《高等数学》第四册(数学物理方法
《数学物理方法》课件第7章
小弦长,与其过点z0的原像曲线在z0处的无穷小弦长之比
的极限,不管曲线的方向如何,都等于|f'(z0)|。换句话说,
一切过z0点的曲线的无穷小弦长都被放大(或缩小)了|f'(z0)|
倍,可知无穷小面积就被放大(或缩小)了|f'(z0)|2倍。这正是
高等数学中定义的面积变换因子雅可比行列式
J
u, x,
k 1
1
2k 13
2k
sin
1 x
cos k
2k
1 at
l
(7.15) 可以验证这个解与用分离变量法得到的结果完全一致。
13
7.2 保角变换法
电学、光学、流体力学和弹性力学中的很多实际问题, 都可以归结为求解平面场的拉普拉斯方程或泊松方程的边 值问题,而这些边值问题中的边界形状通常十分复杂,我 们可以设法先将它转化为简单形状边界的边值问题,然后 求解。本节所介绍的保角变换法就是按照这种思路求解问 题的有效方法。
27
7.2.2 拉普拉斯方程的解
保角变换之所以受人重视,主要是因为拉普拉斯方程 的解在经过一个保角变换后仍然是拉普拉斯方程的解,即:
定理3 在单叶解析函数的变换(保角变换)下,拉普拉 斯方程式仍然变为拉普拉斯方程。
证明 设w=f(z)=u(x,y)+iv(x,y)是一单叶解析函数,
且j(x,y)满足拉普拉斯方程
(7.17)
16
定理1 若f(z)是D上的单值解析函数,且f'(z)≠0(z∈D), 则变换w=f(z)在区域D上构成一一对应的变换(或映射), 并称该变换为D域上的单叶变换,函数w=f(z)为D域上的 单叶解析函数。
下面我们进一步来研究这种单叶变换的特点。图7.1中, 设z平面上的原像曲线C经单叶变换w=f(z)变成w平面上的 变像曲线G;在C上的无穷小弦长为Dz,则在Dz上的变像为 Dw,分别记为
数学物理方法(第四版)高等教育出版社第一章1
-2
(x,y)
x
(0,-1)
(3) Im(i+ z) = 4
Im[i + (x −iy)] = Im[x + i(1− y)] = 4
1− y = 4
表示y= 的直线 表示 -3的直线
y=-3
5、复平面与复数球之关系
例3 设 z =
z1 7 1 ( )=− + i z2 5 5
−1 3i 求 − , Re( z ), Im(z ) 与 zz i 1− i
−1 3i 3i(1+ i) 3 3 3 1 z= − =i − =i − i+ = − i i 1− i (1− i)(1+ i) 2 2 2 2
3 ∴Re(z) = 2
2 x 2
3、复数的三种表示: 、复数的三种表示
1). 代数式 2). 三角式
z = x + iy
z =ρ
x = ρ cosθ
y = ρ sinθ
z = ρ (cos θ + i sin θ )
3). 指数式
e = cosθ + i sin θ
iθ
欧拉公式
z = ρe
iθ
θ = Argz
4、复数的运算
A
S
•作业:P6 作业: 作业
•1(2)( )( ) ( )( )(5) )(3)( •2(1)( )( )( ) ( )( )(5)( )(4)( )(6) •3(1)( ) ( )( )(4)
§1.2
复变函数
复变函数的定义与定义域: 一、复变函数的定义与定义域: 复变函数定义: 1、复变函数定义: 复数平面上存在一个点集E, 复数平面上存在一个点集 , 对于E的每一点( 每一个 值 ) , 对于 的每一点(每一个z值 的每一点 按照一定的规律, 按照一定的规律 , 有一个或多 ω 与之相对应, 个复数值 与之相对应 , 则称 为z的函数 的函数——复变函数,z称为 复变函数, 称为 的函数 复变函数
【免费下载】数学物理方法讲义
0
ih t
复数
ቤተ መጻሕፍቲ ባይዱ
h2 2m
x, y, z, t
1. 数的概念的扩充
正整数(自然数) 1,2,…
负数
整数
运算规则 +,-,×,÷, 2 ,
- 1 2 1
÷2
2
x2
0,-1,-2,…
…,-2,-1,0,1,2,…
2
y 2
1 0.5 1 0.333
有理数(分数) 整数、有限小数、无限循环小数
无理数 无限不循环小数
