山东省临沂市沂南县2018-2019上学期八年级期末数学调研试题(含答案) (1)
2018-2019学年度第一学期期末调研考试八年级数学试卷
2018-2019学年度第一学期期末调研考试八年级数学试卷一、 选择题(本题共16小题,总分42分。
1~10小题,每题3分;11~16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)1.下列长度的各组线段中,能构成三角形的是( )A .3,4,5B .2,2,4C .1,2,3D .2,3,62. 下面有4个汽车标志图案,其中不是轴对称图形的是( )A .B .C .D .3.若等腰三角形的周长为26cm ,底边为11cm ,则腰长为( ) A .11cm B .11cm 或7.5cmC . 7.5cmD .以上都不对4.已知x 2+kxy+16y 2是一个完全平方式,则k 的值是( )A .8B .±8C .16D .±165.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为( ) A .3 B .4 C .5 D .86.下列分式不是最简分式的是( ) A .B .C .D .7.计算(﹣a ﹣b)2等于( )A.a 2+b 2B.a 2﹣b 2C.a 2+2ab+b 2D.a 2﹣2ab+b 28. 如图, ∠AOB 是一个任意角,在边OA 、OB 上分别取点M 、N ,使OM=ON 。
移动角尺,使角尺两边相同的刻度分别与M 、N 重合。
则过角尺顶点C 的射线OC 便是∠AOB 平分线。
这里的根据是( )A .SASB .ASAC .HLD .SSS9. 下列运算正确的是( ) A.235326a a a ⋅= B. 33144a a a +=C. D. 2)22a b a b -+=-+(10.如图,一艘轮船位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( ) A .40海里 B .60海里 C .70海里 D .80海里 11.如图,∠DAE=∠ADE=15°,DE ∥AB ,DF ⊥AB ,若AE=8,则DF 等于( )A.5B.4C.3D.2 12.张老师和李老师住在同一个小区,离学校米。
∥3套精选试卷∥2018年临沂市八年级上学期期末调研数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,∠ACB=900,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm ,则BE=( )A .1cmB .0.8cmC .4.2cmD .1.5cm【答案】B【详解】解:90ACB ∠=,90BCE ACE ∴∠+∠=,∵BE ⊥CE ,AD ⊥CE ,90E ADC ∴∠=∠=,90CAD ACE ∠+∠=,∴∠BCE=∠CAD ,在△ACD 和△CBE 中,90BCE CADE ADC AC BC ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE=2.5cm ,BE=CD ,∵CD=CE−DE=2.5−1.7=0.8cm ,∴BE=0.8cm.故选B.2. “对顶角相等”的逆命题是( )A .如果两个角是对顶角,那么这两个角相等B .如果两个角相等,那么这两个角是对顶角C .如果两个角不是对顶角,那么这两个角不相等D .如果两个角不相等,那么这两个角不是对顶角【答案】B【分析】把命题的题设和结论互换即可得到逆命题.【详解】命题“对顶角相等”的逆命题是“如果两个角相等,那么它们是对顶角”,故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.等腰三角形的两边长分别是3cm ,7cm .则它的周长是( )A .17cmB .13cmC .13cm 或17cmD .212cm 【答案】A【分析】题目给出等腰三角形有两条边长为3cm 和7cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当3cm 是腰时,3+3<7,不能组成三角形,当7cm 是腰时,7,7,3能够组成三角形.则三角形的周长为17cm .故选:A .【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 4.如图,在ABC ∆,ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,点C ,D ,E 三点在同一条直线上,连结BD ,BE 则下列结论中错误的是( )A .BD CE =B .BD CE ⊥C .ACE DBC ∠=∠D .45ACE DBC ∠+∠=︒【答案】C 【分析】根据题意,通过三角形的全等性质及判定定理,角的和差,勾股定理进行逐一判断即可得解.【详解】A.∵90BAC DAE ∠=∠=︒,∴BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,∵在BAD ∆和CAE ∆中,=AB AC BAD CAE AD AE =⎧⎪∠∠⎨⎪=⎩,∴()BAD CAE SAS ∆≅∆,∴BD CE =,故A 选项正确;B.∵45ABD DBC ∠+∠=︒,∴45ACE DBC ∠+∠=︒,∴90DBC DCB DBC ACE ACB ∠+∠=∠+∠+∠=︒,则BD CE ⊥,故B 选项正确;C.∵ABD ACE ∠=∠,∴只有当ABD DBC ∠=∠时,ACE DBC ∠=∠才成立,故C 选项错误;D. ∵ABC ∆为等腰直角三角形,∴45ABC ACB ∠=∠=︒,∴45ABD DBC ∠+∠=︒,∵BAD CAE ∆≅∆,∴ABD ACE ∠=∠,∴45ACE DBC ∠+∠=︒,故D 选项正确,故选:C.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.5.一组数据:0,1,2,2,3,4,若增加一个数据2,则下列统计量中,发生改变的是( )A .方差B .众数C .中位数D .平均数 【答案】A【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【详解】解:A 、原来数据的方差=16[(0-2)2+(1-2)2+2×(2-2)2+(3-2)2+(4-2)2]=53,添加数字2后的方差=17[(0-2)2+(1-2)2+3×(2-2)2+(3-2)2+(4-2)2]=107,故方差发生了改变;B、原来数据的众数是2,添加数字2后众数仍为2,故B与要求不符;C、原来数据的中位数是2,添加数字2后中位数仍为2,故C与要求不符;D、原来数据的平均数是2,添加数字2后平均数仍为2,故D与要求不符;故选A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.6.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC【答案】B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.7.实数-2,0.3,17,2,- 中,无理数的个数是:A.2 B.3 C.4 D.5 【答案】A【分析】实数包括有理数和无理数,而无限不循环小数是无理数【详解】解:给出的数中,,-π是无理数,故选A.考点:无理数的意义.8.若m =15,则m 介于哪两个整数之间( )A .1<m <2B .2<m <3C .3<m <4D .4<m <5【答案】C【分析】由91516<<可得答案.【详解】解:∵91516<<,∴3<15<4,∴3<m <4,故选:C .【点睛】本题考查无理数的估算,用先平方再比较的一般方法比较简单.9.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --= 【答案】B【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n +-=,整理即可求解【详解】解:如图,222m m n m , 22222m n mn m ,2220m mn n +-=.故选:B .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D【答案】B 【分析】观察解题过程,找出错误的步骤及原因,写出正确的解题过程即可.【详解】上述计算过程中,从B 步开始错误,分子去括号时,1没有乘以1.正确解法为:23311x x x-+-- ()()33111x x x x -=-+--()()()()()3131111x x x x x x +-=-+-+- ()()33(1)11x x x x --+=+-()()33311x x x x ---=+-()()2611x x x --=+-. 故选:B .【点睛】本题考查了分式的加减法,熟练掌握运算法则是解答本题的关键.二、填空题11.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.12.如图,以数轴的单位长度线段为边做一个正方形以表示数2的点为圈心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_________【答案】22-【分析】由图可知,正方形的边长是12,所以点A表示的数为2减去圆的半径即可求得.22112+=2,则点A表示的数为-22故答案为22-【点睛】本题主要考查了数轴的基本概念,圆的基本概念以及正方形的性质,根据题意求出边长是解题的关键. 13.分解因式:x2y﹣y=_____.【答案】y (x+1)(x ﹣1)【分析】观察原式x 2y ﹣y ,找到公因式y 后,提出公因式后发现x 2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x 2y ﹣y=y (x 2﹣1)=y (x+1)(x ﹣1).故答案为:y (x+1)(x ﹣1).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.如图,Rt ABC 中,9,6,90AB BC B ==∠=︒,将ABC 折叠,使A 点与BC 的中点D 重合,折痕为,MN 则线段BN 的长为________.【答案】1【分析】根据题意,设BN=x ,由折叠DN=AN=9-x ,在Rt BDN 利用勾股定理列方程解出x ,就求出BN 的长.【详解】∵D 是CB 中点,BC=6∴BD=3设BN=x ,AN=9-x ,由折叠,DN=AN=9-x ,在Rt BDN 中,222BN BD DN +=,()22239x x +=-,解得x=1∴BN=1.故答案是:1.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.15.当x =______时,分式293x x --的值为0. 【答案】-3【分析】根据分式的值为零的条件可以求出x 的值.【详解】由分式的值为零的条件得290x -=,30x -≠,由290x -=,得29x =,∴3x =或3x =-,由30x -≠,得3x ≠.综上,得3x =-.故答案是:3-.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.16.在如图所示的“北京2008年奥运会开幕小型张”中,邮票的形状是一个多边形.这个多边形的内角和等于__________°.【答案】720【分析】根据n 边形的内角和公式为:(n-2)×180°,据此计算即可.【详解】解:由图可知该邮票是六边形,∴(6-2)×180°=720°.故答案为:720.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解答本题的关键.17.已知29x mx ++是完全平方式,则m =_________.【答案】6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.三、解答题18.先化简,再求值:22224242 xx xxx x--⎛⎫÷--⎪-+⎝⎭,其中3x=.【答案】1【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,代入x的值,计算即可求出值.【详解】解:22224242x x xxx x--⎛⎫÷--⎪-+⎝⎭22222222424=42222(2)(2)222(2)(2)212x x x xx x xx x x xx x xx x xx x x xx⎛⎫---÷-⎪-++⎝⎭--=÷+-+-+=•+--=-当3x=时,原式=1=13-2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)求证:AD∥BC;(2)CD与EF平行吗?写出证明过程;(3)若DF平分∠ADC,求证:CE⊥DF.【答案】(1)详见解析;(2)CD∥EF,证明详见解析;(3)详见解析.【分析】(1)根据同角的补角相等,即可得到∠CBF=∠DAB,进而得到AD∥BC;(2)依据∠BCD=2∠DCE,∠BCD=2∠E,即可得出∠E=∠DCE,进而判定CD∥EF;(3)依据AD∥BC,可得∠ADC+∠DCB=180°,进而得到∠COD=90°,即可得出CE⊥DF.【详解】解:(1)∵∠DAE+∠CBF=180°,∠DAE+∠DAB=180°,∴∠CBF=∠DAB,∴AD∥BC;(2)CD与EF平行.∵CE平分∠BCD,∴∠BCD=2∠DCE,又∵∠BCD=2∠E,∴∠E=∠DCE,∴CD∥EF;(3)∵DF平分∠ADC,∴∠CDF=12∠ADC,∵∠BCD=2∠DCE,∴∠DCE=12∠DCB,∵AD∥BC,∴∠ADC+∠DCB=180°,∴∠CDF+∠DCE=12(∠ADC+∠DCB)=90°,∴∠COD=90°,∴CE⊥DF.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.20.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)求△A1B1C1的面积.【答案】(1)见解析,A1(0,-1),B1(3,-1),C1(1,-3);(1)1【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,然后描点即可;(1)用一个矩形的面积分别减去三个三角形的面积去计算△A1B1C1的面积.【详解】(1)如图,△A 1B 1C 1为所作;A 1(0,-1),B 1(3,-1),C 1(1,-3);(1)△A 1B 1C 1的面积=1×3-12×1×1-12×3×1-12×1×1=1. 【点睛】 本题考查了轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.21.已知ABC ∆和CEF ∆是两个等腰直角三角形,90ABC CEF ∠=∠=︒.连接AF ,M 是AF 的中点,连接MB 、ME .(1)如图1,当CB 与CE 在同一直线上时,求证:BM ME ⊥;(2)如图2,当45BCE ∠=︒时,求证:BM ME =.【答案】(1)证明见详解; (2)证明见详解【分析】(1)如图所示,延长BM 交EF 于点D ,延长AB 交CF 于点H ,证明为△BED 是等腰直角三角形和M 是BD 的中点即可求证结论;(2)如图所示,做辅助线,推出BM 、ME 是中位线进而求证结论.【详解】证明(1)如图所示,延长BM 交EF 于点D ,延长AB 交CF 于点H易知:△ABC 和△BCH 均为等腰直角三角形∴AB =BC =BH∴点B 为线段AH 的中点又∵点M 是线段AF 的中点∴BM 是△AHF 的中位线∴BM ∥HF即BD ∥CF∴∠EDM =∠EFC =45°∠EBM =∠ECF =45°∴△EBD 是等腰直角三角形∵∠ABC =∠CEF =90°∴AB ∥EF∴∠BAM =∠DFM又M 是AF 的中点∴AM =FM在△ABM 和△FDM 中BAM DFM AM FMAMB FMD ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△ABM ≌△FDM(ASA)∴BM =DM ,M 是BD 的中点∴EM 是△EBD 斜边上的高∴EM ⊥BM(2)如图所示,延长AB 交CE 于点D ,连接DF ,易知△ABC 和△BCD 均为等腰直角三角形∴AB =BC =BD ,AC =CD∴点B 是AD 的中点,又∵点M 是AF 的中点∴BM =12DF 延长FE 交CB 于点G ,连接AG ,易知△CEF 和△CEG 均为等腰直角三角形∴CE =EF =EG ,CF =CG∴点E 是FG 的中点,又∵点M 是AF 的中点∴ME=12AG 在△ACG 与△DCF 中,45AC CD ACG DCF CG CF =⎧⎪∠=∠=︒⎨⎪=⎩∴△ACG ≌△DCF (SAS )∴DF =AG∴BM =ME【点睛】本题主要考查等腰直角三角形的性质:两锐角都是45°,两条直角边相等、三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半、全等三角形的判定和性质,掌握以上知识点是解题的关键. 22.小明遇到这样一个问题如图1,△ABC 中,∠ACB=90°,点D 在AB 上,且BD=BC ,求证:∠ABC=2∠ACD .小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE ⊥CD ,垂足为点E .方法3:如图3,作CF ⊥AB ,垂足为点F .根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD .【答案】见解析【分析】方法1,利用等腰三角形的性质以及三角形内角和定理,即可得到∠ABC=2∠ACD .方法2,作BE ⊥CD ,垂足为点E .利用等腰三角形的性质以及同角的余角相等,即可得出∠ABC=2∠ACD . 方法3,作CF ⊥AB ,垂足为点F .利用等腰三角形的性质以及三角形外角性质,即可得到∠ACF=2∠ACD ,再根据同角的余角相等,即可得到∠B=∠ACF ,进而得出∠B=2∠ACD .【详解】方法1:如图,∵∠ACB=90°,∴∠BCD=90°-∠ACD ,又∵BC=BD ,∴∠BCD=∠BDC,∴△BCD中,∠ABC=180°-∠BDC -∠BCD =180°-2∠BCD=180°-2(90°-∠ACD)=2∠ACD;方法2:如图,作BE⊥CD,垂足为点E.∵∠ACB=90°,∴∠ACD+∠BCE=∠CBE+∠BCE=90°,∴∠ACD=∠CBE,又∵BC=BD,BE⊥CD,∴∠ABC=2∠CBE,∴∠ABC=2∠ACD;方法3:如图,作CF⊥AB,垂足为点F.∵∠ACB=90°,∠BFC=90°,∴∠A+∠ABC =∠BCF+∠ABC =90°,∴∠A=∠BCF,∵BC=BD,∴∠BCD=∠BDC,即∠BCF+∠DCF=∠A+∠ACD,∴∠DCF=∠ACD,∴∠ACF=2∠ACD,又∵∠ABC +∠BCF=∠ACF+∠BCF=90°,∴∠ABC =∠ACF,∴∠ABC =2∠ACD.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的综合运用,解题时注意:等腰三角形的两个底角相等.23.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数. 【答案】13a -,1. 【分析】原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=a a+2a-2()()•a+2a a-3()+1a-2=1a-2a-3()()+1a-2=1+a-3a-2a-3()()=a-2a-2a-3()()=1a-3, ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.24.如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______;(3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______.【答案】(1)3;(2)63761;(3)0,1,0,5【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答.【详解】(1)∵C (−1,−3),∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3),∴AB =4−(−2)=6,AC=221637+=,BC=225661+=;(3)(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(−2,3)、B(4,3),∴12。
山东省临沂沂水县联考2018-2019学年八上数学期末质量跟踪监视试题
山东省临沂沂水县联考2018-2019学年八上数学期末质量跟踪监视试题一、选择题1.如果分式有意义,那么x 的取值范围是( ) A.x≠0B.x=﹣1C.x≠﹣1D.x≠1 2.若213x M N x 1x 1x 1-=+-+-,则M 、N 的值分别为( ) A .M=-1,N=-2B .M=-2,N=-1C .M=1,N=2D .M=2,N=1 3.若分式方程233x a x x +=--有增根,则a 的值是( ) A .﹣3 B .3 C .1 D .04.下列各式中计算正确的是( )A .236x x x ⋅=B .842x x x ÷=C .()326326a b a b -=-D .()3412x x -=- 5.关于字母x 的整式(x+1)(x 2+mx ﹣2)化简后的结果中二次项系数为0,则( ) A.m =2 B.m =﹣2 C.m =1D.m =﹣1 6.长和宽分别是a, b 的长方形的周长为 10,面积为 6,则a 2b + ab 2的值为( )A .15B .16C .30D .607.如图,点A 的坐标为(-1,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为( )A.(-12,-12)B.(2,2)C.-D.(0,0)8.已知直角三角形中,30角所对的直角边长是2厘米,则斜边的长是( )A.2厘米B.4厘米C.6厘米D.8厘米9.下列所叙述的图形中,全等的两个三角形是( )A .含60︒角的两个直角三角形B .腰对应相等的两个等腰三角形C .边长均为5厘米的两个等边三角形D .一个钝角对应相等的两个等腰三角形10.如图,在△ABC 中,∠A=36°,AB=AC ,CD 、BE 分别是∠ACB ,∠ABC 的平分线,CD 、BE 相交于F 点,连接DE ,则图中全等的三角形有多少组( )A.3B.4C.5D.611.如图,在锐角三角形ABC 中,直线l 为BC 的垂直平分线,射线m 平分∠ABC ,l 与m 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 等于( )A.24°B.30°C.32°D.42° 12.如图,OA 平分BAC ∠,OM AC ⊥于点M ,ON AB ⊥于点N ,若ON 8cm =,则OM 长为( )A.4cmB.5cmC.8cmD.20cm 13.已知三角形三边长分别为2,x ,9,若x 为正整数,则这样的三角形个数为( )A .3B .5C .7D .11 14.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( )A.62B.31C.17D.1415.有一个正五边形和一个正方形边长相等,如图放置,则1∠的值是()A.15︒B.18︒C.20︒D.9︒ 二、填空题16.关于x 的方程无解,则k 的值为_____.17.分解因式:4x 2- 6x=__________18.如图,在△ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =_____.19.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.20.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2=___________三、解答题21.先化简再求值a b ab b a a b⎛⎫-⋅ ⎪+⎝⎭,其中12a b ==,. 22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是__________________.(请选择正确的一个)A.22()()a b a b a b -=+- B .2222()a ab b a b -+=- C.2()a ab a a b +=+(2)若2216x y -=,8x y +=,求x y -的值; (3)计算:22222111111111123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23.如图是由5个同样的小正方形所组成的,请再补上一个同样的小正方形,使6个小正方形组成的图形成为一个轴对称图形,请至少画出三种方法.24.如图,在△ABC 中,AB =AC ,∠BAC =60°.在△ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,BD .(1)依据题意补全图形;(2)当∠PAC 等于多少度时,AD ∥BC ?请说明理由;(3)若BD 交直线AP 于点E ,连接CE ,求∠CED 的度数;(4)探索:线段CE ,AE 和BE 之间的数量关系,并说明理由.25.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,直接写出∠AEB 的大小;(2)如图2,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小;【参考答案】***一、选择题16.﹣4或6或117.2x(2x--3)18.45°.19.40°20.120°三、解答题21.a-b,-122.(1)A ;(2)2x y -= ;(3)1010201923.见解析【解析】【分析】利用轴对称图形的性质得出符合题意的答案,如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【详解】如图所示:.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.=+24.(1)详见解析;(2)30°;(3)120〬(4)BE CE AE【解析】【分析】(1)根据题意画出图形即可;(2)连接CD,交AP于CD于F,因为AD∥BC,所以∠C=∠CAD,由对称可得AC=AD,CF=FD,AF⊥CD,所以AP 平分∠CAD,即可求解.(3)AD=AC,∠DAP=∠CAP,∠DEP=∠PEC,求出AB=AC=AD,得到∠ABE=∠D,在△ABE中,得∠ABE+∠AEB+∠BAE=180°,得到∠D+∠CAE+60°+∠D+∠CAE =180°,求出∠D+∠CAE=60°,证明∠DEP=60°,即可求解;(4)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE+AE=BE.【详解】(1)(2)连接CD,交AP于F,∵AB=AC,∠BAC=60°∴等边三角形ABC∴∠BCA=60°∵AD∥BC∴∠BCA=60°=∠DAC由对称可得AC=AD,CF=FD,AF⊥CD∴AP平分∠CAD∴∠PAC=30°(3)由对称可得AD=AC,∠DAE=∠CAE,∠DEP=∠PEC∵等边三角形ABC∴AB=AC=AD∴∠ABE=∠D∵△ABE∴∠ABE+∠AEB+∠BAE=180°∴∠ABE+∠AEB+∠BAC+∠CAE=180°∴∠D+∠CAE+60°+∠D+∠CAE =180°∴∠D+∠CAE=60°∴∠DEP=60°∴∠DEC=120°;(4)CE+AE=BE.在BE上取点M使ME=AE,连接AM,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=60°-x∴∠AEB=60-x+x=60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB=AC,∠BAM=∠CAE, AM=AE,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题考查的是三角形,熟练掌握三角形的性质是解题的关键. 25.(1)∠AEB=135 °(2)∠ACB=45°。
山东省临沂市2019届数学八上期末检测试题
山东省临沂市2019届数学八上期末检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如果分式y 77y --的值为0,那么y 的值是( ) A .7- B .7 C .0 D .7或7-2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学计数法可以表示为( )A .7.6×10-8B .0.76×10-9C .7.6×108D .0.76×109 3.若解方程225111m x x x +=+--会产生增根,则m 等于( ) A .-10B .-10或-3C .-3D .-10或-4 4.下列从左到右的变形中,属于因式分解的是( ) A.()()2224x x x +-=-B.2222()a ab b a b -+=-C.()11am bm m a b +-=+-D.()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭ 5.下列各式中不能用公式法分解因式的是A .x 2-6x+9B .-x 2+y 2C .x 2+2x+4D .-x 2+2xy-y 2 6.下列因式分解正确的是( ) A .x 3﹣x=x (x 2﹣1)B .﹣a 2+6a ﹣9=﹣(a ﹣3)2C .x 2+y 2=(x+y )2D .a 3﹣2a 2+a=a (a+1)(a ﹣1) 7.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°8.下面是同学们设计的一些美丽有趣的图案,其中是轴对称图形的是( )A .B .C .D .9.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO+∠CFO =100°,则∠C 的度数为( )A.40°B.41°C.42°D.43° 10.如图,点P 是AB 上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出ΔAPC ≌ΔAPD.的是( )A .BC=BD.B .∠ACB=∠ADB.C .∠CAB=∠DABD .AC=AD.11.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为6,则重叠部分四边形EMCN 的面积为( )A.9B.12C.16D.3212.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于1MN 2的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为()4a,3b 1-,则a 与b 的数量关系为()A .4a 3b 1-=B .4a b 1+=C .4a b 1-=D .4a 3b 1+=13.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=36°,则∠2的度数为( )A .14°B .36°C .30°D .24°14.一个三角形,剪去一个角后所得的多边形内角和的度数是( )A .180° B.360°C .540° D.180°或 360°15.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )A .3B .4C .5D .6 二、填空题16.若关于x 的分式方程233x m x x -=--+2无解,则m 的值为________. 17.已知m+2n+2=0,则2m •4n 的值为_____.18.如图,点A ,B ,C ,D 在同一直线上,AB=CD ,FC ⊥AD 于点C ,ED ⊥AD 于点D ,要使△ACF ≌△BDE ,则可以补充一个条件:_____.19.一个正m 边形恰好被m 个正n 边形围住(无重叠、无间隙,如当4m =,8n =时如图所示),若3m =,则n =______.20.在同一平面内,将一副直角三角板ABC 和EDF 如图放置(∠C =60°,∠F =45°),其中直角顶点D 是BC 的中点,点A 在DE 上,则∠CGF =_____°.三、解答题21.先化简,再求值: 22212144x x x x--+--,其中5x =. 22.计算(2x 2)3-2x 2•x 3+2x 523.如图所示,△ABC 中,AB =AC ,E 在AC 上,D 在BA 的延长线上,且AD =AE ,连接DE .求证:DE ⊥BC .24.如图,已知BC EF ∥,BC EF =,AE BD =.(1)试说明:ABC DEF △≌△;(2)判断DF 与AC 的位置关系,并说明理由.25.如图所示,已知点O 是直线AB 上的一点,90COE ∠=,OF 是AOE ∠的平分线.点C 与点E 、F 在直线AB 的两旁,()1若140BOE ∠=,求COF ∠;()2若2BOE α∠=,则COF ∠=______,请说明理由.【参考答案】一、选择题二、填空题16.117.1418.AF=BE 或CF=DE 或∠A=∠EBD 或∠F=∠E.19.1220.15°三、解答题21.2x x +;57. 22.68x23.见解析.【解析】【分析】过A 作AM ⊥BC 于M ,根据等腰三角形三线合一的性质得出∠BAC =2∠BAM ,由三角形外角的性质及等边对等角的性质得出∠BAC =2∠D ,则∠BAM =∠D ,根据平行线的判定得出DE ∥AM ,进而得到DE ⊥BC .【详解】证明:如图,过A 作AM ⊥BC 于M ,∵AB =AC ,∴∠BAC =2∠BAM ,∵AD =AE ,∴∠D =∠AED ,∴∠BAC =∠D+∠AED =2∠D ,∴∠BAC =2∠BAM =2∠D ,∴∠BAM =∠D ,∴DE ∥AM ,∵AM ⊥BC ,∴DE ⊥BC .【点睛】考查了等腰三角形的性质,三角形外角的性质,平行线的判定等知识,难度适中.准确作出辅助线是解题的关键.24.(1)详见解析;(2)AC DF ∥,理由详见解析【解析】【分析】(1)根据AE DB =,得出AB DE =,再根据BC EF ∥,得出B E ∠=∠即可;(2)根据ACB DFE △≌△得出BAC EDF ∠=∠,再求出DAC ADF ∠=∠即可.【详解】解:(1)∵AE DB =∴DE AD AB AD +=+ ∴AB DE =∵BC EF ∥ ∴B E ∠=∠在ACB △和DFE △中,AB DE B E CB EF =⎧⎪∠=∠⎨⎪=⎩∴ACB DFE △≌△(2)AC DF ∥,理由如下:∵ACB DFE △≌△∴BAC EDF ∠=∠∵180BAC DAC ∠+∠=︒,180EDF ADF ∠+∠=︒ ∴DAC ADF ∠=∠∴AC DF ∥.【点睛】本题考查的是平行和全等三角形,熟练掌握平行和全等三角形的性质是解题的关键.25.(1)70°(2)α。
