径较大的稀土或碱土元素离子,处于12个氧原子组成的十四面体的中央;B位是半径比较小的过渡金属离子,处于6个氧离子组成的八面体中央.结构如下图[4]:

A位和B位皆可被半径相近的其他金属离子部分取代而保持其晶体结构基本不变,因此在理论

上它是研究催化剂表面及催化性能的理想样品.由

于A位和B位离子可以掺杂,为了满足化合物显电中性的性质,化学式通式可以用AI1-xAxIIBI1-xBxIIO3表示,适当的x值可相应提高材料的催化性能,周期表中绝大部分元素都能组成稳定的钙钛矿结构[5].通常认为,在钙钛矿型复合氧化物中,A位金属不直接参与实际反映,主要起到稳定结构的作用,而B位金属为活性位.但A位离子若被其它不同价态的离子所取代,则B位离子的价态可能也会随之变化,从而导致结构的稳定性受到影响,同时还可能造成晶格缺陷[6].

2钙钛矿型金属氧化物的光催化活性研究

钙钛矿型氧化物由于其特殊的结构和较好的催化性能(光响应延伸至可见光区)引起了人们的关注.典型的钙钛矿型复合氧化物光催化剂有SrTiO3[7]、钽酸盐系列(LiTaO3、NaTaO3、KTaO3)[8]等.近年来,国内利用钙钛矿型光催化剂对有色有机物染料进行降解的光催化研究占多数.其中白树林、傅希贤[9,10]

系统研究了钙钛矿型复合氧化物(ABO3)在光催化方面的性能,结果显示了钙钛矿型复合氧化物在光催化方面具有潜在的应用价值.TakahisaOmata[11]

等将Sr(Zr1-XYX)O3-8与TiO2复合形成p-n结,可见光下催化降解亚甲基蓝和HCOOH

时取得了远

图1-1钙钛矿构型BO6的八面体构型

钙钛矿型金属氧化物的光催化性能研究

刘亚子

(南京大学金陵学院

环境科学与工程系,江苏南京

210089)

要:介绍了钙钛矿型金属氧化物的结构;概括了其主要的制备方法,包括固相反应法、溶胶凝胶

法、

水热合成法以及化学共沉淀法等并进行了比较;综述了钙钛矿型金属氧化物的光催化性能,其光催化机理及光催化活性影响因素等方面的问题,强调了结构与性能之间的关系并对其研究方向提出了自己的见解.

关键词:钙钛矿型金属氧化物;制备方法;光催化活性中图分类号:X506

文献标识码:A

文章编号:1673-260X(2013)01-0013-04

基金项目:江苏省自然科学基金项目资助(BK2012732

图1-2理想钙钛矿型晶胞型

13--

型层状氧化物K2La2Ti3O10为催化剂光解水时,H2的生成率高达2186μmol/h;DongWonHwang[13]等以La2Ti2O7为催化剂在可见光照射下实现了水的分解.

2.1光催化机理

根据PariG[14]对ABO3型钙钛矿氧化物的描述,半导体的导带由位于费米能级附近的B位阳离子的3d轨道构成,而其价带由位于低位能级的氧的2p轨道构成.能隙即为导带与价带之间的能级差.在氧的2p轨道能级确定的条件下,如果B位离子选择不同,则可以获得不同能隙、不同响应波长的ABO3型半导体光催化剂.从结构设计来看,钙钛矿型氧化物无疑比TiO2半导体提供了更便利的利用空间.其光催化反应的基本机理与TiO2光催化剂相同,但ABO3型钙钛矿氧化物的结构更为特殊,其光催化活性的影响因素也更为复杂,不仅与B离子电负性、B-O结合能有关,同时也与A、B离子价态等因素有关.近年来的研究表明,催化剂的负载与掺杂可在不同程度上提高其光催化活性.2.2光催化活性的影响因素

