2016年浙江省衢州市中考数学试卷解析版
浙江省衢州市2016年中考数学(浙教版)专题训练(二):三角全等的条件(数理化网)
浙江省衢州市2016年中考数学(浙教版)专题训练(二):三角全等的条件一、选择题(共6小题)1.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 2.(铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D3.(安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC4.(来宾)如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.BE=CD D.∠B=∠C5.(台湾)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF6.(台州)已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确二、填空题(共11小题)7.(临夏州)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)8.(上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)9.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).10.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.11.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)12.(庆阳)如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是.13.(青海)如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是(不添加任何辅助线).14.(张家界)如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC=,CD=3,则AC=.15.(娄底)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).16.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.17.(昭通)如图,AF=DC,BC∥EF,只需补充一个条件,就得△ABC≌△DEF.三、解答题(共13小题)18.(泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.19.(青岛)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE ⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.20.(嘉兴)如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE 相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.21.(兰州)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.22.(梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.23.(泸州)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.(防城港)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.25.(随州)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.26.(宁德)如图,点D、A、C在同一直线上,AB∥CE,AB=CD,∠B=∠D,求证:△ABC≌△CDE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.29.(仙桃)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.30.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB 上,连结BE.请找出一对全等三角形,并说明理由.浙江省衢州市2016年中考数学(浙教版)专题训练(二):三角全等的条件参考答案与试题解析一、选择题(共6小题)1.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【解答】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.2.(铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.3.(安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.4.(来宾)如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.BE=CD D.∠B=∠C【解答】解:∵AB=AC,∠A为公共角,A、如添加AE=AD,利用SAS即可证明△ABE≌△ACD;B、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;D、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;故选C.5.(台湾)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.6.(台州)已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确【解答】解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2,∠B1=∠B2,∴△A1B1C1∽△A2B2C2∵△A1B1C1,△A2B2C2的周长相等,∴△A1B1C1≌△A2B2C2∴②正确;故选:D.二、填空题(共11小题)7.(临夏州)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)【解答】解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).8.(上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)【解答】解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.9.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是∠B=∠C(答案不唯一)(只写一个条件即可).【解答】解:添加∠B=∠C.在△ABE和△ACD中,∵,∴△ABE≌△ACD(AAS).故答案可为:∠B=∠C.10.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是AC=AB.【解答】解:添加条件:AB=AC,∵在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),故答案为:AB=AC.11.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA=FD.(只需写出一个)【解答】解:添加CA=FD,可利用SAS判断△ABC≌△DEF.故答案可为CA=FD.12.(庆阳)如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB.【解答】解:添加条件AE=AB,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠BAC=∠EAD,在△BCA和△EDA中,,∴△BAC≌△EAD(SAS).故答案为:AE=AB.13.(青海)如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是∠A=∠D(不添加任何辅助线).【解答】解:添加条件:∠A=∠D;∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(AAS).14.(张家界)如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC=,CD=3,则AC=6.【解答】解:过点D、B分别作DE⊥AC,BH⊥AC,垂足分别为E、H,设AC=x.在Rt△CDE中,DC=3,∠DCE=30°,∴,.∴DE=,CE=.则AE=x﹣,在Rt△AED中,由勾股定理得:AD2=AE2+DE2=,∵AB=BC,BH⊥AC,∴AH=AC=,∵tan∠BAC=,∴BH=在Rt△ABH中,由勾股定理得:AB2=BH2+AH2,∴.∵AB=AD,∴=解得:x1=,x2=(舍去).∴AC=6.15.(娄底)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.16.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB,使得△EAB≌△BCD.【解答】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.17.(昭通)如图,AF=DC,BC∥EF,只需补充一个条件BC=EF,就得△ABC≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.三、解答题(共13小题)18.(泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【解答】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.19.(青岛)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE ⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.20.(嘉兴)如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE 相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.【解答】解:(1)由图可知,∠DAG,∠AFB,∠CDE与∠AED相等;(2)选择∠DAG=∠AED,证明如下:∵正方形ABCD,∴∠DAB=∠B=90°,AD=AB,∵AF=DE,在△DAE与△ABF中,,∴△DAE≌△ABF(HL),∴∠ADE=∠BAF,∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,∴∠DAG=∠AED.21.(兰州)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.【解答】证明:(1)过点B作BM∥AC交DC的延长线于点M,如图1,∵AB∥CD∴四边形ABMC为平行四边形,∴AC=BM=BD,∠BDC=∠M=∠ACD,在△ACD和△BDC中,,∴△ACD≌△BDC(SAS),∴AD=BC;(2)连接EH,HF,FG,GE,如图2,∵E,F,G,H分别是AB,CD,AC,BD的中点,∴HE∥AD,且HE=AD,FG∥AD,且FG=,∴四边形HFGE为平行四边形,由(1)知,AD=BC,∴HE=EG,∴▱HFGE为菱形,∴EF与GH互相垂直平分.22.(梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.【解答】(1)证明:在△ABC与△ADC中,,∴△ABC≌△ADC(SSS);(2)解:设BE=x,∵∠BAC=30°,∴∠ABE=60°,∴AE=tan60°•x=x,∵△ABC≌△ADC,∴CB=CD,∠BCA=∠DCA,∵∠BCA=45°,∴∠BCA=∠DCA=45°,∴∠CBD=∠CDB=45°,∴CE=BE=x,∴x+x=4,∴x=2﹣2,∴BE=2﹣2.23.(泸州)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.24.(防城港)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).25.(随州)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.【解答】解:不能;选择条件:①AB=DE;∵BF=CE,∴BF+BE=CE+BE,即EF=CB,在△ABC和△DFE中,∴△ABC≌△DFE(SAS).26.(宁德)如图,点D、A、C在同一直线上,AB∥CE,AB=CD,∠B=∠D,求证:△ABC≌△CDE.【解答】证明:∵AB∥CE,∴∠BAC=∠DCE,在△ABC和△CDE中,,∴△ABC≌△CDE(ASA).27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.【解答】解:(1)三角形全等的判定方法中的推论AAS指的是:两角及其中一角的对边对应相等的两个三角形全等.(2)已知:在△ABC与△DEF中,∠A=∠D,∠C=∠F,BC=EF.求证:△ABC≌△DEF.证明:如图,在△ABC与△DEF中,∠A=∠D,∠C=∠F(已知),∴∠A+∠C=∠D+∠F(等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),∴∠B=∠E.∵在△ABC与△DEF中,,∴△ABC≌△DEF(ASA).28.(云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.【解答】解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).29.(仙桃)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.【解答】解:△AEM≌△ACN,△BMF≌△DNF,△ABN≌△ADM.选择△AEM≌△ACN,理由如下:∵△ADE≌△ABC,∴AE=AC,∠E=∠C,∠EAD=∠CAB,∴∠EAM=∠CAN,∵在△AEM和△ACN中,∴△AEM≌△ACN(ASA).30.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB 上,连结BE.请找出一对全等三角形,并说明理由.【解答】解:△ACD≌△BCE.证明如下∵∠ACB=∠DCE=90°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE.∵△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,∴CA=CB,CD=CE,在△ACD和△BCE中,∵,∴△ACD≌△BCE.。
2016衢州中考数学试题
浙江省2016年初中毕业学业考试(衢州卷)数学试题卷考生须知1.全卷共有三大题,24小题,共6页,满分为120分,考试时间为120分钟.2.答题前,请用黑色字迹的钢笔或签字笔将姓名,准考证号分别填写在“答题纸”的相应位置上,不要漏写.3.全卷分为卷1(选择题)和卷II (非选择题)两部分,全部在“答题纸”上作答,做在试卷上无效,卷1的答案必须用2B 铅笔填涂,卷II 的答案必须用黑色字迹的钢笔或签字笔写在“答题纸”的相应位置上,本次考试不允许使用计算器,画图先用2 B 铅笔,确定无误后用钢笔或签字笔描黑.4.参考公式:二次函数2y (0)ax bx c a =++≠图像的顶点坐标是(24,24b ac b a a--). 一、选择题(本题有10小题,每小题3分,共30分)1.(2016浙江衢州,1,3分)在2,-1,-3,0,这四个实数中,最小的是( ) A . 2 B .-1 C .-3 D .0 【答案】C 2.(2016浙江衢州,2,3分)据统计,2015年“十·一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为( ) A .3.19×105 B .3.19×106 C .3.19×107 D .319×104 【答案】B3.(2016浙江衢州,3,3分)如图是由两个小正方体和一个圆锥体组成的立体图形,其俯视图是( )【答案】C4.(2016浙江衢州,4,3分)下列计算正确的是( ) A .a 3-a 2=a B .a 3·a 2=a 6 C .(3a )3=9a 3 D .(a 3)2=a 6 【答案】D5.(2016浙江衢州,5,3分)如图,在□ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( )A .45°B .55°C .65°D .75°【答案】A 6.(2016浙江衢州,6,3分)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名中学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )A .众数B .方差C .平均数D .中位数 【答案】D则该函数图像的对称轴是( )A .直线x =- 3B .直线x =-2C .直线x =- 1D .直线x =0 【答案】B 8.(2016浙江衢州,8,3分)已知关于的一元二次方程x 2-2x -k =0有两个不相等的实数根,则实数k 的取值范围是( )A .k ≥1B .k >1C .k ≥-1D .k >-1 【答案】D 9.(2016浙江衢州,9,3分)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E,若∠A =30°,则sin ∠E 的值为( )A .12B C【答案】A10.(2016浙江衢州,10,3分)如图,在△ABC 中,AC =BC =25,AB =30,D 是AB 上的一点(不与A 、B 重合),DE ⊥BC ,垂足是点E.设BD =x ,四边形ACED 的周长为y ,则下列图像能大致反映y 与x 之间的函数的关系的是( )【答案】B二、填空题(本题有6小题,每小题4分,共24分) 11.(2016浙江衢州,11,4分)当x =6时,分式51-x的值等于 . 【答案】-112.(2016浙江衢州,12,4x 的取值范围是 .【答案】x ≥3 13.(2016浙江衢州,13,4分)某校随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则该50名学生这一周在校的平均体育锻炼时间是 小时.【答案】 6,414.(2016浙江衢州,14,4分)已知直角坐标内有四个点O (0,0),A (3,0),B (1,1),C (x ,1),若以O ,A ,B ,C 为顶点的四边形是平行四边形 则x = . 【答案】4或-2 15.(2016浙江衢州,15,4分)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两道墙隔开(如图),已知计划中的建筑材料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 m 2.【答案】 14416.(2016浙江衢州,16,4分)如图,正方形ABCD 的顶点A ,B ,在函数(0)ky x >x=的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k=2时,正方形A ′B ′C ′D ′的边长等于 .(2)当变化的正方形ABCD 与(1)中正方形A ′B ′C ′D ′有重叠部分时,k 的取值范围是 .22,189k ≤≤ 三、解答题(本题有8小题,共66分)17.(2016浙江衢州,17,6分)计算:0213(1)2⎛⎫-+--+- ⎪⎝⎭解:原式=3+3-1+1=6 18.(2016浙江衢州,18,6分)如图,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD ,BC 于E ,F (保留作图痕迹,不写作法和证明). (2)连结BE ,DF ,问四边形BEDF 是什么四边形,请说明理由.解:(1)图形如下:(2)四边形BEDF是菱形理由:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF∵AD∥BC,∴∠DEF=∠BFE ∴∠BEF=∠BFE ∴BE=BF又∵BF=DF ∴BE=ED=DF=BF∴四边形BEDF是菱形19.(2016浙江衢州,19,6分)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发点550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).解:(1)设这个月晴天天数为x天,由题意得30x+5(30-x)=550解得x=16∴这个月的晴天天数是16天.(2)需要x年才可以收回成本,由题意得,(550-150)·(0.52+0.45)·12x≥400004656x≥40000x≥8.6∴至少需要9年可以收回成本.20.(2016浙江衢州,20,8分)为深化义务教育课堂改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长,艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图.(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800多名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级数比较合理?解:(1)总人数:15÷25%=60(人)选A的人数:60-24-15-9=12(人)12÷60=0.2=20%,m=20补全条形统计图(图略)(2)概率是(12+9)÷60=11 20(3)800×25%=200200÷20=10∴开设10个“实践活动类”课程的班级数比较合理21.(2016浙江衢州,21,6分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=OP=1,求线段BF的长.(1)证明:∵∠AFB=∠ABC,∠ABC=∠A DC∴∠AFB=∠ADC∴CD∥BF∴∠APD=∠ABF∵CD⊥AB ∴AB⊥BF ∴直线BF是⊙O的切线(2)连接OD ∵CD⊥AB ∴PD=CD= OP=1∴OD=2∵∠PAD=∠BAF,∠APD=∠ABF=90°∴△APD∽△ABF∴AP PD AB BF=∴34=∴22.(2016浙江衢州,22,6分)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标中系中画出一次函数1322y x=+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在点P上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数1322 y x=+的图象上,请说明理由.(1)作图描点X1≈-1.6 ,x2≈0.6 (2)画直线x<-1.5或x>1(3)平移方法不唯一如,先向上平移54个单位,再向作平移12个单位平移后的顶点坐标P(-1,1)平移后表达式:y =(x +1)2+1或y =x2+2x+2理由:把P点坐标(-1,1)代入1322 y x=+左边=右边,点P在函数1322y x=+的图像上.23.(2016浙江衢州,23,6分)如图1,我们吧对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.写出证明过程(先画出图形,写出已知,求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE,BG,GE,已知AC=4,AB=5,求GE长.(1)是垂美四边形∵AD=AB ∴点A在BD的垂直平分线∴CB=CD ∴点C在BD的垂直平分线上∴AC是BD的垂直平分线,即AC⊥BD∴四边形ABCD是垂美四边形(2)猜想结论:垂美四边形两组对边的平方和相等.已知:如图,在四边形ABCD中,对角线AC⊥BD,垂足是点E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD ∴∠AED=∠BEC=∠AEB=∠CED=90°∴AD2+BC2=DE2+AE2+BE2+CE2AB2+CD2=AE2+BE2+CE2+DE2∴AD2+BC2=AB2+CD2(3)连接CG,BE∵∠GAC=∠BAE=90°∴∠BAG= ∠CAE∵AG=AC AB=AE∴△BAG≌△CAE∴∠AGN=∠ACM∵∠CNM=∠ANG∴∠CMN=∠NAG∴BG⊥CE,即四边形CGEB是垂美四边形∴CG2+BE2=BC2+GE2∴BC=52-42=9 32+50=9+GE2∴GE2=73 GE=24.(2016浙江衢州,24,12分)如图1,在直角坐标系xoy 中,直线l: y = kx +b 交x 轴,y 轴于点E ,F .点B 的坐标是(2,2)过点B 分别作x 轴,y 轴的垂线,垂足为A ,C .点D 是线段CO 上的动点,以BD 为对称轴,作与△BCD 成轴对称的△BCD ′. (1)当∠C BD =15°时,求点C ′的坐标.(2)当图1中的直线l 经过点A ,且k =-时(如图2),求点D 由C 到O 的运动过程中,线段BC ′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C ′时(如图3),以DE 为对称轴,作与△DOE 成轴对称的△DO ′E ,连接O ′C ,O ′O.问是否存在点D ,使得△DO ′E 与△CO ′O 相似?若存在,求出k ,b 的值;若不存在,请说明理由.解:(1)∵△CBD ≌△C ′BD∴∠CBD=∠C ′BD=15°,C ′B=CB=2 ∴∠CBC ′=30°作C ′H ⊥BC 于H ,则C ′H=1,∴∴点C ′的坐标是(1)(2)∵A (2,0),,k b =-∴=即直线AF 的函数表达式是y x =-+∴∠OAF=30°,∠BAF=60°∵在点O 由C 到O 的运动过程中,BC ′扫过的图形是扇形, ∴当D 与O 重合时,点C ′与A 重合, 且BC ′扫过的图形与OAF 重叠部分是弓形∴当C ′在直线y x =-+BC ′=BC=AB ∴△ABC ′是等边三角形,这时∠ABC ′=60°∴重叠部分的面积是22602223603ππ⨯⨯-⨯=-(3)方法一:设OO′与DE交于点M,则O′M=OM,O′O⊥DE 若△DO′E与△COO′相似,则△COO′必是直角三角形在点D由C到O的运动过程中,△COO′中显然只能∠CO′O=90°∴CO′∥DE,∴CD=OD=1,∴b=1连接BE,由轴对称性可知C′D= CDBC′=BC=BA∠BC′E=∠BCD=∠BAE=90°则有△BAE≌△B C′E, ∴AE=C′E∴DE= C′E+DC′= DC+AE设OE=x,则AE=2-x, ∴DE=DC+AE=3-x由勾股定理得, x2+1=(3-x)2,解之得,x=4 3∵D(0,1),E(43,0), ∴4103k+=,∴34k=-∴存在点D,使△DO′E与△COO′相似,这时34k=-,b=1方法二:(求k)过点C′作PQ∥OA交于P,交AB于Q,则有△C′PD∽△C′QB∴QB BCPC DC'=''(*)设PC′= x,则C′Q=2- x由(*)可得BQ=2 x,在Rt△C′QB中,由勾股定理得,(2-x)2+(2x)2=4,解得,x=4 5AQ=2-85=25∴D(0,1),C′(45,25)∴42155k+=,∴34k=-∴存在点D,使△DO′E与△COO′相似,这时34k=-,b=1。
浙江省衢州市常山县2016年中考数学模拟试卷含答案解析