实 数 有理数、无理数
虚数 复数
2. 负数的运算符号
2 1.414
1 i yi
实数、虚数、实数+虚数
x2 1
x i
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学物理方法教学大纲(可编辑修改word版)
《数学物理方法》课程教学大纲(72 学时)(理论课程)一课程说明(一)课程概况课程中文名称:《数学物理方法》课程英文名称:Mathematics physics method课程编码:3910252114开课学院:理学院适用专业/开课学期:物理学/第 4 学期学分/周学时:4 学分/周4 学时《数学物理方法》是物理学本科专业的必修专业主干课,通过该课程的学习,使学生掌握复变函数、数学物理方程和特殊函数的基本理论、建模方法和计算方法,培养学生用数学方法和物理规律解决各类物理实际问题的能力,为后续课程的学习打下良好的基础。
本课程是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理学专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
(二)课程目标通过本课程的学习,使学生掌握处理物理问题的一些基本数学方法,为进一步学习后继课程提供必要的数学基础。
要求学生熟悉复变函数(特别是解析函数)的一些基本概念,掌握泰勒级数及洛朗级数的展开方法,利用留数定理来计算回路积分和三类实变函数的定积分;掌握傅立叶变换和拉普拉斯变换的概念及性质,并能运用拉普拉斯变换方法求解积分、微分方程。
了解三种类型的数学物理方程的导出过程,能熟练写出定解问题;掌握用行波法求解一维无界及半无界波动方程,利用分离变量法求解各类齐次及非齐次方程;了解特殊函数的常微分方程,掌握用级数解法求解二阶常微分方程,了解施图姆-刘维尔本征值问题及性质;掌握勒让德多项式、贝塞尔函数及性质,并能利用勒让德多项式求解三维轴对称拉普拉斯方程。
(三)学时分配二教学方法和手段1.本课程课堂讲授约需 72 课时。
2.学生在学习过程中应注重各专题所要求内容的全貌,以掌握基本思想和基本方法为主,培养创新精神。
3.在学习过程中,应以推荐教材为主,适当参考所列出的或其它的参考书,要适应各种不同的教材的编排体系和书写符号等。
数学物理方法讲义
《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。
课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。
物理学专业课程简介 - 哈尔滨学院教务处
物理学专业04013001高等数学 Advanced Mathematics 【156—8—1、2】先修课程:高中数学内容提要:高等数学是物理学专业必修的基础课程。
内容包括函数与极限、微分学、不定积分、定积分、空间解析几何和矢量代数、多元函数微分学、重积分、曲线积分、曲面积分、矢量分析初步、级数、广义积分、含参变量积分和常微分方程等内容。
修读对象:物理学专业本科生教材:《高等数学(物理类)》一、二、三册四川大学高等教育出版社参考书目:《高等数学》同济大学高等教育出版社04013002线性代数 Linear Algebra 【42—2—1】先修课程:高中数学内容提要:线性代数是物理学专业必修的基础课程。
本课程是研究有限线性空间的结构和线性空间的线性变换的数学分支。
内容有行列式、矩阵代数、线性方程组、线性空间、线性变换、欧几里得空间、n元实二次型等内容。
修读对象:物理学专业本科生教材:《高等数学(物理类)》第三册四川大学高等教育出版社参考书目:《线性代数》同济大学高等教育出版社04013003数学物理方法 Methods of Mathematical Physics 【72—4—3】先修课程:高等数学内容提要:数学物理方法是物理学专业必修的基础课程。
内容分三个部分。
复变函数论包括:复数与复变函数、解析函数、哥西定理、解析函数的幂级数表示、残数及其应用、保角变换。
数学物理方程包括:数学物理方程的付氏解、波动方程的达朗贝尔解、数理方程解的积分公式、定解问题的适定性、付里叶变换、拉普拉斯变换。