(汇总3份试卷)2018年临沂市八年级上学期期末检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.勿忘草是多年生草本植物,它拥有世界上最小的花粉勿忘草的花粉直径为1.111114米,数据1.111114用科学记数法表示为( )A .4⨯115B .4⨯116C .4⨯11-5D .4⨯11-6【答案】D【解析】根据科学记数法的性质以及应用进行表示即可.【详解】60.000004410-=⨯故答案为:D .【点睛】本题考查了科学记数法的应用,掌握科学记数法的性质以及应用是解题的关键.2.若321___11x x x -=+--,则 中的数是( )A .﹣1B .﹣2C .﹣3D .任意实数【答案】B【解析】∵321___11x x x -=+-- ,∴空格中的数应为:3213212(1)21111x x x x x x x ------===-----.故选B.3.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为()A .6B .5C .4D .3【答案】C【分析】由∠ABC=15°,AD 是高,得出BD=AD 后,证△ADC ≌△BDH 后,得到BH=AC ,即可求解.【详解】∵∠ABC=15°,AD ⊥BC ,∴AD=BD ,∠ADC=∠BDH ,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C ,在△ADC 与△BDH 中,ADC BDH BHD CAD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BDH∴BH=AC=1.故选C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .由∠ABC=15°,AD 是高,得出BD=AD 是正确解答本题的关键.4.在平面直角坐标系中,如果点A 的坐标为(﹣1,3),那么点A 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据平面直角坐标系中点P(a,b),①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1;据此求解可得.【详解】解:∵点A 的横坐标为负数、纵坐标为正数,∴点A 一定在第二象限.故选:B .【点睛】本题主要考查坐标确定位置,解题的关键是掌握①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1.5.如图,等腰△ABC 中,AB =AC ,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且MN =12BC ,MD ⊥BC 交AB 于点D ,NE ⊥BC 交AC 于点E ,在MN 从左至右的运动过程中,△BMD 和△CNE 的面积之和( )A .保持不变B .先变小后变大C .先变大后变小D .一直变大【答案】B 【分析】妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a ﹣m ,根据二次函数即可解决问题.【详解】解:不妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a ﹣m ,则有S 阴=12•m•mtanα+12(a ﹣m )•(a ﹣m )tanα =12tanα(m 2+a 2﹣2am+m 2) =12tanα(2m 2﹣2am+a 2) =1tan 2α22[2()]22a a m •-+; 当2a m =时,S 阴有最小值; ∴S 阴的值先变小后变大,故选:B .【点睛】此题考查等腰三角形的性质,关键根据二次函数的性质得出面积改变规律.6.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FG AF=( )A .12B .2C 3D 3【答案】A【解析】∵△ABC 是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB ,又∵AD=BE ,∴AB-AD=BC-BE ,即BD=CE ,∴△ACE ≌△CBD ,∴∠CAE=∠BCD ,又∵∠AFG=∠ACF+∠CAE ,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG ⊥CD 于点G ,∴∠AGF=90°,∴∠FAG=30°,∴FG=12AF ,∴12FG AF . 故选A.7.如图,在等腰三角形ABC 中,BA=BC ,∠ABC=120°,D 为AC 边的中点,若BC=6,则BD 的长为( )A .3B .4C .6D .8【答案】A 【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【详解】解:∵BA=BC ,∠ABC=120°,∴∠C=∠A=30°,∵D 为AC 边的中点,∴BD ⊥AC ,∵BC=6,∴BD=12BC=3, 故选:A .【点睛】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.8.如图,在△ABC 中,AB=AC ,∠A=1200,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .1.5cmB .2cmC .2.5cmD .3cm【答案】B 【解析】连接AM 、AN ,∵在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,∴∠B=∠C=30°,∵EM 垂直平分AB ,NF 垂直平分AC ,∴BM=AM ,CN=AN ,∴∠MAB=∠B=30°,∠NAC=∠C=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴△AMN是等边三角形,∴AM=MN=NC,∴BM=MN=CN,∵BM+MN+CN=BC=6cm,∴MN=2cm ,故选B.9.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.7【答案】A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.10.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A .4B .8C .16D .64【答案】D 【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 2及PQ 2,又三角形PQR 为直角三角形,根据勾股定理求出QR 2,即为所求正方形的面积.【详解】解:∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又∵△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣225=1,则正方形QMNR 的面积为1.故选:D .【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.二、填空题11.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.【答案】55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.12在实数范围内有意义,则x 的取值范围是______.【答案】x≤3【分析】根据二次根式有意义的条件解答.【详解】解:根据题意得:3-x≥0,解得:x≤3,故答案为x≤3.【点睛】本题考查二次根式的性质,熟记二次根式有意义被开方数非负是解题关键.13.一种微生物的半径是6610m -⨯,用小数把6610m -⨯表示出来是_______m .【答案】0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6×10-6m=0.1m .故答案为:0.1.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).14.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.【答案】240.【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.15.用反证法证明在△ABC 中,如果AB≠AC ,那么∠B≠∠C 时,应先假设________.【答案】∠B=∠C【分析】根据反证法的一般步骤即可求解. 【详解】用反证法证明在△ABC 中,如果AB≠AC ,求证∠B≠∠C ,第一步应是假设∠B=∠C .故答案为:∠B=∠C【点睛】 本题考查的反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判断假设不不正确,从而肯定原命题的结论正确.16.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.【答案】213【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=213(小时). 故答案为:213. 【点睛】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.17.1258-的立方根是____. 【答案】52-. 【分析】利用立方根的定义即可得出结论 【详解】1258-的立方根是52-. 故答案为:52-【点睛】此题主要考查了 立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.一个正数有两个平方根,并且它们是一对相反数.三、解答题18.先化简,再求值.2321222x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中x =1. 【答案】11x x -+,13. 【分析】先化简分式,然后将x 的值代入计算. 【详解】解:原式()2243212x x x x +÷+-=++ ()()()211221x x x x x -++=⨯++11x x -=+ 当x =1时, 原式211213-==+ . 【点睛】本题考查了分式的计算,掌握分式化简得方法再代入求值是解题的关键.19.某县教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了该县八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出参加抽样调查的八年级学生人数,并将频数直方图补充完整.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生6000人,请你估计“活动时间不少于5天”的大约有多少人?【答案】(1)调查的初一学生人数200人;补图见解析;(2)中位数是4(天),众数是4(天);(3)估计“活动时间不少于5天”的大约有2700人.【分析】(1)由参加实践活动为2天的人数除以所占的百分比即可求出八年级学生总数,根据单位1减去其他的百分比求出a的值,由学生总数乘以活动实践是5天与7天的百分比求出各自的人数,补全统计图即可;(2)出现次数最多的天数为4天,故众数为4;将实践活动的天数按照从小到大顺心排列,找出最中间的两个天数,求出平均数即可得到中位数;(3)求出活动时间不少于4天的百分比之和,乘以6000即可得到结果.【详解】解:(1)调查的初一学生人数:20÷10%=200(人),“活动时间不少于5天”的人数为:200×(1-15%-10%-5%-15%-30%)=50(人),“活动时间不少于7天”的人数为:200×5%=10(人),补全统计图如下:(2)根据中位数的概念,中位数应是第100人的天数和101人的天数的平均数,即中位数是4(天),根据众数的概念,则众数是人数最多的天数,即众数是4(天);(3)估计“活动时间不少于5天”的大约有:(200﹣20﹣30﹣60)÷200×6000=2700(人).【点睛】本题考查了频率分布直方图和扇形统计图,以及用样本估计总体,弄清题意是解本题的关键. 20.为缓解用电紧张,龙泉县电力公司特制定了新的用电收费标准:每月用电量x (千瓦时)与应付电费y (元)的关系如图所示.(1)根据图象求出y 与x 之间的函数关系式;(2)当用电量超过50千瓦时时,收费标准是怎样的?【答案】(1)y =()()0.50500.92050x x x x ⎧≤≤⎪⎨-⎪⎩>;(2)0.9元/度 【分析】(1)利用待定系数法可以求得y 与x 之间的函数关系式;(2)根据用电量为50度时付费25元,用电量100度时付费70元进行计算.【详解】解:(1)当0≤x≤50时,设y 与x 的函数关系式为y =kx ,代入(50,25)得:50k =25,解得k =0.5,即当0≤x≤50时,y 与x 的函数关系式为y =0.5x ;当x >50时,设y 与x 的函数关系式为y =ax+b ,代入(50,25),(100,70)得:502510070a b a b +=⎧⎨+=⎩, 解得:0.920a b =⎧⎨=-⎩, 即当x >50时,y 与x 的函数关系式为y =0.9x ﹣20;由上可得,y 与x 的函数关系式为y =()()0.50500.92050x x x x ⎧≤≤⎪⎨-⎪⎩>; (2)当用电量超过50度时,收费标准是:702510050--=0.9元/度, 答:当用电量超过50度时,收费标准是0.9元/度.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 21.(1)解分式方程:11222x x x++=--. (2)如图,ABC 与DCB 中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =,求证:EBC ECB ∠=∠.【答案】(1)23 x=;(2)见解析【分析】(1)根据解分式方程的一般步骤解方程即可;(2)利用AAS证出△ABE≌△DCE,从而得出EB=EC,然后根据等边对等角即可得出结论.【详解】解:(1)11222xx x++=--()()1221x x+-=-+1241x x+-=--解得23x=经检验:23x=是原方程的解;(2)在△ABE和△DCE中A DAEB DECAB DC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△DCE∴EB=EC∴EBC ECB∠=∠【点睛】此题考查的是解分式方程、全等三角形的判定及性质和等腰三角形的性质,掌握解分式方程的一般步骤、全等三角形的判定及性质和等边对等角是解决此题的关键.22.如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.【答案】(1)见解析;(2)18cm【分析】(1)连接BE 、EC,只要证明Rt △BFE ≌Rt △CGE ,得BF=CG,再证明Rt △AFE ≌Rt △AGE 得:AF=AG ,根据线段和差定义即可解决.(2由AG=5cm 可得AB+AC=10cm 即可得出△ABC 的周长.【详解】(1)延长AB 至点M ,过点E 作EF ⊥BM 于点F∵AE 平分∠BACEG ⊥AC 于点G∴EG=EF,∠EFB=∠EGC=90°连接BE ,EC∵点D 是BC 的中点,DE ⊥BC∴BE=EC在Rt △BFE 与Rt △CGE 中BE EC EF EG =⎧⎨=⎩∴Rt △BFE ≌Rt △CGE (HL )∴BF=GC∵AB+AC=AB+AG+GC∴AB+AC =AB+BF+AG=AF+AG在Rt △AFE 与Rt △AGE 中AE AE EF EG =⎧⎨=⎩∴Rt △AFE ≌Rt △AGE(HL )∴AF=AG∴AB+AC=2AG(2)∵AG=5cm, AB+AC=2AG∴AB+AC=10cm又∵BC=8cm∴△ABC 的周长为AB+AC+BC=8+10=18cm .【点睛】本题考查角平分线的性质定理、全等三角形的判定和性质、线段垂直平分线的性质等知识,解题的关键是添加辅助线构造全等三角形,需要熟练掌握全等三角形的判定,属于中考常考题型.23.基本运算(1)分解因式:①3224a b ab -②()228a b ab -+(2)整式化简求值:求[()()()2224x y x y x y +--+]÷4y 的值,其中()02x -无意义,且320x y -=.【答案】(1)①2(21)(21)ab a a -+,②()22a b +;(2)52y x --,-1 【分析】(1)①先提取2ab ,再利用平方差公式即可求解;②先化简,再利用完全平方公式即可求解; (2)先根据整式的混合运算法则化简,再根据零指数幂的性质求出x ,y 的值,代入即可求解.【详解】(1)①3224a b ab -=22(41)ab a -=2(21)(21)ab a a -+②()228a b ab -+ 22448a ab b ab =-++2244a ab b =++()22a b =+(2)[()()()2224x y x y x y +--+]÷4y=2222(4816)4x y x xy y y ----÷=2(208)4y xy y --÷=52y x --∵()02x -无意义,且320x y -=,∴2x =,3y =代入上式得:原式=5322-⨯-⨯=-1.【点睛】此题主要考查因式分解与整式的运算,解题的关键是熟知其运算法则.24.某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n (单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.【答案】(1)t=4000n (2)原计划4天完成 【分析】(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.【详解】解:(1)设需要的天数为t ,∵每天运量×天数=总运量,∴nt=4000,∴t=4000n; (2)设原计划x 天完成,根据题意得: 40004000(120%)1x x⨯-=+ 解得:x=4经检验:x=4是原方程的根.答:原计划4天完成.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.在△ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC ,垂足为G ,且AD =AB ,∠EDF =60°,其两边分别交边AB ,AC 于点E ,F .(1)连接BD ,求证:△ABD 是等边三角形;(2)试猜想:线段AE 、AF 与AD 之间有怎样的数量关系?并给以证明.【答案】(1)详见解析;(2)AE+AF =AD.证明见解析.【分析】(1)连接BD 由等腰三角形的性质和已知条件得出∠BAD=∠DAC=1120=602⨯︒︒,再由AD =AB ,即可得出结论;(2)由△ABD 是等边三角形,得出BD =AD ,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA 证明△BDE≌△ADF,得出AF =BE ,即可求解.【详解】(1)证明:连接BD ,∵AB =AC ,AD ⊥BC ,∴∠BAD =∠DAC =12 ∠BAC , ∵∠BAC =120°, ∴1120=602BAD DAC ∠∠⨯︒︒==,∵AD =AB ,∴△ABD 是等边三角形;(2)猜想:AE+AF =AD ,理由如下:∵△ABD 是等边三角形,∴∠ABD =∠ADB =60°,AB =BD =AD∵∠EDF =60°,∴∠BDE =∠ADF ,在△BDE 与△ADF 中, 60DBE DAF BD AD BDE ADF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BDE ≌△ADF (ASA ),∴AF =BE ,∴AB =BE+AE =AF+AE =AD【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质,熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【答案】D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=1,则正方形QMNR的面积为1.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A.4.5112y xy x-=⎧⎪⎨-=⎪⎩B.4.5112x yy x-=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112y xx y-=⎧⎪⎨-=⎪⎩【答案】B【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5112x yy x-=⎧⎪⎨-=⎪⎩,故选B.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.下列方程组中,不是二元一次方程组的是()A.{32041x yx y-=-=B.{53x y y z+=+=C.{22220x x x yx y-=+-=D.{210x y y=+=【答案】B【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:A、是二元一次方程组,故A正确;B、是三元一次方程组,故B错误;C、是二元一次方程,故C正确;D、是二元一次方程组,故D正确;故选:B.【点睛】本题考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.4.在平面直角坐标系中,直线1:3l y x=+与直线2:l y mx n=+交与点()2,A b-,则关于x,y的方程组3y xy mx n=+⎧⎨=+⎩的解为()‘A .21x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩ 【答案】A【分析】直接根据图像及一次函数与二元一次方程组的关系进行求解即可.【详解】解:由直线1:3l y x =+与直线2:l y mx n =+交与点()2,A b -,可得:231b =-+=,所以()2,1A -;∴由图像可得:关于x ,y 的方程组3y x y mx n =+⎧⎨=+⎩的解为21x y =-⎧⎨=⎩; 故选A .【点睛】本题主要考查一次函数与二元一次方程组,关键是根据题意得到一次函数与二元一次方程组的关系即可. 5.如图,已知AB ∥CD ,AD =CD ,∠1=40°,则∠2的度数为( )A .60°B .65°C .70°D .75°【答案】C 【分析】由等腰三角形的性质可求∠ACD =70°,由平行线的性质可求解.【详解】∵AD =CD ,∠1=40°,∴∠ACD =70°,∵AB ∥CD ,∴∠2=∠ACD =70°,故选:C .【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.6.在平面直角坐标系中,点P (﹣2,3)在第( )象限.A .一B .二C .三D .四 【答案】B【分析】根据各象限内点的坐标特征解答.【详解】点P (-2,3)在第二象限.故选B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.下列多项式中能用完全平方公式分解的是( )A .x 2﹣x+1B .1﹣2x+x 2C .﹣a 2+b 2﹣2abD .4x 2+4x ﹣1【答案】B【分析】根据完全平方公式:a 2±2ab+b 2=(a ±b )2可得答案.【详解】A .x 2﹣x+1不能用完全平方公式分解,故此选项错误;B .1﹣2x+x 2= (1-x)2能用完全平方公式分解,故此选项正确;C .﹣a 2+b 2﹣2ab 不能用完全平方公式分解,故此选项错误;D .4x 2+4x ﹣1不能用完全平方公式分解,故此选项错误.故选:B .【点睛】此题主要考查因式分解,解题的关键是熟知完全平方公式的运用.8.如图,CE 是ABC 的角平分线,//EF BC ,交AC 于点F .已知68AFE ∠=︒,则FEC ∠的度数为( )A .68︒B .34︒C .32︒D .22︒【答案】B 【分析】根据平行线的性质和角平分线的性质即可求解.【详解】解:∵//EF BC∴∠ACB=68AFE ∠=︒∵CE 是ABC 的角平分线∴FEC ∠=∠BCE=12ACB ∠=34︒ 故选:B【点睛】此题主要考查平行线的性质和角平分线的性质,灵活运用性质解决问题是解题关键.9.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .8 【答案】C【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.10.解方程去分母得 ( )A .B .C .D .【答案】C 【解析】本题的最简公分母是(x-2).方程两边都乘最简公分母,可把分式方程转换为整式方程.【详解】解:方程两边都乘(x-2),得1=x-1-3(x-2).故选C .【点睛】本题考查解分式方程中的去分母化为整式方程的过程,关键是找到最简公分母,注意不要漏乘,单独的一个数和字母也必须乘最简公分,还有就是分子分母互为相反数时约分为-1.二、填空题11.比较大小:31.(填“>”、“<”或“=”号)【答案】<【解析】先把3121216的大小即可.【详解】∵312,116,12<16, 1216,即3<1.故答案为<.【点睛】本题考查的是实数的大小比较,先根据题意把312的形式是解答此题的关键.12.分解因式:x 3y-xy=______.【答案】(1)(1)xy x x +-【详解】原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)13.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=50°,则∠DCE的度数是__.【答案】10°.【分析】根据∠ECD=∠ECB-∠DCB,求出∠ECB,∠DCB即可解决问题.【详解】∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=100°,∵EC平分∠ACB,∵∠ECB=12∠ACB=50°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=90°﹣50°=40°,∴∠ECD=∠ECB﹣∠DCB=50°﹣40°=10°,故答案为10°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识.14.某学校八年级()1班学生准备在植树节义务植树240棵,原计划每小时植树a棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了__________小时完成任务.(用含a的代数式表示).【答案】40 a【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要240a小时,实际需要2401.2a小时,故提前的时间为240240240200401.2a a a a a-=-=,则实际比原计划提前了40a小时完成任务.故答案为:40a.【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.15.在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为_____.【答案】32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B 、∠C 互余,然后用∠C 表示出∠B ,再列方程求解即可.【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C ,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A 的度数是解题的关键.16.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.【答案】()3,1-【分析】过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .先证明AOD COE BCF ∆∆∆≌≌,得到1AD CE BF ===,2OD OE CF ===,根据点的坐标定义即可求解.【详解】解:如图,过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .()2,1C --,2OE ∴=,1CE =.四边形OABC 是正方形,OA OC BC ∴==.易求AOD COE BCF ∠=∠=∠.又90ODA OEC F ∠=∠=∠=︒∴AOD COE BCF ∆∆∆≌≌,1AD CE BF ∴===,2OD OE CF ===,∴点A 的坐标为()1,2-,211EF =-=,点B 到y 轴的距离为123+=,∴点B 的坐标为()3,1-.故答案为:()3,1-【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.17.分解因式:39a b ab -= .【答案】ab (a+3)(a ﹣3).【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.三、解答题18.如图,已知点B ,C ,F ,E 在同一直线上,∠1=∠2,BF=CE ,AB ∥DE .求证:△ABC ≌△DEF .【答案】证明见解析.【解析】首先根据平行线的性质可得∠E=∠B ,进而求得BC=EF ,再加上∠1=∠2,可利用AAS 证明△ABC ≌△DEF .【详解】证明:∵BF=CE ,∴BF-FC=CE-CF ,即BC=EF ,∵AB ∥DE ,∴∠E=∠B ,在△ABC 和△DEF 中,12B E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (AAS ).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .19.如图,直线1l 的解析表达式为:y=-3x +3,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求△ADC 的面积;(4)在直线2l 上存在一点P ,使得△ADP 的面积是△ADC 面积的2倍,请直接写出点P 的坐标.【答案】(1)D (1,0);(2)362y x =-;(3) 92;(4)P 1(8,6)或P 2(0,-6). 【分析】(1)已知l 1的解析式,令y =0求出x 的值即可;(2)设l 2的解析式为y =kx+b ,由图联立方程组求出k ,b 的值;(3)联立方程组,求出交点C 的坐标,继而可求出S △ADC ;(4)△ADP 与△ADC 底边都是AD ,根据△ADP 的面积是△ADC 面积的2倍,可得点P 的坐标..【详解】解:(1)由y =﹣3x+3,令y =0,得﹣3x+3=0,∴x =1,∴D (1,0);(2)设直线l 2的解析表达式为y =kx+b ,由图象知:x =4,y =0;x =3,y=-32,代入表达式y =kx+b ,∴40332k bk b+=⎧⎪⎨+=-⎪⎩,∴326 kb⎧=⎪⎨⎪=-⎩,∴直线l2的解析表达式为362y x=-;(3)由33362y xy x=-+⎧⎪⎨=-⎪⎩,解得23 xy=⎧⎨=-⎩,∴C(2,﹣3),∵AD=3,∴S△ADC=12×3×|﹣3|=92;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,∴△ADC高就是点C到直线AD的距离的2倍,即C纵坐标的绝对值=6,则P到AD距离=6,∴点P纵坐标是±6,∵y=1.5x-6,y=6,∴1.5x-6=6,解得x=8,∴P1(8,6).∵y=1.5x-6,y=-6,∴1.5x-6=-6,解得x=0,∴P2(0,-6)综上所述,P1(8,6)或P2(0,-6).【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.20.已知ABC∆是等边三角形,点D是AC的中点,P点在射线BC上,Q点在射线BA上,120PDQ∠=︒,(1)如图1,若Q 点与点B 重合,求证:=DB DP .(2)如图2,若点P 在线段BC 上,点Q 在线段AB 上,8,AC =求BP BQ +的值.【答案】(1)见解析(2)12.【解析】(1)由等边三角形和等腰三角形的性质得出∠DBC =∠P ,即可得出DB =DE ;(2)过点D 作DH ∥BC ,交AB 于点 H ,证明△DQH ≌△DPC (ASA ),得出HQ =CP ,得出BQ +BP =BH +HQ +BP =BH +BP +PC =BH +BC =32AC 即可求解. 【详解】(1)证明:∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60︒,∵D 为AC 的中点,∴DB 平分∠ABC ,∴∠DBC =30︒,∵120PDQ ∠=︒∴∠P =180︒−120︒−30︒=30︒∴∠DBC =∠P ,∴DB =DP(2)过点D 作DH ∥BC ,交AB 于点 H ,如图2所示:∵△ABC 为等边三角形,∴∠A =∠B =∠C =60︒,∵DH ∥BC ,∴∠AHD =∠B =60︒,∠ADH =∠C =60︒,∴∠AHD =∠ADH =∠C =60︒,∠HDC =120︒,∴△ADH 是等边三角形,∴DH =AD ,∵D 为AC 的中点,∴DA =DC ,∴DH =DC ,∵∠PDQ =120︒,∠HDC =120︒,∴∠PDH +∠QDH =∠PDH +∠CDP ,∴∠QDH =∠CDP ,在△DQH 和△DPC 中,QHD C DH DCQDH PDC ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△DQH ≌△DPC ,∴HQ =CP ,∴BQ +BP =BH +HQ +BP =BH +BP +PC =BH +BC=32AC =12, 即BP BQ +=12.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定由性质、等腰三角形的判定与性质等知识;熟练掌握等边三角形的性质和等腰三角形的性质,证明三角形全等是解题的关键.21.如图,ABC ∆是等边三角形,P 是ABC ∆的角平分线BD 上一点,PE AB ⊥于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .。