浙江省衢州市常山县2016年中考数学模拟试卷(解析版)一.选择题(本大题共有10小题,每小题3分,共30分)1.﹣2的相反数是()A.B.﹣C.2 D.﹣22.下面几何体的俯视图是()A.B.C.D.3.自2016年1月21日开建的印尼雅万高铁是中国和印尼合作的重大标志性项目,这条高铁的总长为152公里.其中“152公里”用科学记数法可以表示为()A.0.152×106m B.1.52×105m C.1.52×106m D.152×105m4.已知一组数据0,﹣1,1,2,3,则这组数据的方差为()A.1 B.1 C.D.25.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.6.Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为()A.10 B.3 C.4 D.57.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.108.已知关于x的方程ax+b=0(a≠0)的解为x=﹣2,点(1,3)是抛物线y=ax2+bx+c(a ≠0)上的一个点,则下列四个点中一定在该抛物线上的是()A.(2,3)B.(0,3)C.(﹣1,3)D.(﹣3,3)9.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S 关于t的函数图象大致是()A.B.C.D.10.如图,平行四边形ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM.若平行四边形ABCD的周长为42,FM=3,EF=4,则AB的长为()A.11 B.12 C.13 D.14二.填空题(本题有6小题,每小题4分,共24分)11.请写出一个以x=1为解的一元二次方程:.(写出一个符合条件的方程即可)12.如图是斜体的“土”字,横线AB∥CD,已知∠1=75°,则∠2=.13.为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如表,则这15名同学每天睡眠时间的众数是小时,中位数是小时.14.如图,将弧长为6π的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB 重合(粘连部分忽略不计),则圆锥形纸帽的底面半径是.15.如图,已知点B,D在反比例函数y=(a>0)的图象上,点A,C在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的同侧,AB=4,CD=3,AB与CD的距离为1,则a﹣b的值是.16.如图,点A(2,0),以OA为半径在第一象限内作圆弧AB,使∠AOB=60°,点C为弧AB的中点,D为半径OA上一动点(不与点O,A重合),点A关于直线CD的对称点为E,若点E落在半径OA上,则点E的坐标为;若点E落在半径OB上,则点E的坐标为.三.解答题(本题有8题,共66分)17.计算:|﹣2|+20160﹣(﹣)﹣1+3tan30°+.18.先化简:(﹣)÷,再从﹣2<x<3的范围内选取一个合适的整数代入求值.19.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)20.”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D 四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC=24,AF=15,求⊙O的半径.22.甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)甲车的速度是,m=;(2)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;(3)当乙车行驶多少时间时,甲乙两车的距离是280千米.23.在等边△ABC中,(1)如图1,点E是等边△ABC的边BC上的动点,连结AE,以AE为边构造如图等边△AED,连结DB,求证:BD∥AC.(2)如图2,点E,F是等边△ABC边BC,AB上的动点,连结EF,以EF为边构造如图等边△EFD,连结DB,求证:BD∥AC.(3)在(2)的条件下,连结CD,如果AB=2,请问在E,F的运动过程中,CD是否存在最小值?若有请求出;若无请说明理由.24.如图,在Rt△ABC中,∠ACB=90°,AC=,BC=1,AB的垂直平分线交AB于点E,交射线BC于点F,点P从点A出发沿射线AC以每秒2个单位的速度运动,同时点Q 从点C出发沿CB方向以每秒1个单位的速度运动,当点Q到达点B时,点P,Q同时停止运动.设运动的时间为t秒.(1)当t为何值时,PQ∥EF;(2)当点P在C的左侧时,记四边形PFEQ的面积为s,请求出s关于t的函数关系式;s 是否存在最大值?如有,请求出;如没有,请说明理由.(3)设P,Q关于点C的对称点分别为P′,Q′,当t取何值时,线段P′Q′与线段EF相交?2016年浙江省衢州市常山县中考数学模拟试卷参考答案与试题解析一.选择题(本大题共有10小题,每小题3分,共30分)1.﹣2的相反数是()A.B.﹣C.2 D.﹣2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下面几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有看得到的棱都应表现在俯视图中.【解答】解:从上面看,这个几何体只有一层,且有3个小正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.自2016年1月21日开建的印尼雅万高铁是中国和印尼合作的重大标志性项目,这条高铁的总长为152公里.其中“152公里”用科学记数法可以表示为()A.0.152×106m B.1.52×105m C.1.52×106m D.152×105m【分析】根据1公里=1000米可得152公里=152×1000米,再用科学记数法表示152000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:152公里=152×1000米=152000米=1.52×105m,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知一组数据0,﹣1,1,2,3,则这组数据的方差为()A.1 B.1 C.D.2【分析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据的平均数是:(﹣1+1+2+3)÷5=1,则这组数据的方差为: [:0﹣1)2+(﹣1﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2;故选D.【点评】本题考查了方差和平均数:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为()A.10 B.3 C.4 D.5【分析】已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.【解答】解:已知直角三角形的两直角边为6、8,则斜边长为=10,故斜边的中线长为×10=5,故选D.【点评】本题考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO ⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.8.已知关于x的方程ax+b=0(a≠0)的解为x=﹣2,点(1,3)是抛物线y=ax2+bx+c(a ≠0)上的一个点,则下列四个点中一定在该抛物线上的是()A.(2,3)B.(0,3)C.(﹣1,3)D.(﹣3,3)【分析】根据一次方程ax+b=0(a≠0)的解为x=﹣2得出b=2a,由此即可得出抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,找出点(1,3)关于对称轴对称的点,即可得出结论.【解答】解:∵关于x的方程ax+b=0(a≠0)的解为x=﹣2,∴有﹣2a+b=0,即b=2a.∴抛物线y=ax2+bx+c(a≠0)的对称轴x=﹣=﹣1.∵点(1,3)是抛物线上的一点,∴点(﹣3,3)是抛物线上的一点.故选D.【点评】本题考查了二次函数图象上点的坐标特征,解题的关键是找出抛物线的对称轴为x=﹣1.本题属于基础题,难度不大,解决该题型题目时,找出抛物线的对称轴,找出已知点关于对称轴对称的点即可.9.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S 关于t的函数图象大致是()A.B.C.D.【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.10.如图,平行四边形ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM.若平行四边形ABCD的周长为42,FM=3,EF=4,则AB的长为()A.11 B.12 C.13 D.14【分析】由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN是矩形及∠EFM=90°,由FM=3cm,EF=4cm可求出EM.易证△ADF≌△CBN,从而得到DF=BN;易证△AFD∽△AEB,从而得到4DF=3AF.设DF=3k,则AF=4k.AE=4(k+1),BE=3(k+1),从而有AD=5k,AB=5(k+1).由▱ABCD的周长为42cm可求出k,从而求出AB长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠EAB=∠DAB,同理:∠ABE=∠CBE=∠ABC,∠BCM=∠DCM=∠BCD,∠CDM=∠ADM=∠ADC.∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,,∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴,∴,∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故选:C.【点评】本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.二.填空题(本题有6小题,每小题4分,共24分)11.请写出一个以x=1为解的一元二次方程:x2﹣x=0.=0,即x2﹣x=0.故答案为x2﹣x=0.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.如图是斜体的“土”字,横线AB∥CD,已知∠1=75°,则∠2=105°.【分析】利用平行线的性质推知同位角∠1=∠3,又由图形知∠2与∠3互补.【解答】解:如图,∵AB∥CD,∴∠1=∠3.又∵∠2+∠3=180°,∴∠1+∠2=180°.∵∠1=75°,∴∠2=180°﹣75°=105°.故填:105°.【点评】本题考查了平行线的性质.解题时,要结合图形得到∠2+∠3=180°.13.为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如表,则这15名同学每天睡眠时间的众数是8小时,中位数是8小时.【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:睡眠时间出现的次数最多的是8小时,因而众数是8小时;15个数据大小处于中间位置的是第8位,是8小时,因而中位数是8小时.故答案是:8;8.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.如图,将弧长为6π的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB 重合(粘连部分忽略不计),则圆锥形纸帽的底面半径是3.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,若圆锥形纸帽的底面半径为r,则2πr=6π,然后解方程即可.【解答】解:圆锥形纸帽的底面半径为r,根据题意得2πr=6π,解得r=3,即圆锥形纸帽的底面半径为3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.如图,已知点B,D在反比例函数y=(a>0)的图象上,点A,C在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的同侧,AB=4,CD=3,AB与CD的距离为1,则a﹣b的值是12.【分析】利用反比例函数比例系数k的几何意义,得出a﹣b=4OE,a﹣b=3OF,再根据OF ﹣OE=1,即可求出a﹣b的值.【解答】解:如图,由题意知:OEBE=a①,OEAE=﹣b②,①+②,得OEBE+OEAE=a﹣b,即a﹣b=4OE,同理,可得a﹣b=3OF,又∵OF﹣OE=1,∴OE=3,OF=4,∴a﹣b=12.故答案是:12.【点评】本题主要考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,利用数形结合是解题的关键.16.如图,点A(2,0),以OA为半径在第一象限内作圆弧AB,使∠AOB=60°,点C为弧AB的中点,D为半径OA上一动点(不与点O,A重合),点A关于直线CD的对称点为E,若点E落在半径OA上,则点E的坐标为();若点E落在半径OB上,则点E的坐标为(,).【分析】根据点E落在半径OA上.可以画出相应的图形,可知点A与点E关于点CD对称,从而可以得到DE=DA,由点C为弧AB的中点,∠AOB=60°,OC=OA=2,可以求得OD和AD的长,从而可以求得OE的长,进而得到点E的坐标;根据点E落在半径OB上,画出相应的图形,由D为半径OA上一动点(不与点O,A重合),点A关于直线CD的对称点为E,可知CB=CE,由前面求得的OE的长与此时OE 的长相等,根据∠AOB=60°,可以求得点E的坐标.【解答】解:当点E落在半径OA上时,连接OC,如下图1所示,∵∠ADC=90°,∠AOB=60°,点C为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OC=2,∴CD=OCsin30°=2×,∴OD=OC,∴AD=OA﹣OD=2﹣,∵DE=DA,∴OE=OD﹣OE=﹣(2﹣)=2,即点E的坐标为(2,0);当点E落在半径OB上时,连接OC,CD,如图2所示,由已知可得,CE=CA=CD,由上面的计算可知,OE=2,∴点E的横坐标为:,点E的纵坐标为:(2)×sin60°=3﹣,故答案为:(,0);().【点评】本题考查圆的综合题、特殊角的三角函数值,解题的关键是明确题意,画出相应的图形,找出所求问题需要的条件,利用数形结合的思想解答问题.三.解答题(本题有8题,共66分)17.计算:|﹣2|+20160﹣(﹣)﹣1+3tan30°+.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2﹣+1﹣(﹣3)+3×+2=6+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简:(﹣)÷,再从﹣2<x<3的范围内选取一个合适的整数代入求值.【分析】先算括号里面的,再算除法,根据﹣2<x<3选出合适的x的值代入原式进行计算即可.【解答】解:原式===,当x=2时,原式=(x不能取0,1,﹣1).【点评】本题考查的是分式的化简求值,在解答此类题目时要注意x的取值保证分式有意义.19.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)【分析】(1)过点P作PD⊥AB于点D,设PD=xkm,先解Rt△PBD,用含x的代数式表示BD,再解Rt△PAD,用含x的代数式表示AD,然后根据BD+AD=AB,列出关于x的方程,解方程即可;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF=AB=1km,再解Rt△BCF,得出BC=BF=km.【解答】解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=xkm.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=xkm.∵BD+AD=AB,∴x+x=2,x=﹣1,∴点P到海岸线l的距离为(﹣1)km;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=1km.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC=BF=km,∴点C与点B之间的距离为km.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.20.”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D 四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了200学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是108°;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.【分析】(1)根据B类的人数和所占的百分比即可求出总数;(2)求出C的人数从而补全统计图;(3)用A的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)共调查的中学生数是:80÷40%=200(人),故答案为:200;(2)C类的人数是:200﹣60﹣80﹣20=40(人),补图如下:(3)根据题意得:α=×360°=108°,故答案为:108°;(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种,∴P(2人来自不同班级)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC=24,AF=15,求⊙O的半径.【分析】(1)连接OC,先证∠OCF=90°,再证明△OAF≌△OCF,得出∠OAF=∠OCF=90°即可;(2)先求出AE、EF,再证明△OAE∽△AFE,得出比例式,即可求出半径.【解答】解:(1)AF与⊙O相切;理由如下:连接OC;如图所示:∵PC是⊙O的切线,∴OC⊥PC,∴∠OCF=90°,∵OF∥BC,∴∠B=∠AOF,∠OCB=∠COF,∵OB=OC,∴∠B=∠OCB,∴∠AOF=∠COF,在△OAF和△OCF中,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF=90°,∴AF与⊙O相切;(2)∵△OAF≌△OCF,∴∠OAE=∠COE,∴OE⊥AC,AE=AC=12,∴EF=,∵∠OAF=90°,∴△OAE∽△AFE,∴,即,∴OA=20,即⊙O的半径为20.【点评】本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.22.甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)甲车的速度是120,m= 1.5;(2)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;(3)当乙车行驶多少时间时,甲乙两车的距离是280千米.【分析】(1)根据甲车休息半个小时,得到甲车从A地到B地所用时间为3﹣0.5=2.5小时,用300÷2.5即可得到甲的速度;再用(300﹣120)除以甲的速度即可得到m的值;(2)利用待定系数法求一次函数解析式和正比例函数解析式解答;=240<(3)当0<x<1.5时(﹣120x+300)﹣80x=280,解得x=0.1;因为当x=3时,y乙280,所以x>3,即80x=280,解得x=3.5;综上所述:当乙车行驶了0.1小时或3.5小时,甲、乙两车相距280千米.【解答】解:(1)300÷(3﹣0.5)=120(千米/小时),m=(300﹣120)÷120=1.5(小时),故答案为:120,1.5;(2)相遇前,自变量x满足:0<x<1.5,=kx+b,设y甲把(0,300),(1.5,120)代入得:解得:=﹣120x+300;∴y甲∵乙的速度为:120÷1.5=80(千米/小时),=80x;∴y乙(3)当0<x<1.5时(﹣120x+300)﹣80x=280,解得x=0.1;=240<280,因为当x=3时,y乙所以x>380x=280解得x=3.5综上所述:当乙车行驶了0.1小时或3.5小时,甲、乙两车相距280千米.【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数的解析式,在(3)中注意分类讨论思想的应用.23.在等边△ABC中,(1)如图1,点E是等边△ABC的边BC上的动点,连结AE,以AE为边构造如图等边△AED,连结DB,求证:BD∥AC.(2)如图2,点E,F是等边△ABC边BC,AB上的动点,连结EF,以EF为边构造如图等边△EFD,连结DB,求证:BD∥AC.(3)在(2)的条件下,连结CD,如果AB=2,请问在E,F的运动过程中,CD是否存在最小值?若有请求出;若无请说明理由.【分析】(1)首先证得△ACE≌△ABD,得到∠ABD=∠C=∠BAC=60°,再根据平行线的判定推出结论;(2)过点F作FN∥AC交BC于点N,先证得△FNE≌△FBD,得到∠ABD=∠FNE=∠C=∠BAC=60°,再根据平行线的判定推出结论;(3)由(2)知,不论E,F运动到何处,都有BD∥AC,当F运动至A处,E运动至B处时,D在P点处:当F运动至B处,E运动至C处时,D在Q点处,故D的运动路径是线段PQ,(如图)作CM⊥PQ交线段PQ于M,则CD的最小值为CD,把数值代入即可求得.【解答】解:(1)∵△ABC,△EFD是等边三角形,∴DA=DE,BA=CA,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△ACE和△ABD中,,∴△ACE≌△ABD,∴∠ABD=∠C=∠BAC=60°,∴BD∥AC;(2)过点F作FN∥AC交BC于点N,∴∠BFN=∠A=60°,∠FNB=∠ACB=60°,∵△ABC,△EFD是等边三角形,∴∠FDE=60°,∠DFE=∠BFN=60°,∴∠DFB=∠EFN,在△FNE和△FBD中,,∴△FNE≌△FBD,∴∠ABD=∠FNE=∠C=∠BAC=60°,∴BD∥AC;(3)CD有最小值,证明如下:由(2)知,不论E,F运动到何处,都有BD∥AC,当F运动至A处,E运动至B处时,D在P点处:当F运动至B处,E运动至C处时,D在Q点处.∴D的运动路径是线段PQ,(如图)作CM⊥PQ交线段PQ于M,在Rt△BCM中,AB=2,∠CBM=60°,∴CM=BCsin∠CBM=2×=,=CM=.∴CD最小【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,平行线的判定,最短距离问题,证得△FNE≌△FBD是解决(2)的关键.24.如图,在Rt△ABC中,∠ACB=90°,AC=,BC=1,AB的垂直平分线交AB于点E,交射线BC于点F,点P从点A出发沿射线AC以每秒2个单位的速度运动,同时点Q 从点C出发沿CB方向以每秒1个单位的速度运动,当点Q到达点B时,点P,Q同时停止运动.设运动的时间为t秒.(1)当t为何值时,PQ∥EF;(2)当点P在C的左侧时,记四边形PFEQ的面积为s,请求出s关于t的函数关系式;s 是否存在最大值?如有,请求出;如没有,请说明理由.(3)设P,Q关于点C的对称点分别为P′,Q′,当t取何值时,线段P′Q′与线段EF相交?【分析】(1)根据相似三角形的性质得到,代入数据解得t=;(2)作EH⊥AC于H,根据三角形的面积公式得到S=t2+t﹣(<t≤1),当t≥﹣时,s随t的增大而增大,于是得到当t=1时,S=;最大(3)如图3,设AC与EF交于点M,易得CM=,当CP′=CP≥CM,且CQ′=CQ≤CF 时,线段P′Q′与线段EF相交,解不等式组即可得到结论【解答】解:(1)如图1,∵PQ∥EF,∴△QPC∽△ABC,∴,∴,解得:t=;∴当t为时,PQ∥EF;(2)如图2,作EH⊥AC于H,∴EH∥BC,∵AE=BE,∴AH=CH=AC=1,∵BF=2BE=2,∴CF=1,∴PH=2t﹣,QF=t+1,∴S=S△PQF+S△QEF=QFPC+QFCH=QFPH=(2t﹣)(t+1)=t2+t﹣(<t≤1),当t≥﹣时,s随t的增大而增大,∵<t≤1,=;∴当t=1时,S最大(3)如图3,设AC与EF交于点M,易得CM=,当CP′=CP≥CM,且CQ′=CQ≤CF时,线段P′Q′与线段EF相交,也就是,解得≤t≤1.【点评】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的最值,特殊角的三角函数,解直角三角形,正确作出图形是解题的关键.。
浙江省衢州市2016届九年级中考第一次模拟考试数学试题解析(解析版)
浙江省衢州市2016届九年级中考第一次模拟考试数学试题一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、多选、错选均不给分.1.已知点(1,﹣2)在反比例函数kyx=的图象上,那么这个函数图象一定经过点()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(2,1)【答案】A【解析】试题分析:先根据点(1,﹣2)在反比例函数kyx=的图象上求出k=-2,再根据k=xy的特点对各选项进行逐一判断:A、∵(﹣1)×2=﹣2,∴此点在反比例函数图象上;B、∵(﹣2)×(﹣1)=2≠﹣2,∴此点不在反比例函数图象上;C、∵(﹣1)×(﹣2)=2≠﹣2,∴此点不在反比例函数图象上;D、∵2×1=2≠﹣2,∴此点不在反比例函数图象上.故选A.考点:反比例函数图象上点的坐标特征2.如果23ab=,则a bb+=()A.13B.12C.53D.35【答案】C 【解析】试题分析:先根据比例的性质可得ab+1=23+1,进而可得53a bb+=.故选:C.考点:比例的性质3.小芳从正面(图示“主视方向”)观察如图的热水瓶时,得到的主视图是()【答案】A【解析】试题分析:从正面看下面是一个矩形,中间是一个梯形,上边是一个矩形,左边是一个矩形.故选:A.考点:简单组合体的三视图4.抛物线y=2(x﹣3)2+4的顶点坐标是()A.(3,4)B.(4,3)C.(﹣3,4)D.(﹣3,﹣4)【答案】A【解析】试题分析:根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.考点:二次函数的性质5.已知:⊙O1和⊙O2的半径分别为10cm和4cm,圆心距为6cm,则⊙O1和⊙O2的位置关系是()A.外切 B.相离 C.相交 D.内切【答案】D【解析】试题分析:由⊙O1和⊙O2的半径分别为10cm和4cm,两圆的圆心距是6cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.由10﹣4=6,可得两圆的位置关系是内切.故选D.考点:圆与圆的位置关系6.下列计算正确的是()A.a2•a3=a6B.a2+a2=a4C.3a2×2a2=6a4D.5a﹣a=4【答案】C考点:1、单项式乘单项式;2、合并同类项;3、同底数幂的乘法7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.9 B.3 C.1 D.6【答案】B【解析】试题分析:根据扇形的周长=圆锥的底面周长,设这个圆锥的底面半径是r,1209180π⨯=2πr,求得r=3.故选B.考点:圆锥的计算8.已知函数y=﹣x2+x+2,则当y<0时,自变量x的取值范围是()A.x<﹣1或x>2 B.﹣1<x<2 C.x<﹣2或x>1 D.﹣2<x<1 【答案】A【解析】试题分析:当y=0时,﹣x2+x+2=0,即(x+1)(﹣x+2)=0,解得x1=﹣1,x2=2;由于函数开口向下,可知当y<0时,自变量x的取值范围是x<﹣1或x>2.故选A考点:二次函数与不等式(组)9.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B2C cm2D cm2【答案】【解析】试题分析:由题可知△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB,过C作CD⊥AB,垂足为D,则CD=1,根据三角函数定义求出AC=12sin45,然后就可以求出△ABC面积ABCS=12×AB×cm2.故选D.考点:解直角三角形的应用10.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时.设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()【答案】A【解析】试题分析:点C从点A运动到点B的过程中,x的值逐渐增大,DE的长度随x值的变化先变大再变小,当C与O重合时,y有最大值,∵x=0,ABx=AB﹣12AB时,DE过点O,此时:DE=ABx=AB,AB所以,随着x的增大,y先增后降,类抛物线故选:A.考点:动点问题的函数图象二、填空题(本大题共有6小题,每小题4分,共24分.)11x的取值范围是.【答案】x≥1【解析】试题分析:根据二次根式有意义的条件,被开方数大于等于0,列出不等式x﹣1≥0,解得x≥1. 