特殊函数包括:勒让德多项式,球函数、贝塞尔函数、柱函数、厄密多项式和拉盖尔多项式等内容。
修读对象:物理学专业本科生教材:《高等数学(物理类)》第四册四川大学高等教育出版社参考书目:《数学物理方法》梁昆淼高等教育出版社04013004力学 Mechanics 【72—4—2】先修课程:高等数学内容提要:力学是物理学专业必修的基础课程。
2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载
2023年《高等数学》第四册(数学物理方法)课后习题答案下载《高等数学》第四册内容简介第一篇复变函数论第一章复数与复变函数第一节复数1.1.1. 复数域1.1.2. 复平面1.1.3. 复数的模与幅角1.1.4. 复数的乘幂与方根第二节复变函数的基本概念1.2.1. 区域与约当曲线1.2.2. 复变函数的概念1.2.3. 复变函数的极限与连续性第三节复球面与无穷远点1.3.1. 复球面1.3.2. 闭平面上的几个概念习题第二章解析函数第一节解析函数的概念及哥西一黎曼条件 2.1.1. 导数的定义2.1.2. 哥西一黎曼条件2.1.3. 解析函数的定义第二节解析函数与调和函数的关系2.2.1. 共轭调和函数的求法2.2.2. 共轭调和函数的几何意义第三节初等解析函数2.3.1. 初等单值函数2.3.2. 初等多值函数习题第三章哥西定理哥西积分第一节复变积分的概念及其简单性质3.1.1. 复变积分的定义及其计算方法3.1.2. 复变积分的简单性质第二节哥西积分定理及其推广3.2.1. 哥西积分定理3.2.2. 不定积分3.2.3. 哥西积分定理推广到复围线的情形第三节哥西积分公式及其推广3.3.1. 哥西积分公式3.3.2. 解析函数的无限次可微性3.3.3. 模的最大值原理哥西不等式刘维尔定理摩勒纳定理第四节解析函数在平面场中的应用3.4.1. 什么叫平面场3.4.2. 复位势3.4.3. 举例习题第四章解析函数的幂级数表示第一节函数项级数的基本性质4.1.1. 数项级数4.1.2. 一致收敛的函数项级数第二节幂级数与解析函数4.2.1. 幂级数的敛散性4.2.2. 解析函数的幂级数表示第三节罗朗级数4.3.1. 双边幂级数的收敛圆环4.3.2. 解析函数的罗朗展式4.3.3. 罗朗展式举例第四节单值函数的孤立奇点4.4.1. 孤立奇点的`三种类型4.4.2. 可去奇点……习题第五章残数及其应用第六章保角变换第二篇数学物理方程第七章一维波动方程的付氏解第八章热传导方程的付氏解第九章拉普拉斯方程的圆的狄利克雷问题的付氏解第十章波动方程的达朗贝尔解第十一章数学物理方程的解的积分方式第十二章定解问题的适定性第十三章付里叶变换第十四章拉普拉斯变换第三篇特殊函数第十五章勒让德多项式球函数第十六章贝塞耳函数柱函数第十七章厄密多项式和拉盖尔多项式附录《高等数学》第四册目录本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。
高等数学物理方法
高等数学物理方法
高等数学物理方法,哇塞,这可真是个超级厉害的东西呢!它就像是一把神奇的钥匙,能打开很多科学领域的大门。
要学习高等数学物理方法,首先得掌握那些复杂的理论和公式。
这可不是一件容易的事儿啊!得一步一步来,就像爬山一样,得脚踏实地。
要认真理解每个概念的含义,搞清楚那些公式的推导过程,可不能马虎哟!在解题的时候,更是要仔细分析题目,找到关键信息,然后选择合适的方法去求解。
注意啦,千万不能粗心大意,不然就会前功尽弃呀!而且还要多做练习题,这样才能真正掌握这些方法。
在这个过程中,安全性和稳定性也是非常重要的呢。
就好比建房子,基础得打牢,不然房子会摇摇欲坠的。
我们在运用高等数学物理方法的时候,一定要保证每一步都准确无误,这样得出的结果才可靠。
如果中间出了差错,那可就糟糕啦,就像大楼失去了根基一样。
那它的应用场景可多了去啦!在物理学、工程学、计算机科学等领域都大显身手呢。
它的优势也很明显呀,能够帮助我们解决那些超级复杂的问题,让看似不可能的事情变得可能。
这难道不是很了不起吗?