2.2.1粒径的影响

催化剂的纳米粒子越小,电子与空穴迁移到表面的时间越小,复合的几率也就越小;同时粒子尺寸越小,比表面越大,反应物与催化剂接触面积越大,越有利于光催化氧化反应进行,反应速率和效率均较高.所以选择恰当的方法制备出粒径分布均匀的纳米级催化剂是保证光催化活性的关键步骤之一.这与TiO2光催化剂的研究结果是一致的.2.2.2B离子电负性的影响

B位阳离子为光催化活性组分,选择不同的B位离子对ABO3型钙钛矿氧化物的光催化活性有重要影响.半导体材料的禁带宽度与构成半导体材料的相应元素的电负性差值有关,电负性差值越大,禁带宽度越大.天津大学傅希贤教授等[9]在这方面做了深入的研究.对一系列钙钛矿型化合物LaMO3(M=Cr、Mn、Fe、Co)的光催化活性进行了研究,即A位离子相同,而B位离子用不同过渡金属取代.结果发现:从LaCrO3到LaCoO3,其光催化活性随B离子电负性逐渐增大而增强.对于LaMO3(M=Cr、Mn、Fe、Co)系列化合物,其光催化活性的大小取决于M-O之间的电负性差值.从另一个角度来阐述,是由于Cr-O之间的结合能大于Co-O之间的结合能.B-O之间结合能的降低会使得催化剂表面的氧空位更易形成,也有利于表面吸附,从而提高光催化效率.

2.2.3电子构型的影响大于LaFeO3的催化剂活性,其原因还在于d电子构型的差异.其中Fe3+的电子构型为t2g3eg2,处于半充满状态,其能量较低,体系稳定,不易被催化生成Fe4+.而Co3+的电子构型为t2g4eg2,易失一个电子形成Co4+.为维持晶体整体的电中性,晶体中会产生部分氧空位.随着氧空位的产生,催化剂的光催化活性得到提高.

2.2.4A、B离子价态的影响

ABO3催化剂的催化活性取决于A位和B位元素离子的种类.当A位离子为+3价时,整个分子较稳定,催化活性较低.若A位为+1价的碱金属或+2价的碱土金属时,过渡元素的价态应该提高,由此过渡金属B在晶体中将产生两种价态,其间存在快速的电子交换,使晶体中容易形成多种缺陷.王俊珍[16]等认为,在SrFeO3-λ催化剂中存在着Fe4+-O-Fe3+之间的电子交换,削弱了Fe-O键的强度,氧空位的存在和Fe-O键强度的削弱,使催化剂具有较高的催化活性.

2.2.5掺杂的影响

钙钛矿型化合物的光催化活性也可以通过A位或B位的部分掺杂得到提高.掺杂可以提高ABO3催化剂光催化活性的主要机理是通过在半导体晶格中引入缺陷或改变离子价态,从而减少光致空穴与电子的复合几率.另一个可能的原因是部分元素的掺杂在半导体禁带中插入受主能级,从而拓宽或延伸了光吸收范围.Teiji等[17]对LaCoO3的部分掺杂进行了研究,结果表明,其中的B位离子存在价态变化并产生氧空位,这种混合价态和氧空位使它具有良好的催化性能.Teruhisa等[18]研究发现,Sr-TiO3光催化剂经S、C阳离子共掺杂后,其光吸收带边明显从400nm移向700nm,光吸收范围延伸到可见光区,而且掺杂后的SrTiO3的光催化活性得到改善.

2.2.6外加氧化剂的影响

通过向溶液中加入H2O2可对有机物光催化降解反应起到很好的促进作用.H2O2是强氧化剂,也是有效的电子俘获剂,因此,适当含量的H2O2氧化剂可以有效地抑制光激发电子和空穴的复合,提高光催化氧化的速率和效率[19].另外,现实反应条件也是影响催化剂光催化活性的重要因素,其中包括:制备方法、反应体系的pH值、反应液初始浓度、反应时间等.

2.2.7负载的影响

负载不改变钙钛矿原始晶胞的结构,而是通过浸渍或充分混合的方法使金属或者金属的氧化物吸附在钙钛矿单一组分之上,从而能够依靠所负载

14--

相关文档
最新文档