山东省八年级(上)期末数学试卷 含解析
2018-2019学年八年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣12.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.B.x5+x5=x10C.x8÷x2=x4D.(﹣a3)2=a64.在代数式,,,a+中,分式的个数是()A.2 B.3 C.4 D.55.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b26.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm7.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍8.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)9.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.10.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS11.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A.B.C.D.随所取盐水重量而变化12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°二、填空题(每小题4分,共24分)13.若分式的值为零,则x的值为.14.如果实数a,b满足a+b=6,ab=8,那么a2+b2=.15.一个多边形的内角和是720°,这个多边形的边数是.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为.17.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的即挂铅锤的线绳与房梁直),用到的数学原理是.18.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为.三、解答题(共68分)19.解分式方程:.20.因式分解:(1)3x3﹣12x(2)ax2﹣4ay+4ay221.先化简:,再从﹣1,0,2三个数中任选一个你喜欢的数代入求值.22.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.23.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.(1)求证:△ADB≌△AFC;(2)求BD的长度.24.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案与试题解析一.选择题(共12小题)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是,故选:A.3.下列计算正确的是()A.B.x5+x5=x10C.x8÷x2=x4D.(﹣a3)2=a6【分析】根据负整数指数幂、幂的乘方与积的乘方、零指数幂、同底数幂的除法、合并同类项等知识点进行解答.【解答】解:A、(﹣)0×3﹣1=1×=;故不对;B、x5+x5=2x5;故不对;C、x8÷x2=x6;故不对;D、(﹣a3)2=a6,正确;故选:D.4.在代数式,,,a+中,分式的个数是()A.2 B.3 C.4 D.5【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:在代数式,,,a+中,分式有和,共有2个.故选:A.5.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.6.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm【分析】题目给出等腰三角形有两条边长为8cm和4cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选:D.7.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍【分析】利用等腰三角形的性质和线段垂直平分线的性质分别对四个选项进行判断后即可确定正确的选项.【解答】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故A错误;B、三角形两边的垂直平分线的交点到三个顶点的距离相等,故B正确;C、等腰三角形的两个底角相等,故C正确;D、等腰三角形顶角的外角是底角的二倍,故D正确,故选:A.8.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.9.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时﹣实际用时=4.【解答】解:设原计划每天挖x米,则原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:C.10.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.11.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A.B.C.D.随所取盐水重量而变化【分析】设从甲乙两瓶中各取重量相等的盐水x,列式计算即可.【解答】解:设从甲乙两瓶中各取重量相等的盐水x,则混合制成新盐水的含盐量为:=,故选:A.12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.二.填空题(共6小题)13.若分式的值为零,则x的值为 2 .【分析】分式的值为零:分子2﹣|x|=0,且分母x+2≠0.【解答】解:根据题意,得2﹣|x|=0,且x+2≠0,解得,x=2.故答案是:2.14.如果实数a,b满足a+b=6,ab=8,那么a2+b2=20 .【分析】原式利用完全平方公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=6,ab=8,∴a2+b2=(a+b)2﹣2ab=36﹣16=20,故答案为:2015.一个多边形的内角和是720°,这个多边形的边数是 6 .【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为 3 .【分析】如图,作辅助线;首先运用角平分线的性质证明CD=DE;其次求出DE的长度,即可解决问题.【解答】解:如图,过点D作DE⊥AB于点E;∵∠C=90°,AD平分∠BAC,∴CD=DE;∵,且AB=10,∴DE=3,CD=DE=3.故答案为3.17.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的即挂铅锤的线绳与房梁直),用到的数学原理是等腰三角形的底边上的中线、底边上的高重合.【分析】根据△ABC是个等腰三角形可得AC=BC,再根据点O是AB的中点,即可得出OC⊥AB,然后即可得出结论.【解答】解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.18.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为 4 .【分析】根据直角三角形的性质得到BD=2BE=2,求出AB,根据等边三角形的判定定理和性质定理解答即可.【解答】解:∵DE⊥BC,∠B=∠C=60°,∴∠BDE=30°,∴BD=2BE=2,∵点D为AB边的中点,∴AB=2BD=4,∵∠B=∠C=60°,∴△ABC为等边三角形,∴AC=AB=4,故答案为:4.三.解答题(共7小题)19.解分式方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘(x﹣2),得1+2(x﹣2)=﹣1﹣x解得:x=,经检验x=是分式方程的解.20.因式分解:(1)3x3﹣12x(2)ax2﹣4ay+4ay2【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式即可.【解答】解:(1)原式=3x(x2﹣4)=3x(x+2)(x﹣2);(2)原式=a(x2﹣4y+4y2).21.先化简:,再从﹣1,0,2三个数中任选一个你喜欢的数代入求值.【分析】先算括号里面,再把除法转化为乘法,化简后代入求值.【解答】解:原式=()×=×=×=x﹣2.由于分母不能是0,除式不能为0,所以x≠﹣1,x≠2.当x=0时原式=0﹣2=﹣2.22.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是 6 ;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a= 3 ,b= 2 .【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)直接根据三角形的面积公式列式计算可得;(3)根据关于x轴的对称点的横坐标相等、纵坐标互为相反数解答可得.【解答】解:(1)如图所示,△A1B1C1即为所求;A1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.23.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.(1)求证:△ADB≌△AFC;(2)求BD的长度.【分析】(1)欲证明△ADB≌△AFC,只要证明∠ACF=∠2即可.(2)由(1)可知BD=CF,只要证明BC=BF,可得EC=EF=1,即可解决问题.【解答】证明:(1)如图,∵∠BAC=90°,∴∠2+∠F=90°,∠ACF+∠F=90°,∴∠ACF=∠2,在△ABF和△ACD中,,∴△ACF≌△ABD.(2)∵△ACF≌△ABD,∴BD=CF,∵BE⊥CF,∴∠BEC=∠BEF=90°,∵∠1+∠BCE=90°,∠2+∠F=90°,∴∠BCF=∠F,∴BC=BF,CE=EF=1,∴BD=CF=2.24.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?【分析】(1)先设商场第一次购进x套玩具,就可以表示出第二次购进玩具的套数,根据题目条件就可以列出方程,求出其解就可以.(2)设每套玩具的售价为y元,根据利润=售价﹣进价,建立不等式,求出其解就可以了.【解答】解:(1)设动漫公司第一批购进x套玩具,则第二批购进2x套玩具,由题意得:﹣=10,解这个方程,得x=200.经检验,x=200是所列方程的根.2x=2×200=400.答:动漫公司第一批购进200套玩具,第二批购进400套玩具;(2)设每套玩具的售价为y元,由题意得:600y﹣32000﹣68000≥20000,解这个不等式得y≥200,答:每套玩具的售价至少要200元.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【分析】问题背景中,根据小亮的设计可以得到所要的结论;探索延伸中,先判断结论是否成立,然后根据图形和题目中条件,作出合适的辅助线,进行说明即可;在实际应用中,根据题目中的条件进行合理的推导,只要能说明符合探索延伸的条件,即可解答本题.【解答】解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠DAF+∠BAE=∠BAD﹣∠EAF=∠BAD,∴∠GAF=∠EAF,又∵AG=AE,AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF,∵GF=DF+DG=DF+BE,∴EF=BE+FD;实际应用:如图3,连接EF,延长AE、BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°,∴图3符合探索延伸的条件,∴EF=AE+FB=1.5×(60+80)=210(海里),即此时两舰艇之间的距离210海里.。
山东省沂水县2018-2019学年八年级上学期期末数学模拟试卷(含答案)
山东省沂水县2018-2019学年八年级上学期期末数学模拟试卷一.选择题(满分42分,每小题3分)1.无论a取何值时,下列分式一定有意义的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0 D.x≠14.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处5.化简的结果是()A.﹣1 B.1 C.﹣a D.a6.下列运算正确的是()A.2a﹣a=1 B.2a+b=2abC.(a4)3=a7D.(﹣a)2(?﹣a)3=﹣a57.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A.80°B.100°C.120°D.140°8.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣199.计算(2a)2?a4的结果是()A.2a6B.2a5C.4a6D.4a510.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.11.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=112.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.313.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c 14.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130二.填空题(共5小题,满分15分,每小题3分)15.当x=时,分式的值为零.16.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为.17.若2x+y=4,x﹣=1,则4x2﹣y2=.18.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为.19.如图,△APB中,AB=2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是.三.解答题(共7小题,满分63分)20.(8分)计算下列各题:(1)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)(2)(2x+3y)2﹣(4x﹣9y)(4x+9y)+(3x﹣2y)2.21.(8分)分解因式:(1)5mx2﹣10mxy+5my2(2)4(a﹣b)2﹣(a+b)2.22.(8分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.23.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).24.(10分)如图,△ABC与△CDE都是等边三角形,B,C,D在一条直线上,连结B,E两点交AC于点M,连结A,D两点交CE于N点.(1)AD与BE有什么数量关系,并证明你的结论.(2)求证:CO平分∠BOD.25.(10分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:价格甲乙进价(元/件)m m+20售价(元/件)150160如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.(1)求m的值;(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?26.(11分)已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.参考答案一.选择题1.解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.2.解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.3.解:由题意可知:x﹣1≠0,x≠1故选:D.4.解:如图所示,加油站站的地址有四处.故选:D.5.解:=﹣=﹣a.故选:C.6.解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2(?﹣a)3=﹣a5,故本选项正确.故选:D.7.解:如图所示,延长BC交AD于点E,∵∠A=50°,∠B=20°,∴∠CED=∠A+∠B=50°+20°=70°,∴∠BCD=∠CED+∠D=70°+30°=100°.故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:(2a)2?a4=4a2?a4=4a6.故选:C.10.解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、==;B、==;C、;D、==.故A正确.故选:A.11.解:分式方程的最简公分母为(x﹣1)(x+1),方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.12.解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选:A.13.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.14.解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.二.填空题(共5小题,满分15分,每小题3分)15.解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.16.解:∵点A(a,b)与点B(﹣3,4)关于y轴对称,∴a=3,b=4,∴a+b=3+4=7,故答案为:7.17.解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.18.解:将a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,将ab=12代入得:a2+b2+24=100,即a2+b2=76,则两个正方形面积之和为76;∴S阴影=S两正方形﹣S△ABD﹣S△BFG=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)=×(76﹣12)=32.故答案为:32.19.解:如图,延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=8,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=8,∴ab≤2,即四边形PCDE面积的最大值为2.故答案为:2.三.解答题(共7小题,满分63分)20.解:(1)原式=a2﹣4ab+4b2﹣b2+4a2﹣4a2+4ab=a2+3b2;(2)原式=4x2+9y2+12xy﹣16x2+81y2+9x2+4y2﹣12xy=﹣3x2+94y2.21.解:(1)原式=5m(x2﹣2xy+y2)=5m(x﹣y)2.(2)原式=[2(a﹣b)]2﹣(a+b)2=[2(a﹣b)+(a+b)][2(a﹣b)﹣(a+b)] =(3a﹣b)(a﹣3b).22.解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4,,解①得:x≤1,解②得:x>﹣3,故不等式组的解集为:﹣3<x≤1,把x=﹣2代入得:原式=0.23.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴?AE?BK=?CD?BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.24.解:(1)∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,CA=CB,∠ACD=∠BCE,CD=CE∴△ACD≌△BCE(SAS),∴AD=BE;(2)作CH⊥BE于H,CQ⊥AD于Q,∵△ACD≌△BCE,∴CQ=CH,∵CH⊥BE于H,CQ⊥AD于Q,∴CO平分∠BOD.25.解:(1)根据题意可得:,解得:m=100,经检验m=100是原方程的解;(2)设甲种童装为x件,可得:,解得:98≤x<100,因为x取整数,所以有两种方案:方案一:甲98,乙102;方案二:甲99,乙101;26.证明:(1)∵AD⊥BC,∴∠ADC=∠FDB=90°.∵∠ACB=45°,∴∠ACB=∠DAC=45°,∴AD=CD,∵在△ABD和△CFD中,,∴△ABD≌△CFD(ASA),(2)∵△ABD≌△CFD,∴BD=FD,∵∠FDB=90°,∴∠FBD=∠BFD=45°,∵∠ACB=45°,∴∠BEC=90°,∴BE⊥AC.。
2018-2019学年度上期八年级期末调研考试题数学参考答案及评分意见
2018-2019学年度上期八年级期末考试题数学参考答案及评分意见A 卷(共100分)第I 卷(选择题,共30分)第Ⅱ卷(非选择题,共70分)二、填空题(本题共4小题,每小题4分,共16分)11. -4; 12. (4,0) ; 13. -2; 14. 4.8;三、解答下列各题(共54分.15题每题6分,16题6分,17题8分,18、19题每题9分,20题10分)15.(1)230227214.3-(-+-+)π解:原式=4321-++ …………4分(每算对一个给1分) =2 …………6分 (2) )32)(32(33812-++⨯⎪⎪⎭⎫⎝⎛+解:原式=()⎥⎦⎤⎢⎣⎡-++2232836 …………3分(每算对一个给1分)=7226-+ …………5分 =122- …………6分 16.⎩⎨⎧=+=-82237y x y x解:①+②×3得2=x ③…………3分把③代入②得 84=+y4=y …………5分∴原方程组的解为⎩⎨⎧==42y x …………6分 (注:用其他方法得出正确答案也得满分)①②17.解:(1). 分分4105654065,24040//⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅︒=︒+︒=∠∴︒=∠∠+∠=∠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅︒=∠∴︒=∠∠=∠∴ADF C C FDC AFD FDC B B FDC AB DF(2)分中,由勾股定理得:在是高55246A BD A R 90ADC 2222⋅⋅⋅⋅⋅⋅⋅⋅⋅=-=-=∆︒=∠∴AD B BD t AD分分是中线853425321216253253552⋅⋅⋅⋅⋅⋅⋅=⨯⨯=⋅=∴⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==∴=+=+=∴∆AD BE S BC BE AE CD BD BC ABE18.解:设三人间租住了x 间,两人间租住了y 间, ………1分根据题意得:⎩⎨⎧=⨯+⨯=+21602503404823y x y x ………5分解得⎩⎨⎧==128y x ………8分答:三人间租住了8间,两人间租住了12间. ………9分 19.(1) 50 ,补全统计图如右图 ………2分(每问1分)(2) 2.4 , 2.2 ;………4分(每空1分) 平均数=21.2416141156.24164.2142.2110.258.1=++++⨯+⨯+⨯+⨯+⨯………7分(3)1800只)(3965011=⨯………………………………………9分 ∴质量为2.0kg 的约有396只 ;20. 解:(1)把点A (4,1)代入函数y=b x +-,得b +-=41, 解得5=b∴一次函数的表达式为y=5+-x ……………1分 ∵把点B (a ,3)代入函数y=5+-x 得:53+-=a ……2分 ∴a =2,B (2,3)∵kx y =过点B (2,3)2323=∴=∴k k∴正比例函数的表达式x y 23=………………3分 (2)∵y=5+-x 与y 轴交于点C∴C (0,5)∵点D 与点C 关于x 轴对称∴D (0,-5)……………………………4分 ∵DE 与直线AC 平行∴设直线DE 的表达式为y='b x +-把D (0,-5)代入y='b x +-得5'-=b ∴直线DE 的表达式为y=5--x联立列方程组得,⎪⎩⎪⎨⎧=--=x y x y 235 ………………5分 解得⎩⎨⎧-=-=32y x∴点E 坐标(-2,-3); …………………………6分 (3)∵C (0,5) ∴OC=5∴B A BCO ACO ABO x CO x CO S S S ⋅-⋅=-=∆∆∆2121 525214521=⨯⨯-⨯⨯= ∴ABO PBES S ∆∆=54=4545=⨯……………………………7分 Ⅰ)P 点在x 轴上:设P (m ,0), ∴OP m =∵B E OPB OPE PBE y OP y OP S S S ⋅+⋅=+=∆∆∆2121 ∴4321321=⋅+⋅m m ∴34=m ,34±=m∴ P (34,0)或P(34-,0)………………………9分 Ⅱ)P 点在y 轴上设P (0,c ), ∴OP c =∵B E OPB OPE PBE x OP x OP S S S ⋅+⋅=+=∆∆∆2121 ∴4221221=⋅+⋅c c ∴2=c ,2±=c∴ P (0,2)或P(0,-2) …………………………10分 综上所述,P (34,0)或P(34-,0)或 P (0,2)或P(0,-2) (注:四个点求出一个点给1分,求出两个点或三个点给2分,求出四个点给全分3分)B 卷(50分)一、填空题(20分,每小题4分) 21. 25; 22. -1或0; 23. a 1334;24.)354,352( ;25. 2019 二、(本题满分8分)26.解:(1) 由题可得⎩⎨⎧=-+=-+5.41)1217(1259)1222(12n m n m解得:⎩⎨⎧==5.32n m ……………………………3分(2) ①当120≤≤x 时,x y 2=②当12>x 时,185.35.3)12(212-=⨯-+⨯=x x y综上:⎩⎨⎧>-≤≤=)12(185.3)120(2x x x xy ……………………………………6分(3) ∵25>12∴5.6918255.3=-⨯=y答:略. …………………………………8分三、(本题满分10分)27.证明:(1) 由题可得AF=AD=DE=4在等腰Rt △ADE 中解得AE=24∴EF =AE -AF=424- ………………………………2分 (2) 如图过A 作BF AP ⊥∵AG 平分∠DAE∴∠GAE=21∠DAE= 5.22 又∵AB=AF ,BF AP ⊥∴BP=PF ,∠GFA=∠ABF=21( 180-∠BAD-∠DAD )=5.22∴∠PGA=∠GAE+∠GFA=45即△PAG 为等腰直角三角形 ∴PG=PA ,AG=2PG ……………………………………4分 过C 作CQ ⊥BF∵∠ABP+∠CBQ=∠BCQ+∠CBQ=90 ∴∠ABP=∠BCQ在Rt △ABP 与Rt △CBQ 中∵⎪⎩⎪⎨⎧=∠=∠=∠=∠CB AB BCQ ABP CQB APB 90 ∴△ABP ≌△CBQ (AAS ) ……………………………………6分 ∴BP=CQ ,AP=BQ 又∵PG=PA∴GP=BQ∴GP+PQ=BQ+PQ ,即GQ=BP ∴GQ=CQ ,∴△CQG 为等腰直角三角形 ∴CG=2QG=2PF∴CG-AG=2PF-2PG=2FG ……………………………………8分(3) 2 ……………………………………10分 过B 作BH ⊥BN 交NC 的延长线于点H ,易证△ABN ≌△CBH,即证△HBN 为等腰直角三角形.四、(本题满分12分)28.(1)设AB l :b kx y +=代入点A 、B 可得⎩⎨⎧+==bk b408解得:⎩⎨⎧=-=82b k ,即AB l :82+-=x y ………………………………2分设),(n m C ,如图作CF ⊥OB ∵CO=CB,CF ⊥OB ∴OF=21OB=2 ∴m=2,即),2(n C 将点C 代入AB l 可得:n=4∴)4,2(C ………………………………4分(2)是定值,定值为2.由(1)可得OF=2,FC=4, ∴在Rt △COF 中解得CO=52=CB 又∵解Rt △AOB 可得AB=54 ∴AC=AB-CB=52=CO ∴∠CAO=∠AOC …………6分 ∴∠OCB=∠AOC+∠CAO=2∠CAO又∵∠OEB=∠OCB+∠ABD ∴∠OEB=2∠CAO+∠ABD ∴∠OEB+∠ABD=2(∠CAO+∠ABD) 又∵∠ODB=∠CAO+∠ABD2)(2=∠+∠∠+∠=∠∠+∠∴ABDCAO ABD CAO ODB ABD OEB ………………………………8分(3))0,524(1-P ,)0,524(2+P ,)0,1(3-P ,)0,0(4P ,)2,0(5P ,)2,0(6-P ,)21,0(7P ………………………………12分 (全部写对且无其余错误点坐标,本小问得4分;否则每写对一个点得0.5分)。
2018-2019学年度八年级(上册)期末质量评估抽查数学试卷(附答案解析)