比如说在研究天体物理的时候,通过高等数学物理方法,我们可以精确地计算出天体的运动轨迹。
这就像是给我们装上了千里眼,让我们能够看清遥远天体的一举一动。
还有在电子工程中,它能帮助我们设计出更高效的电路,让我们的电子设备更加强大。
总之,高等数学物理方法真的是太重要啦!它是科学进步的有力工具,没有它,很多领域都没法发展呢。
我们一定要好好学习它,利用它去探索更多的未知,创造更美好的未来呀!。
《高等数学》第四册(数学物理方法)
第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i 试用三角形式表示12z z 及12z z 。
解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。
证明:1230;z z ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。
1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。
即123z ,z ,z 是内接于单位圆的正三角形。
.17.证明:三角形内角和等于π。
证明:有复数的性质得:321321311223arg;arg ;arg ;z z z z z z z z z z z z αβγ---===---1332213112231;z z z z z z z z z z z z ---••=----arg(1)2;k αβγπ∴++=-+(0,);(0,);(0,);απβπγπ∈∈∈(0,3);αββπ∴++∈0;k ∴=;αβγπ∴++=第一章 复数与复变函数(2)7.试解方程()4400z a a +=>。
数学物理方法第七章 (2)
6
0.5
用数理方程研究物理问题的步骤
1、写出定解问题 泛定方程:数理方程(一般规律) 定解条件:初始、边界、衔接条件(个性)
2、求解 求解方法:行波法、分离变量法、积分变换法、格林函数法、保角变 换法、复变函数法、变分法
3 、分析解答
物理意义 适定性:存在 唯一 稳定
7
0.6
学习方法与考核方式
对于数学物理方程部分,注意以下几点: 1、注意考虑物理系统中涉及到的物理定理、定律以及偏微分方程 ; 2、注意研究将偏微分方程转化为常微分方程的方法,或能够利用已有的常 微分方程知识进行求解的方法; 3、注意将解出的结果进行讨论,给予其物理意义的解释。 4、快速多遍,抓大放小,厘清脉络,掌握典型。 组成:平时成绩30%;期终成绩70% 方式:闭卷考试 内容:典型题,有范围。 共同学习,互相促进!
8
第7章 数学物理方程定解问题
7.1数学物理方程的导出 7.2定解条件 7.3数学物理方程的分类 (自学*) 7.4达朗贝尔公式、定解问题
9
本章基本要求、教学内容及重点
基本要求: 1.了解定解问题的提法; 2.了解几种常见的数学物理方程的导出; 3.熟悉几种常见的边界条件和初始条件的表示形式; 4.能对两个自变数的线性偏微分方程进行分类; 5.了解行波法的意义,行波的物理意义,熟练运用达朗贝尔公式。 教学内容: §7.1.数学物理方程的导出。(均匀弦的微小横振动,均匀杆的纵振动,均匀薄膜的微
受迫振动
f ( x, t ) F ( x, t ) /
15
7.1.3波动方程
例:一长为l的均匀柔软轻绳,其一端固定在竖直轴上,绳子以角速度转动, 试推导此绳相对于水平线的横振动方程
dm dx
数学物理方法第四版期末总结ppt课件
d [ (i)3k (z i)k1] 1
(i)3k (k 1)(z i)k2
z i dz k0
z i k0
3
(k 2)i3(k3) (z i)k , (1 z i ) k
28
三、有限远孤立奇点分类及其类型判定
奇点名称 0 z z0 R 的洛朗级数 可去奇点 不含负幂项
22
例1 求幂级数 k(z i)k 的收敛圆. k 0
解
ak k
R lim ak a k
k 1
lim k k k 1
1
收敛圆: z i 1
23
例2
幂级数 ez zk
k0 k !
的收敛域。
1
解:
R lim ak lim
a k
k
k 1
k! 1
(k 1)!
lim k 1 , k
b2,…,bn外连续,则f(z)沿l正向积分 l f (z)dz 之值
等于f(z)在l所围区域内各奇点的留数和的2 i倍.