考点:二次根式有意义的条件12.将y=2x2的函数图象向左平移1个单位,再向上平移3个单位,得到二次函数解析式为.【答案】y=2(x+1)2+3【解析】试题分析:利用平移的规律“左加右减,上加下减”可得到:将y=2x2的函数图象向左平移1个单位,其解析式为y=2(x+1)2,再把y=2(x+1)2图象向上平移3个单位,其解析式为y=2(x+1)2+3.考点:二次函数图象与几何变换13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.【答案】8【解析】试题分析:先求出钢珠的半径及OD=3mm,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD4mm,进而得出AB=8mm.考点:1、垂径定理的应用;2、勾股定理14.如图,是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.1米,BP=1.9米,PD=19米,那么该古城墙CD的高度是米.【答案】11【解析】试题分析:利用入射与反射得到∠APB=∠CPD=90°,则可判断Rt △ABP ∽Rt △CDP ,于是根据相似三角形的性质即可得到:AB PB CD PD =,即:1.1 1.919CD =,可求出CD=11.考点:相似三角形的应用15.一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为 度.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)【答案】57【解析】试题分析:设OA 旋转的角度为n ,由于重物上升10 cm ,则点A 逆时针旋转的弧长为10 cm ,根据弧长公式180n r l π=,即可求出180********.1410l n r π⨯==≈⨯. ,考点:弧长的计算16.在反比例函数10y x=(x >0)的图象上,有一系列点A 1、A 2、A 3、…、A n 、A n+1,若A 1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴与y 轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,S n ,则S 1= ,S 1+S 2+S 3+…+S n = .(用n 的代数式表示).【答案】5,101n n + 【解析】考点:反比例函数综合题三、解答题(共66分)17.计算:011(()2cos303π--++--【答案】4【解析】 试题分析:分别进行零指数幂、负整数指数幂及绝对值的运算,然后代入特殊角的三角函数值代入运算即可.试题解析: 011(()2cos303π-++--=1+3+2=4. 考点:1、实数的运算;2、零指数幂;3、负整数指数幂;4、特殊角的三角函数值18.学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果;(2)求程、李两位教师同坐2号车的概率.【答案】(1)图形见解析(2)1 4【解析】试题分析:(1)依据题意列表法或画树状图法分析所有等可能的出现结果即可;(2)根据概率公式程、李两位教师同坐2号车的概率.试题解析:(1)画树形图得:(2)由(1)可知P(程、李两位教师同坐2号车)=14.考点:列表法与树状图法19.如图,直线y1=2x+b与x轴、y轴交于点A、B,与双曲线2kyx(x<0)交于点C、D,已知点C的坐标为(﹣1,4).(1)求直线和双曲线的解析式;(2)利用图象,说出x在什么范围内取值时,有y1>y2.【答案】(1)y1=2x+6,y2=﹣4x(2)﹣2<x<﹣1【解析】试题分析:(1)因为两个函数的图象都过C点,将C点坐标代入求得b、k的值,所以易求它们的解析式;(2)先求出D点的横坐标,再观察直线落在双曲线上方的部分对应的x的取值范围即可.试题解析:(1)将C (﹣1,4)分别代入y 1=2x+b ,2k y x =, 得4=2×(﹣1)+b ,4=1k -, 解得k=﹣4,b=6,∴y 1=2x+6,y 2=﹣4x; (2)∵y 1=2x+6,y 2=﹣4x , ∴当2x+6=﹣4x时,x 1=﹣1,x 2=﹣2, ∴D 点的横坐标为﹣2,∴当﹣2<x <﹣1时,y 1>y 2.考点:反比例函数与一次函数的交点问题20.如图所示,小杨在广场上的A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该屏幕上端C 处的仰角为45°.若该楼高为26.65m ,小杨的眼睛离地面1.65m ,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(≈1.732,结果精确到0.1m )【答案】7.7【解析】试题分析:易得CE=BE,利用30°的正切值即可求得CE长,进而可求得DE长.CE减去DE长即为广告屏幕上端与下端之间的距离.试题解析:设AB、CD的延长线相交于点E.∵∠CBE=45°,CE⊥AE,∴CE=BE.∵CE=26.65﹣1.65=25,∴BE=25.∴AE=AB+BE=30.在Rt△ADE中,∠DAE=30°,∴DE=AE∴CD=CE﹣DE=25﹣25﹣10×1.732=7.68≈7.7(m).答:广告屏幕上端与下端之间的距离约为7.7m.考点:解直角三角形的应用-仰角俯角问题21.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.【答案】(1)证明见解析(2)15 4【解析】试题分析:(1)连接OD.欲证AC是⊙O的切线,只需证明AC⊥OD即可;(2)利用平行线截线段成比例推知OD AOBC AB;然后将图中线段间的和差关系代入该比例式,通过解方程即可求得r的值,即⊙O的半径r的值.试题解析:(1)证明:连接OD.∵OB=OD,∴∠OBD=∠ODB(等角对等边);∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ODB=∠DBC(等量代换),∴OD∥BC(内错角相等,两直线平行);又∵∠C=90°(已知),∴∠ADO=90°(两直线平行,同位角相等),∴AC⊥OD,即AC是⊙O的切线;(2)解:由(1)知,OD∥BC,∴OD AOBC AB=(平行线截线段成比例),∴10610r r-=,解得r=154,即⊙O的半径r为154.考点:切线的判定;相似三角形的判定与性质22.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【答案】(1)18(40601015(60100)20x xyx x⎧-+⎪⎪=⎨⎪-+⎪⎩≤≤)<<(2)40(3)8【解析】试题分析:(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.试题解析:(1)当40≤x≤60时,令y=kx+b,则404 602k bk b+=⎧⎨+=⎩,解得1108kb⎧=-⎪⎨⎪=⎩,故1810y x=-+,同理,当60<x<100时,1520y x=-+.故18(40801015(6010) 20x xx x⎧-+⎪⎪⎨⎪-+⎪⎩≤≤)<<;(2)设公司可安排员工a人,定价50元时,由5=(﹣110×50+8)(50﹣40)﹣15﹣0.25a , 得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x ≤60时,利润w 1=(﹣110x+8)(x ﹣40)﹣15﹣20=﹣110(x ﹣60)2+5, 则当x=60时,w max =5万元;当60<x <100时,w 2=(﹣120x+5)(x ﹣40)﹣15﹣0.25×80 =﹣120(x ﹣70)2+10, ∴x=70时,w max =10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n 个月后还清贷款,则10n ≥80,∴n ≥8,即n=8为所求.考点:1、一次函数的应用;2、分段函数23.如图1,一副直角三角板满足AB=BC ,AC=DE ,∠ABC=∠DEF=90°,∠EDF=30°,【操作1】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q .在旋转过程中,如图2,当1CE EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. 【操作2】在旋转过程中,如图3,当2CE EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. 【总结操作】根据你以上的探究结果,试写出CE m EA =当时,EP 与EQ 满足的数量关系是什么?其中m 的取值范围是什么?(直接写出结论,不必证明).【答案】0<m ≤【解析】试题分析:(操作1)连接BE ,根据已知条件得到E 是AC 的中点,根据等腰直角三角形的性质可以证明DE=CE ,∠PBE=∠C .根据等角的余角相等可以证明∠BEP=∠CEQ .即可得到全等三角形,从而证明结论;(操作2)作EM ⊥AB ,EN ⊥BC 于M 、N ,根据两个角对应相等证明△MEP ∽△NWQ ,发现EP :EQ=EM :EN ,再根据等腰直角三角形的性质得到EM :EN=AE :CE ;(总结操作)根据(2)中求解的过程,可以直接写出结果;要求m 的取值范围,根据交点的位置的限制进行分析.试题解析:(操作1)EP=EQ ,证明:连接BE ,根据E 是AC 的中点和等腰直角三角形的性质,得:BE=CE ,∠PBE=∠C=45°,∵∠BEC=∠FED=90°∴∠BEP=∠CEQ ,在△BEP 和△CEQ 中BEP CEQ BE CEPBE C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BEP ≌△CEQ (ASA ),∴EP=EQ ;如图2,EP :EQ=EM :EN=AE :CE=1:2,理由是:作EM ⊥AB ,EN ⊥BC 于M ,N ,∴∠EMP=∠ENC ,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF ,∴△MEP ∽△NEQ ,∴EP :EQ=EM :EN=AE :CE=1:2;如图3,过E 点作EM ⊥AB 于点M ,作EN ⊥BC 于点N ,∵在四边形PEQB 中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠MPE=180°,∴∠MPE=∠EQN ,∴Rt △MEP ∽Rt △NEQ , ∴EP ME EQ EN=, Rt △AME ∽Rt △ENC , ∴CE EN m EA ME==, ∴1:EP AE m EQ CE==, EP 与EQ 满足的数量关系式1:m ,即EQ=mEP ,∴0<m ≤,(因为当m >时,EF 和BC 变成不相交).考点:相似形综合题24.如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y=ax 2+bx+c 经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【答案】(1)y=﹣23x2+163x(2)t=4013或257(3)①M1(4,323),N1(4,﹣143);②M2(12,﹣32),N2(4,﹣26);③M3(﹣4,﹣32),N3(4,﹣38).【解析】试题分析:(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.试题解析:方法一:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴9310 6480 a ba b+=⎧⎨+=⎩,解得23163 ab⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为:y=﹣23x2+163x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴CQ CP AE DE=,即10245t t-=,解得t=40 13.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴PC CQ AE DE=,即10245t t-=,解得t=25 7.∴当t=4013或257时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC 为平行四边形的对角线,由于抛物线的对称轴经过EC 中点,若四边形MENC 是平行四边形,那么M 点必为抛物线顶点;则:M (4,323);而平行四边形的对角线互相平分,那么线段MN 必被EC 中点(4,3)平分,则N (4,﹣143); ②EC 为平行四边形的边,则EC ∥MN ,EC=,MN 设N (4,m ),则M (4﹣8,m+6)或M (4+8,m ﹣6); 将M (﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时 N (4,﹣38)、M (﹣4,﹣32);将M (12,m ﹣6)代入抛物线的解析式中,得:m=﹣26,此时 N (4,﹣26)、M (12,﹣32);综上,存在符合条件的M 、N 点,且它们的坐标为:①M 1(﹣4,﹣32),N 1(4,﹣38);②M 2(12,﹣32),N 2(4,﹣26);③M 3(4,323),N 3(4,﹣).考点:二次函数综合题。
衢州市2016年中考数学专题训练(二)命题与证明(含解析)
浙江省衢州市2016年中考数(浙教版)专题训练(二):命题与证明一、选择题(共26小题)1.下列命题中,是真命题的是()A.等腰三角形都相似 B.等边三角形都相似C.锐角三角形都相似 D.直角三角形都相似2.下列说法正确的有()①在﹣,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形8.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短9.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等10.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.矩形的对角线互相垂直且平分C.正六边形的内角和是720°D.角平分线上的点到角两边的距离相等11.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个12.下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等13.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形14.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直平分的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组邻边相等,并且有一个内角为直角的四边形是正方形15.下列命题中,属于真命题的是()A.同位角相等B.正比例函数是一次函数C.平分弦的直径垂直于弦 D.对角线相等的四边形是矩形16.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半17.(2014•济南)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形18.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直19.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等20.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形21.下列命题是真命题的是()A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等22.下列说法中,正确的有()①等腰三角形两边长为2和5,则它的周长是9或12.②无理数﹣在﹣2和﹣1之间.③六边形的内角和是外角和的2倍.④若a>b,则a﹣b>0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°.A.1个B.2个C.3个D.4个23.下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形24.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③ B.①④C.②④D.②25.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个26.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0二、填空题(共3小题)27.下列命题:①对角线相等的四边形是矩形;②正多边形都是轴对称图形;③通过对足球迷健康状况的调查可以了解我国公民的健康状况;④球的主视图、左视、俯视图都是圆;⑤如果一个角的两边与另一个解的两边分别平行,那么这两个角相等,其中是真命题的有(只需填写序号).28.下列命题中正确的个数有个.①如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1;②在反比例函数y=中,y随x的增大而减小;③要了解一批炮弹的杀伤半径,适合用普查方式;④从﹣3,﹣2,2,3四个数中任意取两个数分别作为k,b的值,则直线y=kx+b经过第一、二、三象限的概率是.29.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)三、解答题(共1小题)30.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:浙江省衢州市2016年中考数(浙教版)专题训练(二):命题与证明参考答案与试题解析一、选择题(共26小题)1.下列命题中,是真命题的是()A.等腰三角形都相似 B.等边三角形都相似C.锐角三角形都相似 D.直角三角形都相似【考点】命题与定理;相似三角形的判定.【分析】利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.【点评】本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.2.下列说法正确的有()①在﹣,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据无理数的定义对①进行判断;先写出逆命题,然后根据平方根的定义对②进行判断;根据多边形内角和公式和外角和定理对③进行判断;根据垂径定理的推论对④进行判断.【解答】解:在﹣,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42【考点】命题与定理.【分析】证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.【解答】解:42是偶数,但42不是8的倍数.故选:D.【点评】本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【考点】命题与定理.【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°【考点】命题与定理.【分析】分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.7.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.8.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【考点】命题与定理.【专题】常规题型.【分析】根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.【解答】解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.矩形的对角线互相垂直且平分C.正六边形的内角和是720°D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据确定圆的条件对A进行判断;根据矩形的性质对B进行判断;根据多边形的内角和定理对C 进行判断;根据角平分线的性质对D进行判断.【解答】解:A、不在同一直线上的三点确定一个圆,所以A选项为真命题;B、矩形的对角线互相平分且相等,所以B选项为假命题;C、正六边形的内角和是720°,所以C选项为真命题;D、角平分线上的点到角两边的距离相等,所以D选项为真命题.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个【考点】命题与定理;平行四边形的判定.【专题】常规题型.【分析】分别利用平行四边形的判定方法判断得出即可.【解答】解:(1)两组对边分别相等的四边形是平行四边形,此选项正确;(2)两组对角分别相等的四边形是平行四边形,此选项正确;(3)对角线互相平分的四边形是平行四边形,此选项正确;(4)一组对边平行且相等的四边形是平行四边形,此选项正确.故选:A.【点评】此题主要考查了平行四边形的判定,熟练掌握平行四边形的判定是解题关键.12.下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等【考点】命题与定理.【分析】利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.【解答】解:A、例如3与﹣3,可判断A错误,故A是假命题;B、对角线互相垂直的平行四边形是菱形,错误,故B是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,错误,故C是假命题;D、线段垂直平分线上的点与这条线段两个端点的距离相等,正确,故D是真命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.13.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直平分的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组邻边相等,并且有一个内角为直角的四边形是正方形【考点】命题与定理.【分析】利用矩形、菱形、平行四边形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线相等的平行四边形才是矩形,故A选项错误;B、对角线互相垂直的平分的四边形是菱形,是真命题,故B选项正确;C、一组对边平行,另一组对边相等的四边形也可能是等腰梯形,是假命题,故C选项错误;D、一组邻边相等,并且有一个内角为直角的四边形也可能是直角梯形,故D选项错误.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解矩形、菱形、平行四边形及正方形的判定定理,属于基础定理,难度不大.15.下列命题中,属于真命题的是()A.同位角相等B.正比例函数是一次函数C.平分弦的直径垂直于弦 D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用平行线的性质、正比例函数的定义、垂径定理及矩形的判定对各个选项逐一判断后即可确定正确的选项.【解答】解:A、两直线平行,同位角才相等,是假命题,故A不符合题意;B、正比例函数是一次函数,是真命题,故B符合题意;C、平分弦的直径垂直于弦,是假命题,故C不符合题意;D、对角线相等的平行四边形才是矩形,是假命题,故D不符合题意.故选:B.【点评】本题考查了命题与定理,解题的关键是了解平行线的性质、正比例函数的定义、垂径定理及矩形的判定等知识,难度较小.16.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半【考点】命题与定理.【分析】利用多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质逐一判断后即可确定正确的选项.【解答】解:A、n边形的内角和等于(n﹣2)•180°,故A选项正确;B、两组对边分别相等的四边形是平行四边形,故B选项错误;C、垂直于弦的直径平分弦所对的两条弧,故C选项正确;D、直角三角形斜边上的中线等于斜边的一半,故D选项正确,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质,难度不大.17.(2014•济南)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形【考点】命题与定理.【专题】常规题型.【分析】根据矩形的判定方法对A进行判断;根据平行四边形的判定方法对B进行判断;根据菱形的判定方法对C进行判断;根据等腰梯形的定义对D进行判断.【解答】解:A、两对角线相等的平行四边形是矩形,故A选项错误;B、两对角线互相平分的四边形是平行四边形,故B选项正确;C、两对角线互相垂直的平行四边形是菱形,故C选项错误;D、两对角线相等的梯形是等腰梯形,故D选项错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直【考点】命题与定理.【专题】常规题型.【分析】根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C 进行判断;根据平行四边形的性质对D进行判断.【解答】解:A、等腰梯形的对角线相等,故A错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,故B错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,故C错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,故D正确.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.19.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等【考点】命题与定理.【分析】利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.【解答】解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.20.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形【考点】命题与定理.【专题】常规题型.【分析】根据等腰图形的性质对A矩形判断;根据矩形、正方形和菱形的判定方法分别对B、C、D矩形判断.【解答】解:A、等腰梯形是轴对称图形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四边相等且有一个角为90°的四边形是正方形,所以C选项错误;D、有两条相互垂直的对称轴的四边形可以是菱形或矩形,所以D选项错误.故选:A.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.21.下列命题是真命题的是()A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据根据0指数幂的定义即可判断A;根据矩形的判定方法即可判定B;根据平移的性质对C进行判断;根据角平分线性质对A进行判断.【解答】解:A、除0外,任何数的0次幂都等于1,错误,是假命题;B、顺次连接菱形四边中点的线段组成的四边形是矩形,错误,是假命题;。
2016年浙江省衢州市中考数学试卷(解析版)