2018-2019学年度八年级(上册)期末质量评估抽查数学试卷命题人:xxx审题人:xxx考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共6小题,每小题3分,共18分)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.下面四个数中无理数是()A.0.B.C.D.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,954.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.25的平方根是,16的算术平方根是,﹣27的立方根是.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9= .12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为.13.(1)计算:|﹣|+3﹣2+(2)解方程组:14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?六、(本大题共12分)23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为;若点F为完美点,且横坐标为3,则点F的纵坐标为;(2)完美点P在直线(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.参考答案与试题解析一.选择题(共6小题)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出答案.【解答】解:点(2018,﹣1)所在象限为第四象限.故选:D.【点评】此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.2.下面四个数中无理数是()A.0.B.C.D.【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、=3,不是无理数,故本选项不符合题意;D、是无理数,故本选项符合题意;故选:D.【点评】本题考查了无理数的定义和算术平方根,能理解无理数的定义的内容是解此题的关键,注意:无理数有:①开方开不尽的根式,②含π的,③一些有规律的数.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,95【分析】先根据平均数求得a的值,再将数据从小到大重新排列,继而利用中位数和众数的定义求解可得.【解答】解:∵这6位同学的平均成绩是90,∴85+95+72+100+93+a=6×90,解得:a=95,则这组数据从小到大重新排列为72、85、93、95、95、100,所以这组数据的中位数为=94,众数为95,故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.4.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.【点评】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:D.【点评】考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.【分析】根据一次函数y=kx+b中的k、b的取值范围,确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx+b中,k<0,b<0,∴该直线必经过二、四象限,且与y轴负半轴相交.故选:B.【点评】主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二.填空题(共6小题)7.25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3.【分析】根据立方根、平方根、算术平方根的定义求出即可.【解答】解:25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3,故答案为:±5,4,﹣3.【点评】本题考查了立方根、平方根、算术平方根的定义,能熟记立方根、平方根、算术平方根的定义的内容是解此题的关键.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是﹣2.【分析】根据关于y轴对称的点,横坐标互为相反数,纵坐标相等,可得m,n的值,再代入计算可得.【解答】解:∵点A(m+1,2)与点B(4,n﹣1)关于y轴对称,∴m+1=﹣4,2=n﹣1,解得:m=﹣5,n=3,则m+n=﹣5+3=﹣2,故答案为:﹣2.【点评】本题考查了关于x,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为7.2.【分析】先用勾股定理求出直角边BC的长度,再用面积就可以求出斜边上的高.【解答】解:在Rt△ABC中,∵∠C=90°,AB=15,AC=12,∴BC==9,=AC•BC=AB•CD,由面积公式得:S△ABC∴CD===7.2.故斜边AB上的高CD的长为7.2.故答案为:7.2.【点评】本题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为15°或35°.【分析】根据三角形的内角和定理求出∠BAD,求出∠BAE,相减即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=60°,∴∠BAD=90°﹣60°=30°,∵∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵AE是△ABC角平分线,∴∠BAE=∠BAC=45°,∴∠DAE=∠BAE﹣∠BAD=15°,故答案为:15°或35°【点评】本题主要考查对三角形的内角和定理,三角形的角平分线等知识点的理解和掌握,能正确画图和求出∠BAE、∠BAD的度数是解此题的关键.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9=24.【分析】按照定义新运算x*y=ax+by+1,用已知的两个式子建立方程组,求得a,b的值后,再求5*9的值【解答】解:根据题意知,解得:,则x*y=x+2y+1,所以5*9=5+2×9+1=24,故答案为:24.【点评】本题是新定义题,考查了定义新运算,解方程组.要注意运算顺序与运算符号.12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为(1,1)或(,)或(2,2).【分析】分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P2的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论.【解答】解:∵点A的坐标为(2,0),∴OA=2.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=2,∴点P1的坐标为(1,1);②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形.∵OP2=OA=2,∴OB=BP2=,∴点P2的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=2,∴AP3=OA=2,∴点P3的坐标为(2,2).综上所述:点P的坐标为(1,1)或(,)或(2,2).故答案为:(1,1)或(,)或(2,2).【点评】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.三.解答题(共11小题)13.(1)计算:|﹣|+3﹣2+(2)解方程组:【分析】(1)根据绝对值和二次根式的加减法可以解答本题;(2)根据解二元一次方程组的方法可以解答此方程组.【解答】解:(1)|﹣|+3﹣2+==;(2)②﹣①×2,得x=6,将x=6代入①,得y=﹣3,故原方程组的解是.【点评】本题考查实数的运算、解二元一次方程组,解答本题的关键是明确它们各自的计算方法.14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象的平移规律,可得平移后的解析式,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将x=2,y=﹣2代入函数解析式,得2k﹣4=﹣2,解得k=1,一次函数的解析式为y=x﹣4;(2)一次函数y=x﹣4的图象向上平移3个单位,得y=x﹣1.当y=0时,x﹣1=0,解得x=1,平移后的图象与x轴的交点的坐标(1,0).【点评】本题考查了一次函数图象与几何变换,解(1)的关键是待定系数法,解(2)的关键是利用函数图象的平移规律.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.【分析】先证AC∥DF得∠C=∠DEC,结合∠C=∠F可证CE∥BF,得∠2=∠3,根据∠1=∠3可得证.【解答】证明:∠1=∠2,理由:∵∠A=∠D,∴AC∥DF,∴∠C=∠DEC,∵∠C=∠F,∴∠F=∠DEC,∴CE∥BF,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2.【点评】本题主要考查平行线的判定与性质,解题的关键是:熟记同位角相等⇔两直线平行,内错角相等⇔两直线平行,同旁内角互补⇔两直线平行.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.【分析】本题应利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.【解答】解:过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+S EFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×3×6+×(4+6)×3+×2×4=28.故四边形ABCD的面积为28.【点评】此题主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式和图形有机结合起来的解题方法.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【分析】(1)根据点A的坐标为(0,3),即可建立正确的平面直角坐标系;(2)观察建立的直角坐标系即可得出答案;(3)分别作点A,B,C关于x轴的对称点A′,B′,C′,连接A′B′,B′C′,C′A′则△A′B′C′即为所求.【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.【点评】本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?【分析】设农场去年计划生产小麦x吨,玉米y吨,利用去年计划生产小麦和玉米200吨,则x+y=200,再利用小麦超产15%,玉米超产5%,则实际生产了222吨,得出等式(1+5%)y+(1+15%)x=222,进而组成方程组求出答案.【解答】解:设农场去年计划生产玉米x吨,小麦y吨,根据题意可得:,解得:,则80×(1+5%)=84(吨),120×(1+15%)=138(吨),答:农场去年实际生产玉米84吨,小麦138吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.【分析】(1)根据勾股定理的逆定理可证∠C=90°;(2)在Rt△ACB中,先根据勾股定理得到BC的长,再根据线段的和差关系可求BD的长.【解答】(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:∵在Rt△ABC中,∠C=90°,∴BC===8,∴BD=BC﹣CD=8﹣3=5.【点评】本题考查了勾股定理的逆定理,勾股定理,注意熟练掌握勾股定理的逆定理和勾股定理是解题的关键.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?【分析】(1)由折线统计图得出具体数据,再根据中位数、众数和平均数的定义求解可得;(2)根据平均数、众数、中位数及方差的意义求解,只要合理即可.【解答】解:(1)a=×(6×2+7×7+9)=7,b=8,c=7,s2=×[(9﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(6﹣8)2+(8﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(8﹣8)2]=1.8.(2)∵甲的平均成绩、中位数与众数比乙的都高,∴应选甲运动员.【点评】本题考查的是折线统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.【分析】(1)根据题意和函数图象可以解答本题;(2)根据函数图象中的数据可以求得与x之间的函数表达式;(3)将x=4代入(2)中的函数解析式即可解答本题.【解答】解:(1)不相同,理由:因为去时用了2小时,返回时用了2.5小时,所以辆汽车的往返速度不相同;(2)设返回过程中y与x之间的函数关系式为y=kx+b,,解得,,∴y=﹣48x+240(2.5≤x≤5);(3)当x=4时,y=﹣48×4+240=48,答:这辆汽车从甲地出发4(小时)时与甲地的距离是48千米.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB∴300×400=500×CD∴CD==240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为1;若点F为完美点,且横坐标为3,则点F的纵坐标为2;(2)完美点P在直线y=x﹣1(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.【分析】(1)把m=2和3分别代入m+n=,求出n即可;(2)求出两条直线的解析式,再把P点的坐标代入即可;(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.【解答】解:(1)把m=2代入m+n=mn得:2+n=2n,解得:n=2,即==1,所以E的纵坐标为1;把m=3代入m+n=mn得:3+n=3n,解得:n=,即==2,所以F的纵坐标为2;故答案为:1,2;(2)设直线AB的解析式为y=kx+b,从图象可知:与x轴的交点坐标为(1,0)A(0,5),代入得:,解得:k=﹣1,b=5,即直线AB的解析式是y=﹣x+5,设直线BC的解析式为y=ax+c,从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),代入得:,解得:a=1,c=﹣1,即直线BC的解析式是y=x﹣1,∵P(m,),m+n=mn且m,n是正实数,∴除以n得:∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;故答案为:y=x﹣1;(3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,∴,解得:,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x ﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴∵,∴又∵,∴BC=1,∴S=BC×BM==.△MBC【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.。
(汇总3份试卷)2018年临沂市八年级上学期期末统考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC ∆中,AB AC =,BD 平分ABC ∠,交AC 于点D ,//AE BD ,交CB 的延长线于点E ,35E ∠=︒,则下列结论不正确的是( )A .AB BE =B .40BAC ∠=︒ C .70ACB ∠=︒D .AD CD =【答案】D 【分析】利用平行线的性质,等腰三角形的性质和三角形内角和定理逐一对选项进行验证,看能否利用已知条件推导出来即可.【详解】∵//AE BD ,35E ∠=︒35DBC E ∴∠=∠=︒∵BD 平分ABC ∠270ABC BDC ∴∠=∠=︒∵AB AC =70ACB ABC ∴∠=∠=︒,故C 选项正确;18040BAC ACB ABC ∴∠=︒-∠-∠=︒ ,故B 选项正确;ABC E EAB ∠=∠+∠35EAB ∴∠=︒∵35E ∠=︒AB BE ∴=,故A 选项正确;而D 选项推不出来故选:D .【点睛】本题主要考查平行线的性质,等腰三角形的性质和三角形内角和定理,掌握平行线的性质,等腰三角形的性质和三角形内角和定理是解题的关键.2.已知13m m +=,则221m m +=( ) A .7B .11C .9D .1【答案】A【解析】将原式两边都平方,再两边都减去2即可得.【详解】解:∵m+1m =3, ∴m 2+2+21m =9, 则m 2+21m=7, 故选A .【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式.3.下列长度的三条线段能组成三角形的是( )A .1,2,3B .2,2,4C .2,3,4D .2,4,8【答案】C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A 中,1+2=3,不能组成三角形;B 中,2+2<4,不能组成三角形;C 中,3+2>4,能够组成三角形;D 中,2+4<8,不能组成三角形.故选:C .【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.4.如图,在中国象棋棋盘中,如果将“卒”的位置记作()3,1,那么“相”的位置可记作( )A .()2,8B .()2,4C .()8,2D .()4,2【答案】C 【分析】根据“卒”所在的位置可以用()3,1表示,可知数对中第一个数字表示列,第二个数字表示行,据此可用数对表示出“相”的位置.【详解】用数对分别表示图中棋子“相”的位置:()8,2;故选:C.【点睛】此题是考查点与数对,关键是根据已知条件确定数对中每个数字所表示的意义.5.如图,在ABC 中,90B ∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN 交BC 于点D ,连接AD .若30C ∠=︒,12AD =,则BC 的长是( )A .12B .16C .18D .24【答案】C 【分析】由作图可知,DN 为AC 的垂直平分线,求得CD=12,再求出∠DAB=30°,BD=6,问题得解.【详解】解:由作图可知,DN 为AC 的垂直平分线,∴AD=CD=12,∴∠C=∠CAD=30°,∵90B ∠=︒,∴∠CAB=60°,∴∠DAB=30°,∴162BD AD ==, ∴BC=BD+CD=1.故选:C【点睛】 本题考查了线段垂直平分线的尺规作图、性质,含30°角的直角三角形性质,等腰三角形性质.由作图得到“DN 为AC 的垂直平分线”是解题关键.6.已知 35x <<,则化简221(5)x x 的结果是( ). A .4B .6-2xC .-4D .2x-6 【答案】A【分析】根据绝对值的性质以及二次根式的性质即可求出答案.【详解】解:因为35x <<, 所以10x -<,50x ->, 221(5)xx 15x x 15x x4=,故选:A .【点睛】本题考查二次根式,解题的关键是熟练运用绝对值的性质以及二次根式的性质.7.边长为a 和2a 的两个正方形按如图所示的样式摆放,则图中阴影部分的面积为( )A .22aB .32aC .42aD .62a【答案】A 【分析】图中阴影部分的面积为两个正方形面积的和减去空白三角形的面积即可求解.【详解】根据图形,得图中阴影部分的面积=大正方形的面积+小正方形的面积﹣空白三角形的面积. 即:4a 1+a 11232a a -⨯⨯ =5a 1﹣3a 1=1a 1.故选A .【点睛】本题考查了列代数式,解决本题的关键是观察图形所给条件并列式.8.下列等式成立的是( )A .01a =B .(a 2)3=a 6C .a 2.a 3 = a 6D .224(2)2a a = 【答案】B【分析】直接利用零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则分别化简得出答案.【详解】解:A 、a 0=1(a≠0),故此选项错误;B 、根据幂的乘方法则可得(a 2)3=a 6,正确;C 、根据同底数幂的乘法法则可得a 2.a 3 = a 5,故此选项错误;D 、根据积的乘方法则可得224(2)4a a =,故此选项错误;故选:B .【点睛】此题主要考查了零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则等知识,正确掌握运算法则是解题关键.9.用三角尺可按下面方法画角平分线: 在已知的AOB ∠的两边上,分别截取OM ON =,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分AOB ∠.这样画图的主要依据是()A .SASB .ASAC .AASD .HL【答案】D 【分析】直接利用直角三角形全等的判定HL 定理,可证Rt △OMP ≌Rt △ONP .【详解】由题意得,OM =ON, ∠OMP =∠ONP =90°,OP =OP在Rt △OMP 和Rt △ONP 中OP OP OM ON⎧⎨⎩== ∴Rt △OMP ≌Rt △ONP (HL )∴∠AOP =∠BOP故选:D【点睛】本题主要考查全等三角形的判定方法和全等三角形的性质,掌握全等三角形的判定方法之一:斜边及一条直角边对应相等的两个直角三角形全等.10.三角形一边上的中线把原三角形一定分成两个 ( )A .形状相同的三角形B .面积相等的三角形C .周长相等的三角形D .直角三角形【答案】B【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.【详解】三角形一边上的中线把原三角形分成两个面积相等的三角形.故选B .【点睛】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线.二、填空题11.平行四边形ABCD 中,10AC =,8BD =,则AB 的取值范围是________.【答案】19AB <<【分析】根据平行四边形的性质求出OA 、OB ,根据三角形的三边关系定理得到OA-OB <AB <OA+OB ,代入求出即可.【详解】解析:四边形ABCD 是平行四边形,10AC =,8BD =,5OA OC ∴==,4OD OB ==,在OAB ∆中,OA OB AB OA OB -<<+,5445AB ∴-<<+,19AB ∴<<.即AB 的取值范围为19AB <<.故答案为:19AB <<.【点睛】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA 、OB 后得出OA-OB <AB <OA+OB 是解此题的关键.122(3)-=_________.【答案】1【分析】根据二次根式的性质化简即可求出结果. 2(3)|3|3-=-=,故答案为:1.【点睛】 2||a a =是解题的关键.13.已知22a b -=-,则代数式22288a ab b -+-的值为____________.【答案】-2【分析】先把代数式﹣1a 1+2ab ﹣2b 1进行因式分解,再把a ﹣1b=﹣1整体代入即可.【详解】﹣1a 1+2ab ﹣2b 1=﹣1(a 1﹣4ab+4b 1)=﹣1(a ﹣1b)1.∵a ﹣1b=﹣1,∴原式=﹣1×(﹣1)1=﹣2.故答案为:﹣2.【点睛】本题考查了因式分解的应用,掌握因式分解的各种方法以及整体思想是解答本题的关键.14.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是2222.83, 1.71, 3.52,S S S ===甲乙丙你认为适合参加决赛的选手是_____.【答案】乙【解析】根据方差的定义,方差越小数据越稳定即可求解.【详解】∵2222.83, 1.71, 3.52,S S S ===甲乙丙而1.71<2.83 3.52<,∴乙的成绩最稳定,∴派乙去参赛更好,故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为_____.【答案】3【分析】由题意可知:中间小正方形的边长为:a -b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a -b , ∵每一个直角三角形的面积为:12ab =12×8=4, ∴4×12ab +(a -b)2=25, ∴(a−b)2=25-16=9,∴a -b =3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.16.等腰三角形的一个外角度数为100°,则顶角度数为_____.【答案】80︒或20︒【解析】解:若顶角的外角是100︒,则顶角是80︒.若底角的外角是100︒,则底角是80︒,顶角是20︒.故答案为80°或20°.17.如图,直线AB∥CD,直线EF分别与直线AB和直线CD交于点E和F,点P是射线EA上的一个动点(P不与E重合)把△EPF沿PF折叠,顶点E落在点Q处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE的度数是_______.【答案】50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=212∠EFC=212×120°=20°,∴∠PFE=12∠EFQ=12(∠EFC﹣∠CFQ)=12(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.三、解答题18.某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、1分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)方差一班1.76 9 9 211.06S≈二班1.76 1 10 221.38S≈请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.【答案】答案不唯一.【分析】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.【详解】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给分.如:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.再如:选择二班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,二班的众数高于一班,因此可以选择二班参加校级比赛.【点睛】此题主要考查结合统计图进行数据分析,熟练理解相关概念是解题关键.19.某开发公司生产的960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天80 元,乙工厂加工费用为每天120元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20, 由等量关系列出方程求解. (2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用, 比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,则: 解得:x =16经检验,x =16 是原分式方程的解∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天需要的总费用为:60×(80+15)=5700 元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40 天需要的总费用为:40×(120+15)=5400 元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则16a+24a =960∴a =24∴需要的总费用为:24×(80+120+15)=5 160 元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列 出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.20.如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,4,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,并写出点1A 的坐标.(2)画出111A B C ∆关于y 轴对称的222A B C ∆,并写出点2A 的坐标.【答案】(1)见解析,()12,4A -;(2)见解析,()22,4A -- 【分析】(1)作出各点关于x 轴的对称点,再顺次连接即可;(2)作出各点关于y 轴的对称点,再顺次连接即可.【详解】(1)如图,111A B C ∆即为所求,()12,4A -.(2)如图,222A B C ∆即为所求,点()22,4A --.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.21.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】 (1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x 件产品,则乙工厂每天加工(x+8)件产品, 根据题意得:48728x x =+, 解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.已知:如图在四边形ABCD 中,AB ∥CD , AD ∥BC ,延长CD 至点E ,连接AE ,若=DAE E ∠∠ ,求证:=2B E ∠∠【答案】见解析【分析】根据AB ∥CD ,AD ∥BC ,可得四边形ABCD 是平行四边形,所以∠B =∠ADC ,再由三角形的外角性质可得∠ADC =∠DAE+∠E =2∠E .【详解】证明:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,∴∠B =∠ADC ,又∵∠DAE =∠E ,∴∠ADC =∠DAE+∠E =2∠E .∴∠B =2∠E .【点睛】本题主要考查了平行四边形的判定以及三角形的外角性质,属于基础题,比较简单.23.解方程组:1127x y x y +=⎧⎨-=⎩①②.(1)小组合作时,发现有同学这么做:①+②得318x =,解得6x =,代入①得5y =.∴这个方程组的解是65x y =⎧⎨=⎩,该同学解这个方程组的过程中使用了 消元法,目的是把二元一次方程组转化为 .(2)请你用另一种方法解这个方程组.【答案】(1)加减,一元一次方程;(2)见解析【分析】(1)先用加减消元法求出x 的值,再用代入消元法求出y 的值即可;(2)先把①变形为x=11-y 代入②求出y 的值,再把y 代入①求出x 的值.【详解】解:(1)①+②得:318x =,解得:6x =,把6x =代入①得:6+y 11=,解得:5y =,∴这个方程组的解是65x y =⎧⎨=⎩, 故答案为:加减,一元一次方程;(2)由①变形得:11x y =-③,把③代入②得:()2117y y --=,解得:5y =,把5y =代入①得:511x +=,解得:6x =,∴这个方程组的解是65x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键. 24.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①211x x -+;②222a b a b --;③22x y x y +-;④()222a b a b -+.其中是“和谐分式”是 (填写序号即可);(2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3)在化简22344a ab ab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:原式=22344a a ab b b b -⨯-=223244a a ab b b --=()()222323244a b a ab b ab b b ---, 小强:原式=22344a a ab b b b -⨯-=()()()222224444a a a b a a b a b ba b b ---=--, 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简.【答案】(1)②;(2) 4,5;(3)见解析.【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到a的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】(1)②分式=,不可约分,∴分式是和谐分式,故答案为②;(2)∵分式为和谐分式,且a为正整数,∴a=4,a=﹣4(舍),a=5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式====故答案为小强通分时,利用和谐分式找到了最简公分母.