n
l
f
(z)dz
2 i
Re sf
j 1
(bj )
注意: 左边的积分是沿l 的正向进行的;
右边的奇点是指l 所围区域内的,并非是f(z)所有的奇点。
31
二、计算留数 各孤立奇点留数的计算公式
法二 零点和极点的关系
若z = z0是
f(z)的m阶零点,则z =
z0必是
1 f (z)
的
m阶极点。
2)
1
zk
1 z k0
3)
1
(1)k zk
1 z k0
( z ) ( z 1) ( z 1)
4) sin z (1)k
数学物理方法答案第四版
数学物理方法答案第四版【篇一:大学生有福啦!四年内所有教材课后答案!大学生有福啦!四年内所有教材课后答案!】=txt>/forum.php?mod=viewthreadtid=7083fromuid=461166 新视野大学英语课后习题答案1-4册全集/forum.php?mod=viewthreadtid=6423fromuid=461166 《毛泽东思想和中国特色社会主义理论体系概论》有史以来最全面的复习资料!!! /forum.php?mod=viewthreadtid=5900fromuid=461166 中国近现代史纲要课后题答案/forum.php?mod=viewthreadtid=5310fromuid=461166 新视野大学英语第四册答案(第二版)/forum.php?mod=viewthreadtid=5161fromuid=461166 新视野大学英语视听说第三册答案/forum.php?mod=viewthreadtid=2647fromuid=461166 《物理化学》习题解答(天津大学, 第四版,106张)/forum.php?mod=viewthreadtid=2531fromuid=461166 新视野大学英语听说教程1听力原文及答案下载/forum.php?mod=viewthreadtid=2006fromuid=461166 西方宏观经济高鸿业第四版课后答案/forum.php?mod=viewthreadtid=1282fromuid=461166 大学英语综合教程 1-4册练习答案/forum.php?mod=viewthreadtid=1275fromuid=461166 新视野大学英语课本详解(四册全)/forum.php?mod=viewthreadtid=805fromuid=461166 新视野大学英语读写教程3册的课后习题答案/forum.php?mod=viewthreadtid=514fromuid=461166 毛邓三全部课后思考题答案(高教版)/毛邓三课后答案/forum.php?mod=viewthreadtid=384fromuid=461166/forum.php?mod=viewthreadtid=304fromuid=461166 《管理学》课后答案(周三多)/forum.php?mod=viewthreadtid=301fromuid=461166 《成本会计》习题及答案(自学推荐,23页)《成本会计》配套习题集参考答案/forum.php?mod=viewthreadtid=294fromuid=461166 《现代西方经济学(微观经济学)》笔记和课后习题详解(第3版,宋承先)/forum.php?mod=viewthreadtid=290fromuid=461166 《国际贸易》课后习题答案(海闻 p.林德特王新奎)/forum.php?mod=viewthreadtid=289fromuid=461166 《西方经济学》习题答案(第三版,高鸿业)可直接打印/forum.php?mod=viewthreadtid=283fromuid=461166 《微观经济学》课后答案(高鸿业版)/forum.php?mod=viewthreadtid=280fromuid=461166 《管理学》经典笔记(周三多,第二版)/forum.php?mod=viewthreadtid=277fromuid=461166 《教育心理学》课后习题答案(皮连生版)/forum.php?mod=viewthreadtid=268fromuid=461166 《信号和系统》习题答案(第四版,吴大正)/forum.php?mod=viewthreadtid=262fromuid=461166 《计算机操作系统》习题答案(汤子瀛版,完整版)/forum.php?mod=viewthreadtid=260fromuid=461166 高等数学习题答案及提示学》复习资料大全(3套试卷及答案+各章习题集)/forum.php?mod=viewthreadtid=249fromuid=461166 《概率论和数理统计》8套习题及习题答案(自学推荐)/forum.php?mod=viewthreadtid=244fromuid=461166 《线性代数》9套习题+9套相应答案(自学,复习推荐)/forum.php?mod=viewthreadtid=236fromuid=461166 《高分子化学》课后习题答案(第四版,潘祖仁主编)/forum.php?mod=viewthreadtid=232fromuid=461166 