2016年浙江省衢州市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.02.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105B.3.19×106C.0.319×107 D.319×1063.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.4.下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(3a)3=9a3D.(a2)2=a45.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=08.已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣19.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.10.如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.当x=6时,分式的值等于.12.二次根式中字母x的取值范围是.13.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是小时.14.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=.15.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为m2.16.如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是.三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.计算:|﹣3|+﹣(﹣1)2+(﹣)0.18.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.19.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).20.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.22.已知二次函数y=x2+x的图象,如图所示(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.23.如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.24.如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.2016年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.0【考点】实数大小比较.【分析】根据实数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小)比较即可.【解答】解:∵﹣3<﹣1<0<,∴最小的实数是﹣3,故选C.2.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105B.3.19×106C.0.319×107 D.319×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于319万有7位,所以可以确定n=7﹣1=6.【解答】解:319万=3 190 000=3.19×106.故选B.3.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.4.下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(3a)3=9a3D.(a2)2=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a3,a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(3a)3=27a3,故C错误;D、(a2)2=a4,故D正确.故选:D.5.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°【考点】平行四边形的性质.【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.故选A.6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数【考点】中位数.【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生参加决赛的成绩肯定是7名学生中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.7.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0【考点】二次函数的图象.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.8.已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣1【考点】一元二次方程根的分布.【分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k>0,解得k>﹣1.故选:D.9.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.【考点】切线的性质.【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC 的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,∵∠A=30°,∴∠BOC=2∠A=60°,∴∠E=90°﹣∠BOC=30°,∴sin∠E=sin30°=.故选A.10.如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.【考点】函数的图象.【分析】由△DEB∽△CMB,得==,求出DE、EB,即可解决问题.【解答】解:如图,作CM⊥AB于M.∵CA=CB,AB=20,CM⊥AB,∴AM=BM=15,CM==20∵DE⊥BC,∴∠DEB=∠CMB=90°,∵∠B=∠B,∴△DEB∽△CMB,∴==,∴==,∴DE=,EB=,∴四边形ACED的周长为y=25+(25﹣)++30﹣x=﹣x+80.∵0<x<30,∴图象是D.故选D.二、填空题(本题有6小题,每小题4分,共24分)11.当x=6时,分式的值等于﹣1.【考点】分式的值.【分析】直接将x的值代入原式求出答案.【解答】解:当x=6时,==﹣1.故答案为:﹣1.12.二次根式中字母x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.13.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是 6.4小时.【考点】加权平均数.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.14.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或﹣2.【考点】平行四边形的判定;坐标与图形性质.【分析】分别在平面直角坐标系中确定出A、B、O的位置,再根据两组对边分别平行的四边形是平行四边形可确定C的位置,从而求出x的值.【解答】解:根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1),则x=4或﹣2;故答案为:4或﹣2.15.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为432m2.【考点】一元一次不等式的应用.【分析】要求这三间长方形种牛饲养室的总占地面积的最大值,可设总占地面积为S,中间墙长为x,根据题目所给出的条件列出S与x的关系式,再根据函数的性质求出S的最大值.【解答】解:如图,设设总占地面积为S(m2),CD的长度为x(m),由题意知:AB=CD=EF=GH=x,∴BH=48﹣4x,∵0<BH≤50,CD>0,∴0<x<12,∴S=AB•BH=x(48﹣x)=﹣(x﹣24)2+576∴x<24时,S随x的增大而增大,∴x=12时,S可取得最大值,最大值为S=43216.如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是≤x≤18.【考点】反比例函数图象上点的坐标特征;反比例函数的性质;正方形的性质.【分析】(1)过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,由正方形的性质可得出“A′D′=D′C′,∠A′D′C′=90°”,通过证△A′ED′≌△D′OC′可得出“OD′=EA′,OC′=ED′”,设OD′=a,OC′=b,由此可表示出点A′的坐标,同理可表示出B′的坐标,利用反比例函数图象上点的坐标特征即可得出关于a、b的二元二次方程组,解方程组即可得出a、b值,再由勾股定理即可得出结论;(2)由(1)可知点A′、B′、C′、D′的坐标,利用待定系数法即可求出直线A′B′、C′D′的解析式,设点A的坐标为(m,2m),点D坐标为(0,n),找出两正方形有重叠部分的临界点,由点在直线上,即可求出m、n的值,从而得出点A的坐标,再由反比例函数图象上点的坐标特征即可得出k的取值范围.【解答】解:(1)如图,过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,则∠A′ED′=90°.∵四边形A′B′C′D′为正方形,∴A′D′=D′C′,∠A′D′C′=90°,∴∠OD′C′+∠ED′A′=90°.∵∠OD′C′+∠OC′D′=90°,∴∠ED′A′=∠OC′D′.在△A′ED′和△D′OC′中,,∴△A′ED′≌△D′OC′(AAS).∴OD′=EA′,OC′=ED′.同理△B′FC′≌△C′OD′.设OD′=a,OC′=b,则EA′=FC′=OD′=a,ED′=FB′=OC′=b,即点A′(a,a+b),点B′(a+b,b).∵点A′、B′在反比例函数y=的图象上,∴,解得:或(舍去).在Rt△C′OD′中,∠C′OD′=90°,OD′=OC′=1,∴C′D′==.故答案为:.(2)设直线A′B′解析式为y=k1x+b1,直线C′D′解析式为y=k2+b2,∵点A′(1,2),点B′(2,1),点C′(1,0),点D′(0,1),∴有和,解得:和.∴直线A′B′解析式为y=﹣x+3,直线C′D′解析式为y=﹣x+1.设点A的坐标为(m,2m),点D坐标为(0,n).当A点在直线C′D′上时,有2m=﹣m+1,解得:m=,此时点A的坐标为(,),∴k=×=;当点D在直线A′B′上时,有n=3,此时点A的坐标为(3,6),∴k=3×6=18.综上可知:当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围为≤x≤18.故答案为:≤x≤18.三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.计算:|﹣3|+﹣(﹣1)2+(﹣)0.【考点】实数的运算;零指数幂.【分析】根据绝对值和算术平方根、乘方以及零指数幂的定义进行计算,即可得出结果.【解答】解:|﹣3|+﹣(﹣1)2+(﹣)0=3+3﹣1+1=6.18.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【考点】矩形的性质;作图—基本作图.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.19.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【考点】一元一次不等式的应用.【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.【解答】解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得•(0.52+0.45)•12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.20.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【考点】条形统计图;扇形统计图;概率公式.【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.21.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.【考点】切线的判定.【分析】(1)欲证明直线BF是⊙O的切线,只要证明AB⊥BF即可.(2)连接OD,在RT△ODE中,利用勾股定理求出由△APD∽△ABF,=,由此即可解决问题.【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.22.已知二次函数y=x2+x的图象,如图所示(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.【考点】二次函数综合题.【分析】(1)令y=0求得抛物线与x的交点坐标,从而可确定出1个单位长度等于小正方形边长的4倍,接下来作直线y=1,找出直线y=1与抛物线的交点,直线与抛物线的交点的横坐标即可方程的解;(2)先求得直线上任意两点的坐标,然后画出过这两点的直线即可得到直线y=x+的函数图象,然后找出一次函数图象位于直线下方部分x的取值范围即可;(3)先依据抛物线的顶点坐标和点P的坐标,确定出抛物线移动的方向和距离,然后依据抛物线的顶点式写出抛物线的解析式即可,将点P的坐标代入函数解析式,如果点P的坐标符合函数解析式,则点P在直线上,否则点P不在直线上.【解答】解:(1)∵令y=0得:x2+x=0,解得:x1=0,x2=﹣1,∴抛物线与x轴的交点坐标为(0,0),(﹣1,0).作直线y=1,交抛物线与A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x 轴,垂足为D,点C和点D的横坐标即为方程的根.根据图形可知方程的解为x1≈﹣1.6,x2≈0.6.(2)∵将x=0代入y=x+得y=,将x=1代入得:y=2,∴直线y=x+经过点(0,),(1,2).直线y=x+的图象如图所示:由函数图象可知:当x<﹣1.5或x>1时,一次函数的值小于二次函数的值.(3)先向上平移个单位,再向左平移个单位,平移后的顶点坐标为P(﹣1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=x+的函数图象上.理由:∵把x=﹣1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=x+的函数图象上.23.如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.【考点】四边形综合题.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.24.如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)利用翻折变换的性质得出∠CBD=∠C′BD=15°,C′B=CB=2,进而得出CH的长,进而得出答案;(2)首先求出直线AF的解析式,进而得出当D与O重合时,点C′与A重合,且BC′扫过的图形与△OAF重合部分是弓形,求出即可;(3)根据题意得出△DO′E与△COO′相似,则△COO′必是Rt△,进而得出Rt△BAE≌Rt△BC′E(HL),再利用勾股定理求出EO的长进而得出答案.【解答】解:(1)∵△CBD≌△C′BD,∴∠CBD=∠C′BD=15°,C′B=CB=2,∴∠CBC′=30°,如图1,作C′H⊥BC于H,则C′H=1,HB=,∴CH=2﹣,∴点C′的坐标为:(2﹣,1);(2)如图2,∵A(2,0),k=﹣,∴代入直线AF的解析式为:y=﹣x+b,∴b=,则直线AF的解析式为:y=﹣x+,∴∠OAF=30°,∠BAF=60°,∵在点D由C到O的运动过程中,BC′扫过的图形是扇形,∴当D与O重合时,点C′与A重合,且BC′扫过的图形与△OAF重合部分是弓形,当C′在直线y=﹣x+上时,BC′=BC=AB,∴△ABC′是等边三角形,这时∠ABC′=60°,∴重叠部分的面积是:﹣×22=π﹣;(3)如图3,设OO′与DE交于点M,则O′M=OM,OO′⊥DE,若△DO′E与△COO′相似,则△COO′必是Rt△,在点D由C到O的运动过程中,△COO′中显然只能∠CO′O=90°,∴CO′∥DE,∴CD=OD=1,∴b=1,连接BE,由轴对称性可知C′D=CD,BC′=BC=BA,∠BC′E=∠BCD=∠BAE=90°,在Rt△BAE和Rt△BC′E中∵,∴Rt△BAE≌Rt△BC′E(HL),∴AE=C′E,∴DE=DC′+C′E=DC+AE,设OE=x,则AE=2﹣x,∴DE=DC+AE=3﹣x,由勾股定理得:x2+1=(3﹣x)2,解得:x=,∵D(0,1),E(,0),∴k+1=0,解得:k=﹣,∴存在点D,使△DO′E与△COO′相似,这时k=﹣,b=1.2016年6月23日。
浙江省衢州市2016年中考数学(浙教版)专题训练(二):二元一次方程(数理化网)
浙江省衢州市2016年中考数学(浙教版)专题训练(二):二元一次方程一、选择题(共8小题)1.(广安)如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.2.(凉山州)已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.33.(抚州)已知a、b满足方程组,则3a+b的值为()A.8 B.4 C.﹣4 D.﹣84.(崇左)方程组的解是()A.B.C.D.5.(永州)已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.56.(娄底)方程组的解是()A.B.C.D.7.(莆田)若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.38.(黔南州)二元一次方程组的解是()A.B.C.D.二、填空题(共8小题)9.(毕节地区)二元一次方程组的解是.10.(重庆)方程组的解是.11.(百色)方程组的解为.12.(杭州)设实数x、y满足方程组,则x+y=.13.(泉州)方程组的解是.14.(大庆)二元一次方程组的解为.15.(攀枝花)已知x,y满足方程组,则x﹣y的值是.16.(宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为.三、解答题(共14小题)17.(滨州)(请在下列两个小题中,任选其一完成即可)(1)解方程组:(2)解方程:.18.(桂林)解二元一次方程组:.19.(东莞市)解方程组.20.(湘西州)解方程组:.21.(遵义)解方程组.22.(荆州)用代入消元法解方程组.23.(威海)解方程组:.24.(淮安)解方程组:.25.(滨州)(1)解方程:2﹣=(2)解方程组:.26.(湖州)解方程组.27.(北海)解方程组.28.(永州)解方程组:.29.(厦门)解方程组.30.(珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求x2+4y2的值;(ii)求+的值.浙江省衢州市2016年中考数学(浙教版)专题训练(二):二元一次方程参考答案与试题解析一、选择题(共8小题)1.(广安)如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.【解答】解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选D.2.(凉山州)已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.3【解答】解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.3.(抚州)已知a、b满足方程组,则3a+b的值为()A.8 B.4 C.﹣4 D.﹣8【解答】解:,①×2+②得:5a=10,即a=2,将a=2代入①得:b=2,则3a+b=6+2=8.故选A4.(崇左)方程组的解是()A.B.C.D.【解答】解:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选:C.5.(永州)已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.5【解答】解:∵(x﹣y+3)2+=0,∴,解得,∴x+y=﹣1+2=1.故选C.6.(娄底)方程组的解是()A.B.C.D.【解答】解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选:D.7.(莆田)若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.8.(黔南州)二元一次方程组的解是()A .B .C .D .【解答】解:,①+②得:2x=2,即x=1, ①﹣②得:2y=4,即y=2,则方程组的解为.故选:B二、填空题(共8小题)9.(毕节地区)二元一次方程组的解是 .【解答】解:, ①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.10.(重庆)方程组的解是 .【解答】解:, 将①代入②得:y=2,则方程组的解为,故答案为:.11.(百色)方程组的解为.【解答】解:,①+②得:2x=2,即x=1,①﹣②得:2y=﹣2,即y=﹣1,则方程组的解为.故答案为:.12.(杭州)设实数x、y满足方程组,则x+y=8.【解答】解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:8.13.(泉州)方程组的解是.【解答】解:,①+②得:3x=6,即x=2,将x=2代入①得:y=2,则方程组的解为.故答案为:.14.(大庆)二元一次方程组的解为.【解答】解:,①×3﹣②×2得:11x=33,即x=3,将x=3代入②得:y=2,则方程组的解为.故答案为:.15.(攀枝花)已知x,y满足方程组,则x﹣y的值是﹣1.【解答】解:,②﹣①得:x﹣y=﹣1.故答案为:﹣1.16.(宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.【解答】解:将2a﹣b=5,a﹣2b=4,相加得:2a﹣b+a﹣2b=9,即3a﹣3b=9,解得:a﹣b=3.故答案为:3.三、解答题(共14小题)17.(滨州)(请在下列两个小题中,任选其一完成即可)(1)解方程组:(2)解方程:.【解答】解:(1),①+②×4得:7x=35,解得:x=5,将x=5代入②得:5﹣y=4,解得:y=1,则方程组的解为;(2)去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,解得:x=﹣.18.(桂林)解二元一次方程组:.【解答】解:,由②得:y=2x﹣1③把③代入①得:3x+4x﹣2=19,解得:x=3,把x=3代入③得:y=2×3﹣1,即y=5故此方程组的解为.19.(东莞市)解方程组.【解答】解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.20.(湘西州)解方程组:.【解答】解:,由①得:x=1﹣2y ③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3,则原方程组的解为:.21.(遵义)解方程组.【解答】解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.22.(荆州)用代入消元法解方程组.【解答】解:,由①得,y=x﹣2③,③代入②得,3x+5(x﹣2)=14,解得x=3,把x=3代入③得,y=3﹣2=1,所以,方程组的解是.23.(威海)解方程组:.【解答】解:方程组整理得:,②﹣①得:3y=3,即y=1,将y=1代入①得:x=,则方程组的解为.24.(淮安)解方程组:.【解答】解:,①+②得:3x=9,即x=3,将x=3代入②得:y=﹣1,则方程组的解为.25.(滨州)(1)解方程:2﹣=(2)解方程组:.【解答】解:(1)去分母得:12﹣2(2x+1)=3(1+x),去括号得:12﹣4x﹣2=3+3x,移项合并得:﹣7x=﹣7,解得:x=1;(2),①×3+②得:10x=20,解得:x=2,将x=2代入①得:y=﹣1,则方程组的解为.26.(湖州)解方程组.【解答】解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1,则方程组的解为.27.(北海)解方程组.【解答】解:,①+②得:7x=14,解得:x=2,把x=2代入①得6+y=3,解得:y=﹣3,则原方程组的解是.28.(永州)解方程组:.【解答】解:将①代入②得:5x+2x﹣3=11,解得:x=2,将x=2代入①得:y=1,故方程组的解为:.29.(厦门)解方程组.【解答】解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.30.(珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求x2+4y2的值;(ii)求+的值.【解答】解:(1)把方程②变形:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,即y=2,把y=2代入①得:x=3,则方程组的解为;(2)(i)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③,把③代入②得:2×=36﹣xy,解得:xy=2,则x2+4y2=17;(ii)∵x2+4y2=17,∴(x+2y)2=x2+4y2+4xy=17+8=25,∴x+2y=5或x+2y=﹣5,则+==±.。
2016届浙江省衢州市中考一模数学试卷(带解析)