【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答. 25.某同学碰到这么一道题“分解因式:a4+4”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上4a2,再减去4a2,这样原式化为(a4+4a2+4)﹣4a2,……”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.你会吗?请完成此题.【答案】见解析【分析】先利用“配方法”分解因式,然后根据平方差公式因式分解即可解答.【详解】解:a4+4=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a)=(a2+2a+2)(a2﹣2a+2).【点睛】本题考查了配方法分解因式,公式法分解因式,掌握因式分解的方法是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在下列实数中,无理数是()A.13B. C.16D.227【答案】B【解析】∵π是无限不循环小数,∴π是无理数,其它的数都是有理数.故选B.2.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°【答案】C【分析】根据在△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可得出答案.【详解】在△ABC中,AB=AC,∠A=20°,所以∠ABC=80°,因为DE垂直平分AB,所以AE=BE,所以∠ABE=∠A=20°,所以∠CBE=80°-20°=60°,所以答案选C.【点睛】本题主要考查线段的垂直平分线及等腰三角形的性质.关键是熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等.3.下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC【答案】C【解析】本题考查了平行四边形的判定平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、可以得到两组对边分别平行,根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;B、可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;C 、不能判定四边形ABCD 是平行四边形,故此选项符合题意;D 、根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD 是平行四边形,故此选项不符合题意.故选C .4.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .【答案】B【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误; D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.5.如图,在△ABC 中,∠C =40°,将△ABC 沿着直线l 折叠,点C 落在点D 的位置,则∠1-∠2的度数是( )A.40°B.80°C.90°D.140°【答案】B【解析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系. 6.如图所示的标志中,是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】C【解析】根据轴对称的定义逐一判断即可.【详解】是轴对称图形,故符合题意;是轴对称图形, 故符合题意;是轴对称图形, 故符合题意;不是轴对称图形, 故不符合题意,共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =x ﹣k 的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】利用正比例函数的性质可得出k <1,再利用一次函数图象与系数的关系可得出一次函数y =x ﹣k 的图象经过第一、二、三象限,进而可得出一次函数y =x ﹣k 的图象不经过第四象限.【详解】解:∵正比例函数y =kx 的函数值y 随x 的增大而减小,∴k <1.∵1>1,﹣k >1,∴一次函数y =x ﹣k 的图象经过第一、二、三象限,∴一次函数y =x ﹣k 的图象不经过第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系以及正比例函数的性质,牢记“0k >,0b y kx b >⇔=+的图象在一、二、三象限”是解题的关键.8.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条 【答案】B【分析】先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD ⊥BC ,根据勾股定理可得:AC 2-CD 2=AB 2-BD 2所以设CD=x,则BD=7-x所以52-x 2=(2-(7-x )2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC 中3==所以AD=BD=3所以三角形ABD 是帅气等腰三角形假如从点C 或B 作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.9.如图,AC 和BD 相交于O 点,若OA=OD ,用“SAS”证明△AOB ≌△DOC 还需( )A .AB=DCB .OB=OC C .∠C=∠D D .∠AOB=∠DOC【答案】B 【解析】试题分析:在△AOB 和△DOC 中,{OA ODAOB DOC OB OC=∠=∠=,∴△AOB ≌△DOC (SAS ),则还需添加的添加是OB=OC ,故选B.考点:全等三角形的判定.10.若分式x 2x 1-+的值为0,则x 的值为 A .﹣1B .0C .2D .﹣1或2 【答案】C【分析】根据分式值为零的条件可得x ﹣2=0,再解方程即可.【详解】解:由题意得:x ﹣2=0,且x+1≠0,解得:x =2,故选C .二、填空题11.如图,将Rt ABC △绕着直角顶点C 顺时针旋转90︒,得到A B C '',连接AA ',若25CA B ''∠=︒,则BAA '∠=__________度.【答案】70【分析】首先由旋转的性质,得△ABC ≌△A′B′C ,然后利用等腰直角三角形的性质等角转换,即可得解.【详解】由旋转的性质,得△ABC ≌△A′B′C ,∴AC=A′C ,∠BAC=∠B′A′C ,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵25CA B ''∠=︒∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【点睛】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.12.若点(),3P a 在第二象限,且到原点的距离是5,则a =________.【答案】-4【分析】根据点(),3P a 到原点的距离是5,即可列出关于a 的方程,求出a 值,再根据(),3P a 在第二象限,a <0,取符合题意的a 值即可.【详解】∵点(),3P a 到原点的距离是5∴22235a +=解得a=±4又∵(),3P a 在第二象限∴a <0∴a=-4故答案为:-4【点睛】本题考查了坐标到原点的距离求法,以及直角坐标系中不同象限内点的坐标特点.13.如图,在Rt ABC ∆中,90ACB ∠=,AD 平分BAC ∠交BC 于点D ,若5AB =,2DC =,则ABD ∆的面积为______.【答案】1【分析】作DH ⊥AB 于H ,如图,根据角平分线的性质得到DH=DC=2,然后根据三角形面积公式计算.【详解】解:作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DH ⊥AB ,DC ⊥AC ,∴DH=DC=2,∴△ABD 的面积= 152=52⨯⨯ 故答案为1.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.14.计算:03(2)2--⋅=____,()()263282a b a b ÷-=_____. 【答案】18 10532a b - 【分析】根据零指数幂、负整数指数幂的意义可计算03(2)2--⋅,根据积的乘方、以及单项式的除法可计算()()263282a b a b ÷-. 【详解】03(2)2--⋅=1×18=18, ()()263282a b a b ÷-=()6122642ab a b ÷-=10532a b -. 故答案为:18,10532a b - 【点睛】本题考查了零指数幂、负整数指数幂、积的乘方、以及单项式的除法,熟练掌握运算法则是解答本题的关键.15.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.【答案】22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+= ∴222=BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM。
2018-2019学年八年级上期末质量数学试卷含答案
2018-2019学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个是符合题意的 .1有意义,则x 的取值范围是 A .1x >-且1x ≠ B .1x ≥-C .1x ≠D .x ≥-1且1x ≠2.下列各式从左到右的变形正确的是A .yx y x -+-= -1B .y x =11++y xC .y x x +=y +11D .2)3(y x -=223yx3.在实数722,3π23.14中,无理数有 A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是 A .22B .19C .17D . 17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是 A .25B .35C .13D .127. 下列事件中,属于必然事件的是A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B. 某班级11名学生中,至少有两名同学的生日在同一个月份C. 用长度分别为2cm ,3cm ,6cm 的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001⋅⋅⋅(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数 8.下列运算错误的是== = D.2(2=9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE =2,AB=4,则AC 长是 A.9B. 8C. 7D. 610. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是A.①②B.①③C.②③D.①②③二、填空题(共10个小题,每小题2分,共20分)11.25的平方根是.12.计算:2= .13.若实数x y,0y=,则代数式2xy的值是.14. 已知:ABC∆中,AB AC=,30B A∠-∠=︒,则A∠=.15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x 颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是14,则y与x之间的关系式是.19.已知1132a b+=,则代数式254436a ab bab a b-+--的值为.(第17题图)20.已知: 如图,ABC △中,45ABC ∠=,H 是高AD 和BE的交点,12AD =,17BC =,则线段BH 的长为.三、解答题 (共12个小题,共60分)21.(4分)22.(5+23.(4分)1= , 3(2)64x y += ,求代数式22x yx y ++的值.24. (5分)先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.25.(5分).已知: 如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5分) 解关于x 的方程:32211x x x +=-+ .27.(4分))在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m 的值.28.(5分) 某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?29.(5分) 在ABC ∆中,AB ,BC ,AC 形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC ∆中,(即ABC ∆三个顶点都在小正方形的顶点处),如图1所示,这样不需要ABC ∆高,借用网格就能计算出它的面积.(1)△ABC 的面积为 ;(2)如果MNP ∆2的正方形网格(每个小正方形的边长为1)画出相应的格点MNP ∆,并直接写出MNP ∆的面积为 .30.(5分) 已知:如图,在ABC ∆中,90C ∠=︒.(1)求作:ABC ∆的角平分线AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若6AC =,8BC =,求CD 的长.31.(5分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是(填写序号即可); (2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b--=-小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简. 32.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是 边AC 上一点,且DE BC =. 求证:DEA C ∠=∠.顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试题答案及评分参考二、填空题三、解答题21. 3分(各1分)=4分22. 解:原式=5(1512)--………………………………… 4分(前2分后2分)=8-5分23 解:∵1= , 3(2)64x y += ,∴ 124x y x y -=⎧⎨+=⎩………………………………………………2分(各1分)解得21x y =⎧⎨=⎩……………………………………………4分(各1分)∴2222213215x y x y ++==++………………………………………5分24 解:原式=(2)(2)5323(2)x x x x x x +---⎛⎫÷⎪--⎝⎭………………………1分 =293(2)23x x x x x --⨯--……………………………………………2分 =(3)(3)3(2)23x x x x x x +--⨯-- ……………………………3分=239x x +……………………………………………4分∵ 2310x x +-= ∴ 231x x +=∴ 原式=22393(3)313x x x x +=+=⨯=……………………5分25.证明:∵BD AE =,∴BD AD AE AD -=-.即AB DE =. ……………………………………………………………… 1分∵BC ∥EF ,∴B E ∠=∠. ……………………………………………………………… 2分又∵C F ∠=∠……………………………………………………………… 3分在ABC ∆和DEF ∆中,,,,B E C F AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ABC ∆≌DEF ∆. ………………………………………………………4分 ∴ AC DF =. …………………………………………………………… 5分26. 解:方程两边同乘以(1)(1)x x +-,……………………………………………1分3(1)2(1)2(1)(1)x x x x x ++-=+-. ……………………………………………2分 223+32222x x x x +-=-. ……………………………………………3分解这个整式方程,得5x =-. …………………………………………… 4分 检验:当5x =-时,(1)(1)0x x +-≠.…………………………………………5分5x ∴=-是原方程的解.27.…………………………………………… 3分 (2)依题意,得64105m +=…………………………………………… 4分解得 2m =…………………………………………… 5分 所以m 的值为228. 解:设该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得105.130003000=-xx …………………………………3分 解这个方程得100x = …………………………………………4分 经检验,100x =是所列方程的根. ………………………………5分 答:该服装厂原计划每天加工100件服装.29. 解: (1)ABC ∆的面积为 4.5 …………………………………………2分正确画图………………………………………4分 (2)MNP ∆的面积为 7 ………………………………………… 5分30. 解:(1)如图 ………………1分(2)过点D 作DE ⊥AB 于E . ………………2分∵DE ⊥AB ,∠C =90° ∴由题意可知DE =DC , ∠DEB =90° 又∵DE =DC ,AD =AD ∴AD 2-ED 2=AD 2-DC 2 ∴AE =AC =6………………3分∵A B =10 ∴BE =AC -AE =4 ………………4分 设DE =DC =x ,则BD =8-x∴在Rt △BED 中 ()22168x x +=-∴x =3………………5分 ∴CD =3.31. (1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分解:原式()222444a a ab a b b-+=-()24ab a b b =-()4aa b b =-24a ab b =-………………5分32.证明:过点D 作BC 的平行线交CA 的延长线于点F .……………… 1分∴C F ∠=∠.∵点A 是BD 的中点,∴AD=AB . …………………………… 2分 在△ADF 和△ABC 中,,,,C F DAF BAC AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△ABC .………………… 3分 ∴DF=BC .…………………………… 4分 ∵DE=BC , ∴DE=DF .∴F DEA ∠=∠. ………………………………………………………… 5分 又∵C F ∠=∠,∴C DEA ∠=∠. …………………………………………………………… 6分其它证法相应给分。
山东省临沂市沂南县2018-2019上学期八年级期末数学调研试题(含答案) (1)
2018-2019学年度上学期期末教学质量检测八年级数学试题注意事项:1. 本试卷共120分.考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,只将答题卡收回.2.答题注意事项见答题卡,答在本试卷上不得分.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1. 下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是2.使分式23x -有意义的x 的取值范围是 A .3x ≠ B .3x > C .3x < D .3x = 3. 一个等腰三角形的两边长分别为2 和5,则它的周长为A . 7B . 9C . 12D . 9 或 12 4. 下列计算中,正确的是A .236()a a =B .842a a a ÷=C .325a a a +=D .236a a a =5. 下列式子中,从左到右的变形是因式分解的是A . ()()21232x x x x --=-+ 错误!未找到引用源。
B .()()23212x x x x -+=--错误!未找到引用源。
A .B .C .D .C . ()24444x x x x ++=-+ 错误!未找到引用源。
D .()()22x y x y x y +-=-6.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是A .6B .11C .12D .187. 在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关于x 轴对称,则m n +的值是A .-1B .1C .-5D .5 8. 如图,AD ∥BC 错误!未找到引用源。
,∠ABC 的角平分线 BP 错误!未找到引用源。
与∠BAD 的角平分线 AP 相交于点 P ,作 PE ⊥AB ,垂足为 E .若 PE =3,则两平行线 AD 与 BC 间的距离为A . 3B . 5C . 6D . 不能确定 9.多项式2ax a -与多项式221x x -+的公因式是 A . 1x -B . 1x +C .21x -D .()21x -10. 某服装加工厂计划加工400 套运动服,在加工完 160 套后,采用了新技术,工作效率比原计划提高了20% 错误!未找到引用源。
沂南县八年级数学期末试卷
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 1/2C. 0D. -3/42. 已知二次函数y=ax^2+bx+c的图象与x轴交于点A(1,0)和B(3,0),则a、b、c的值分别为()A. a=1,b=-2,c=1B. a=1,b=-4,c=3C. a=1,b=2,c=1D. a=1,b=4,c=33. 已知等腰三角形ABC中,AB=AC,且AB=6cm,BC=8cm,则三角形ABC的周长为()A. 14cmB. 16cmC. 18cmD. 20cm4. 已知函数y=2x+1,则当x=3时,y的值为()A. 5B. 6C. 7D. 85. 在直角坐标系中,点P(-1,2)关于x轴的对称点为()A.(-1,-2)B.(1,-2)C.(-1,2)D.(1,2)6. 已知一元二次方程x^2-5x+6=0的解为x1和x2,则x1+x2的值为()A. 5B. -5C. 6D. -67. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°8. 已知一元一次方程3x-5=2x+1的解为x,则x的值为()A. 2B. 3C. 4D. 59. 已知函数y=|x|,则当x=0时,y的值为()A. 0B. 1C. -1D. 210. 在等腰三角形ABC中,AB=AC,且底边BC=10cm,则腰长为()A. 5cmB. 10cmC. 15cmD. 20cm二、填空题(每题3分,共30分)11. 已知a=-2,b=3,则a^2+b^2的值为__________。
12. 若等腰三角形ABC中,AB=AC,则∠A的度数为__________。
13. 已知函数y=x^2-4x+4,则当x=2时,y的值为__________。
14. 在直角坐标系中,点P(-3,4)关于y轴的对称点为__________。
〖汇总3套试卷〗临沂市2018年八年级上学期期末联考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1x必须满足的条件是()A.x≤2B.x<2C.x≤-2D.x<-2【答案】A,∴2-x≥0,∴x≤2.故选A.2.下列运算中,结果是a5的是()A.a2• a3B.a10÷a2C.(a2)3D.( - a)5【答案】A【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方、及乘方的意义逐项计算即可.【详解】A. a2• a3=a5,故正确;B. a10÷a2=a8,故不正确;C. (a2)3=a6,故不正确;D. ( - a)5=-a5,故不正确;故选A.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘.3.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗【答案】B【分析】根据命题的定义对各个选项进行分析从而得到答案.【详解】A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点睛】此题主要考查学生对命题与定理的理解及掌握情况.4.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A .1cmB .2cmC .3cmD .4cm【答案】B【解析】解:如图,∵AE 平分∠BAD 交BC 边于点E ,∴∠BAE=∠EAD ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC=5,∴∠DAE=∠AEB ,∴∠BAE=∠AEB ,∴AB=BE=3,∴EC=BC-BE=5-3=1.故选B .5.若分式33x x -+的值为零,则x 的值是( ) A .3B .-3C .±3D .0【答案】A【分析】分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得x-2=1且x+2≠1,解得x=2.故选:A .【点睛】分式值为1,要求分子为1,分母不为1.6.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.7.在平面直角坐标系中,将点12A (,-)向上平移3个单位长度,再向左平移2个单位长度,得到点B ,则点B 所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出点B 的坐标,从而判断出所在的象限. 【详解】解:∵将点()12A ,-向上平移3个单位长度,再向左平移2个单位长度,得到点B ∴点B 的坐标为()()12231-+=-,-,1 ∴点B 在第二象限故选B .【点睛】此题考查的是平面直角坐标系中点的平移,掌握点的坐标平移规律:横坐标左减右加,纵坐标上加下减是解决此题的关键.8.已知非等腰三角形的两边长分别是2 cm 和9 cm,如果第三边的长为整数,那么第三边的长为( ) A .8 cm 或10 cm B .8 cm 或9 cm C .8 cm D .10 cm【答案】A【解析】根据三角形的三边关系求得第三边的取值范围,再根据第三边为整数即可得出答案.【详解】解:根据三角形的三边关系,得7cm <第三边<11cm ,故第三边为8,1,10,又∵三角形为非等腰三角形,∴第三边≠1.故选:A .【点睛】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.9.下面有4个汽车标致图案,其中不是轴对称图形为( )A.B.C.D.【答案】C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.10.菱形的一个内角是60°,边长是5cm,则这个菱形的较短的对角线长是()A.52cm B.5cm C.3cm D.3cm【答案】B【分析】根据菱形的性质以及已知条件可得,较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线等于其边长.【详解】菱形的一个内角是60°,根据菱形的性质可知,60°角所对的对角线与菱形的两边构成的三角形是一个等边三角形,故这个菱形较短的对角线长5cm.选B.【点睛】本题考查了菱形的性质以及等边三角形的性质,从而确定较短的对角线来求解.二、填空题11.有一个两位数,个位上的数字比十位上的数字大5,如果把这个两位数的数字对换位置,那么所得的新数与原数的和是143,则这个两位数是_________.【答案】49【分析】设个位数字是x,十位数字是y,根据新数与原数的和是143列方程解答即可得到答案.【详解】设个位数字是x,则十位数字是y,51010143x y y x x y -=⎧⎨+++=⎩, 解得94x y =⎧⎨=⎩, ∴这个两位数是49,故答案为:49.【点睛】此题考查一元二次方程组的应用,正确理解新数与原数的表示方法是解题的关键.12.计算:()()565223+-=__________. 【答案】192【解析】直接计算即可得解.【详解】解:原式=552652523623⨯+⨯-⨯-⨯=25210310362+--=192故答案为192.【点睛】此题主要考查二次根式的混合运算,熟练掌握法则即可解题.13.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A (1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.【答案】y=98x-98, 【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD 的面积只要等于5即可,∴设BC=4-x ,则[]4x 3325-+⨯÷=,解得,x=113, ∴点B的坐标为11,33⎛⎫ ⎪⎝⎭, 设过点A 和点B 的直线的解析式为y=kx+b ,01133k b k b +=⎧⎪⎨+=⎪⎩,解得,9898k b ⎧=⎪⎪⎨⎪=-⎪⎩,即过点A 和点B 的直线的解析式为y=9988x -. 故答案为:y=9988x -. 【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.14.如图,以AB 为斜边的Rt △ABC 的每条边为边作三个正方形,分别是正方形ABMN ,正方形BCPQ ,正方形ACEF ,且边EF 恰好经过点N .若S 3=S 4=5,则S 1+S 5=_____.(注:图中所示面积S 表示相应封闭区域的面积,如S 3表示△ABC 的面积)【答案】1【分析】如图,连接MQ ,作MG ⊥EC 于G ,设PC 交BM 于T ,MN 交EC 于R .证明△ABC ≌△MBQ (SAS ),推出∠ACB =∠BQM =90°,由∠PQB =90°,推出M ,P ,Q 共线,由四边形CGMP 是矩形,推出MG =PC =BC ,证明△MGR ≌△BCT (AAS ),推出MR =BT ,由MN =BM ,NR =MT ,可证△NRE ≌MTP ,推出S 1+S 1=S 3=1.【详解】解:如图,连接MQ ,作MG ⊥EC 于G ,设PC 交BM 于T ,MN 交EC 于R .∵∠ABM =∠CBQ =90°,∴∠ABC =∠MBQ ,∵BA =BM ,BC =BQ ,∴△ABC ≌△MBQ (SAS ),∴∠ACB =∠MQB =90°,∵∠PQB =90°,∴M ,P ,Q 共线,∵四边形CGMP 是矩形,∴MG =PC =BC ,∵∠BCT =∠MGR =90°,∠BTC+∠CBT =90°,∠BQM+∠CBT =90°,∴∠MRG =∠BTC ,∴△MGR ≌△BCT (AAS ),∴MR =BT ,∵MN =BM ,∴NR =MT ,∵∠MRG =∠BTC ,∴∠NRE =∠MTP ,∵∠E =∠MPT =90°,则△NRE ≌MTP (AAS ),∴S 1+S 1=S 3=1.故答案为:1.【点睛】本题考查全等三角形的判定和性质、矩形的性质,解题的关键是三组三角形全等,依次为:△ABC ≌△MBQ ,△MGR ≌△BCT ,△NRE ≌MTP .15.分解因式:ab 2﹣4ab+4a= .【答案】a (b ﹣1)1.【解析】ab 1﹣4ab+4a=a (b 1﹣4b+4)﹣﹣(提取公因式)=a (b ﹣1)1.﹣﹣(完全平方公式)故答案为a (b ﹣1)1.16.根据223324(1)(1)1,(1)(1)1,(1)(1)1,x x x x x x x x x x x x -+=--++=--+++=-4325(1)(1)1,x x x x x x -++++=-…的规律,可以得出2018201720162222221+++⋅⋅⋅+++的末位数字是___________.【答案】7【分析】由多项式的乘法概括出运算规律,根据规律得到2018201720162222221+++⋅⋅⋅+++的结果,再根据1234522,24,28,216,232,,=====•••可得答案.【详解】解:根据规律得:2018201720162222221+++⋅⋅⋅+++(21)=-(2018201720162222221+++⋅⋅⋅+++)201921,=-1234522,24,28,216,232,=====•••∴ 个位数每4个循环,201945043,∴÷=•••20192∴的尾数为8,∴ 201921-的末位数字是7.故答案为:7.【点睛】本题考查的与多项式乘法相关的规律,掌握归纳出运算规律是解题的关键.17.如图,已知AB AD =,请你添加一个条件使ABC ADE ∆∆≌__________.