《电工学》课后习题答案(第六版,上册,秦曾煌主编)/forum.php?mod=viewthreadtid=217fromuid=461166 《大学物理》完整习题答案/forum.php?mod=viewthreadtid=203fromuid=461166 《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)/forum.php?mod=viewthreadtid=191fromuid=461166 《工程力学》课后习题答案(梅凤翔主编)/forum.php?mod=viewthreadtid=186fromuid=461166 《中国近代史纲要》课后习题答案/forum.php?mod=viewthreadtid=182fromuid=461166 《概率论和数理统计》优秀学习资料/forum.php?mod=viewthreadtid=181fromuid=461166 《中国近现代史》选择题全集(共含250道题目和答案)和数理统计及其使用》课后答案(浙江大学盛骤谢式千编著)/forum.php?mod=viewthreadtid=174fromuid=461166 《数字信号处理——基于计算机的方法》习题答案(第二版)/forum.php?mod=viewthreadtid=173fromuid=461166 《数据结构习题集》答案(c版,清华大学,严蔚敏)/forum.php?mod=viewthreadtid=172fromuid=461166 《大学物理基础教程》课后习题答案(第二版,等教育出版社)/forum.php?mod=viewthreadtid=170fromuid=461166 c语言资料大全(有课后答案,自学资料,c程序等)/forum.php?mod=viewthreadtid=168fromuid=461166 《新编大学英语》课后答案(第三册)/forum.php?mod=viewthreadtid=164fromuid=461166 《电力电子技术》习题答案(第四版,王兆安,王俊主编)/forum.php?mod=viewthreadtid=163fromuid=461166 《中级财务会计》习题答案(第二版,刘永泽)/forum.php?mod=viewthreadtid=162fromuid=461166 《常微分方程》习题解答(王高雄版)/forum.php?mod=viewthreadtid=161fromuid=461166 《c++程序设计》课后习题答案(第2版,吴乃陵,高教版)/forum.php?mod=viewthreadtid=158fromuid=461166 《机械制图》习题册答案(近机类、非机类,清华大学出版社)/forum.php?mod=viewthreadtid=143fromuid=461166 《物理化学》习题答案(南大,第五版)《高频电子线路》习题参考答案(第四版)济学》课后答案(曼昆,中文版)/forum.php?mod=viewthreadtid=137fromuid=461166 《电路》习题答案上(邱关源,第五版)/forum.php?mod=viewthreadtid=136fromuid=461166《信息论和编码》辅导ppt及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社)/forum.php?mod=viewthreadtid=122fromuid=461166 《分析化学》课后习题答案(第五版,高教版)/forum.php?mod=viewthreadtid=112fromuid=461166 《电工学》习题答案(第六版,秦曾煌)/forum.php?mod=viewthreadtid=102fromuid=461166 《离散数学》习题答案(高等教育出版社)/forum.php?mod=viewthreadtid=96fromuid=461166 《机械设计》课后习题答案(高教版,第八版,西北工业大学)/forum.php?mod=viewthreadtid=90fromuid=461166 《数字电子技术基础》习题答案(阎石,第五版)/forum.php?mod=viewthreadtid=85fromuid=461166 曼昆《经济学原理》课后习题解答/forum.php?mod=viewthreadtid=83fromuid=461166 《流体力学》习题答案/forum.php?mod=viewthreadtid=81fromuid=461166 《中国近代史纲要》完整课后答案(高教版)/forum.php?mod=viewthreadtid=78fromuid=461166 《全新版大学英语综合教程》(第四册)练习答案及课文译文学英语综合教程》(第三册)练习答案及课文译文/forum.php?mod=viewthreadtid=76fromuid=461166 《全新版大学英语综合教程》(第二册)练习答案及课文译文/forum.php?mod=viewthreadtid=75fromuid=461166 《全新版大学英语综合教程》(第一册)练习答案及课文译文/forum.php?mod=viewthreadtid=74fromuid=461166 