绝密★启用前2016届浙江省衢州市中考一模数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:83分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且∠ACD=45°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A .B .C .D .【答案】A【解析】试题分析:点C 从点A 运动到点B 的过程中,x 的值逐渐增大,DE 的长度随x 值的变化先变大再变小, 当C 与O 重合时,y 有最大值,试卷第2页,共21页∵x=0,y=ABx=AB ﹣AB 时,DE 过点O ,此时:DE=AB x=AB ,y=AB所以,随着x 的增大,y 先增后降,类抛物线 故选:A .考点:动点问题的函数图象2、如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为( )A .cm 2B .cm 2C .cm 2D .cm 2【答案】 【解析】试题分析:由题可知△ABC 是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB ,过C 作CD ⊥AB ,垂足为D ,则CD=1,根据三角函数定义求出AC==AB ,然后就可以求出△ABC 面积=×AB×CD=cm 2.故选D .考点:解直角三角形的应用3、已知函数y=﹣x 2+x+2,则当y <0时,自变量x 的取值范围是( ) A .x <﹣1或x >2 B .﹣1<x <2 C .x <﹣2或x >1D .﹣2<x <1【答案】A 【解析】试题分析:当y=0时,﹣x 2+x+2=0,即(x+1)(﹣x+2)=0,解得x 1=﹣1,x 2=2; 由于函数开口向下,可知当y <0时,自变量x 的取值范围是x <﹣1或x >2. 故选A考点:二次函数与不等式(组)4、若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( )A .9B .3C .1D .6【答案】B 【解析】试题分析:根据扇形的周长=圆锥的底面周长,设这个圆锥的底面半径是r ,=2πr ,求得r=3. 故选B .考点:圆锥的计算 5、下列计算正确的是( ) A .a 2•a 3=a 6B .a 2+a 2=a 4C .3a 2×2a 2=6a 4D .5a ﹣a=4【答案】C 【解析】试题分析:根据同底数幂的乘法底数不变指数相加,单项式的乘法,系数乘系数,同底数的幂相乘;合并同类项系数相加字母及指数不变,可得: A 、同底数幂的乘法底数不变指数相加,故A 错误; B 、合并同类项系数相加字母及指数不变,故B 错误; C 、系数乘系数,同底数的幂相乘,故C 正确;试卷第4页,共21页D 、合并同类项系数相加字母及指数不变,故D 错误; 故选:C .考点:1、单项式乘单项式;2、合并同类项;3、同底数幂的乘法6、已知:⊙O 1和⊙O 2的半径分别为10cm 和4cm ,圆心距为6cm ,则⊙O 1和⊙O 2的位置关系是( ) A .外切B .相离C .相交D .内切【答案】D 【解析】试题分析:由⊙O 1和⊙O 2的半径分别为10cm 和4cm ,两圆的圆心距是6cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出两圆位置关系.由10﹣4=6,可得两圆的位置关系是内切. 故选D .考点:圆与圆的位置关系7、抛物线y=2(x ﹣3)2+4的顶点坐标是( ) A .(3,4)B .(4,3)C .(﹣3,4)D .(﹣3,﹣4)【答案】A 【解析】试题分析:根据顶点式的坐标特点可知,顶点坐标为(3,4). 故选A .考点:二次函数的性质8、小芳从正面(图示“主视方向”)观察如图的热水瓶时,得到的主视图是( )A .B .C .D .【答案】A【解析】试题分析:从正面看下面是一个矩形,中间是一个梯形,上边是一个矩形,左边是一个矩形.故选:A.考点:简单组合体的三视图9、如果,则=()A.B.C.D.【答案】C【解析】试题分析:先根据比例的性质可得+1=+1,进而可得.故选:C.考点:比例的性质10、已知点(1,﹣2)在反比例函数的图象上,那么这个函数图象一定经过点()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(2,1)【答案】A【解析】试题分析:先根据点(1,﹣2)在反比例函数的图象上求出k=-2,再根据k=xy 的特点对各选项进行逐一判断:A、∵(﹣1)×2=﹣2,∴此点在反比例函数图象上;B、∵(﹣2)×(﹣1)=2≠﹣2,∴此点不在反比例函数图象上;C、∵(﹣1)×(﹣2)=2≠﹣2,∴此点不在反比例函数图象上;D、∵2×1=2≠﹣2,∴此点不在反比例函数图象上.故选A.考点:反比例函数图象上点的坐标特征试卷第6页,共21页第II 卷(非选择题)二、填空题(题型注释)11、在反比例函数(x >0)的图象上,有一系列点A 1、A 2、A 3、…、A n 、A n+1,若A 1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴与y 轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,S n ,则S 1= ,S 1+S 2+S 3+…+S n = .(用n 的代数式表示).【答案】5,【解析】试题分析:由已知条件横坐标成等差数列,由点A 1、A 2、A 3、…、A n 、A n+1在反比例函数(x >0)的图象上,且每点的横坐标与它前一个点的横坐标的差都为2,又点A 1的横坐标为2,∴A 1(2,5),A 2(4,)∴S 1=2×(5﹣)=5;由题图象知,A n (2n ,),A n+1(2n+2,),∴S 2=2×()=,∴图中阴影部分的面积知:S n =2×()=,(n=1,2,3,…)∵,∴S 1+S 2+S 3+…+S n =10(++…+)=10×()=.考点:反比例函数综合题12、一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为 度.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)【答案】57 【解析】试题分析:设OA 旋转的角度为n ,由于重物上升10 cm ,则点A 逆时针旋转的弧长为10 cm ,根据弧长公式,即可求出.,考点:弧长的计算13、如图,是小李设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.1米,BP=1.9米,PD=19米,那么该古城墙CD 的高度是 米.【答案】11 【解析】试题分析:利用入射与反射得到∠APB=∠CPD=90°,则可判断Rt △ABP ∽Rt △CDP ,试卷第8页,共21页于是根据相似三角形的性质即可得到:,即:,可求出CD=11.考点:相似三角形的应用14、工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 mm .【答案】8 【解析】试题分析:先求出钢珠的半径及OD=3mm ,连接OA ,过点O 作OD ⊥AB 于点D ,则AB=2AD ,在Rt △AOD 中利用勾股定理即可求出AD4mm ,进而得出AB=8mm .考点:1、垂径定理的应用;2、勾股定理15、将y=2x 2的函数图象向左平移1个单位,再向上平移3个单位,得到二次函数解析式为 .【答案】y=2(x+1)2+3 【解析】试题分析:利用平移的规律“左加右减,上加下减”可得到: 将y=2x 2的函数图象向左平移1个单位,其解析式为y=2(x+1)2, 再把y=2(x+1)2图象向上平移3个单位,其解析式为y=2(x+1)2+3. 考点:二次函数图象与几何变换 16、若二次根式有意义,则x 的取值范围是 .【答案】x≥1 【解析】试题分析:根据二次根式有意义的条件,被开方数大于等于0,列出不等式x ﹣1≥0,解得x≥1.考点:二次根式有意义的条件三、计算题(题型注释)17、计算:.【答案】4 【解析】试题分析:分别进行零指数幂、负整数指数幂及绝对值的运算,然后代入特殊角的三角函数值代入运算即可.试题解析:=1+3+2×﹣=4.考点:1、实数的运算;2、零指数幂;3、负整数指数幂;4、特殊角的三角函数值四、解答题(题型注释)18、如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y=ax 2+bx+c 经过O ,D ,C 三点.试卷第10页,共21页(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与∆ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【答案】(1)y=﹣x 2+x (2)t=或(3)①M 1(4,),N 1(4,﹣);②M 2(12,﹣32),N 2(4,﹣26);③M 3(﹣4,﹣32),N 3(4,﹣38). 【解析】试题分析:(1)根据折叠图形的轴对称性,△CED 、△CBD 全等,首先在Rt △CEO 中求出OE 的长,进而可得到AE 的长;在Rt △AED 中,AD=AB ﹣BD 、ED=BD ,利用勾股定理可求出AD 的长.进一步能确定D 点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE ,若以P 、Q 、C 为顶点的三角形与△ADE 相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t 的值.(3)由于以M ,N ,C ,E 为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC 做平行四边形的对角线,那么EC 、MN 必互相平分,由于EC 的中点正好在抛物线对称轴上,所以M 点一定是抛物线的顶点;②EC 做平行四边形的边,那么EC 、MN 平行且相等,首先设出点N 的坐标,然后结合E 、C 的横、纵坐标差表示出M 点坐标,再将点M 代入抛物线的解析式中,即可确定M 、N 的坐标.试题解析:方法一:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴,即,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴,试卷第12页,共21页即,解得t=.∴当t=或时,以P 、Q 、C 为顶点的三角形与△ADE 相似.(3)假设存在符合条件的M 、N 点,分两种情况讨论:①EC 为平行四边形的对角线,由于抛物线的对称轴经过EC 中点,若四边形MENC 是平行四边形,那么M 点必为抛物线顶点;则:M (4,);而平行四边形的对角线互相平分,那么线段MN 必被EC 中点(4,3)平分,则N (4,﹣);②EC 为平行四边形的边,则EC ∥MN ,EC=,MN 设N (4,m ),则M (4﹣8,m+6)或M (4+8,m ﹣6);将M (﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时 N (4,﹣38)、M (﹣4,﹣32);将M (12,m ﹣6)代入抛物线的解析式中,得:m=﹣26,此时 N (4,﹣26)、M (12,﹣32);综上,存在符合条件的M 、N 点,且它们的坐标为:①M 1(﹣4,﹣32),N 1(4,﹣38);②M 2(12,﹣32),N 2(4,﹣26);③M 3(4,),N 3(4,﹣).考点:二次函数综合题19、如图1,一副直角三角板满足AB=BC ,AC=DE ,∠ABC=∠DEF=90°,∠EDF=30°, 【操作1】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q .在旋转过程中,如图2,当时,EP 与EQ 满足怎样的数量关系?并给出证明.【操作2】在旋转过程中,如图3,当时EP 与EQ 满足怎样的数量关系?,并说明理由.【总结操作】根据你以上的探究结果,试写出当时,EP 与EQ 满足的数量关系是什么?其中m 的取值范围是什么?(直接写出结论,不必证明).试卷第14页,共21页【答案】0<m≤2+【解析】试题分析:(操作1)连接BE ,根据已知条件得到E 是AC 的中点,根据等腰直角三角形的性质可以证明DE=CE ,∠PBE=∠C .根据等角的余角相等可以证明∠BEP=∠CEQ .即可得到全等三角形,从而证明结论;(操作2)作EM ⊥AB ,EN ⊥BC 于M 、N ,根据两个角对应相等证明△MEP ∽△NWQ ,发现EP :EQ=EM :EN ,再根据等腰直角三角形的性质得到EM :EN=AE :CE ; (总结操作)根据(2)中求解的过程,可以直接写出结果;要求m 的取值范围,根据交点的位置的限制进行分析. 试题解析:(操作1)EP=EQ ,证明:连接BE ,根据E 是AC 的中点和等腰直角三角形的性质,得:BE=CE ,∠PBE=∠C=45°, ∵∠BEC=∠FED=90° ∴∠BEP=∠CEQ , 在△BEP 和△CEQ 中,∴△BEP ≌△CEQ (ASA ), ∴EP=EQ ;如图2,EP :EQ=EM :EN=AE :CE=1:2, 理由是:作EM ⊥AB ,EN ⊥BC 于M ,N , ∴∠EMP=∠ENC ,∵∠MEP+∠PEN=∠PEN+∠NEF=90°, ∴∠MEP=∠NEF , ∴△MEP ∽△NEQ ,∴EP :EQ=EM :EN=AE :CE=1:2;如图3,过E 点作EM ⊥AB 于点M ,作EN ⊥BC 于点N , ∵在四边形PEQB 中,∠B=∠PEQ=90°, ∴∠EPB+∠EQB=180°, 又∵∠EPB+∠MPE=180°,∴∠MPE=∠EQN , ∴Rt △MEP ∽Rt △NEQ ,∴,Rt △AME ∽Rt △ENC ,∴,∴,EP 与EQ 满足的数量关系式1:m ,即EQ=mEP , ∴0<m≤2+,(因为当m >2+时,EF 和BC 变成不相交).考点:相似形综合题20、为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?试卷第16页,共21页(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【答案】(1)(2)40(3)8【解析】试题分析:(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x <100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式; (2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m 人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解; (3)先分情况讨论出利润的最大值,即可求解. 试题解析:(1)当40≤x≤60时,令y=kx+b ,则,解得,故,同理,当60<x <100时,.故;(2)设公司可安排员工a 人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a ,得30﹣15﹣0.25a=5, 解得a=40,所以公司可安排员工40人; (3)当40≤x≤60时,利润w 1=(﹣x+8)(x ﹣40)﹣15﹣20=﹣(x ﹣60)2+5,则当x=60时,w max =5万元; 当60<x <100时,w 2=(﹣x+5)(x ﹣40)﹣15﹣0.25×80=﹣(x ﹣70)2+10,∴x=70时,w max =10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元, 设该公司n 个月后还清贷款,则10n≥80, ∴n≥8,即n=8为所求.考点:1、一次函数的应用;2、分段函数21、如图,在Rt △ABC 中,∠C=90°,∠ABC 的平分线交AC 于点D ,点O 是AB 上一点,⊙O 过B 、D 两点,且分别交AB 、BC 于点E 、F . (1)求证:AC 是⊙O 的切线;(2)已知AB=10,BC=6,求⊙O 的半径r .【答案】(1)证明见解析(2)【解析】试题分析:(1)连接OD .欲证AC 是⊙O 的切线,只需证明AC ⊥OD 即可;试卷第18页,共21页(2)利用平行线截线段成比例推知;然后将图中线段间的和差关系代入该比例式,通过解方程即可求得r 的值,即⊙O 的半径r 的值. 试题解析:(1)证明:连接OD . ∵OB=OD ,∴∠OBD=∠ODB (等角对等边); ∵BD 平分∠ABC , ∴∠ABD=∠DBC ,∴∠ODB=∠DBC (等量代换),∴OD ∥BC (内错角相等,两直线平行); 又∵∠C=90°(已知),∴∠ADO=90°(两直线平行,同位角相等), ∴AC ⊥OD ,即AC 是⊙O 的切线; (2)解:由(1)知,OD ∥BC ,∴(平行线截线段成比例),∴,解得r=,即⊙O 的半径r 为.考点:切线的判定;相似三角形的判定与性质22、如图所示,小杨在广场上的A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该屏幕上端C 处的仰角为45°.若该楼高为26.65m ,小杨的眼睛离地面1.65m ,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(≈1.732,结果精确到0.1m)Array【答案】7.7【解析】试题分析:易得CE=BE,利用30°的正切值即可求得CE长,进而可求得DE长.CE减去DE长即为广告屏幕上端与下端之间的距离.试题解析:设AB、CD的延长线相交于点E.∵∠CBE=45°,CE⊥AE,∴CE=BE.∵CE=26.65﹣1.65=25,∴BE=25.∴AE=AB+BE=30.在Rt△ADE中,∠DAE=30°,∴DE=AE×tan30°=30×=10,∴CD=CE﹣DE=25﹣10≈25﹣10×1.732=7.68≈7.7(m).答:广告屏幕上端与下端之间的距离约为7.7m.考点:解直角三角形的应用-仰角俯角问题23、如图,直线y1=2x+b与x轴、y轴交于点A、B,与双曲线(x<0)交于点C、D,已知点C的坐标为(﹣1,4).(1)求直线和双曲线的解析式;试卷第20页,共21页(2)利用图象,说出x 在什么范围内取值时,有y 1>y 2.【答案】(1)y 1=2x+6,y 2=﹣(2)﹣2<x <﹣1【解析】试题分析:(1)因为两个函数的图象都过C 点,将C 点坐标代入求得b 、k 的值,所以易求它们的解析式;(2)先求出D 点的横坐标,再观察直线落在双曲线上方的部分对应的x 的取值范围即可.试题解析:(1)将C (﹣1,4)分别代入y 1=2x+b ,,得4=2×(﹣1)+b ,4=,解得k=﹣4,b=6,∴y 1=2x+6,y 2=﹣;(2)∵y 1=2x+6,y 2=﹣,∴当2x+6=﹣时,x 1=﹣1,x 2=﹣2,∴D 点的横坐标为﹣2, ∴当﹣2<x <﹣1时,y 1>y 2.试卷第21页,共21页 考点:反比例函数与一次函数的交点问题 24、学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车. (1)用画树状图的方法或列表法列出所有可能的结果; (2)求程、李两位教师同坐2号车的概率. 【答案】(1)图形见解析(2) 【解析】 试题分析:(1)依据题意列表法或画树状图法分析所有等可能的出现结果即可; (2)根据概率公式程、李两位教师同坐2号车的概率. 试题解析:(1)画树形图得: (2)由(1)可知P (程、李两位教师同坐2号车)=. 考点:列表法与树状图法。
2016浙江衢州中考数学解析
2016年浙江省衢州市中考数学试题解析一、选择题1.(2016浙江衢州,1,31,-3,0这四个实数中,最小的是( )B.-1C.-3D.0【答案】C.【逐步提示】本题考查了实数的大小比较,解题的关键是能按照一定的顺序排列.①将已知的四个数按照从小到大的顺序排列;②依据题意,从这四个实数中寻求最小的一个即是.【详细解答】解:∵-3<-1<03,故选择C.【解后反思】正数的绝对值大的就大,负数绝对值大的反而小,正数大于一切负数,0大于一切负数,小于一切正数.【关键词】实数的比较大小.2.(2016浙江衢州,2,3分)据统计,2015年“十·一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为( )A.3.19×106B.3.19×106C.0.319×109D.319×106【答案】B.【逐步提示】本题考查了科学记数法,解题的关键是确定确定a 和n 的值.①将将319万写成3190000;②利用科学方法表示出3190000.【详细解答】解:∵319万可写成3190000,∴3190000=3.19×106,故选择B .【解后反思】用科学记数法表示一个数时,需要从下面两个方面入手:(1)关键是确定a 和n 的值:①确定a :a 是只有一位整数的数,即1≤a ≤10;②确定n :当原数≥10时,n 等于原数的整数位数减去1,或等于原数变为a 时,小数点移动的位数;当0<原数<1时,n 是负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数的零);或n 的绝对值等于原数变为a 时,小数点移动的位数;(2)对于含有计数单位并需转换单位的科学记数法,可以利用1亿=1×108,1万=1×104,1千=1×103来表示,能提高解题的效率.【关键词】科学记数法.3.(2016浙江衢州,3,3分)如图是由两个正方体和一个圆锥体组成的立体图形,其俯视图是( )【答案】C.【逐步提示】本题考查了三视图,解题的关键是明确俯视图的意义.①原来的几何体是由两个正方体和一个圆锥体组成的立体图形,且圆锥在两个正方体的上面;②从上面往下看,看到的是两个正方形和一个带有点的圆.【详细解答】解:依题意,得符合条件的俯视图是C 选项,故选择C .【解后反思】求解本题时应注意:一是弄清楚三视图的意义;二是观察几何体的组合结构.【关键词】三视图.4.(2016浙江衢州,4,3分)下列计算正确的是( )A.a 3-a 3=aB.a 3·a 3=a 9C.(3a )3=9a 3D.(a 2)2=a 4【答案】D.A B CD【逐步提示】本题考查了幂的运算,解题的关键是正确运用相关法则.①利用相应的幂的运算法则运算;②按照要求逐一计算筛选.【详细解答】解:对于选项A :a 3-a 3=0,即选项A 不正确;对于选项B :a 3·a 3=a 6,即选项B 不正确;对于选项C :(3a )3=27a 3,即选项C 不正确;对于选项D :(a 2)2=a 4,即选项D 正确;故选择D .【解后反思】(1)含字母相同,并且相同字母的次数也分别相同的项叫做同类项,合并同类项的法则是:系数相加减,字母及其字母的指数不变;(2)同底数幂相乘法的法则:a m ×a n =a m +n (m .n都是正整数);(3)同底数幂相除的法则:a m ÷a n =a m -n (m .n 都是正整数);(4)幂的乘方的法则(a m )n =a mn(m .n 都是正整数);(5)积的乘方的法则(ab )m =a m b m (m 是正整数).【关键词】整式的运算;幂的运算.5.(2016浙江衢州,5,3分)如图,在□ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( )A.45°B.55°C.65°D.75°【答案】A.【逐步提示】本题考查了平行四边形和平行线的性质,解题的关键是利用性质及时转换角的大小.①利用平行四边形和平行线的性质;②转换相关角的大小.【详细解答】解:在□ABCD 中,∵AD ∥BC ,∠A =135°,∴∠B =45°,又∵AB ∥DC ,∴∠MCD =∠B =45°,故选择A .【解后反思】利用平行四边形的性质可以寻求线的平行关系,而平行线可以转换角的关系.【关键词】平行线的性质;平行四边形的性质;角的计算.6.(2016浙江衢州,6,3分)在某校“我的中国梦”演讲比赛中,有7名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )A.众数B.方差C.平均数D.中位数【答案】D.【逐步提示】本题考查了众数、方差、平均数、中位数,解题的关键是明确众数、方差、平均数、中位数的概念.①根据众数、方差、平均数、中位数的定义;②逐一作出判断.【详细解答】解:依题意,还要了解这7名学生成绩的中位数,故选择D .【解后反思】主要考查形式为选择题,解决此类题型常用的方法是直接应用众数、平均数、方差、中位数的概念求出正确结果后,再做出选择.一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;中位数是把一组数据按从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.对于一组数据1x ,2x …,n x ,有平均数12n x x x x n +++=,方差s 2=()()()22212n x x x x x x n ⎡⎤-+-++-⎣⎦.【关键词】众数;方差;平均数;中位数.MDC B A7.(2016浙江衢州,7,3分)二次函数y =ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:A.直线x =-3B.直线x =-2C.直线x =-1D.直线x =0【答案】B.【逐步提示】本题考查了二次函数与点的坐标关系,解题的关键明确抛物线是轴对称图形.①分析表中提供的数据;②利用抛物线的对称性求解.【详细解答】解:∵x =-3和-1时的函数值都是-3相等,∴二次函数的对称轴为直线x =-2,故选择B .【解后反思】本题也可以依据表中的信息作出草图求得,也可以利用待定系数法求出二次函数的解析式,再进一步求解.【关键词】二次函数的图象;对称轴.8.(2016浙江衢州,8,3分)已知关于x 的一元二次方程x 2-2x -k =0有两个不相等的实数根,则实数k 的取值范围是( )A.k ≥1B.k >1C.k ≥-1D.k >-1【答案】D .【逐步提示】本题考查了一元二次方程根的判别式,解题的关键列出判别式的表达式.①依题意列出判别式的表达式;②解不等式,确定实数k 的取值范围.【详细解答】解:∵关于x 的一元二次方程x 2-2x -k=0有两个不相等的实数根,∴Δ>0,即Δ=(-2)2-4×1×(-k )>0,解得k >-1,故选择D .【解后反思】解答此类问题有固定的思维模式:先求出一元二次方程的根的判别式b2-4ac ,再根据一元二次方程根的情况建立关于字母系数的不等式来求解.【关键词】一元二次方程根的判别式;字母取值范围.9.(2016浙江衢州,9,3分)如图,AB 是⊙O 的直径,C 是⊙O 的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin ∠E 的值为( )A.12B.2C.2D.3【答案】A.【逐步提示】本题考查了圆的切线和锐角三角函数的知识,解题的关键通过辅助线将问题转化.①连接OC ,得到OE ⊥CE ,即△ECO 是直角三角形,且∠ECO =90°;②由OA =OC ,∠A =30°,得到∠EOC =60°,从而有∠E =30°.【详细解答】解:连接OC ,∵EC 是⊙O 的切线,∴OE ⊥CE ,即△ECO 是直角三角形,且∠ECO =90°,又∵OA =OC ,∠A =30°,∴∠EOC =60°,即∠E =30°,∴sin ∠E =sin ∠30°=12,故选择A .【解后反思】利用圆的切线性质求得∠E 的大小是求解问题的关键.【关键词】圆的切线;锐角三角函数10.(2016浙江衢州,10,3分)如图,在△ABC中,AC=BC=25,AB=30,D是AB上一点(不与A、B重合),DE⊥BC,垂足是点E,设ED=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()【答案】B.【逐步提示】本题考查了函数与图象的知识,解题的关键寻求等量关系,构造出函数.①过点C 作CF⊥AB,垂足为F,从而得到△AFC∽△BED;②求得AD和CE,即可得到y与x之间的函数关系式.【详细解答】解:过点C作CF⊥AB,垂足为F,∵AC=BC,∴AF=BF=15,CF=20,∵∠A=∠B,∠DEB=∠CFA=90°,∴△AFC∽△BED,∴ACDB=CFDE=AFBE,即25DB=20 x =15BE,解得DB=54x,BE=34x,∴AD=30-54x,CE=25-34x,∴四边形ACED的周长y=AC+CE+ED+DA=25+25-34x+x+30-54x=-x+80,而当点D运动到A时,DE=24,当点D运动到B时,DE=0,又点D不与A、B重合,∴24<DE<0,即24<x<0,∴y与x之间的函数关系式是y=-x+80(24<x<0),即图象能大致反映y与x之间的函数关系的是B图象,故选择B.【解后反思】通过适当的辅助线,将看似比较复杂的问题转化,寻求得相应的线段长,进而解决问题.【关键词】动点;图形性质;函数与图象.二、填空题11.(2016浙江衢州,11,4分)当x=6时,分式51x-的值等于___.【答案】-1.【逐步提示】本题考查了分式的值的知识,解题的关键将字母换成数字,并计算.①将x代入已知分式;②计算求解.【详细解答】解:当x=6时,51x-=516-=55-=-1,故答案为-1.【解后反思】注意代数式求值的格式,避免出现不必要的差错.【关键词】分式的求值.12.(2016浙江衢州,12,4x的取值范围是___.【答案】x≥3.【逐步提示】本题考查了二次根式的意义,解题的关键是由二次根式的意义构造出不等式.①由二次根式的被开方式是非负数,列出不等式;②解不等式.【详细解答】解:依题意,得x-3≥0,解得x≥3,故答案为x≥3.【解后反思】正确理解二次根式的被开方式是非负数,是顺利求解此类问题的关键.【关键词】二次根式的意义,不等式.13. (2016浙江衢州,13,4分)某校随机调查了50名学生,了解他们一周在校的体育锻练时间,结果如下表所示:则该50名学生这一周在校的平均体育锻练时间是___小时【答案】6.4.【逐步提示】本题考查了加权平均数,解题的关键是从表中获取信息,利用加权平均数的公式计算.①从表中获取信息;②利用加权平均数的计算公式直接计算即得.【详细解答】解:由表中的数据,结合加权平均数的计算公式,得x =150(5×10+6×15+7×20+8×5)=150×320=6.4,故答案为6.4. 【解后反思】本题是要求计算50名学生这一周在校的平均体育锻练时间,而非其它,所以在具体求解时应注意避免单纯性将时间相加除以部人数.【关键词】加权平均数.14. (2016浙江衢州,14,4分)已知直角坐标系内有四个点O (0,0),A (3,0),B (1,1),C (x ,1),若以O 、A 、B 、C 为顶点的四边形是平行四边形,则x =___.【答案】4或-2.【逐步提示】本题考查了平面直角坐标系,解题的关键是明确点坐标的意义.①在平面直角坐标系中找出点O (0,0),A (3,0),B (1,1);②通过画出草图,再结合平行四边形的对边性质,从直观上去求解.,或C ′(4,1),故答案为4或-2.【解后反思】通过画出草图,既发挥了数形结合的作用,又能避免出现错误.【关键词】平行四边形的性质;平面直角坐标系中的点坐标.15. (2016浙江衢州,15,4分)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两面墙隔开(如图),已知计划中的建筑材料可建墙的长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为___m 2.【答案】144.【逐步提示】本题考查了二次函数的实际应用,解题的关键是依据寻求等量关系.①设每一间长方形种牛饲养室的长为x m ,那么就可以依据题意用x 表示出每一间长方形种牛饲养室的宽;②利用长方形的面积公式,结合二次函数的性质求解.【详细解答】解:设这三间长方形种牛饲养室的总占地面积为y m 2,每一间长方形种牛饲养室的长为x m ,那么三间长方形种牛饲养室的宽的和为(48-4x )m ,则根据题意,得y =(48-4x )·x =-4x 2+48x =-4(x 2-12x )=-4(x 2-12x +36)+144=-4(x -6)2+144,此时,当x =6时,y 有最大值144,而当x =6时,48-4x =24<50,符合题意,故答案为144.