【答案】AC=AE 或∠ADE=∠ABC 或∠C=∠E (答案不唯一)【分析】根据图形可知证明△ABC ≌△ADE 已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】解:∵∠A=∠A ,AB=AD ,∴添加条件AC=AE ,此时满足SAS ;添加条件∠ADE=∠ABC ,此时满足ASA ;添加条件∠C=∠E ,此时满足AAS ,故答案为:AC=AE 或∠ADE=∠ABC 或∠C=∠E (答案不唯一).【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.三、解答题18.如图所示,在平面直角坐标系xOy 中,已知点(1,2)(3,1)(0,1),,---A B C(1)在图作出ABC 关于y 轴的称图形111A B C △(2)若将ABC 向右移2个单位得到A B C ''',则点A 的对应点A '的坐标是 .【答案】(1)作图见解析;(2)(1,2)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A1B1C1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.【答案】(1)见解析(1)2【解析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE ,然后利用“角边角”证明△ADC 和△BDF 全等,根据全等三角形对应边相等可得BF=AC ,再根据等腰三角形三线合一的性质可得AC=1AF ,从而得证.(1)根据全等三角形对应边相等可得DF=CD ,然后利用勾股定理列式求出CF ,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF ,然后根据AD=AF+DF 代入数据即可得解.解:(1)证明:∵AD ⊥BC ,∠BAD=45°,∴△ABD 是等腰直角三角形.∴AD=BD .∵BE ⊥AC ,AD ⊥BC ,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE .在△ADC 和△BDF 中,∠CAD=∠CBF ,AD=BD ,∠ADC=∠BDF=90°,∴△ADC ≌△BDF (ASA ).∴BF=AC .∵AB=BC ,BE ⊥AC ,∴AC=1AE .∴BF=1AE .(1)∵△ADC ≌△BDF ,∴.在Rt △CDF 中,CF 2===.∵BE ⊥AC ,AE=EC ,∴AF=CF=1.∴.20.计算(1)[2a(a 2b-ab 2)+ab(ab-a 2)] ÷a 2b(2)22y x y - ÷11 x y x y ⎛⎫- ⎪-+⎝⎭【答案】(1)-a b ;(2)12. 【分析】(1)先计算括号内的运算,然后再计算整式除法运算,即可得到答案;(2)先通分计算括号内的运算,然后计算分式除法,即可得到答案.【详解】解:(1)原式=3222232(22)a b a b a b a b a b -+-÷=3222()a b a b a b -÷=-a b ; (2)原式=()()()()y x y x y x y x y x y x y +-+÷+-+- =()()()()2y x y x y x y x y y+-⨯+- =12; 【点睛】本题考查了分式的混合运算,分式的化简求值,整式的运算混算,整式的化简,解题的关键是熟练掌握运算法则进行解题.21.解分式方程:(1)33122x x x-+=-- (2)22222222x x x x x x x++--=-- 【答案】(1)1x =;(2)12x =- 【分析】(1)方程左右两边同时乘以(2)x - ,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可;(2)方程左右两边同时乘以(2)x x - ,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可.【详解】(1)左右两边同乘(2)x -,得()3+23x x -=- ,解整式方程得,1x =,经检验,1x =是原分式方程的解;(2)左右两边同乘()2x x -,得()()()222222x x x x x +--+=- ,解整式方程得,12x =-, 经检验,12x =-是原分式方程的解. 【点睛】本题主要考查解分式方程,掌握解分式方程的步骤是解题的关键.22.如图,BD 平分∠ABC 交AC 于点D ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,若S △ABD =12,求DF 的长.【答案】DF=1.【分析】根据角平分线性质得出DE=DF ,根据三角形的面积公式求出DE 的长,即可得出DF 的长度.【详解】解:∵BD 平分∠ABC 交AC 于点D ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∵S △ABD =12,AB=6,16122DE ∴⨯⨯=, ∴DE=1.∴DF=1.【点睛】本题考查了角平分线定义的应用,能根据角平分线性质得出DE=DF 是解此题的关键.23.如图,数学课上老师在黑板上写了三个算式,要求学生认真观察,寻找规律.请你认真观察思考,解答下列问题:(1)写出第④个式子是 ;(2)验证规律:设两个连续奇数为21,21n n +-(其中n 为正整数),则()()222121n n +--是8的倍数.【答案】(1)2297=84-⨯;(2)见解析【分析】(1)根据前3个式子的规律可知:被减数是()221n +,减数是()221n -(其中n 为正整数),即可得出第④个式子;(2)利用平方差公式将()()222121n n +--进行分解,即可得出结论.【详解】(1)根据前3个式子的规律可得:第④个式子为2297=84-⨯故答案为:2297=84-⨯.(2)()()222121n n +-- ()()()()=21212121⎡⎤⎡⎤++-+--⎣⎦⎣⎦n n n n=8n∴()()222121n n +--是8的倍数.【点睛】本题考查了数字规律问题与因式分解的应用,找出数字规律,熟练运用平方差公式是解题的关键. 24.(1)如图(a ),BD 平分ABC ∠,CD 平分ACB ∠.①当60A ∠=时,求D ∠的度数.②猜想A ∠与D ∠有什么数量关系?并证明你的结论.(2)如图(b ),BD 平分外角CBP ∠,CD 平分外角BCQ ∠,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).【答案】(1)①120°;②1902D A ∠=+∠;证明见解析;(2)不正确;1902D A ∠=-∠ 【分析】(1)①根据角平分线的定义以及三角形的内角和定理计算即可;②结论:∠D=90°+12∠A .根据角平分线的定义以及三角形的内角和定理计算即可; (2)不正确.结论:∠D=90°-12∠A .根据角平分线的定义以及三角形的内角和定理三角形的外角的性质计算即可. 【详解】解:(1)①60A ∠=︒,18060120ABC ACB ∴∠+∠=︒-︒=︒, 12DBC ABC ∠=∠,12DCB ACB ∠=∠, 1120602DBC DCB ∴∠+∠=⨯︒=︒, 18060120D ∴∠=︒-︒=︒;②结论:1902D A ∠=︒+∠. 理由:12DBC ABC ∠=∠,12DCB ACB ∠=∠, 1()2DBC DCB ABC ACB ∴∠+∠=⨯∠+∠ 1(180)2A =︒-∠ 1902A =︒-∠ 11180(90)9022D A A ∴∠=︒-︒-∠=︒+∠; (2)不正确.结论:1902D A ∠=︒-∠. 理由:12DBC PBC ∠=∠,12DCB QCB ∠=∠, 1()2DBC DCB PBC QCB ∴∠+∠=⨯∠+∠ 1()2A ACB A ABC =∠+∠+∠+∠1(180)2A =︒+∠ 1902A =+∠︒, 11180(90)9022D A A ∴∠=︒-︒+∠=︒-∠. 【点睛】本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.分解因式:(1)a 4-16 (2)9(a+b)2-4(a-b)2【答案】(1)(x 2+4)(x+2)(x-2) ;(2)(5a+b)(a+5b)【分析】(1)利用平方差公式分解即可;(2)利用平方差公式分解即可;【详解】解:(1)a 4-16=(x 2+4)(x 2-4)=(x 2+4)(x+2)(x-2) ;(2)9(a+b)2-4(a-b)2=()()()()3232a b a b a b a b ++-+--⎡⎤⎡⎤⎣⎦⎣⎦=(5a+b)(a+5b)【点睛】本题考查了因式分解,掌握平方差公式是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2)B.(-1,2)C.(-1,-2)D.(2,-1)【答案】A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).故选:A.【点睛】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.2.若下列各组数值代表线段的长度,则不能构成三角形的是()A.4, 9, 6 B.15, 20, 8C.9, 15, 8 D.3, 8, 4【答案】D【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】A.6+4>9,则能构成三角形,故此选项不符合题意;B.15+8>20,则能构成三角形,故此选项不符合题意;C.8+9>15,则能构成三角形,故此选项不符合题意;D.3+4<8,则不能构成三角形,故此选项符合题意.故选D.【点睛】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看其中较小的两个数的和是否大于第三个数即可.3.有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,则第一块试验田每亩收获蔬菜为( )A.400kg B.450kg C.500kg D.550kg【答案】B【分析】首先设第一块试验田每亩收获蔬菜x千克,则第二块试验田每亩收获蔬菜(x+300)千克,根据关键语句“有两块面积相同的试验田”可得方程9001500300x x=+,再解方程即可.【详解】设第一块试验田每亩收获蔬菜x千克,由题意得:9001500300x x =+, 解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程. 4.如图所示,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,DE=4,BC=9,则BD 的长为( )A .6B .5C .4D .3【答案】B 【分析】利用角平分线性质定理可得,角平分线上的点到角两边的距离相等,通过等量代换即可得.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DC=DE=4,∴BD=BC ﹣CD=9﹣4=1.故选:B .【点睛】掌握角平分线的性质为本题的关键.5.下列图形中是轴对称图形的有( )A .B .C .D .【答案】B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.6.下列方程中,不论m 取何值,一定有实数根的是( )A .210mx x --=B .210x mx --=C .20x x m --=D .210x mx -+= 【答案】B【分析】分别计算△,再根据△与0的关系来确定方程有无实数根.【详解】解:A ,210mx x --=,14m =+△,当14m <-时,方程无实数根,故选项错误; B ,210x mx --=,240m =+>△,不论m 取何值,方程一定有实数根,故选项正确;C ,20x x m --=,14m =+△,当14m <-时,方程无实数根,故选项错误; D ,210x mx -+=,24m =-△,当22m -<<时,方程无实数根,故选项错误;故选:B .【点睛】此题考查根的判别式,解题的关键是注意分三种情况进行讨论.7.下列命题属于真命题的是( )A .同旁内角相等,两直线平行B .相等的角是对顶角C .平行于同一条直线的两条直线平行D .同位角相等【答案】C【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A 、同旁内角互补,两直线平行,是假命题;B 、相等的角不一定是对顶角,是假命题;C 、平行于同一条直线的两条直线平行,是真命题;D 、两直线平行,同位角相等,是假命题;故选C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB =3cm ,CD =4cm ,则剪去的直角三角形的斜边长为( )A.5cm B.12cm C.16cm D.20cm【答案】D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.9.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【答案】B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.10.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【答案】D【解析】试题分析:在Rt△ABC和Rt△ADC中,∵BC=DC,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠ACD,∵∠1+∠ACD=90°,∴∠2+∠1=90°,∵∠1=40°,∴∠2=50°,故选B.考点:全等三角形的判定与性质.二、填空题11.已知关于x,y的方程组4375x y mx y m+=⎧⎨-=-⎩的解满足不等式2x+y>8,则m的取值范围是____.【答案】m<﹣1.【分析】先解方程组,然后将x、y的值代入不等式解答.【详解】解:解方程组得x=2m﹣1,y=4﹣5m,将x=2m﹣1,y=4﹣5m代入不等式2x+y>8得4m﹣2+4﹣5m>8,∴m<﹣1.故答案为:m<﹣1.【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.12.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.【答案】2米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.设河深BC=xm,则AB=3.5+x米.根据勾股定理得出:∵AC3+BC3=AB3∴1.53+x3=(x+3.5)3解得:x=3.【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.13.据印刷工业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.000 000 01米)量级的超高精度导电线路,将0.000 000 01用科学记数法表示应为___________.【答案】8110-⨯【分析】科学计数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以1a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到1的后面,所以n =-1.【详解】0.000 000 01=8110-⨯故答案为8110-⨯.【点睛】本题考查的知识点是用科学计数法表示绝对值较大的数,关键是在理解科学计数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.14.等腰三角形的两边长分别是3和7,则其周长为 .【答案】1【解析】试题分析:因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论: 当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为1;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去.∴等腰三角形的周长为1.15.如图,在ABC ∆中,90C ∠=︒,AD 是BAC ∠的平分线,DE ⊥AB 于点E ,点F 在AC 上,BD DF =,若3AF =,1BE =,则DE 的长为_______.【答案】43【分析】由AD 为角平分线,利用角平分线定理得到DE=DC ,再由BD=DF ,利用HL 得到三角形FCD 与三角形BDF 全等,利用全等三角形对应边相等得出CD=BE ,利用AAS 得到三角形ACD 与三角形AED 全等,利用全等三角形对应边相等得到AC=AE ,由AB=AE+EB ,得出AB=AF+2BE .再利用直角三角形的面积公式解答即可.【详解】解:AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,DE DC ∴=,在Rt CFD ∆和Rt EBD ∆中,DF BD CD ED =⎧⎨=⎩, Rt CFD Rt EBD(HL)∴∆≅∆,1CF EB ∴==,314AC AF CF ∴=+=+=;在ACD ∆和AED ∆中,90CAD EAD ACD AED AD AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ACD AED AAS ∴∆≅∆,AC AE ∴=,2325AB AE EB AC EB AF FC EB AF EB ∴=+=+=++=+=+=,3BC ∴==, ∴111222AC CD AB DE AC BC +=, 即1114543222DE DE ⨯⨯+⨯⨯=⨯⨯, 解得:43DE =. 故答案:43. 【点睛】 此题考查了全等三角形的判定与性质,以及角平分线性质,熟练掌握全等三角形的判定与性质是解本题的关键.16.如图,在Rt ABC ∆中,90ACB ∠=︒,66ABC ∠=︒,将ABC ∆绕点C 旋转到A B C '''∆的位置,使顶点B '恰好在斜边AB 上,AC 与A B ''相交于点D ,则B DC '∠=_________.【答案】24°【分析】根据旋转的性质,得到BC B C '=,66ABCA B C ,然后利用三角形内角和定理,求出B DC '∠的度数.【详解】解:由旋转的性质,得BC B C '=,66ABCA B C , ∴66B BC A B C ,∵90ACB ∠=︒,∴90DCB ∠=︒,∴1809066=24B DC '∠=︒-︒-︒︒;故答案为:24︒.【点睛】本题考查了旋转的性质,等边对等角,以及三角形内角和定理,解题的关键是正确得到66B BC A B C .17.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是_____.【答案】60° 【解析】∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故答案为60°.三、解答题18.描述证明:小明在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整小明发现的这个有趣的现象;(2)请你证明小明发现的这个有趣现象.【答案】(1)2a b ab b a ++=;a b ab +=;(2)先通分,再根据完全平方公式分解因式,然后去分母即可得到结论.【分析】(1)依据题意,用含“a”、“b ”的式子把题中描述的数量关系表达出来即可;(2)把(1)中条件中所列的式子通过分式的运算化简,再结合乘法公式进行变形,就可得到结论;【详解】解:(1)如果2a b ab b a++=,那么a b ab +=; (2)证明:∵2a b ab b a++=, ∴222a b ab ab ab++=, ∴2222a b ab ab ++=(),∴22a b ab +=()(); 又∵a 、b 均为正数,∴a b ab +=.【点睛】此题主要考查的是分式的加减运算及完全平方公式的应用.解(2)时,由条件“2a b ab b a++=,”右边是整式,而左边是异分母分式的加、减,易知需将左边化简;而当化简得到“222a b ab ab ab++=”时,熟悉“完全平方公式”的同学就已经非常清楚该怎样做了.19.先化简,再求值: 2224(3)(3)(105)(2)45x y x y xy xy x y x y +---++-,其中x=1,y=2. 【答案】2134x xy -;5【分析】利用平方差公式、完全平方公式以及整式的混合运算将原式化简,再将x=1,y=2代入化简后的式子,求值即可.【详解】解:原式22222222984444x y xy x y x xy y x y =--++++- 2134x xy =-当x=1,y=2时,原式21314121385=⨯-⨯⨯=-=【点睛】本题考查整式的混合运算和化简求值,熟练掌握整式的混合运算法则以及平方差公式、完全平方公式是解题关键.20.某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用x (5x >)件服装,选择甲店则需要1y 元,选择乙店则需要2y 元,请分别求出1y ,2y 关于x 的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?【答案】(1)甲店每件租金50元,乙店每件租金60元;(2)1=0.85040y x x ⨯=,260(05)36120(5)x x y x x <≤⎧=⎨+>⎩;(3)租用30件时,甲乙两店的租金相同【分析】(1)设甲店每件租金x 元,乙店每件租金y 元,根据“在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元”列出方程组进行求解即可; (2)根据甲、乙两店的优惠政策进行求解即可得;(3)根据两店租金相同,列出方程求解即可.【详解】解:(1)设甲店每件租金x 元,乙店每件租金y 元,由题意可得232804260x y x y +=⎧⎨+=⎩,解得5060x y =⎧⎨=⎩, 答:甲店每件租金50元,乙店每件租金60元.(2)甲店:1=0.85040y x x ⨯=,乙店:当不超过5件时,则有260y x =当超过5件时,则有26050.660(5)36120y x x =⨯+⨯-=+,综上:260(05)36120(5)x x y x x <≤⎧=⎨+>⎩. (3)由4036120x x =+,解得30x =,答:租用30件时,甲乙两店的租金相同.【点睛】本题考查了二元一次方程组的实际应用,一次函数的实际应用问题,解题的关键是根据题意列出方程或函数关系式.21.化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.【答案】x+2;当x=1时,原式=1.【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可. 【详解】解:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ 22(2)33[](2)24x x x x x x --=-÷--- 233224x x x x x -⎛⎫=-÷ ⎪---⎝⎭ 3(2)(2)23x x x x x -+-=⨯-- =x+2,∵x 2-4≠0,x-1≠0,∴x≠2且x≠-2且x≠1,∴可取x=1代入,原式=1.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.。
2 0 18- 2019学年八年级上学期期末质量检测数学试题(含答案)
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣720172.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,104.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10 B.1.8×10﹣9 C.1.8×10﹣8 D.0.18×10﹣86.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣37.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2 D.m2﹣mn+n28.(3分)下列计算正确的是()A.a8÷a3=a4 B.3a3•2a2=6a6 C.m6÷m6=m D.m3•m2=m59.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.510.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或1612.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2[来源:学科网]C.=2 D.=2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为度.14.(3分)七边形的内角和是.15.(3分)分解因式:m2+2m=.16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为度.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=cm.18.(3分)若x+3y﹣3=0,则2x•8y=.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.23.(6分)解分式方程:(1)(2).24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2017的值()A.1 B.﹣1 C.72017 D.﹣72017【解答】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=﹣3,则(a+b)2017=(4﹣3)2017=1.故选:A.2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,10【解答】解:A、4+3<8,不能组成三角形,故此选项错误;B、3+2=5,不能组成三角形,故此选项错误;C、>5,能组成三角形,故此选项正确;D、5+5=10,不能组成三角形,故此选项错误;故选:C.4.(3分)下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形【解答】解:根据三角形具有稳定性,可知四个选项中只有等腰三角形具有稳定性的.故选:B.5.(3分)有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A.18×10﹣10 B.1.8×10﹣9 C.1.8×10﹣8 D.0.18×10﹣8【解答】解:0.0000000018=1.8×10﹣9.故选:B.6.(3分)如果分式有意义,则x的取值范围是()A.x<﹣3 B.x>﹣3 C.x≠﹣3 D.x=﹣3【解答】解:由题意,得x+3≠0,解得x≠﹣3,故选:C.7.(3分)下列多项式在有理数范围内,能用完全平方公式分解因式的是()A.m2﹣2m﹣1 B.m2﹣2m+1 C.m2+n2 D.m2﹣mn+n2【解答】解:A、m2﹣2m﹣1无法用完全平方公式分解因式,故此选项错误;B、m2﹣2m+1=(m﹣1)2,能用完全平方公式分解因式,故此选项正确;C、m2+n2无法用完全平方公式分解因式,故此选项错误;D、m2﹣mn+n2无法用完全平方公式分解因式,故此选项错误;故选:B.8.(3分)下列计算正确的是()A.a8÷a3=a4 B.3a3•2a2=6a6 C.m6÷m6=m D.m3•m2=m5【解答】解:A、a8÷a3=a5,故此选项错误;B、3a3•2a2=6a5,故此选项错误;C、m6÷m6=1,故此选项错误;D、m3•m2=m5,故此选项正确;故选:D.9.(3分)在,,,,,中,分式有()A.2 B.3 C.4 D.5【解答】解:,,,中,是整式,,是分式,故选:A.10.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【解答】解:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.11.(3分)若(a﹣4)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.14 B.16 C.13 D.14或16【解答】解:∵(a﹣4)2+|b﹣6|=0,∴a﹣4=0,b﹣6=0,[来源:Z,xx,]∴a=4,b=6,①当腰是4,底边是3时,三边长是4,4,6,此时符合三角形的三边关系定理,即等腰三角形的周长是4+4+6=14;②当腰是6,底边是4时,三边长是6,6,4,此时符合三角形的三边关系定理,即等腰三角形的周长是6+6+4=16.故选:D.12.(3分)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2 D.=2【解答】解:设这个工程队原计划每天要铺建x米管道,则依题意可得:﹣=2.故选:D.[来源:学*科*网Z*X*X*K]二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为46度.【解答】解:∵△ABC中,∠ABC=44°,AD⊥BC,∴∠BAD=90°﹣44°=46°,故答案为:46.14.(3分)七边形的内角和是900°.【解答】解:七边形的内角和是:180°×(7﹣2)=900°.故答案为:900°.15.(3分)分解因式:m2+2m=m(m+2).【解答】解:原式=m(m+2)故答案为:m(m+2)16.(3分)如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为28度.【解答】解:∵∠ABE=60°,∠E=92°,∴∠BAE=28°,又∵△ABC≌△BAE,∴∠ABC=∠BAE=28°,故答案为:28.17.(3分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=10cm.【解答】解:∵AE是△AB C的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;18.(3分)若x+3y﹣3=0,则2x•8y=8.【解答】解:∵x+3y﹣3=0,∴x=3﹣3y,∴2x•8y=23﹣3y•23y=23=8.故答案是:8.三、解答题(本大题共7小题,共46分)19.(9分)(1)计算:(15x3y+10x2y﹣5xy2)÷5xy(2)计算:(3x+y)(x+2y)﹣3x(x+2y)(3)先化简,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.【解答】解:(1)(15x3y+10x2y﹣5xy2)÷5xy=3x2+2x﹣y;(2)(3x+y)(x+2y)﹣3x(x+2y)=3x2+6xy+xy+2y2﹣3x2﹣6xy=xy+2y2;(3)(x+2)(x﹣2)﹣(x+1)2=x2﹣4﹣x2﹣2x﹣1=﹣2x﹣5,当x=时,原式=﹣2×﹣5=﹣1﹣5=﹣6.20.(6分)如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.【解答】证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.21.(6分)计算下列各式:(1)(2).【解答】解:(1)原式=•(﹣)•=﹣;(2)原式=﹣==﹣22.(6分)如图所示,在△ABC中,∠BAC的平分线AD交B C于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.【解答】解:∵AD平分∠BAC∴∠BAD=∠DAE,∵∠BAD=29°,∴∠DAE=29°,∴∠BAC=58°,∵DE垂直平分AC,∴AD=DC,∴∠DAE=∠DCA=29°,∵∠BAC+∠DCA+∠B=180°,∴∠B=93°.23.(6分)解分式方程:(1)(2).【解答】解:(1)方程两边乘x(x+2),得3x=2x+4,解得:x=4,经检验x=4是分式方程的解;(2)方程两边乘(x﹣3)(x+1)得:4=x﹣3+x+1,解得:x=3,经检验x=3是增根,分式方程无解.24.(6分)为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为4xkm/h.依据题意得﹣=+解得:x=15.检验:x=15时,12x≠0.所以原分式方程的解为x=15.并且此解符合题意.答:骑车学生的速度为15km/h.25.(7分)如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【解答】(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC∠DAB=∠EAC=60°∴∠DAC=∠BAE,在△ABE和△ADC中∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC∴∠AEB=∠ACD∵∠ACD=15°∴∠AEB=15°;(3)同上可证:△ABE≌△ADC∴∠AEB=∠ACD又∵∠ACD=60°∴∠AEB=60°∵∠EAC=60°∴∠AEB=∠EAC∴AC∥BE.。