《信号和线性系统分析》习题答案及辅导参考(吴大正版)《有机化学》习题答案(汪小兰主编)/forum.php?mod=viewthreadtid=66fromuid=461166 高等数学上下《习题ppt》/forum.php?mod=viewthreadtid=63fromuid=461166 思想道德修养和法律基础课后习题答案/forum.php?mod=viewthreadtid=60fromuid=461166 西方经济学(高鸿业版)教材详细答案/forum.php?mod=viewthreadtid=59fromuid=461166 《c语言程序和设计》习题答案(谭浩强,第三版)/forum.php?mod=viewthreadtid=58fromuid=461166 《数字信号处理》课后答案及详细辅导(丁美玉,第二版)/forum.php?mod=viewthreadtid=57fromuid=461166 《概率论和数理统计》习题答案/forum.php?mod=viewthreadtid=55fromuid=461166 《理论力学》课后习题答案/forum.php?mod=viewthreadtid=52fromuid=461166 《自动控制原理》课后题答案(胡寿松,第四版)习题分析和解答(马文蔚主编,清华大学,第五版)/forum.php?mod=viewthreadtid=48fromuid=461166 《毛泽东思想和中国特色社会主义理论体系概论》习题答案(2008年修订版的)/forum.php?mod=viewthreadtid=47fromuid=461166 完整的英文原版曼昆宏观、微观经济学答案/forum.php?mod=viewthreadtid=46fromuid=461166 离散数学习题解答(第四版)清华大学出版社/forum.php?mod=viewthreadtid=45fromuid=461166 《电机和拖动基础》课后习题答案(第四版,机械工业出版社,顾绳谷主编)/forum.php?mod=viewthreadtid=44fromuid=461166 《现代通信原理》习题答案(曹志刚版)/forum.php?mod=viewthreadtid=43fromuid=461166 《土力学》习题解答/课后答案【篇二:《高等数学》第四册(数学物理方法】txt>1.计算i)?i(1)?i?i??2i;1?2i2?i(1?2i)(3?4i)(2?i)i?5?10i2i?12???????;?2?.3?4i5i(3?4i)(3?4i)?59?16555551(3).???i;(1?i)(2?i)(3?i)(1?3i)(3?i)?10i2(4).(1?i)4?[(1?i)2]2?(?2i)2??4;?(a?bi)?1212124)]12???isin?)]?(a?b)(cos2??isin);22?3.设解:z1?z1z2?i;试用三角形式表示z1z2及z2。
《高等数学》第四册(数学物理方法)课后答案
z1
x
z2
z3
.
17.证明:三角形内角和等于
证明:有复数的性质得:
π。
Q α ∈ (0, π ); β ∈ (0, π ); γ ∈ (0, π ); ∴α + β + β ∈ (0,3π );
7.试解方程
w.
i
θ + 2 kπ i ⎛z⎞ z iπ = cos π + sin π = i e = e 4 (k = 0,1, 2,3) ⎜ ⎟ ⎝a⎠ ;所以 a ;
(5). a + bi = (a + bi ) 2 = [ a 2 + b 2 (
1
= [ a 2 + b 2 (cos θ + i sin θ )]2 = (a 2 + b 2 ) 4 (cos z1 =
3.设
解:
1 π π π π 1 5π 5π z1 z2 = [cos( + ) + i sin( + )] = (cos + i sin ); 2 4 6 4 6 2 12 12 z1 π π π π π π = 2[cos( − ) + i sin( − )] = 2(cos + i sin ); z2 4 6 4 6 12 12
4
4
π
i
3π 4
; z3 = ae
; z4 = ae
i
7π 4
.
解:
z −1 < z + 1 ; ( x − 1)2 + y 2 < ( x + 1) 2 + y 2 ; −2 x < 2 x; x > 0; 此图形为 x>0 的区域。
数学物理方法课程教学大纲
《数学物理方法》课程教学大纲(供物理专业试用)课程编码:140612090学时:64学分:4开课学期:第五学期课程类型:专业必修课先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》教学手段:(板演)一、课程性质、任务1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3.《数学物理方法》既是一门数学课程,又是一门物理课程。
注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有很深广的物理背景,实用性很强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、课程基本内容及课时分配第一篇复数函数论第一章复变函数(10)教学内容:§1.1.复数与复数运算。