【解后反思】本题是二次函数的实际应用,求解时应根据题意,寻求变量之间的等量关系,并结合二次函数的性质解决问题.【关键词】二次函数的应用;二次函数最值.16. (2016浙江衢州,16,4分)如图,正方形ABCD 的顶点A ,B 在函数y =k x(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变.(1)当k =2时,正方形A ′B ′C ′D ′的边长等于___.(2)当变化的正方形ABCD 与(1)中的正方形A ′B ′C ′D ′有重叠部分时,k 的取值范围是___.29≤k ≤18. 【逐步提示】本题考查了反比例函数与正方形的性质,解题的关键是通过辅助线将问题转化.(1)过点A′作AE ⊥y 轴于点E ,过点B′⊥x 轴于点F ,由正方形的性质可得出“A′D′=D′C′,∠A′D′C′=90°”,通过证△A′ED′≌△D′OC′可得出OD′=EA′,OC′=ED′,设OD′=a ,OC′=b ,由此可表示出点A′的坐标,同理可表示出B′的坐标,利用反比例函数图象上点的坐标特征即可得出关于a 、b 的二元二次方程组,解方程组即可得出a 、b 值,再由勾股定理即可得出结论.(2)由(1)可知点A′、B′、C′、D′的坐标,利用待定系数法即可求出直线A′B′、C′D′的解析式,设点A 的坐标为(m ,2m ),点D 坐标为(0,n ),找出两正方形有重叠部分的临界点,由点在直线上,即可求出m 、n 的值,从而得出点A 的坐标,再由反比例函数图象上点的坐标特征即可得出k 的取值范围.【详细解答】解:(1)如图,过点A′作AE ⊥y 轴于点E ,过点B′⊥x 轴于点F ,则∠A′ED′=90°. ∵四边形A′B′C′D′为正方形,∴A′D′=D′C′,∠A′D′C′=90°,∴∠OD′C′+∠ED′A′=90°.∵∠O D′C′+∠OC′D′=90°,∴∠ED′A′=∠OC′D′.在△A′ED′和△D′OC′中,∵∠ED′A′=∠OC′D′,∠A′ED′=∠D′OC′=90°,A′D′=D′C′,∴△A′ED′≌△D′OC′(AAS ),∴OD′=EA′,OC′=ED′;同理△B′FC′≌△C′OD′.设OD′=a ,OC′=b ,则EA′=FC′=OD′=a ,ED′=FB′=OC′=b ,即点A′(a ,a+b),点B′(a+b ,b) .∵点A′、B′在反比例函数y =2x 的图象上,∴()()2,2,a ab b a b +=⎧⎪⎨+=⎪⎩解得1,1,a b =⎧⎨=⎩或1,1,a b =-⎧⎨=-⎩(舍去). 在Rt △C′OD′中,∠C′OD′=90°,OD′=OC′=1,∴C′D′(2)设直线A′B′解析式为y=k 1x+b 1,直线C′D′解析式为y=k 2+b 2,∵点A′(1,2),点B′(2,1),点C′(1,0),点D′(0,1),∴11112,21,k b k b +=⎧⎨+=⎩和2220,1,k b b +=⎧⎨=⎩解得111,3,k b =-⎧⎨=⎩和221,1,k b =-⎧⎨=⎩ ∴直线A′B′解析式为y =-x+3,直线C′D′解析式为y =-x+1.设点A 的坐标为(m ,2m ),点D 坐标为(0,n ).当A 点在直线C′D′上时,有2m =-m+1,解得m =13,此时点A 的坐标为(13,23),∴k =13×23=29; 当点D 在直线A′B′上时,有n =3,此时点A 的坐标为(3,6),∴k =3×6=18.综上可知:当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围为29≤x ≤18.29≤k ≤18. 【解后反思】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、正方形的性质以及全等三角形的判定及性质,解题的关键是:(1)求出线段OD′、OC′的长度;(2)找出两正方形有重叠部分的临界点.本题属于中档题,难度不大,但较繁琐,本题是填空题,降低了难度,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出反比例函数系数k 是关键.【关键词】反比例函数的图象及性质;正方形的性质;待定系数法;方程思想;分类思想.三、解答题17. (2016浙江衢州,17,6分)计算:|-(-1)2+(-12)0. 【逐步提示】本题考查了实数的运算,解题的关键是正确地利用实数运算的法则. ①利用相关的概念,将原式中的有关符号化去;②进而运算.【详细解答】解:原式=3+3-1+1=6.【解后反思】实数的计算没有捷径,需要认真计算,各个击破,需注意的是:(1)实数的运算顺序;(2)特殊角的三角函数值,绝对值、二次根式,立方根,乘方,零指数幂,负整数指数幂等知识的灵活应用;(3)运算律的灵活应用.【关键词】绝对值;二次根式;平方;0指数幂;实数的混合运算.18. (2016浙江衢州,18,4分)如图,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD ,BC 于E ,F (保留作图痕迹,不写作法和证明).(2)连结BE ,DF ,问四边形BEDF 是什么四边形?请说明理由.【逐步提示】本题考查了尺规作图和特殊四边形的判定,解题的关键是正确理解尺规作图的意义,明确特殊四边形的判定方法.(1)用直尺和圆规按照作线段垂直平分线的步骤作图即可.(2)由作图的原理,结合矩形的性质可得到BE =EF =DF =BF ,因此可以判定四边形BEDF 是菱形.【详细解答】解:(1)如图所示.(2)四边形BEDF 是菱形.理由:∵EF 的垂直平分BD ,∴BE =DE ,∠DEF =∠BEF ,∵AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,又∵BF =DF ,∴BE =EF =DF =BF ,∴四边形BEDF 是菱形.【解后反思】尺规作图的每一步都必须有有根有据,且作图痕迹清淅,要判定一个四边形是菱形,一般先证明它是一个平行四边形,再说明它的对角线互相垂直或或四条相等.【关键词】尺规作图;矩形性质;菱形判定.19. (2016浙江衢州,19,6分)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度. DCB A E F D CBA(1)求这个月晴天的天数.(2)已知该家庭每月平均用电为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【逐步提示】本题考查了方程与不等式的实际应用,解题的关键是寻求等量关系和不等量关系.(1)依题意有等量关系:晴天发电量+其它天气平均每天可发电量=550,由此可设这个月晴天数为x天,则可列出方程求解.(2)由信息,并除去该家庭每月平均用电150度,余下的则是用于收回成本4万元的电量,由此可列出不等式求解.【详细解答】解:(1)设这个月晴天数为x天,则根据题意,得30x+5(10-x)=550,解得x=16,∴这个月晴天的天数是16天.(2)需要x年才能收回成本,则根据题意,得(550-150)(0.52+0.45)·12x≥40000,即4656x≥40000,解得x≥8.6,∴至少需要9年才能收回成.【解后反思】本题既是一元一次方程的实际应用,也是一元一次不等式的实际应用,寻求相等关系和不等关系是正确求解的关键.另外,(2)要注意理解“至少需要几年才能收回成本”的含义,要明确一年是12个月.【关键词】一元一次方程的应用;一元一次不等式的应用.20. (2016浙江衢州,20,8分)为深化义务教育课程改革,满足学生的个性化学习要求,某校就“学生对知识拓展,体育特长,艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类)绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图.(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级数比较合理?【逐步提示】本题考查了统计图的意义,解题的关键是正确读懂统计图,及时地从统计图中获取信息.(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【详细解答】解:(1)总人数:15÷25%=40(人),选A的人数:60-24-15-9=12(人),∴12÷60=0.2=20%,∴m=20.补全条形统计图如图所示.(2)概率是24960=1120.(3)800×25%=200,而200÷20=10,∴开设10个“实践活动类”课程的班级数比较合理.【解后反思】正确求解此类问题时一定要明确条形统计图与扇形统计图的意义,根据题意得出样本总数.【关键词】条形统计图;扇形统计图;概率公式.21. (2016浙江衢州,21,8分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF 与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=OP=1,求线段BF的长.【逐步提示】本题考查了切线的判定、相似三角形的判定和性质等知识,解题的关键是正确地运用切线的性质,并通过辅助线及时地将问题转化.(1)证明AB⊥BF,此时由条件可得到CD∥BF,进而证得.(2)连结OD,容易得到△APD∽△ABF,进而列式求解.【详细解答】解:(1)∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠APD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)连结OD.∵CD⊥AB,∴PD=12CD∵OP=1,∴OD=2.∵∠P AD=∠BAF,∠APD=∠ABF=90°,∴△APD∽△ABF,∴APAB=PDBF,∴34,∴BF【解后反思】(1)证明一条直线是圆的切线,一般思路为:①如果这条直线与圆有交点,则只需要说明该直线与过该交点的半径垂直;②如果知道垂直于某条半径,只需要说明该垂足与圆心的连线的长度等于半径即可.(2)利用圆的性质的相关计算一般需要运用勾股定理、相似三角形等知识.【关键词】切线的判定;相似三角形的性质与判定;与圆相关的计算.22. (2016浙江衢州,22,10分)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图象上近似地表示出来(精.点.),并根据图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=12x+32的图象,观察图象写出自变量x取值在什么B F范围时,一次函数的值小于..二次函数的值.(3)如图,点P是坐标平面上的点,并在网格的格点上,请选择一种行当的平移方法,使平移后二次函数图象的顶点落在P点上,平移后二次函数的函数解析式,并判断点P是否在函数y=1 2x+32的图象上,请说明理由.【逐步提示】本题考查了一元二次方程、函数与图象的知识,解题的关键是依据题意,及时地从图象中获取信息.(1)设y=x2+x=1,此时可作出y=1与y=x2+x的交点即为所示.(2)y=12x+32的图象,进而由图象判断.(3)方法不惟一,只要符合题意即可.【详细解答】解:(1)如图,作出y=1的图象,得到作图精点,∴x1≈-1.6,x2≈0.6.(2)画直线y=12x+32,由图象可知x<-1.5或x>1.(3)平移方法不惟一.如,先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标P(-1,1),平移后的表达式y=(x+1)2+1,或y=x2+2x+2.理由:把P点坐标(-1,1)代入y=12x+32,左边=右边,∴点P是否在函数y=12x+32的图象上.【解后反思】依据题意,准确地作出图形是正确求解的前提,发挥数形结合的作用是顺利求解的保证.【关键词】函数图象;二次函数;一次函数;图形的变换.23. (2016浙江衢州,23,10分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)__________.写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE,已知BG=GE,已知AC=4,AB=5,求GE.【逐步提示】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.(1)根据垂直平分线的性质证明AC ⊥BD 即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【详细解答】解:(1)是垂美四边形.理由:∵AD =AB ,∴点A 在BD 的垂直平分线上,∵CB =CD ,∴点C 在BD 的垂直平分线上,∴AC 是BD 的垂直平分线,即AC ⊥BD ,∴四边形ABCD 是垂美四边形.(2)猜想结论:垂美四边形两组对边的平方和相等.已知:如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足是点E. 求证:AD 2+BC 2=AB 2+CD 2. 证明:∵AC ⊥BD ,∴∠AED =∠BEC =∠AEB =∠CED =90°,∴AD 2+BC 2=DE 2+AE 2+BE 2+CE 2,AB 2+CD 2=AE 2+BE 2+CE 2+DE 2,∴AD 2+BC 2=AB 2+CD 2.(3)连接CG ,BE.∵∠GAC =∠BAE =90°,∴∠BAG =∠CAE ,∵AG =AC ,AB =AE ,∴△BAG ≌△CAE ,∴∠AGN =∠CAN ,∵∠CNM =∠ANG ,∴∠CNM =∠NAG =90°,∴BG ⊥CE ,即四边形CGEB 是垂美四边形,∴CG 2+BE 2=BC 2+GE 2,而BC 2=52-42=9,∴32+50=9+GE 2,∴GE 2=73,即GE【解后反思】求解本题一方面要注意正确运用正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用;另一方面要正确理解垂美四边形的定义、灵活运用勾股定理.【关键词】新定义题型;正方形的性质与判定;全等三角形的性质与判定;勾股定理.D C BA 图2ENDC BAG FE图3M 图1 D CBA图2图3DCBAG FE24. (2016浙江衢州,24,12分)如图1,在直角坐标系xOy 中,直线l :y =kx +b 交x 轴,y 轴于点E ,F ,点B 的坐标是(2,2),过点B 分别作x 轴,y 轴的垂线,垂足为A ,C ,点D 是线段CO 的动点,以BD 为对称轴,作与△BCD 成对称的△BC ′D .(1)当∠CBD =15°时,求点C ′的坐标.(2)当图1中的直线l 经过点A ,且k=-3时(如图2),求点D 由C 到O 的运动过程中,线段BC ′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C ′时(如图3),以DE 为对称轴,作与△DOE 成轴对称的△DO ′E ,连结O ′C ,O ′O ,问是否存在点D ,使得△DO ′E 与△CO ′O 相似?若存在,求出k ,b 的值;若不存在,请说明理由.【逐步提示】本题考查了一次函数、全等三角形、相似三角形、勾股定理等知识,解题的关键是能综合运用相关性质.(1)利用翻折变换的性质得出∠CBD=∠C′BD=15°,C′B=CB=2,进而得出CH 的长,进而得出答案;(2)首先求出直线AF 的解析式,进而得出当D 与O 重合时,点C′与A 重合,且BC′扫过的图形与△OAF 重合部分是弓形,求出即可;(3)根据题意得出△DO′E 与△COO′相似,则△COO′必是Rt △,进而得出Rt △BAE ≌Rt △BC′E (HL ),再利用勾股定理求出EO 的长进而得出答案.【详细解答】解:(1)∵△CBD ≌△C ′BD ,∴∠CBD =∠C ′BD =15°,C ′B =CB =2,∴∠CBC ′=30°,作C ′H ⊥BC 于H ,则C ′H =1,HBCH =2C ′的坐标是(21).(2)∵A (2,0),kb,即直线AF 的函数表达式是y∠OAF =30°,∠BAF =60°,∵在点D 由C 到O 的运动过程中,BC ′扫过的图形是扇形,∴当点D与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重叠部分是弓形,∴当C ′在直线y =上时,BC ′=BC =AB ,∴△ABC ′是等边三角形,这时∠ABC ′=60°,∴重叠部分的面积是2602360π⨯⨯22=23π(3)方法一:设OO ′与DE 交于点M ,则O ′M =OM ,O ′O ⊥DE ,若△DO ′E 与△CO ′O 相似,则△CO ′O 必是直角三角形,在点D 由C 到O 的运动过程中,△CO ′O 中显然只能∠CO ′O 相=90°,∴CO ′∥DE ,∴CD =OD =1,∴b =1,连结BE ,由轴对称性可知C ′D =CD ,BC ′=BC =BA ,∠BC ′E =∠BCD =∠BAE =90°,则有△BAE ≌△BC ′E ,∴AE =C ′E ,∴DE =DC ′+C ′E =DC+AE ,设OE =x ,则AE =2-x ,∴DE =DC+AE =3-x ,由勾股定理,得x 2+1=(3-x )2,解得x=43,∵D(0,1),E(43,0),∴43k +1=0,∴k =-34,∴存在点D ,使得△DO ′E 与△CO ′O 相似,这时k =-34,b =1.方法二:(求k ).过点C ′作PQ ∥OA 交OC 于P ,交AB 于Q ,则有△DPC′∽△C′QB ,∴QBPC图2l图1D 图3=BC DC''(※),设PC′=x ,则C′Q =2-x ,由(※)可得BQ =2x ,在Rt △BC′Q 中,由勾股定理,得(2-x )2+(2x )2=4,解得x =45,∴AQ =2-85=25,∵D (0,1),C ′(45,25),∴45k +1=25,解得k =-34,∴存在点D ,使得△DO ′E 与△CO ′O 相似,这时k =-34,b =1.【解后反思】此题主要考查了相似形综合以及全等三角形的判定与性质、勾股定理、待定系数法求一次函数解析式等知识,正确得出AE=C′E 是解题关键.【关键词】一次函数;全等三角形;相似三角形;勾股定理;.待定系数法;运动型题型图2。
2016年浙江省衢州市中考数学试卷解析版
QQ23942478842016年浙江省衢州市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2016•衢州)在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.02.(3分)(2016•衢州)据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105B.3.19×106C.0.319×107 D.319×1063.(3分)(2016•衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.4.(3分)(2016•衢州)下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(3a)3=9a3D.(a2)2=a45.(3分)(2016•衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°6.(3分)(2016•衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.(3分)(2016•衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=08.(3分)(2016•衢州)已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣19.(3分)(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.10.(3分)(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2016•衢州)当x=6时,分式的值等于.12.(4分)(2016•衢州)二次根式中字母x的取值范围是.13.(4分)(2016•衢州)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是小时.14.(4分)(2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C (x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=.15.(4分)(2016•衢州)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为m2.16.(4分)(2016•衢州)如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是.三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.(6分)(2016•衢州)计算:|﹣3|+﹣(﹣1)2+(﹣)0.18.(6分)(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.19.(6分)(2016•衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).20.(8分)(2016•衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21.(8分)(2016•衢州)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.22.(10分)(2016•衢州)已知二次函数y=x2+x的图象,如图所示(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.23.(10分)(2016•衢州)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.24.(12分)(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.2016年浙江省衢州市中考数学真题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2016•衢州)在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.0【分析】根据实数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小)比较即可.【解答】解:∵﹣3<﹣1<0<,∴最小的实数是﹣3,故选C.【点评】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.(3分)(2016•衢州)据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105B.3.19×106C.0.319×107 D.319×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于319万有7位,所以可以确定n=7﹣1=6.【解答】解:319万=3 190000=3.19×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.3.(3分)(2016•衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.【点评】此题主要考查了三视图的知识,关键是掌握三视图的几种看法.4.(3分)(2016•衢州)下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(3a)3=9a3D.(a2)2=a4【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a3,a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(3a)3=27a3,故C错误;D、(a2)2=a4,故D正确.故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)(2016•衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.故选A.【点评】本题考查平行四边形的性质、邻补角定义等知识,解题的关键是熟练掌握平行四边形性质,属于基础题,中考常考题型.6.(3分)(2016•衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生参加决赛的成绩肯定是7名学生中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.(3分)(2016•衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.8.(3分)(2016•衢州)已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣1【分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k>0,解得k>﹣1.故选:D.【点评】此题考查了一元二次方程根的分布,一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC 的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,∵∠A=30°,∴∠BOC=2∠A=60°,∴∠E=90°﹣∠BOC=30°,∴sin∠E=sin30°=.故选A.【点评】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.注意准确作出辅助线是解此题的关键.10.(3分)(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D 是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.【分析】由△DEB∽△CMB,得==,求出DE、EB,即可解决问题.【解答】解:如图,作CM⊥AB于M.∵CA=CB,AB=30,CM⊥AB,∴AM=BM=15,CM==20∵DE⊥BC,∴∠DEB=∠CMB=90°,∵∠B=∠B,∴△DEB∽△CMB,∴==,∴==,∴DE=,EB=,∴四边形ACED的周长为y=25+(25﹣)++30﹣x=﹣x+80.∵0<x<30,∴图象是D.故选D.【点评】本题考查函数图象、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是构建函数关系式,注意自变量的取值范围,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2016•衢州)当x=6时,分式的值等于﹣1.【分析】直接将x的值代入原式求出答案.【解答】解:当x=6时,==﹣1.故答案为:﹣1.【点评】此题主要考查了分式的值,正确将x的值代入是解题关键.12.(4分)(2016•衢州)二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.13.(4分)(2016•衢州)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是 6.4小时.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.14.(4分)(2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C (x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或﹣2.【分析】分别在平面直角坐标系中确定出A、B、O的位置,再根据两组对边分别平行的四边形是平行四边形可确定C的位置,从而求出x的值.【解答】解:根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1),则x=4或﹣2;故答案为:4或﹣2.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.15.(4分)(2016•衢州)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为432m2.