2018 -2019学年八年级上学期期末质量检测数学试题(含答案)
2018-2019学年八年级(上)期末数学试卷一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5 C.(xy)2÷=(xy)3 D.2xy﹣3yx=xy3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.24.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°5.(3分)下列图形是全等图形的是()A.B.C. D.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.(3分)如果=成立,那么下列各式一定成立的是()A.=B.=C.=D.=8.(3分)已知,则的值为()A.B.C.D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. B.C.+4=9 D.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为.12.(4分)已知a+b=﹣3,ab=1,求a2+b2=.13.(4分)分解因式:a2﹣9=.[来源:学科网]14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需个正三角形才可以镶嵌.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.18.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.五、解答题(共3小题,满分27分)23.(9分)+=.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.参考答案与试题解析一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.[来源:学+科+网]【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选:C.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5 C.(xy)2÷=(xy)3 D.2xy﹣3yx=xy【解答】解:A、2x+2y无法计算,故此选项错误;B、(x2y3)2=x4y6,故此选项错误;C、此选项正确;D、2xy﹣3yx=﹣xy,故此选项错误;故选:C.3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.2【解答】解:∵x2+mx﹣15=(x+3)(x+n),∴x2+mx﹣15=x2+nx+3x+3n,∴3n=﹣15,m=n+3,解得n=﹣5,m=﹣5+3=﹣2.故选:C.4.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.5.(3分)下列图形是全等图形的是()A.B.C. D.【解答】解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【解答】解:∵O是△ABC三条角平分线的交点,AB、BC、AC的长分别12,18,24,∴S△OAB:S△OBC:S△OAC=AB:OB:AC=12:18:24=2:3:4.故选:C.7.(3分)如果=成立,那么下列各式一定成立的是()A.=B.=C.=D.=【解答】解:A、错误.应该是=;B、错误.≠;C、错误.≠;D、正确.设==k,则a=bk,c=dk,左边==k+2,右边==k+2,∴左边=右边.故选:D.8.(3分)已知,则的值为()A.B.C.D.【解答】解:,则==,故选:D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:A.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为5:4:3.【解答】解:设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为:5:4:3.12.(4分)已知a+b=﹣3,ab=1,求a2+b2=7.【解答】解:∵a+b=﹣3,∴(a+b)2=9,即a2+2ab+b2=9,又ab=1,∴a2+b2=9﹣2ab=9﹣2=7.故答案为7.13.(4分)分解因式:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为14cm.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=72°或18°.【解答】解:分为两种情况:①如图1,∵PE是AB的垂直平分线,∴AP=BP,∴∠A=∠ABP,∠APE=∠BPE=54°,∴∠A=∠ABP=36°,∵∠A=36°,AB=AC,∴∠C=∠ABC=(180°﹣∠A)=72°;②如图2,∵PE是AB的垂直平分线,∴AP=BP,∴∠PAB=∠ABP,∠APE=∠BPE=54°,∴∠PAB=∠ABP=36°,∴∠BAC=144°,∵AB=AC,∴∠C=∠ABC=(180°﹣∠A)=18°,故答案为:72°或18°.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需3个正三角形才可以镶嵌.【解答】解:∵正三角形的每个内角是60°,正方形的每个内角是90°,又∵3×60°+2×90°=360°,∴用2个正方形,则还需3个正三角形才可以镶嵌.故答案为:3.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:418.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.【解答】解:原式=(4x2+12xy+9y2)﹣(4x2﹣y2),=4x2+12xy+9y2﹣4x2+y2,=12xy+10y2,当x=,y=﹣时,原式=12×()×(﹣)+10×(﹣)2,=﹣2+2.5=.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,∵,∴△EAB≌△DAC.∴∠AEB=∠ADC.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.【解答】解:原式=•=•=,当a=﹣1时,原式=.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.【解答】解:3x﹣12x3=﹣3x(1﹣4x2)=3x(1+2x)(1﹣2x);﹣2m+4m2﹣2m3=﹣2m(m2﹣2m+1)=﹣2m(m﹣1)2.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.【解答】解:原式=a2﹣4a﹣a2+2a﹣6a+12=﹣8a+12,当a=﹣时,原式=4+12=16.五、解答题(共3小题,满分27分)23.(9分)+=.【解答】解:去分母得:2(x﹣3)+6=x+3,解得:x=3检验:把x=3代入(x﹣3)(x+3)=0,则x=3是分式方程的增根,∴原方程无解.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.【解答】解:(1)∵E是AB中点,∴CE为Rt△ACB斜边AB上的中线.AE=BE=CE=AB,∵CE=CB,∴△CEB为等边三角形,∴∠CEB=60°,∵CE=AE,∴∠A=∠ACE=30°.故∠A的度数为30°;(2)∵Rt△ACB中,∠A=30°,∴tanA==,∴AC=,BC=1,∴△CEB是等边三角形,CD⊥BE,∴CD=,∵AB=2BC=2,∴AE=AB=1,∴S△ACE==,即△AEC面积为.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.。
┃精选3套试卷┃2018届临沂市八年级上学期期末检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在△ABC 和△A′B′C′中,AB= A′B′,∠B=∠B′,补充条件后仍不一定保证△ABC ≌△A′B′C′,则补充的这个条件是( )A .BC= B′C′B .AC= A′C′C .∠A=∠A′D .∠C=∠C′ 【答案】B【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等进行判定,做题时要按判定全等的方法逐个验证.【详解】解:A 、若添加BC=B ˊC ˊ,可利用SAS 进行全等的判定,故本选项错误;B 、若添加AC=A'C',不能进行全等的判定,故本选项正确;C 、若添加∠A=∠A',可利用ASA 进行全等的判定,故本选项错误;D 、若添加∠C=∠C ˊ,可利用AAS 进行全等的判定,故本选项错误;故选B .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.2.对于所有实数a ,b ,下列等式总能成立的是( )A .()2b a b a +=+B .22222(b a b )a +=+C .22b a b a +=+D .2(b)a b a +=+ 【答案】B【详解】解:A 、错误,∵()2=++2a b a b ab +;B 、正确,因为a 2+b 2≥0,所以222()a b +=a 2+b 2;C 、错误,22b a +是最简二次根式,无法化简;D 、错误,∵2(+b)a =|a+b|,其结果a+b 的符号不能确定.故选B .3.下面有4个汽车标致图案,其中不是轴对称图形为( )A .B .C .D .【答案】C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.4.213-⎛⎫⎪⎝⎭的相反数是()A.9 B.-9 C.19D.19-【答案】B【分析】先根据负指数幂的运算法则求出213-⎛⎫⎪⎝⎭的值,然后再根据相反数的定义进行求解即可.【详解】2211113193-⎛⎫==⎪⎝⎭⎛⎫⎪⎝⎭=9,9的相反数为-9,故213-⎛⎫⎪⎝⎭的相反数是-9,故选B.【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.5.已知□ABCD的周长为32,AB=4,则BC的长为( )A.4 B.12 C.24 D.28【答案】B【分析】根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解【详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵平行四边形ABCD的周长是32∴2(AB+BC)=32∴BC=12故正确答案为B【点睛】此题主要考查平行四边形的性质6.如图,在等腰三角形ABC 中,BA=BC ,∠ABC=120°,D 为AC 边的中点,若BC=6,则BD 的长为( )A .3B .4C .6D .8【答案】A 【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【详解】解:∵BA=BC ,∠ABC=120°,∴∠C=∠A=30°,∵D 为AC 边的中点,∴BD ⊥AC ,∵BC=6,∴BD=12BC=3, 故选:A .【点睛】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.7.一次函数()21y k x k =-+的图象经过点()0,4,且y 随x 的增大而减小,则k 的值是( ). A .2B .2±C .0D .2-【答案】D 【分析】将点代入一次函数中,可得24k =,y 随x 的增大而减小,可得-10k <,计算求解即可.【详解】∵ 一次函数()21y k x k =-+的图象经过点()0,4, ∴ 24k =,解得:=2k ±,∵ y 随x 的增大而减小,∴-1k <0,解得:k <1,∴=-2k ,故选:D .【点睛】本题考查了一次函数图象与系数的关系,明确:①k >0,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.8.下面的图形中对称轴最多的是( )A .B .C .D .【答案】B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A 、有1条对称轴;B 、有4条对称轴;C 、有1条对称轴;D 、有2条对称轴;综上可得:对称轴最多的是选项B .故选:B .【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.9.在xy , 1,23x ,(x+y ),2xy x y +这四个有理式中,分式是( ) A .xyB .2xC .13(x+y )D .2xy x y+ 【答案】D 【分析】根据分式的定义逐项排除即可;【详解】解:A .属于整式中单项式不是分式,不合题意;B .属于整式中的单项式不是分式,不合题意;C .属于整式中的多项式不是分式,不合题意;D .属于分式,符合题意;故答案为D .【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.10.下列长度的三条线段能组成三角形的是( )A .3,4,8B .2,5,3C .52,72,5D .5,5,10【答案】C 【解析】选项A ,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B ,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C ,52+72>5,根据三角形的三边关系可知,能够组成三角形;选项D ,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.二、填空题11.已知点A (a ,1)与点B (5,b )关于y 轴对称,则b a a b +=_____. 【答案】265- 【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:∵点A (a ,1)与点A′(5,b )关于y 轴对称,∴a =﹣5,b =1, ∴b a a b +=﹣15+(﹣5)=﹣265, 故答案为:﹣265. 【点睛】 考核知识点:轴对称与坐标.理解性质是关键.12.多项式kx 2-9xy -10y 2可分解因式得(mx +2y)(3x -5y),则k=_______,m=________.【答案】k=9 m=1【分析】直接利用多项式乘法将原式化简,进而得出关于m ,k 的等式求出答案即可.【详解】解:∵kx 2-9xy-10y 2=(mx+2y )(1x-5y ),∴kx 2-9xy-10y 2=1mx 2-5mxy+6xy-10y 2=1mx 2-(5mxy-6xy )-10y 2,∴3,569,m k m =⎧⎨-=⎩解得:9,3.k m =⎧⎨=⎩故答案为:9,1.【点睛】此题主要考查了十字相乘法的应用,正确利用多项式乘法是解题关键.13.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边()n a b +展开的系数与右边杨辉三角对应的数,则6()a b +展开后最大的系数为_____【答案】15【解析】根据题意已知的式子找到展开后最大的系数规律即可求解.【详解】∵1()a b +展开后最大的系数为1=0+1; 2()a b +展开后最大的系数为2=1+1;3()a b +展开后最大的系数为3=1+2;4()a b +展开后最大的系数为6=1+2+3;∴5()a b +展开后最大的系数为1+2+3+4=10; 6()a b +展开后最大的系数为1+2+3+4+5=15;故答案为:15.【点睛】此题主要考查多项式的规律探索,解题的关键是根据已知的式子找到规律求解.14.若点M (m ,﹣1)关于x 轴的对称点是N (2,n ),则m+n 的值是_____.【答案】1【分析】直接利用关于x 轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M (m ,﹣1)关于x 轴的对称点是N (2,n ),∴m=2,n=1,∴m+n=1.故答案为:1.【点睛】本题考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.15.等腰三角形ABC 中,∠A =40°,则∠B 的度数是___________.【答案】40°或70°或100°【分析】等腰三角形△ABC 可能有三种情况,①当∠A 为顶角时,②当∠B 为顶角,②当∠C 为顶角时,根据各种情况求对应度数即可.【详解】根据题意,当∠A 为顶角时,∠B=∠C=70°,当∠B 为顶角时,∠A=∠C=40°,∠B=100°,当∠C 为顶角时,∠A=∠B=40°,故∠B 的度数可能是40°或70°或100°,故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握.16.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________.【答案】2【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.17.对于实数x ,我们规定[X )表示大于x 的最小整数,如[4)═5,=2,[﹣2.5)=﹣2,现对64进行如下操作:641第次64=92第次9="4"3第次4)=34第次=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是 . 【答案】3【解析】试题分析:将1代入操作程序,只需要3次后变为2,设这个最大正整数为m ,从而求得这个最大的数.【解答】解:11第次[=82第次8)=33第次3=2,设这个最大正整数为m ,则m 1第次=1, ∴1.∴m <2.∴m 的最大正整数值为3.考点:估算无理数的大小三、解答题18.两个工程队共同参与一项筑路工程,若先由甲、乙队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需36天,共需施工费828万元. (1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过800万元,则乙队最少施工多少天?【答案】(1)90天;(2)甲队每天施工费为15万元,乙队每天施工费为8万元;(3)乙队最少施工30天【分析】(1)乙队单独完成这项工程需x 天,设根据“先由甲、乙队合作30天,剩下的工程再由乙队单独做15天可以完成”列出方程,解之即可;(2)设甲队每天施工费为m 万元,乙队每天施工费为n 万元,根据两种情况下的总施工费分别为810万元和828万元列出方程组,解之即可;(3)求出甲队单独施工需要的天数,设乙队施工a 天,甲队施工b 天,则有19060a b +=,再根据工程预算的总费用不超过800万元列出不等式,代入求解即可得到a 的最小值,即最少施工的天数.【详解】解:(1)设乙队单独完成这项工程需x 天,由题意可得:113015136x⨯+⨯=, 解得:x=90,经检验:x=90是原方程的解,∴乙队单独完成这项工程需90天;(2)设甲队每天施工费为m 万元,乙队每天施工费为n 万元,由题意得: ()()301581036828m n n m n ⎧++=⎪⎨+=⎪⎩, 解得:158m n =⎧⎨=⎩, ∴甲队每天施工费为15万元,乙队每天施工费为8万元;(3)∵乙队单独完成工程需90天,甲、乙合作完成此工程共需36天, ∴甲队单独完成这项工程的天数为:160113690=-,设乙队施工a 天,甲队施工b 天,由题意得:19060158800a b b a ⎧+=⎪⎨⎪+≤⎩①②, 由①得:2603b a =-, 把2603b a =-代入②可解得:a≥50, ∴乙队最少施工30天.【点睛】此题主要考查了分式方程的应用,以及不等式的应用,列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系是解决问题的关键,此题工作量问题,用到的公式是:工作效率=工作总量÷工作时间.19.(1)分解因式:①249x -②22363ax axy ay ++ (2)解方程:21122x x x -=-- 【答案】(1)①(23)(23)x x +-;②23()a x y +;(2)1x =-【分析】(1)①利用平方差公式进行分解;②先提公因式,再用完全平方公式进行分解;(2)去分母,化成整式方程,再去括号,移项合并,系数化为1即可;【详解】解:(1)①22249(2)3(23)(23)x x x x -=-=+-;② 222223633(2)3()ax axy ay a x xy y a x y ++=++=+; (2)21122x x x -=-- 方程两边同乘(2)x -,得:2(2)1x x --=解得1x =-检验:当1x =-时,20x -≠所以原分式方程的解为1x =-.【点睛】本题考查了因式分解和解分式方程,观察多项式的形式,选择合适的方法进行分解是关键,解分式方程要记得检验.20.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?【答案】(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只; (2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x只,乙种节能灯进了y只,依题意得:120 30353800x yx y+=⎧⎨+=⎩,解得:8040 xy=⎧⎨=⎩,答:甲、乙两种节能灯各进80只,40只;(2)由题意可得,该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.21.如图,在平面直角坐标系中,ABC的顶点均在正方形网格的格点上.(1)画出ABC关于y轴对称的A B C''';(2)在x轴上找到一点P,使得PB PC+最小.【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称的性质先描出三个顶点,依次连接即可;(2)过x轴作B点的对称点''B,连接''B C与x轴的交点即为P点.【详解】(1)A B C'''就是所求作的图形;(2)点P就是所求作的点.【点睛】本题考查坐标与图形变化—轴对称.正确得出对应点位置是解题关键.22.某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?【答案】(1)每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车;(2)1名【分析】(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设还需要招聘m名新工人才能完成一个月的生产计划,根据工作总量=工作效率×人数结合计划一个月生产200辆,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,依题意,得:28 2314 x yx y+=⎧⎨+=⎩,解得:42 xy=⎧⎨=⎩.答:每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=1.答:还需要招聘1名新工人才能完成一个月的生产计划.本题考查的是用二元一次方程组解决问题中的工程问题,理解题意,找准数量关系列出方程组是解答关键. 23.给出下列等式:21﹣20=20,22﹣21=21,23﹣22=22,24﹣23=23,……(1)探索上面式子的规律,试写出第n个等式,并证明其成立.(2)运用上述规律计算20+21+22+…+22017+22018值.【答案】(1)2n﹣2n﹣1=2n﹣1,证明详见解析;(2)22019﹣1.【分析】(1)根据题目中的式子,可以写出第n个等式,并加以证明;(2)根据(1)中的结果,将所求式子变形,即可求得所求式子的值.【详解】(1)第n个等式是:2n﹣2n﹣1=2n﹣1,证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=(2﹣1)×2n﹣1=1×2n﹣1=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立;(2)20+21+22+…+22017+22018=(21﹣20)+(22﹣21)+(23﹣22)+…+(22019﹣22018)=21﹣20+22﹣21+23﹣22+…+22019﹣22018=﹣20+22019=22019﹣1.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,求出所求式子的值.24.如图,AD是△ABC的中线,AB=AC=13,BC=10,求AD长.【答案】1【分析】利用勾股定理和等腰三角形的性质求得AD的长度即可.【详解】解:∵AB=AC=13,BC=10,AD是中线,∴AD⊥BC,BD=5,∴∠ADB=90°,∴AD2=AB2﹣BD2=144,【点睛】本题考查的知识点是等腰三角形的性质以及勾股定理,利用等腰三角形的性质求出BD 的长是解此题的关键.25.老师在黑板上写出了一个分式的计算题,随后用手捂住了一部分,如下图所示:(1)求所捂部分表示的代数式;(2)所捂部分代数式的值能等于-1吗?为什么?【答案】(1)211x x +-;(2)不能,理由见解析. 【分析】(1)根据分式运算的逆运算,表达出所捂部分,再化简即可;(2)令211x x +-=-1,解分式方程即可,再检验所得的x 的值是否使原代数式有意义. 【详解】解:(1)原式=22111121x x x x x x x +-⋅+-+-+ =2(1)(1)1(1)x x x x x +-+-- =11-1x x x x ++- =211x x +-, ∴所捂部分的代数式是211x x +-. (2)由题意得:211x x +-=-1 211x x +=-+30x =0x =经检验0x =是原分式方程的解.当0x =时,分式1x x+没有意义,所以原代数式的值不能等于-1. 【点睛】本题考查了分式的化简求值问题,解题的关键是逆向表达出所捂部分,熟练掌握分式运算的法则.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣6【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000036的小数点向右移动6位得到3.6,所以0.0000036=3.6×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若等腰三角形的周长为40,一边为16,则腰长为()A.16B.12C.16或12 D.以上都不对【答案】C【分析】分两种情况:腰长为12和底边长为12,分别利用等腰三角形的定义进行讨论即可.-⨯=【详解】若腰长为1,则底边为401628此时,三角形三边为16,16,8,可以组成三角形,符合题意;-÷=若底边长为1,则腰长为(4016)212此时,三角形三边为12,12,16,可以组成三角形,符合题意;综上所述,腰长为12或1.故选:C.【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义并分情况讨论是解题的关键.3.下列各数中是无理数的是()A.3.14B C D【答案】C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B,是整数,属于有理数;CD.16=4,是整数,属于有理数;故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.4.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【分析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.5.数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是()A.4 B.5 C.5.5 D.6【答案】D【解析】试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=1,则这组数据的众数为1.故选D.考点:1.众数;2.中位数.6.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cm C.5cm,5cm,2cm D.10cm,15cm,17cm【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.下面计算正确的是()-A.B C D2【答案】B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A选项错误;B. ===3,故B选项正确;C. ==C选项错误;D.2-==,故D选项错误;(2)2故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16 B.11 C.3 D.6【答案】D【分析】根据三角形的三边关系即可解答.【详解】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.9.已知以下三个数, 不能组成直角三角形的是 ( )A .9、12、15B 3、C .0.3、0.4、0.5;D .222345、、 【答案】D【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A 、92+122=152,能构成直角三角形,故不符合题意;B 、)2+32=(2,能构成直角三角形,故不符合题意;C 、0.32+0.42=0.52,能构成直角三角形,故不符合题意;D 、(32)2+(42)2≠(52)2,不能构成直角三角形,故符合题意;故选D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.在投掷一枚硬币100次的试验中,“正面朝下”的频数45,则“正面朝下”的频率为( ) A .0.45B .0.55C .45D .55 【答案】A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可.【详解】解:“正面朝下”的频数45,则“正面朝下”的频率为45=0.45100, 故答案为:A .【点睛】本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法.二、填空题11.若分式(1)x x x-值为0,则x =______. 【答案】1【分析】分式的值为零,分子等于零且分母不等于零.【详解】当 (1)x x x-=2时,(1)x x -=2,x ≠2 解得 x =1.故答案是:1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.12.若代数式x 2+4x+k 是完全平方式,则k=_______【答案】1【分析】利用完全平方公式的结构特征判断即可得到k 的值.【详解】∵x 2+1x+k 是完全平方式,∴k=1,故答案为:1.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.13.在Rt △ABC 中,∠ACB=90°,D 为AB 上的中点,若CD=5cm ,则AB=_____________cm.【答案】1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,∴线段CD 是斜边AB 上的中线;又∵CD=5cm ,∴AB=2CD=1cm .故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.14.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,数字0.00000156用科学记数法表示为 ________________.【答案】61.5610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯,其中110a ≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 001 56=1.56×610-.故答案为:1.56×610-.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a ⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.使分式1x x -有意义的x 的范围是 ________ 。
山东省临沂市名校2019年数学八上期末调研测试题