【分析】要求这三间长方形种牛饲养室的总占地面积的最大值,可设总占地面积为S,中间墙长为x,根据题目所给出的条件列出S与x的关系式,再根据函数的性质求出S的最大值.【解答】解:如图,设设总占地面积为S(m2),CD的长度为x(m),由题意知:AB=CD=EF=GH=x,∴BH=48﹣4x,∵0<BH≤50,CD>0,∴0<x<12,∴S=AB•BH=x(48﹣4x)=﹣(x﹣6)2+144∴x=6时,S可取得最大值,最大值为S=144.【点评】本题考查实际问题与二次函数最值,需要根据题目列出函数关系式,然后利用函数的性质求出该问题的最值.16.(4分)(2016•衢州)如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是≤x≤18.【分析】(1)过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,由正方形的性质可得出“A′D′=D′C′,∠A′D′C′=90°”,通过证△A′ED′≌△D′OC′可得出“OD′=EA′,OC′=ED′”,设OD′=a,OC′=b,由此可表示出点A′的坐标,同理可表示出B′的坐标,利用反比例函数图象上点的坐标特征即可得出关于a、b的二元二次方程组,解方程组即可得出a、b值,再由勾股定理即可得出结论;(2)由(1)可知点A′、B′、C′、D′的坐标,利用待定系数法即可求出直线A′B′、C′D′的解析式,设点A的坐标为(m,2m),点D坐标为(0,n),找出两正方形有重叠部分的临界点,由点在直线上,即可求出m、n的值,从而得出点A的坐标,再由反比例函数图象上点的坐标特征即可得出k的取值范围.【解答】解:(1)如图,过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,则∠A′ED′=90°.∵四边形A′B′C′D′为正方形,∴A′D′=D′C′,∠A′D′C′=90°,∴∠OD′C′+∠ED′A′=90°.∵∠OD′C′+∠OC′D′=90°,∴∠ED′A′=∠OC′D′.在△A′ED′和△D′OC′中,,∴△A′ED′≌△D′OC′(AAS).∴OD′=EA′,OC′=ED′.同理△B′FC′≌△C′OD′.设OD′=a,OC′=b,则EA′=FC′=OD′=a,ED′=FB′=OC′=b,即点A′(a,a+b),点B′(a+b,b).∵点A′、B′在反比例函数y=的图象上,∴,解得:或(舍去).在Rt△C′OD′中,∠C′OD′=90°,OD′=OC′=1,∴C′D′==.故答案为:.(2)设直线A′B′解析式为y=k1x+b1,直线C′D′解析式为y=k2+b2,∵点A′(1,2),点B′(2,1),点C′(1,0),点D′(0,1),∴有和,解得:和.∴直线A′B′解析式为y=﹣x+3,直线C′D′解析式为y=﹣x+1.设点A的坐标为(m,2m),点D坐标为(0,n).当A点在直线C′D′上时,有2m=﹣m+1,解得:m=,此时点A的坐标为(,),∴k=×=;当点D在直线A′B′上时,有n=3,此时点A的坐标为(3,6),∴k=3×6=18.综上可知:当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围为≤x≤18.故答案为:≤x≤18.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、正方形的性质以及全等三角形的判定及性质,解题的关键是:(1)求出线段OD′、OC′的长度;(2)找出两正方形有重叠部分的临界点.本题属于中档题,难度不大,但较繁琐,本题是填空题,降低了难度,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出反比例函数系数k是关键.三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.(6分)(2016•衢州)计算:|﹣3|+﹣(﹣1)2+(﹣)0.【分析】根据绝对值和算术平方根、乘方以及零指数幂的定义进行计算,即可得出结果.【解答】解:|﹣3|+﹣(﹣1)2+(﹣)0=3+3﹣1+1=6.【点评】本题考查了实数的运算、绝对值和算术平方根、乘方以及零指数幂的定义;熟练掌握实数的运算是解决问题的关键.18.(6分)(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.19.(6分)(2016•衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.【解答】解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(550﹣150)•(0.52+0.45)•12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.【点评】本题考查一元一次不等式、一元一次方程等知识,熟练应用方程或不等式解决实际问题是解题的关键,属于中考常考题型.20.(8分)(2016•衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.【点评】本题考查的是条形统计图与扇形统计图,根据题意得出样本总数是解答此题的关键.21.(8分)(2016•衢州)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.【分析】(1)欲证明直线BF是⊙O的切线,只要证明AB⊥BF即可.(2)连接OD,在RT△ODE中,利用勾股定理求出由△APD∽△ABF,=,由此即可解决问题.【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.【点评】本题考查切线的判定,垂径定理、勾股定理.相似三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型.22.(10分)(2016•衢州)已知二次函数y=x2+x的图象,如图所示(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.【分析】(1)令y=0求得抛物线与x的交点坐标,从而可确定出1个单位长度等于小正方形边长的4倍,接下来作直线y=1,找出直线y=1与抛物线的交点,直线与抛物线的交点的横坐标即可方程的解;(2)先求得直线上任意两点的坐标,然后画出过这两点的直线即可得到直线y=x+的函数图象,然后找出一次函数图象位于直线下方部分x的取值范围即可;(3)先依据抛物线的顶点坐标和点P的坐标,确定出抛物线移动的方向和距离,然后依据抛物线的顶点式写出抛物线的解析式即可,将点P的坐标代入函数解析式,如果点P的坐标符合函数解析式,则点P在直线上,否则点P不在直线上.【解答】解:(1)∵令y=0得:x2+x=0,解得:x1=0,x2=﹣1,∴抛物线与x轴的交点坐标为(0,0),(﹣1,0).作直线y=1,交抛物线与A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x 轴,垂足为D,点C和点D的横坐标即为方程的根.根据图形可知方程的解为x1≈﹣1.6,x2≈0.6.(2)∵将x=0代入y=x+得y=,将x=1代入得:y=2,∴直线y=x+经过点(0,),(1,2).直线y=x+的图象如图所示:由函数图象可知:当x<﹣1.5或x>1时,一次函数的值小于二次函数的值.(3)先向上平移个单位,再向左平移个单位,平移后的顶点坐标为P(﹣1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=x+的函数图象上.理由:∵把x=﹣1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=x+的函数图象上.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用坐标轴上点的坐标特点、点的坐标与函数解析式的关系,函数与方程、不等式的关系,求得抛物线与x轴的交点坐标,确定出单位长度的大小以及数形结合思想的应用是解题的关键.23.(10分)(2016•衢州)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.24.(12分)(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.。
浙江省衢州市2016年中考数学专题训练(二)正方形(含解析)
浙江省衢州市2016年中考数(浙教版)专题训练(二):正方形一、选择题(共9小题)1.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.B.2C.2 D.12.如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠43.附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4D.6﹣64.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.5.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.196.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③7.如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B.4 C.3 D.28.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.109.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n二、填空题(共6小题)10.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为.(用含n的代数式表示,n为正整数)11.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.12.已知正方形ABCD的边长为2cm,以CD为边作等边三角形CDE,则△ABE的面积为cm2.13.如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是.14.如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN 的面积最小值为.15.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.三、解答题(共15小题)16.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF ∥BC交CD于点F.求证:AM=EF.17.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.18.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.19.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP 与NQ是否相等?并说明理由.20.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.21.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.22.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.23.如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.24.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.25.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.①若CD=2PC时,求证:BP⊥CF;②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.26.如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?28.如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.29.已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.30.如图,已知正方形ABCD,把边DC绕D点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.浙江省衢州市2016年中考数(浙教版)专题训练(二):正方形参考答案与试题解析一、选择题(共9小题)1.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.B.2C.2 D.1【考点】正方形的性质.【专题】压轴题.【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.【解答】解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,∴∠ADB=∠CGE=45°,∴∠GDT=180°﹣90°﹣45°=45°,∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8﹣4=4,∴GT=×4=2.故选B.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等腰直角三角形的判定与性质.2.如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4【考点】正方形的性质.【分析】根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.【解答】解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.【点评】本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.3.附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4D.6﹣6【考点】正方形的性质;等边三角形的性质.【分析】过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.【解答】解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.【点评】本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.4.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.【考点】正方形的性质;勾股定理.【分析】利用勾股定理求出CM的长,即ME的长,有DE=DG,可以求出DE,进而得到DG的长.【解答】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.【点评】本题考查了正方形的性质和勾股定理的运用,属于基础题目.5.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质;等腰直角三角形.【专题】计算题;压轴题.【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.6.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③【考点】正方形的性质;翻折变换(折叠问题).【专题】压轴题.【分析】先求出DE、CE的长,再根据翻折的性质可得AD=AF,EF=DE,∠AFE=∠D=90°,再利用“HL”证明Rt△ABG和Rt△AFG全等,根据全等三角形对应边相等可得BG=FG,再设BG=FG=x,然后表示出EG、CG,在Rt△CEG中,利用勾股定理列出方程求出x=,从而可以判断①正确;根据∠AGB的正切值判断∠AGB≠60°,从而求出∠CGF≠60°,△CGF不是等边三角形,FG≠FC,判断②错误;先求出△CGE的面积,再求出EF:FG,然后根据等高的三角形的面积的比等于底边长的比求解即可得到△FGC的面积,判断③正确.【解答】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3﹣x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3﹣x)2+22,解得,x=,∴CG=3﹣=,∴BG=CG=,即点G是BC中点,故①正确;∵tan∠AGB===2,∴∠AGB≠60°,∴∠CGF≠180°﹣60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;△CGE的面积=CG•CE=××2=,∵EF:FG=1:=2:3,∴S△FGC=×=,故③正确;综上所述,正确的结论有①③.故选:B.【点评】本题考查了正方形的性质,翻折变换的性质,全等三角形的判定与性质,勾股定理的应用,根据各边的熟量关系利用勾股定理列式求出BG=FG的长度是解题的关键,也是本题的难点.7.如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=CD,再利用勾股定理列式求出CE,根据正方形的性质求出OC=OD=a,然后利用四边形OCED的面积列出方程求出a2,再根据正方形的面积公式列式计算即可得解.【解答】解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,则OC=OD=×2a=a,∵∠CED=90°,∠DCE=30°,∴DE=CD=a,由勾股定理得,CE===a,∴四边形OCED的面积=a•a+•(a)•(a)=×()2,解得a2=1,所以,正方形ABCD的面积=(2a)2=4a2=4×1=4.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.8.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.10【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【专题】数形结合.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故选:C.【点评】本题考查了正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.9.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n【考点】正方形的性质;全等三角形的判定与性质.【专题】规律型.【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.【点评】此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.二、填空题(共6小题)10.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】压轴题;规律型.【分析】根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.【解答】解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(4+8)×8﹣×(4+8)×8=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.【点评】本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.11.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】几何图形问题.【分析】首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.【点评】此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.12.(2014•齐齐哈尔)已知正方形ABCD的边长为2cm,以CD为边作等边三角形CDE,则△ABE的面积为(2+)或(2﹣)cm2.【考点】正方形的性质;等边三角形的性质.【专题】分类讨论.【分析】作出图形,根据等边三角形的性质求出点E到CD的距离,从而得到点E到AB的距离,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,∵△CDE是等边三角形,∴点E到CD的距离为2×=cm,∴点E到AB的距离=2+cm或2﹣cm,∴△ABE的面积=×2×(2+)=2+cm2,或△ABE的面积=×2×(2﹣)=2﹣cm2.故答案为:(2+)或(2﹣).【点评】本题考查了正方形的性质,等边三角形的性质,熟记各性质并求出点E到AB边的距离是解题的关键,易错点在于点E的位置不确定要分情况讨论,作出图形更形象直观.13.如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是a•2n﹣1.【考点】正方形的性质;坐标与图形性质;等腰直角三角形.【专题】规律型.【分析】判断出△AOB是等腰直角三角形,根据等腰直角三角形的性质求出第一个正方形的边长AB,然后判断出△ADE是等腰直角三角形,再求出AD=DE,从而求出第二个正方形的边长等于第一个正方形的边长的2倍,同理可得后一个正方形的边长等于前一个正方形的边长的2倍,然后求解即可.【解答】解:∵OA=OB,∴△AOB是等腰直角三角形,∴第一个正方形的边长AB=a,∠OAB=45°,∴∠DAE=180°﹣45°﹣90°=45°,∴△ADE是等腰直角三角形,∴AD=DE,∴第二个正方形的边长CE=CD+DE=2AB,…,后一个正方形的边长等于前一个正方形的边长的2倍,所以,第n个正方形的边长=2n﹣1AB=a•2n﹣1.故答案为:a•2n﹣1.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,判断出后一个正方形的边长等于前一个正方形的边长的2倍是解题的关键.14.如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为﹣.【考点】正方形的性质;二次函数的最值;全等三角形的判定与性质.【专题】几何图形问题.【分析】如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.【解答】解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∵CM+CN+MN=2,CN+DN+CM+BM=1+1=2,∴MN=DN+BM=BL+BM=ML,∴△AMN≌△AML(SSS),设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2﹣2)(z+2+2)≥0,又∵z>0,∴z≥2﹣2此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,S△AMN取到最小值为﹣1.故答案为:﹣1.【点评】本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.15.(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.【考点】正方形的性质;勾股定理;等腰直角三角形.【专题】几何图形问题.【分析】由四边形ABCD是正方形,AC为对角线,得出∠EAF=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在Rt△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.【解答】解:∵四边形ABCD是正方形,AC为对角线,∴∠EAF=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在Rt△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.【点评】本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.三、解答题(共15小题)16.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF ∥BC交CD于点F.求证:AM=EF.【考点】正方形的性质;全等三角形的判定与性质;矩形的判定与性质.【专题】证明题.【分析】过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,根据题干条件证明出AP=MF,PM=ME,进而证明△APM≌△FME,即可证明出AM=EF.【解答】证明:过M点作MQ⊥AD,垂足为Q,作MP⊥AB,垂足为P,∵四边形ABCD是正方形,∴四边形MFDQ和四边形PBEM是正方形,四边形APMQ是矩形,∴AP=QM=DF=MF,PM=PB=ME,∵在△APM和△FME中,,∴△APM≌△FME(SAS),∴AM=EF.【点评】本题主要考查正方形的性质等知识点,解答本题的关键是熟练掌握全等三角形的判定定理以及矩形的性质等知识,此题正确作出辅助线很易解答.17.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.【考点】正方形的性质;二次函数的最值;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.【分析】(1)由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数;(2)设AP=x,则PD=4﹣x,由已知∠DPM=∠PAE=∠ABP,△PDM∽△BAP,列出关于x的一元二次函数,求出DM的最大值.【解答】解:(1)由已知∠AEB=∠BFC=90°,AB=BC,又∵∠ABE +∠FBC=∠BCF +∠FBC ,∴∠ABE=∠BCF ,∵在△ABE 和△BCF 中,,∴△ABE ≌△BCF (AAS ),∴AE=BF ,∴AE 2+CF 2=BF 2+CF 2=BC 2=16为常数;(2)设AP=x ,则PD=4﹣x ,由已知∠DPM=∠PAE=∠ABP ,∴△PDM ∽△BAP ,∴=,即=,∴DM==x ﹣x 2,当x=2时,即点P 是AD 的中点时,DM 有最大值为1.【点评】本题主要考查正方形的性质等知识点,解答本题的关键是熟练掌握全等三角形的判定定理以及三角形相似等知识,此题有一定的难度,是一道不错的中考试题.18.如图正方形ABCD 的边长为4,E 、F 分别为DC 、BC 中点.(1)求证:△ADE ≌△ABF .(2)求△AEF 的面积.【考点】正方形的性质;全等三角形的判定与性质.【专题】几何图形问题.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;﹣S△ADE﹣S△ABF﹣S△CEF得出结果.(2)首先求出DE和CE的长度,再根据S△AEF=S正方形ABCD【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=S正方形ABCD=4×4﹣×4×2﹣×4×2﹣×2×2=6.【点评】本题主要考查正方形的性质和全等三角形的证明,解答本题的关键是熟练掌握正方形的性质以及全等三角形的判定定理,此题难度不大.19.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP 与NQ是否相等?并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.20.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=58度.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;(3)根据(2)的结论解答.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠BCP=∠DCP是解题的关键.21.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.【解答】解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),。
浙江省衢州市2016年中考数学(浙教版)专题训练:解直角三角形..