山东省临沂市名校2019年数学八上期末调研测试题一、选择题1.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为( )A .2.5×106B .2.5×10﹣6C .0.25×10﹣6D .0.25×107 2.如果代数式x 有意义,则实数x 的取值范围是( ) A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥33.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4 C .3 D .24.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A .M N =B .M N >C .M N <D .M 与N 的大小由x 的取值而定5.已知2m n +=,2nm =-,则()()11m n ++的值为( )A.3-B.1-C.1D.5 6.下列计算正确的是( ) A.()2363a 2a 6a -⋅=-B.623a a a ÷=C.()()22x y x y x y --+=-D.222(ab 1)a b 2ab 1--=++ 7.在△ABC 中,AB=AC=5,BC=8,AD ⊥BC ,垂足为D ,BE 是边AC 上的中线,AD 与BE 相交于点G ,那么AG 的长为 ( )A .1B .2C .3D .无法确定.8.如图,梯形ABCD 中,AD ∥BC ,AD =CD ,BC =AC ,∠BAD =108°,则∠D =( )A .144°B .110°C .100°D .108°9.下列图形是轴对称图形的是( )A. B. C . D .10.如图,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,DE 平分∠ADC ,以下结论:①∠AED =90°;②点 E 是 BC 的中点;③DE =BE;④AD =AB +CD;其中正确的是( )A .①②③B .①②④C .①③④D .②③④11.如图,已知AC ∥BD ,要使△ABC ≌△BAD 需再补充一个条件,下列条件中,不能..选择的是( )A.BC ∥ADB.AC=BDC.BC=ADD.∠C=∠D12.如图,在Rt △ABC 中,∠A =30°,DE 是斜边AC 的中垂线,分别交AB ,AC 于D 、E 两点,若BD =2,则AC 的长是( )A .B .C .D .13.一个三角形三边长分别是2,7,x ,则x 的值可以是( )A .3B .5C .6D .9 14.下列正多边形的组合中,能够铺满地面的是( )A .正六边形和正方形B .正五边形和正八边形C .正六边形和正三角形D .正十边形和正三角形 15.若△ABC 的三个内角的比为2:5:3,则△ABC 的形状是( )A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形 二、填空题 16.化简12a a -a-1 =_____. 17.已知a+2b =2,a ﹣2b =12,则a 2﹣4b 2=_____. 【答案】118.如图,点D 为等腰直角△ABC 内一点,∠ACB =90°,∠CAD=∠CBD=15°,E 为AD 延长线上一点,且CE=CA ,给出以下结论:①DE 平分∠BDC ; ②△BCE 是等边三角形;③∠AEB=45°;④DE=AD+CD ;正确的结论有_____.(请填序号)19.如图所示,∠1=65°,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为___________.20.定义:等腰三角形的顶角与一个底角的度数的比值称为这个等腰三角形的“特征值”,记作k ,等腰△ABC 中,若40A ∠=︒,则它的特征值k =_____.三、解答题21.计算: (1)2222532x y x x y x y +--- (2) 324(2)()21m m m m -+-⋅-- 22.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x 2+(P+q)+pq 得x 2+(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子x 2+3+2分解因式。
临沂市2018-2019学年八上数学期末调研测试题
临沂市2018-2019学年八上数学期末调研测试题一、选择题1.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A .7210-⨯B .6210-⨯C .80.210-⨯D .7210-⨯ 2.已知关于x 的方程232x m x +=-的解是正数,那么m 的取值范围为( ) A .m >-6且m≠2 B .m <6 C .m >-6且m≠-4 D .m <6且m≠-23.下列计算中正确的是( ) A .23325x x x += B .()34312x x --=-+C .224(3)412x x x -⋅=-D .623x x x ÷= 4.下列计算结果正确的是( )A.325a b ab +=B.32()()a a a -÷-=-C.325()a a =D.3254(2)8a a a -=- 5.分式23x x --有意义的x 的取值为( ) A .2x ≠ B .3x ≠C .2x =D .3x = 6.下列计算正确的是( ) A .m 2+m=3m 3 B .(m 2)3 =m 5 C .(2m)2 =2m 2 D .m ·m 2=m 37.如图,直线l 1∥l 2,将等边三角形如图放置,若∠α=35°,则∠β等于( )A .35°B .30°C .25°D .15° 8.在ABC △中,A x ︒∠=,B y ︒∠=,60C ︒∠≠.若1802y x ︒=-,则下列结论正确的是( )A .AC AB =B .AB BC = C .AC BC =D .,,AB BC AC 中任意两边都不相等 9.已知一个等腰三角形的一个底角为30°,则它的顶角等于( )A .30°B .40°C .75°D .120° 10.如图,在△ABC 中,BA =BC ,∠ABC =120°,AB 的垂直平分线交AC 于点M ,交AB 于点E ,BC 的垂直平分线交AC 于点N ,交BC 于点F ,连接BM ,BN ,若AC =24,则△BMN 的周长是( )A .36B .24C .18D .1611.如图△ABC 中,AB 、BC 垂直平分线相交于点 O ,∠BAC =70°,则∠BOC 度数为( )A.140°B.130°C.125°D.110°12.如图,AB=DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A.BC=BEB.∠A=∠DC.∠ACB=∠DEBD.AC=DE13.如图,AB CD ∥,CE 平分ACD ∠,交A 于点E ,20AEC ∠=o ,点F 在CA 延长线上,则BAF ∠的度数为( )A .20B .30C .40D .5014.如图,已知点A 是射线BE 上一点,过A 作CA ⊥BE 交射线BF 于点C ,AD ⊥BF 交射线BF 于点D ,给出下列结论:①∠1是∠B 的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF ;④与∠ADB 互补的角共有3个.则上述结论正确的个数有( )A.1个B.2个C.3个D.4个15.如图,在△ABC 中,AB=AC ,点D ,E 分别在边BC 和AC 上,若AD=AE ,则下列结论错误的是( )A.∠ADB=∠ACB+∠CADB.∠ADE=∠AEDC.∠B=∠CD.∠BAD=∠BDA 二、填空题16.计算:(﹣2018)0﹣2﹣2﹣(12)﹣3﹣(﹣3)2得:_____. 17.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b 、的等式为________.18.如图,△ABC 和△BDE 都是等边三角形,A 、B 、D 三点共线.下列结论:①AB =CD ;②BF =BG ;③HB 平分∠AHD ;④∠AHC =60°,⑤△BFG 是等边三角形.其中正确的有____________(只填序号).19.如图,将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若110BA C ∠='︒,则12∠+∠的度数是_________.20.如图,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,BC 与 B′C′交于点P ,此时∠BPB′=25°,则∠CAB 的大小为_____.三、解答题21.某社区去年购买了A 、B 两种型号的共享单车,购买A 种单车共花费15000元,购买B 种单车共花费14000元,购买A 种单车的数量是购买B 种单车数量的1.5倍,且购买一辆A 种单车比购买一辆B 种单车少200元.(1)求去年购买一辆A 种和一辆B 种单车各需要多少元?(2)为积极响应政府提出的“绿色发展•低碳出行”号召,该社区决定今年再买A 、B 两种型号的单车共60辆,恰逢厂家对A 、B 两种型号单车的售价进行调整,A 种单车售价比去年购买时提高了10%,B 种单车售价比去年购买时降低了10%,如果今年购买A 、B 两种单车的总费用不超过34000元,那么该社区今年最多购买多少辆B 种单车?22.计算:(1)(13a 2b )2•(﹣9ab )÷(-12a 3b 2); (2)(x+2y )(x ﹣2y )﹣(x+y )(x ﹣y ); (3)[(2a+b )2﹣(a ﹣b )(3a ﹣b )﹣a]÷(﹣12a ),其中a =﹣1,b =12. 23.如图是由边长为1的小正方形组成的网格图.()1请在网格图中建立平面直角坐标系xOy ,使点A 的坐标为()3,3,点B 的坐标为()1,0;()2若点C 的坐标为()4,1,ABC 关于y 轴对称三角形为111A B C ,则点C 的对应点1C 坐标为______;()3已知点D 为y 轴上的动点,求ABD 周长的最小值.24.在平行四边形ABCD 中,C ∠和D ∠的平分线交于,M DM 的延长线交AD 于E ,是猜想:(1)CM 与DE 的位置关系?(2)M 在DE 的什么位置上?并证明你的猜想.(3)若24,5DE CM ==,则点M 到BC 距离是多少?25.探究题已知:如图1,//AB CD ,//CD EF .求证:360B BDF F ∠+∠+∠=.老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小颖用到的平行线性质可能是 .(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线,AB EF ,然后在平行线间画了一点D ,连接,BD DF 后,用鼠标拖动点D ,分别得到了图2,3,4,小颖发现图3正是上面题目的原型,于是她由上题的结论猜想到图2和4中的B Ð、BDF ∠与F ∠之间也可能存在着某种数量关系.于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.请你在小颖操作探究的基础上,继续完成下面的问题:①猜想图2中B Ð、BDF ∠与F ∠之间的数量关系并加以证明;②补全图4,直接写出B Ð、BDF ∠与F ∠之间的数量关系.【参考答案】***一、选择题16.1164- 17.(a+b )2﹣(a ﹣b )2=4ab18.②③④⑤19.80°20.5°三、解答题21.(1)去年购买一辆A 种和一辆B 种单车各需要500元,700元;(2)该社区今年最多购买多少辆B 种单车12辆.22.(1)2a 2b ;(2)﹣3y 2;(3)﹣423.(1)详见解析;(2)()4,1-;(3)5【解析】【分析】()1根据题意建立如图所示的平面直角坐标系即可;()2根据关于y 轴对称的点的坐标特征即可得到结论;()3连接1AB 交y 轴于D ,根据勾股定理函数三角形的周长公式即可得到结论.【详解】()1建立如图所示的平面直角坐标系;()2如图所示,111A B C 即为所求;点1C 坐标为()4,1-,故答案为:()4,1-;()3连接1AB 交y 轴于D ,则此时,ABD 周长的值最小,即ABD 周长的最小值1AB AB =+,223AB ==15AB ==,ABD ∴周长的最小值5=【点睛】本题考查了轴对称-最短路线问题,勾股定理,关于坐标轴对称的点的坐标特征,正确的作出图形是解题的关键.24.(1)CM DE ⊥;(2)M 在DE 的中点处,见解析;(3)点M 到BC 距离是6013.【解析】【分析】(1)根据平行线的性质得到180ADC BCD ∠+∠=︒,根据角平分线的定义得到12MDC ADC ∠=∠,12DCM DCB ∠=∠,于是得到90MDC MCD ∠+∠=︒,即可得到结论; (2)根据平行线的性质得到ADE CEM ∠=∠,等量代换得到CDE CED ∠=∠,得到CD CE =根据等腰三角形的性质即可得到结论;(3)根据(1)(2)可得EC ,再设点M 到BC 的距离是h ,建立等式1122EM MC EC h ⋅=⋅,即可得到h .【详解】解:(1)CM DE ⊥,理由://AD BC180ADC BCD ︒∴∠+∠=,,DE CM 分别平分,ADC BCD ∠∠11,22MDC ADC DCM DCB ∴∠=∠∠=∠, 90MDC MCD ︒∴∠+∠=,CM DE ∴⊥;(2)M 在DE 的中点处,理由://AD BC ,ADE CEM ∴∠=∠,ADE CDE ∠=∠,CDE CED ∴∠=∠,CD CE ∴=,CM DE ⊥,EM MD ∴=,∴M 在DE 的中点处;(3)由(1)(2)得112,2EM MD DE CM DE ===⊥, 在Rt ECM ∆中,12,5EM CM ==,13EC ∴===设点M 到BC 的距离是h ,则有1122EM MC EC h ⋅=⋅, 6013h ∴=. 【点睛】本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,正确识别图形是解题的关键.25.(1)两直线平行同旁内角互补;(2)①∠BDF=∠B+F ;②∠F=∠B+∠BDF。
山东省沂水县联考2018-2019学年八上数学期末考试试题
山东省沂水县联考2018-2019学年八上数学期末考试试题一、选择题1.关于x 的方程13x a x -=的解是正数,则a 的取值范围是( ) A.3a > B.3a < C.0<<3a D.0a >2.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .4848944x x +=+-; B . 4848944x x +=+-; C .48x +4=9; D .9696944x x +=+-; 3.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x 个,那么所列方程是( )A .90606x x=+ B .90606x x =+ C .90606x x =- D .90606x x =- 4.已知25,2 3.2,2 6.4,210====a b c d ,则+++a b c d 的值为( )A.5B.10C.32D.64 5.下列运算正确的是( ) A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 6.已知a+1a =4,则a 2+21a 的值是( ) A.4 B.16 C.14 D.157.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )A .B .C .D .8.下面是四位同学作ABC ∆关于直线MN 的轴对称图形,其中正确的是( )A. B.C. D.9.已知下列命题:①过一点有且只有一条直线与已知直线平行;②同旁内角互补;③等腰三角形的高线、角平分线、中线互相重合;④如果一个数的平方等于这个数本身,那么这个数一定是0;其中假命题的个数为( )A.1个B.2个C.3个D.4个10.如图,点D 是BAC ∠的外角平分线上一点,且满足BD CD =,过点D 作DE AC ⊥于点E ,DF AB ⊥交BA 的延长线于点F ,则下列结论:①CDE BDF ∆≅∆;②CE AB AE =+;③ADF CDE ∠=∠;④BDC BAC ∠=∠.其中正确的结论有( )A .1个B .2个C .3个D .4个11.如图所示,在ABC ∆和DEC ∆中,AC DC =.若添加条件后使得ABC DEC ∆≅∆,则在下列条件中,添加不正确的是( )A .BC EC =,BCE DCA ∠=∠B .BC EC =,AB DE = C .B E ∠=∠,AD ∠=∠ D .AB DE =,B E ∠=∠12.下列四个图形中,通过旋转和平移能够全等图形的是( )A.③和④B.②和③C.②和④D.①②④13.如图、己知DE ∥BC ,∠1=108°, ∠AED=75°,则∠A 等于()A .37°B .33°C .30°D .23°14.如图,OC 是∠AOB 的平分线,∠BOD =13∠DOC ,∠BOD =12°,则∠AOD 的度数为( )A .70°B .60°C .50°D .48° 15.如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC ,图中哪两个角不是..互为余角 ( )A .∠AOD 和∠BOEB .∠AOD 和∠COEC .∠DOC 和∠COED .∠AOC 和∠BOC二、填空题 16.方程()()()()2121221x x x x x x -=+-+-的根是______. 17.已知a+b=3,ab=-2,则a 2+b 2= _______.18.如图,在Rt ABC ∆中,90ACB ∠=︒,CA CB =,AD 是ABC ∆的角平分线,过点D 作DE AB ⊥于点E ,若1CD =,则BD =___.19.如图,点E 、F 是四边形ABCD 的边AD 、BC 上的点,连接EF ,将四边形ABFE 沿直线EF 折叠,若点A ,点B 都落在四边形ABCD 内部,记∠C+∠D=α,则∠1+∠2=______°.20.如图,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,若∠A=36°,则下列结论:①∠C=72°;②BD 是∠ABC 的平分线;③△ADB 是等腰三角形;④△BCD 的周长=AB+BC .正确是______(填序号).三、解答题21.(1)化简:22121x x x x x -=-+;(2)先化简,再求值:224224x x x x ⎛⎫-+÷ ⎪+-⎝⎭,选一个你喜欢的数求值.22.计算:(1)24822a a a a ⋅-÷;(2)2()()a a b a b -+.23.如图,在ABC ∆中,D 是边AB 上的动点,若在边AC ,BC 上分别有点E ,F ,使得AE AD =,BF BD =.(1)设C a ∠=,求EDF ∠(用含a 的代数式表示)(2)尺规作图:分别在边AB ,AC 上确定点P ,Q (PQ 与DE 平行或重合),使得CPQ EDF ∠=∠(请在图中作图,保留作图痕迹,不写作法)24.(1)思考探究:如图①,ABC ∆的内角ABC ∠的平分线与外角ACD ∠的平分线相交于P 点,请探究P ∠与A ∠的关系是______.(2)类比探究:如图②,四边形ABCD 中,设A α∠=,D β∠=,180αβ+>︒,四边形ABCD 的内角ABC ∠与外角DCE ∠的平分线相交于点P .求P ∠的度数.(用α,β的代数式表示)(3)拓展迁移:如图③,将(2)中180αβ+>︒改为180αβ+<︒,其它条件不变,请在图③中画出P ∠,并直接写出P ∠=_____.(用α,β的代数式表示)25.如图所示,已知∠AOB =90°,∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOC ;(1)求∠MON ;(2)∠AOB =α,∠BOC =β,求∠MON 的度数.【参考答案】***一、选择题16.2x =17.131819.360°-2α.20.①②③④三、解答题21.(1)11x x +-;(2)选5x =时,3. 22.(1)6a (2)3222a ab - 23.(1)1902EDF α∠=︒-(2)见解析【解析】【分析】(1)由等腰三角形的性质知∠ADE=12(180°-∠A ),∠BDF=12(180°-∠B ),根据∠EDF=180°-∠ADE-∠BDF=12(∠A+∠B )及∠A+∠B=180°-α可得∠EDF=12(180°-α)=90°-12α. (2)先作∠ACB 的平分线交AB 于点P ,再过点P 作PQ ⊥AC 于点Q 即可得.【详解】(1)解:∵AE AD =,∴AED ADE ∠=∠,在ADE ∆中,()11802ADE A ∠=︒-∠. 同理可得()11802BDF B ∠=︒-∠. ∴180EDF ADE BDF ∠=︒-∠-∠ ()()1118018018022A B =︒-︒-∠-︒-∠ 1()2A B =∠+∠. 在ABC ∆中,180180A B C α∠+∠=︒-∠=︒-. ∴()111809022EDF αα∠=︒-=︒-. (2)解:i.作∠ACB 的平分线交AB 于点P ,ii.过点P 作PQ ⊥AC 于点Q.如图点P ,Q 即为所求.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握熟练掌握角平分线和垂线的尺规作图和等腰三角形的性质等知识点.24.(1)12P A ∠=∠;(2)9022P αβ∠=+-︒;(3)9022P αβ∠=︒--. 【解析】【分析】(1)利用角平分线求出∠PCD=12∠ACD,∠PBD=12∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA 、CD 交于点F ,然后根据(1)的结题可得到∠P 的表达式.(3)延长AB 、DC 交于F,然后根据(1)的结题可得到∠P 的表达式.【详解】解:(1)12P A ∠=∠ ∵CP 平分ACD ∠,BP 平分ABC ∠, ∴12PCD ACD ∠=∠,12PBD ABD ∠=∠ ∵ACD ∠是ABC ∆的外角∴A ACD ABD ∠=∠-∠∵PCD ∠是PBC ∆的外角∴P PCD PBD ∠=∠-∠ 1()2ACD ABD =∠-∠ 12A =∠(2)延长BA 、CD ,交于点F .180FAD α∠=︒-,180FDA β∠=︒-()180180180180F αβαβ︒︒︒∠=--+-=+-︒由(1)知:12P F ∠=∠ ∴9022P αβ∠=+-︒.(3)延长AB ,DC 交于点F . 作ABC ∠与外角DCE ∠的平分线相交于点P . 如图:9022P αβ∠=︒--180F αβ∠=︒--,190222P F αβ∠=∠=︒--【点睛】本题主要考察了三角形的外角定理和角平分线的性质,学生们需要认真的分析题目,方可求解.25.(1)45°(2)12α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度上学期期末教学质量检测八年级数学试题注意事项:1. 本试卷共120分.考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,只将答题卡收回.2.答题注意事项见答题卡,答在本试卷上不得分.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1. 下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是2.使分式23x -有意义的x 的取值范围是 A .3x ≠ B .3x > C .3x < D .3x = 3. 一个等腰三角形的两边长分别为2 和5,则它的周长为A . 7B . 9C . 12D . 9 或 12 4. 下列计算中,正确的是A .236()a a =B .842a a a ÷=C .325a a a +=D .236a a a =5. 下列式子中,从左到右的变形是因式分解的是A . ()()21232x x x x --=-+ 错误!未找到引用源。
B .()()23212x x x x -+=--错误!未找到引用源。
A .B .C .D .C . ()24444x x x x ++=-+ 错误!未找到引用源。
D .()()22x y x y x y +-=-6.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是A .6B .11C .12D .187. 在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关于x 轴对称,则m n +的值是A .-1B .1C .-5D .5 8. 如图,AD ∥BC 错误!未找到引用源。
,∠ABC 的角平分线 BP 错误!未找到引用源。
与∠BAD 的角平分线 AP 相交于点 P ,作 PE ⊥AB ,垂足为 E .若 PE =3,则两平行线 AD 与 BC 间的距离为A . 3B . 5C . 6D . 不能确定 9.多项式2ax a -与多项式221x x -+的公因式是 A . 1x -B . 1x +C .21x -D .()21x -10. 某服装加工厂计划加工400 套运动服,在加工完 160 套后,采用了新技术,工作效率比原计划提高了20% 错误!未找到引用源。
,结果共用了 18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .16040018(120%)x x+=+错误!未找到引用源。
B . 16040016018(120%)x x-+=+ 错误!未找到引用源。
C . 错误!未找到引用源。
1604001601820%x x-+= D . 40040016018(120%)x x-+=+错误!未找到引用源。
11.如图,在△PAB 中,PA =PB ,M 、N 、K分别是(第15题图)ADBEC边PA 、PB 、AB 上的点,且AM =BK ,BN =AK ,若 ∠MKN =44°,则∠P 的度数为A .44°B .66°C .88°D .92°12. 对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为 A .1 B .13 C .1- D .13-二、填空题(每小题3分,共18分)请将正确的答案填在横线上. 13.计算723a a -= .14. 化简:2422x x x+--= . 15. 如图,在R t △ABC 中,∠ACB =90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处.若∠A =26°,则∠CDE =________.16.已知5,3a b ab -==,则22a b += .17. 如图所示,在等边三角形△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,下列说法:①点P 在∠BAC 的平分线上;②AS =AR ; ③QP ∥AR ; ④△BRP ≌△QSP .其中结论正确 的是 .(只填序号)应用平方差公式解决问题,具体解法如下:请你根据小明解决问题的方法,试着解决以下的问题:()()()()3111+++2483+133= .三、解答题(本大题共7小题,共66分) 19. (本题共2小题,每小题5分,共10分) (1)计算:()343212a b a b ∙÷-2(2)分解因式: 223484x y xy y -+-20.(本小题满分7分)两个城镇A 、B 与两条公路l 1、l 2位置如图所示,电信部门需在C 处修建一座信号反射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等且信号最佳,那么点C 应选在何处?请在图中,用尺规作图找出符合条件的点C .(不写已知、求作、作法,只保留作图痕迹).()()()()()()()()()()()()()()()()()()()()24882111212111211121112112111++++++++++++2482482484888162+122=-2+122=-2+122=-22=-2=-2=2-(第20题图)(第23题图)21.(本小题满分8分) 解方程:3111x x x -=-+22.(本小题满分9分)先化简,再求值:2222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中3x =-.23. (本小题满分10分) 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .(1)求证:AD 垂直平分EF ;(2)若∠BAC =60︒,写出DO 与AD 之间的数量关系,不需证明.24.(本小题满分10分)为靓化家园,改善生活环境,我县农村实行垃圾分类集中处理.现某村要清理卫生死角垃圾,若用甲、乙两车运送,两车各运15趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的3倍.求甲、乙两车单独运完此堆垃圾各需运多少趟?25.(本小题满分12分)如图1,在正方形ABCD 的外侧,作两个等边三角形ADE 和DCF ,连接AF ,BE ,AF ,BE 相交于点P .(1)请判断:AF 与BE 的数量关系是 ,位置关系是 ;(2)如图2,若三角形ADE 和DCF 为一般三角形,且AE =DF ,ED =FC ,第(1)问中的结论是否仍然成立?请作出判断并给予证明.2018-2019学年度上学期期末教学质量检测图2ABCDEF 图1(第25题图)PP八年级数学答案及评分标准注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题3分共36分) 二、填空题(每小题3分共18分)13. 53a 14.2x + 15. 71° 16. 31 17. ①②③④ 18. 16312-三、解答题(本大题共7小题,共66分)19. (1) 解:原式3432812a b a b =-÷ …………………………………………2分 223b =- ………………………………………………5分(2)223484x y xy y -+-224(2)y x xy y =--+ ……………………………………………3分 24()y x y =-- ……………………………………………………5分20.7分21.解:方程两边同乘()(1)1x x +-,得()()()()11131x x x x x +-+-=- …………………………………………3分解得,2x = ……………………………………………6分检验:当2x =时,()(1)10x x +-≠ …………………………………………7分 ∴2x =是原分式方程的解. ………………………………………………8分22. 解:原式=22222432(2)()111x x x x x x x x -+-+-++÷--- …………………………3分 =22(1)(1)1(2)x x x x x ++-⋅-+ ……………………………………5分 =12x x ++ …………………………………………………7分 ∴当3x =-时,原式=3132-+-+=2. …………………………………9分23. (1)证明: ∵AD 为△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ∴DE =DF ,∠AED =∠AFD =900∵AD =AD∴△AED ≌△AFD (HL ) ……………………………………5分 ∴AE =AF∴点A 、D 都在EF 的垂直平分线上 ……………………………………6分 ∴AD 垂直平分EF ………………………………………7分(2)14DO AD =………………………………………………………………10分 24.解:设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运3x 趟, 根据题意得:151513x x+= ……………………………………5分 解得:x =20 ……………………………………7分经检验:x =20是方程的解,且符合题意 ……………………………………………8分 则20×3=60(趟) ……………………………………………9分 答:甲车单独运完此堆垃圾需运20趟,乙车单独运完此堆垃圾需运60趟.……10分 25.解:(1)AF =BE ,AF ⊥BE . …………………………………………………2分 (2)第(1)问中的判断仍然成立. ……………………………………………………3分 ∵ABCD 是正方形,∴AD =CD ,∠BAD =∠ADC =90︒在△ADE 和△DCF 中AE DF ED FC AD DC =⎧⎪=⎨⎪=⎩∴△ADE ≌△DCF ,∴∠DAE =∠CDF , …………………………………………………………………5分 ∵∠BAE =∠BAD +∠DAE =90°+∠DAE ∠ADF =∠ADC +∠CDF =90°+∠CDF ∴B A E A D F ∠=∠ ………………………………………………………………7分 在△BAE 和△ADF 中,AB AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△ADF , ………………………………………………9分 ∴AF =BE . ………………………………………………………………10分 ∴∠FAD =∠EBA ,∵∠FAD +∠BAF =∠BAD =90°, ∴∠EBA +∠BAF =90°, ∴∠APB =90°∴AF ⊥BE . ……………………………………………………12分。