浙江省衢州市2016年中考数学(浙教版)专题训练:解直角三角形一、选择题(共5小题)1.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里2.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里3.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是()A.20海里B.40海里C.20海里D.40海里4.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+)km C.2km D.(4﹣)km5.有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()海里.A.10B.10﹣10 C.10 D.10﹣10二、填空题(共4小题)6.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.7.如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行海里可使渔船到达离灯塔距离最近的位置.8.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为 米.9.如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约为 m (精确到0.1m ).(参考数据:≈1.41,,1.73)三、解答题(共21小题)10.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方,求拦截点D 处到公路的距离(结果不取近似值).11.如图所示,港口B 位于港口O 正西方向120km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以vkm/h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60km/h 的速度驶向小岛C ,在小岛C 用1h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.12.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)13.(2015•济宁)阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明;(2)求乙船每小时航行多少海里?14.如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)15.为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)16.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).17.如图,海面上B、C两岛分别位于A岛的正东和正北方向.一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°.求A、B两岛之间的距离.(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】18.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)19.如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C点测得A 点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)20.如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)21.如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).22.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)23.如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.24.如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).25.某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).26.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)27.我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).28.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)29.如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B 的仰角分别为60°和45°.求山的高度BC.(结果保留根号)30.小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.第二步:小红量得测点D处到树底部B的水平距离BD=a.第三步:量出测角仪的高度CD=b.之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.请你根据两个统计图提供的信息解答下列问题.(1)把统计图中的相关数据填入相应的表格中:(2)根据表中得到的样本平均值计算出风筝的高度AB(参考数据:,,结果保留3个有效数字).浙江省衢州市2016年中考数学(浙教版)专题训练:解直角三角形参考答案与试题解析一、选择题(共5小题)1.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里【考点】解直角三角形的应用-方向角问题.【分析】作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=20海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=20海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故选D.【点评】本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,等腰三角形的判定与性质,余弦函数的定义,难度适中.求出CM=BC=20海里是解题的关键.2.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里【考点】解直角三角形的应用-方向角问题.【分析】首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos∠A=2cos55°海里.【解答】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.【点评】本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.3.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是()A.20海里B.40海里C.20海里D.40海里【考点】解直角三角形的应用-方向角问题.【分析】根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD即可解答.【解答】解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=40海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=40×sin60°=40×=20(海里).故选:C.【点评】本题考查了解直角三角形的应用,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+)km C.2km D.(4﹣)km【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案.【解答】解:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=,∴DC=2+.故选:B.【点评】此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.5.有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()海里.A.10B.10﹣10 C.10 D.10﹣10【考点】解直角三角形的应用-方向角问题.【分析】由题意得:∠CAP=30°,∠CBP=45°,BC=10海里,分别在Rt△BCP中和在Rt△APC中求得BC 和AC后相减即可求得A、B之间的距离.【解答】解:由题意得:∠CAP=30°,∠CBP=45°,BC=10海里,在Rt△BCP中,∵∠CBP=45°,∴CP=BC=10海里,在Rt△APC中,AC===10海里,∴AB=AC﹣BC=(10﹣10)海里,故选D.【点评】本题考查了解直角三角形的应用,解题的关键是能够从实际问题中整理出直角三角形,并选择合适的边角关系求解.二、填空题(共4小题)6.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为2km.【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2km,再由△ABD是等腰直角三角形,得出BD=AD=2km,则AB=AD=2km.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离(即AB的长)为2km.故答案为2km.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.7.如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行50海里可使渔船到达离灯塔距离最近的位置.【考点】解直角三角形的应用-方向角问题.【分析】过M作东西方向的垂线,设垂足为N.由题易可得∠MAN=30°,在Rt△MAN中,根据锐角三角函数的定义求出AN的长即可.【解答】解:如图,过M作东西方向的垂线,设垂足为N.易知:∠MAN=90°=30°.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,AM=100海里,∴AN=AM•cos∠MAN=100×=50海里.故该船继续航行50海里可使渔船到达离灯塔距离最近的位置.故答案为50.【点评】本题主要考查了解直角三角形的应用﹣方向角问题,三角函数的定义,利用垂线段最短的性质作出辅助线是解决本题的关键.8.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.9.如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,(参测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为15.3m(精确到0.1m).考数据:≈1.41,,1.73)【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】在Rt△ACD中求出AC,在Rt△BCD中求出BC,继而可得出AB.【解答】解:在Rt△ACD中,CD=21m,∠DAC=30°,则AC=CD≈36.3m;在Rt△BCD中,∠DBC=45°,则BC=CD=21m,故AB=AC﹣BC=15.3m.故答案为:15.3.【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,理解俯角的定义,能利用三角函数表示线段的长度.三、解答题(共21小题)10.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【考点】解直角三角形的应用-方向角问题.【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.【解答】解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D 作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键.11.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.【考点】解直角三角形的应用-方向角问题.【分析】(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间;(2)过C作CD⊥OA,垂足为D,设相会处为点E.求出OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,则DE=90﹣3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即(30)2+(90﹣3v)2=602,解方程求出v=20或40,进而求出相遇处与港口O的距离.【解答】解:(1)∵∠CBO=60°,∠COB=30°,∴∠BCO=90°.在Rt△BCO中,∵OB=120,∴BC=OB=60,∴快艇从港口B到小岛C的时间为:60÷60=1(小时);(2)过C作CD⊥OA,垂足为D,设相会处为点E.则OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,∴DE=90﹣3v.∵CE=60,CD2+DE2=CE2,∴(30)2+(90﹣3v)2=602,∴v=20或40,∴当v=20km/h时,OE=3×20=60km,当v=40km/h时,OE=3×40=120km.【点评】此题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,勾股定理等知识,理解方向角的定义,得出∠BCO=90°是解题的关键,本题难易程度适中.12.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可.【解答】解:如图,过点C作CD⊥AB于点D,AB=20×1=20(海里),∵∠CAF=60°,∠CBE=30°,∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°﹣∠CAF=30°,∴∠C=180°﹣∠CBA﹣∠CAB=30°,∴∠C=∠CAB,∴BC=BA=20(海里),∠CBD=90°﹣∠CBE=60°,∴CD=BC•sin∠CBD=≈17(海里).【点评】此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.13.(2015•济宁)阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明;(2)求乙船每小时航行多少海里?【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】(1)先根据路程=速度×时间求出A1A2=30×=10,又A2B2=10,∠A1A2B2=60°,根据有一个角是60°的等腰三角形是等边三角形即可得出△A1A2B2是等边三角形;(2)先由平行线的性质及方向角的定义求出∠A1B1B2=75°﹣15°=60°,由等边三角形的性质得出∠A2A1B2=60°,A1B2=A1A2=10,那么∠B1A1B2=105°﹣60°=45°.然后在△B1A1B2中,根据阅读材料可知,=,求出B1B2的距离,再由时间求出乙船航行的速度.【解答】解:(1)△A1A2B2是等边三角形,理由如下:连结A1B2.∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=30×=10,又∵A2B2=10,∠A1A2B2=60°,∴△A1A2B2是等边三角形;(2)如图,∵B1N∥A1A2,∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,∴∠A1B1B2=75°﹣15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=10,∴∠B1A1B2=105°﹣60°=45°.在△B1A1B2中,∵A1B2=10,∠B1A1B2=105°﹣60°=45°,∠A2A1B2=60°,由阅读材料可知,=,解得B1B2==,所以乙船每小时航行:÷=20海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,等边三角形的判定与性质,方向角的定义,锐角三角函数的定义,学生的阅读理解能力以及知识的迁移能力.正确理解阅读材料是解题的关键.14.如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)【考点】解直角三角形的应用-方向角问题.【分析】过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中求出BD=AB=20,在R t△BDP中求出PB即可.【解答】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在R t△BDP中,∵∠P=45°,∴PB=BD=20≈28.3(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【点评】此题主要考查了方向角问题的应用,根据已知得出△PDB为等腰直角三角形是解题关键.15.为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)【考点】解直角三角形的应用-方向角问题.【分析】先解Rt△ADC,求出CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里,那么渔船到的避风港D处所用时间:210÷18=11小时.再解Rt△ADB,求出BD=AD•tan∠BAD≈280×2.4=672海里,那么BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据追及问题的等量关系列出方程(40﹣18)x=462﹣200,解方程求出x=11,由于11<11,所以渔船能顺利躲避本次台风的影响.【解答】解:由题意可知∠BAD=67.5°,∠CAD=36.9°,AC=350海里.在Rt△ADC中,∵∠ADC=90°,∠DAC=36.9°,AC=350海里,∴CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里.∴渔船到的避风港D处所用时间:210÷18=11小时.在Rt△ADB中,∵∠ADB=90°,∠BAD=67.5°,∴BD=AD•tan∠BAD≈280×2.4=672海里,∴BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据题意得(40﹣18)x=462﹣200,解得x=11,∵11<11,∴渔船能顺利躲避本次台风的影响.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度中等,求出强台风移动到渔船C后面200海里时所需时间是解题的关键.16.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).。
浙江省衢州市2016年中考数学专题训练(一)多边形(含解析)
浙江省衢州市2016年中考数(浙教版)专题训练(一):多边形一、选择题(共15小题)1.如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABCD 与S 四边形ECDF 的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC <S 四边形ECDFC .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +22.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A .正五边形B .正六边形C .正七边形D .正八边形3.一个多边形的每个内角均为120°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形4.如果一个正多边形的中心角为72°,那么这个多边形的边数是( )A .4B .5C .6D .75.一个多边形的每个内角都等于120°,则这个多边形的边数为( )A .4B .5C .6D .76.在四边形ABCD 中,∠A=∠B=∠C ,点E 在边AB 上,∠AED=60°,则一定有()A .∠ADE=20°B .∠ADE=30°C .∠ADE=∠ADCD .∠ADE=∠ADC7.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为( )A .3B .4C .5D .68.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是() A .27 B .35 C .44 D .549.一个多边形的内角和是外角和的2倍,这个多边形的边数为( )A .5B .6C .7D .810.八边形的内角和为( )A .180°B .360°C .1080°D .1440°11.一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.812.(2015•大庆)正n边形每个内角的大小都为108°,则n=()A.5 B.6 C.7 D.813.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°14.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形15.在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形B.平行四边形C.菱形D.直角梯形二、填空题(共15小题)16.正五边形的外角和等于(度).17.若正多边形的一个内角等于140°,则这个正多边形的边数是.18.正八边形一个内角的度数为.19.一个多边形的内角和是720°,那么这个多边形是边形.20.八边形的外角和是.21.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了米.22.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.23.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.24.一个n边形的内角和是1800°,则n=.25.一个n边形的内角和为1080°,则n=.26.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.27.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.28.若一个多边形内角和为900°,则这个多边形是边形.29.五边形的外角和等于°.30.若正多边形的一个外角为30°,则这个多边形为正边形.浙江省衢州市2016年中考数(浙教版)专题训练(一):多边形参考答案与试题解析一、选择题(共15小题)1.如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABCD 与S 四边形ECDF 的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC <S 四边形ECDFC .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +2【考点】多边形;平行线之间的距离;三角形的面积.【分析】根据矩形的面积公式=长×宽,平行四边形的面积公式=边长×高可得两阴影部分的面积,进而得到答案.【解答】解:S 四边形ABDC =CD •AC=1×4=4,S 四边形ECDF =CD •AC=1×4=4,故选:A .【点评】此题主要考查了矩形和平行四边形的面积计算,关键是掌握面积的计算公式.2.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A .正五边形B .正六边形C .正七边形D .正八边形【考点】多边形内角与外角.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n ,列方程可求解.【解答】解:设所求正n 边形边数为n ,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4.如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.【解答】解:这个多边形的边数是360÷72=5,故选:B.【点评】本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:C.【点评】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.6.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC【考点】多边形内角与外角;三角形内角和定理.【分析】利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得到∠ADE=∠EDC,因为∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,所以∠ADE=∠ADC,即可解答.【解答】解:如图,在△AED中,∠AED=60°,∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣∠EDC,∵∠A=∠B=∠C,∴120°﹣∠ADE=120°﹣∠EDC,∴∠ADE=∠EDC,∵∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,∴∠ADE=∠ADC,故选:D.【点评】本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C.7.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.6【考点】多边形内角与外角.【分析】设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【解答】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=4.故选B.【点评】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.8.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【考点】多边形内角与外角.【分析】设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.【解答】解:设这个内角度数为x,边数为n,∴(n﹣2)×180°﹣x=1510,180n=1870+x,∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.9.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.10.八边形的内角和为()A.180°B.360°C.1080°D.1440°【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°进行计算即可得解.【解答】解:(8﹣2)•180°=6×180°=1080°.故选:C.【点评】本题考查了多边形的内角和,熟记内角和公式是解题的关键.11.一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.【点评】此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.12.(2015•大庆)正n边形每个内角的大小都为108°,则n=()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用正多边形的性质得出其外角,进而得出多边形的边数.【解答】解:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n==5.故选:A.【点评】此题主要考查了多边形内角与外角,正确得出其外角度数是解题关键.13.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.14.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】多边形内角与外角.【专题】计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形B.平行四边形C.菱形D.直角梯形【考点】多边形.【分析】根据菱形的对角线互相垂直即可判断.【解答】解:菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相垂直.故选:C.【点评】本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正方形的对角线互相垂直.二、填空题(共15小题)16.正五边形的外角和等于360(度).【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°,即可求解.【解答】解:任意多边形的外角和都是360°,故正五边形的外角和为360°.故答案为:360°.【点评】本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.17.(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是9.【考点】多边形内角与外角.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.18.正八边形一个内角的度数为135°.【考点】多边形内角与外角.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).19.一个多边形的内角和是720°,那么这个多边形是六边形.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是六,故答案为:六.【点评】考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.20.八边形的外角和是360°.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.【解答】解:八边形的外角和是360度.故答案为:360°.【点评】本题考查了多边形的内角与外角的知识,多边形的外角和是360度,不随着边数的变化而变化.21.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】根据题意多边形的外角和为360°,由题意得到小明运动的轨迹为正10边形的周长,求出即可.【解答】解:由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).故答案为:120.【点评】此题考查了多边形的内角与外角,熟练掌握多边形的外角和定理是解本题的关键.22.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【考点】多边形内角与外角.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n 个外角,无论边数是几,其外角和永远为360°.23.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n 个外角,无论边数是几,其外角和永远为360°.24.一个n边形的内角和是1800°,则n=12.【考点】多边形内角与外角.【分析】根据多边形内角和定理即可列方程求解.【解答】解:根据题意得180(n﹣2)=1800,解得:n=12.故答案是:12.【点评】本题考查了多边形的内角和定理,题目较简单,只要结合多边形的内角关系来寻求等量关系,构建方程即可求解.25.一个n边形的内角和为1080°,则n=8.【考点】多边形内角与外角.【分析】直接根据内角和公式(n﹣2)•180°计算即可求解.【解答】解:(n﹣2)•180°=1080°,解得n=8.【点评】主要考查了多边形的内角和公式.多边形内角和公式:(n﹣2)•180°.26.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.27.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.28.若一个多边形内角和为900°,则这个多边形是七边形.【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故答案为:七.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.29.五边形的外角和等于360°.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的外角和等于360°解答.【解答】解:五边形的外角和是360°.故选B.【点评】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.30.若正多边形的一个外角为30°,则这个多边形为正12边形.【考点】多边形内角与外角.【分析】根据外角的度数就可求得多边形的边数.【解答】解:正多边形的边数是:360÷30=12.故答案为:12.【点评】本题主要考查了多边形的外角和定理,任何多边形的外角和都是360度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省衢州市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2016•衢州)在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.02.(3分)(2016•衢州)据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105B.3.19×106C.0.319×107 D.319×1063.(3分)(2016•衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.4.(3分)(2016•衢州)下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(3a)3=9a3D.(a2)2=a45.(3分)(2016•衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°6.(3分)(2016•衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.(3分)(2016•衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=08.(3分)(2016•衢州)已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣19.(3分)(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.10.(3分)(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2016•衢州)当x=6时,分式的值等于.12.(4分)(2016•衢州)二次根式中字母x的取值范围是.13.(4分)(2016•衢州)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是小时.14.(4分)(2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C (x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=.15.(4分)(2016•衢州)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为m2.16.(4分)(2016•衢州)如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是.三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.(6分)(2016•衢州)计算:|﹣3|+﹣(﹣1)2+(﹣)0.18.(6分)(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.19.(6分)(2016•衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).20.(8分)(2016•衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21.(8分)(2016•衢州)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.22.(10分)(2016•衢州)已知二次函数y=x2+x的图象,如图所示(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.23.(10分)(2016•衢州)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.24.(12分)(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.2016年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2016•衢州)在,﹣1,﹣3,0这四个实数中,最小的是()A.B.﹣1 C.﹣3 D.0【分析】根据实数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小)比较即可.【解答】解:∵﹣3<﹣1<0<,∴最小的实数是﹣3,故选C.【点评】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.(3分)(2016•衢州)据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105B.3.19×106C.0.319×107 D.319×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于319万有7位,所以可以确定n=7﹣1=6.【解答】解:319万=3 190 000=3.19×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2016•衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.【点评】此题主要考查了三视图的知识,关键是掌握三视图的几种看法.4.(3分)(2016•衢州)下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(3a)3=9a3D.(a2)2=a4【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a3,a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(3a)3=27a3,故C错误;D、(a2)2=a4,故D正确.故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)(2016•衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.故选A.【点评】本题考查平行四边形的性质、邻补角定义等知识,解题的关键是熟练掌握平行四边形性质,属于基础题,中考常考题型.6.(3分)(2016•衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生参加决赛的成绩肯定是7名学生中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.(3分)(2016•衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.8.(3分)(2016•衢州)已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣1【分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k>0,解得k>﹣1.故选:D.【点评】此题考查了一元二次方程根的分布,一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC 的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,∵∠A=30°,∴∠BOC=2∠A=60°,∴∠E=90°﹣∠BOC=30°,∴sin∠E=sin30°=.故选A.【点评】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.注意准确作出辅助线是解此题的关键.10.(3分)(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.【分析】由△DEB∽△CMB,得==,求出DE、EB,即可解决问题.【解答】解:如图,作CM⊥AB于M.∵CA=CB,AB=30,CM⊥AB,∴AM=BM=15,CM==20∵DE⊥BC,∴∠DEB=∠CMB=90°,∵∠B=∠B,∴△DEB∽△CMB,∴==,∴==,∴DE=,EB=,∴四边形ACED的周长为y=25+(25﹣)++30﹣x=﹣x+80.∵0<x<30,∴图象是D.故选D.【点评】本题考查函数图象、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是构建函数关系式,注意自变量的取值范围,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2016•衢州)当x=6时,分式的值等于﹣1.【分析】直接将x的值代入原式求出答案.【解答】解:当x=6时,==﹣1.故答案为:﹣1.【点评】此题主要考查了分式的值,正确将x的值代入是解题关键.12.(4分)(2016•衢州)二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.13.(4分)(2016•衢州)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是 6.4小时.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.14.(4分)(2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C (x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或﹣2.【分析】分别在平面直角坐标系中确定出A、B、O的位置,再根据两组对边分别平行的四边形是平行四边形可确定C的位置,从而求出x的值.【解答】解:根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1),则x=4或﹣2;故答案为:4或﹣2.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.15.(4分)(2016•衢州)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为432m2.【分析】要求这三间长方形种牛饲养室的总占地面积的最大值,可设总占地面积为S,中间墙长为x,根据题目所给出的条件列出S与x的关系式,再根据函数的性质求出S的最大值.【解答】解:如图,设设总占地面积为S(m2),CD的长度为x(m),由题意知:AB=CD=EF=GH=x,∴BH=48﹣4x,∵0<BH≤50,CD>0,∴0<x<12,∴S=AB•BH=x(48﹣4x)=﹣(x﹣6)2+144∴x=6时,S可取得最大值,最大值为S=144.【点评】本题考查实际问题与二次函数最值,需要根据题目列出函数关系式,然后利用函数的性质求出该问题的最值.16.(4分)(2016•衢州)如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是≤x≤18.【分析】(1)过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,由正方形的性质可得出“A′D′=D′C′,∠A′D′C′=90°”,通过证△A′ED′≌△D′OC′可得出“OD′=EA′,OC′=ED′”,设OD′=a,OC′=b,由此可表示出点A′的坐标,同理可表示出B′的坐标,利用反比例函数图象上点的坐标特征即可得出关于a、b的二元二次方程组,解方程组即可得出a、b值,再由勾股定理即可得出结论;(2)由(1)可知点A′、B′、C′、D′的坐标,利用待定系数法即可求出直线A′B′、C′D′的解析式,设点A的坐标为(m,2m),点D坐标为(0,n),找出两正方形有重叠部分的临界点,由点在直线上,即可求出m、n的值,从而得出点A的坐标,再由反比例函数图象上点的坐标特征即可得出k的取值范围.【解答】解:(1)如图,过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,则∠A′ED′=90°.∵四边形A′B′C′D′为正方形,∴A′D′=D′C′,∠A′D′C′=90°,∴∠OD′C′+∠ED′A′=90°.∵∠OD′C′+∠OC′D′=90°,∴∠ED′A′=∠OC′D′.在△A′ED′和△D′OC′中,,∴△A′ED′≌△D′OC′(AAS).∴OD′=EA′,OC′=ED′.同理△B′FC′≌△C′OD′.设OD′=a,OC′=b,则EA′=FC′=OD′=a,ED′=FB′=OC′=b,即点A′(a,a+b),点B′(a+b,b).∵点A′、B′在反比例函数y=的图象上,∴,解得:或(舍去).在Rt△C′OD′中,∠C′OD′=90°,OD′=OC′=1,∴C′D′==.故答案为:.(2)设直线A′B′解析式为y=k1x+b1,直线C′D′解析式为y=k2+b2,∵点A′(1,2),点B′(2,1),点C′(1,0),点D′(0,1),∴有和,解得:和.∴直线A′B′解析式为y=﹣x+3,直线C′D′解析式为y=﹣x+1.设点A的坐标为(m,2m),点D坐标为(0,n).当A点在直线C′D′上时,有2m=﹣m+1,解得:m=,此时点A的坐标为(,),∴k=×=;当点D在直线A′B′上时,有n=3,此时点A的坐标为(3,6),∴k=3×6=18.综上可知:当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围为≤x≤18.故答案为:≤x≤18.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、正方形的性质以及全等三角形的判定及性质,解题的关键是:(1)求出线段OD′、OC′的长度;(2)找出两正方形有重叠部分的临界点.本题属于中档题,难度不大,但较繁琐,本题是填空题,降低了难度,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出反比例函数系数k是关键.三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.(6分)(2016•衢州)计算:|﹣3|+﹣(﹣1)2+(﹣)0.【分析】根据绝对值和算术平方根、乘方以及零指数幂的定义进行计算,即可得出结果.【解答】解:|﹣3|+﹣(﹣1)2+(﹣)0=3+3﹣1+1=6.【点评】本题考查了实数的运算、绝对值和算术平方根、乘方以及零指数幂的定义;熟练掌握实数的运算是解决问题的关键.18.(6分)(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.19.(6分)(2016•衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.【解答】解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(550﹣150)•(0.52+0.45)•12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.【点评】本题考查一元一次不等式、一元一次方程等知识,熟练应用方程或不等式解决实际问题是解题的关键,属于中考常考题型.20.(8分)(2016•衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.【点评】本题考查的是条形统计图与扇形统计图,根据题意得出样本总数是解答此题的关键.21.(8分)(2016•衢州)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.【分析】(1)欲证明直线BF是⊙O的切线,只要证明AB⊥BF即可.(2)连接OD,在RT△ODE中,利用勾股定理求出由△APD∽△ABF,=,由此即可解决问题.【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.【点评】本题考查切线的判定,垂径定理、勾股定理.相似三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型.22.(10分)(2016•衢州)已知二次函数y=x2+x的图象,如图所示(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一直角坐标系中画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.【分析】(1)令y=0求得抛物线与x的交点坐标,从而可确定出1个单位长度等于小正方形边长的4倍,接下来作直线y=1,找出直线y=1与抛物线的交点,直线与抛物线的交点的横坐标即可方程的解;(2)先求得直线上任意两点的坐标,然后画出过这两点的直线即可得到直线y=x+的函数图象,然后找出一次函数图象位于直线下方部分x的取值范围即可;(3)先依据抛物线的顶点坐标和点P的坐标,确定出抛物线移动的方向和距离,然后依据抛物线的顶点式写出抛物线的解析式即可,将点P的坐标代入函数解析式,如果点P的坐标符合函数解析式,则点P在直线上,否则点P不在直线上.【解答】解:(1)∵令y=0得:x2+x=0,解得:x1=0,x2=﹣1,∴抛物线与x轴的交点坐标为(0,0),(﹣1,0).作直线y=1,交抛物线与A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x 轴,垂足为D,点C和点D的横坐标即为方程的根.根据图形可知方程的解为x1≈﹣1.6,x2≈0.6.(2)∵将x=0代入y=x+得y=,将x=1代入得:y=2,∴直线y=x+经过点(0,),(1,2).直线y=x+的图象如图所示:由函数图象可知:当x<﹣1.5或x>1时,一次函数的值小于二次函数的值.(3)先向上平移个单位,再向左平移个单位,平移后的顶点坐标为P(﹣1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=x+的函数图象上.理由:∵把x=﹣1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=x+的函数图象上.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用坐标轴上点的坐标特点、点的坐标与函数解析式的关系,函数与方程、不等式的关系,求得抛物线与x轴的交点坐标,确定出单位长度的大小以及数形结合思想的应用是解题的关键.23.(10分)(2016•衢州)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.24.(12分)(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.【分析】(1)利用翻折变换的性质得出∠CBD=∠C′BD=15°,C′B=CB=2,进而得出CH的长,进而得出答案;(2)首先求出直线AF的解析式,进而得出当D与O重合时,点C′与A重合,且BC′扫过的图形与△OAF重合部分是弓形,求出即可;(3)根据题意得出△DO′E与△COO′相似,则△COO′必是Rt△,进而得出Rt△BAE≌Rt△BC′E(HL),再利用勾股定理求出EO的长进而得出答案.【解答】解:(1)∵△CBD≌△C′BD,∴∠CBD=∠C′BD=15°,C′B=CB=2,∴∠CBC′=30°,如图1,作C′H⊥BC于H,则C′H=1,HB=,∴CH=2﹣,∴点C′的坐标为:(2﹣,1);(2)如图2,∵A(2,0),k=﹣,∴代入直线AF的解析式为:y=﹣x+b,。