复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。
数学物理方法
数学物理方法什么是数学物理方法,想必大家都有很多疑惑吧。
下面是由小编为大家整理的“数学物理方法”,欢迎大家阅读,仅供大家参考,希望对您有所帮助。
数学物理方法数学物理方法是物理系本科各专业学生必修的重要基础课,也是海洋科学类、力学类、电子信息科学类、材料科学类等专业的重要公共基础课。
本课程定位于在高等数学和普通物理的基础上,以讲授古典数学物理中的常用方法为主,适当介绍近年来的新发展,为后继有关专业课程作准备。
所以,本课程受到了广大学生的高度重视。
数学物理方法是物理系本科各专业学生必修的重要基础课,也是海洋科学类、力学类、电子信息科学类、材料科学类等专业的重要公共基础课。
本课程定位于在高等数学和普通物理的基础上,以讲授古典数学物理中的常用方法为主,适当介绍近年来的新发展,为后继有关专业课程作准备。
所以,本课程受到了广大学生的高度重视。
《数学物理方法》作者郭玉翠,由清华大学出版出版,该书是物理系本科各专业以及部分工科专业学生必修的重要基础课,是在"高等数学"课程基础上的又一重要的基础数学课程,它将为学习物理专业课程提供基础的数学处理工具。
一、出版信息清华大学出版书名:数学物理方法ISBN:9787302140047作者:郭玉翠定价:34元出版日期:2006-12-29出版社:清华大学出版社定价: 33.00元二、清华版本书是在北京邮电大学出版社出版的《数学物理方法(研究生用)》的基础上修订而成的.此次修订除了对一些章节的内容作了调整,以便更适合教学外,主要增加了计算机软件Maple在求解定解问题中的应用,以及用Maple将一些结果可视化的内容.全书内容分为10章,分别介绍矢量分析与场论的基础知识、数学物理定解问题的推导、求解数学物理问题的分离变量法、行波法与积分变换法、Green函数法、变分法、二阶线性常微分方程的级数解法与Sturm?Liouville本征值问题、特殊函数(一)——Legendre多项式、特殊函数(二)——Bessel函数以及积分方程的基本知识.本书从理论到实例都考虑了电子、通信类各专业的特点,兼顾数学理论的严谨性和物理背景的鲜明性,体现了数学物理方法作为数学应用于物理和其他科学的桥梁作用.本书可以作为高等学校工科硕士研究生的教材,也可以供对这门课程要求较高的专业的本科生使用,或作为教学参考书.前言本书第1版于2003年1月出版后,曾蒙广大师友和读者的关怀与厚爱,于2005年9月进行了第2次印刷.此次修订主要是增加了应用数学软件Maple来辅助求解数学物理定解问题,并将部分结果用Maple进行可视化的内容.因为“数学物理方法”这门课程作为众多理工科学生的基础课之一,在后续课程和完成学业后的科研工作中都有许多应用,需要学生清楚地理解其中的概念,娴熟地掌握解题方法,并且了解结果的物理意义.但是由于课程本身的内容多而难,题目繁而杂,被公认为是一门难学的课程,主要体现在公式推导多,求解习题往往要计算复杂的积分或级数等.随着计算机的深入普及,功能强大的数学软件(如Maple等)为复杂数学问题的求解提供了有力的工具,目的在于:(1)将繁难的数学运算,比如求解常微分方程、计算积分、求解复杂代数方程等借助于计算机完成,可使读者更专注于模型(数学物理方程)的建立、物理思想的形成和数学方法应用于物理过程的理论体系;(2)借助于计算机强大的可视性功能,把一些抽象难懂但又非常有用的知识变成生动的、“活”的物理图像展现在读者面前,这无疑有益于读者对知识的理解和掌握.数学软件Maple的符号运算功能强大,它的最大好处是不用编程,可以直接进行符号运算,因此读者不用另外学习编程的知识,更不要求以会编程为学习基础,这会带来极大的方便,读者只要在计算机上装上Maple软件,直接输入命令即可.本次修订除了增加上述内容外,还对原版的内容作了以下调整:将第1章“场论初步”改成“矢量分析与场论初步”,增加了矢量分析的内容,删去了矢量场的梯度、张量及其计算,以及并矢分析两节内容;将第5章“特殊函数”分成两章“特殊函数(一)——Legendre 多项式”和“特殊函数(二)——Bessel函数”;在“变分法”一章中,增加了复杂泛函Euler方程的推导,因为在数学物理问题中经常会遇到求解复杂变分的问题;在“积分方程的一般性质和解法”一章中,按照积分核的类型讲解相应的解法,以便使内容更加清晰和系统.全书的文字内容进行了重写或修改,也改正了第1版中几处印刷错误.书中加“*”号内容可作为选学内容,读者可根据需要取舍.编著者十分感谢清华大学出版社对本书再版的大力支持和帮助,尤其感谢刘颖和王海燕两位编辑,其严谨、辛勤的敬业精神令人钦佩.目录第1章矢量分析与场论初步1.1矢量函数及其导数与积分1.1.1矢量函数1.1.2矢量函数的极限与连续性1.1.3矢量函数的导数和积分1.2梯度、散度与旋度在正交曲线坐标系中的表达式1.2.1直角坐标系中的“三度”及Hamilton算子1.2.2正交曲线坐标系中的“三度”1.2.3“三度”的运算公式1.3正交曲线坐标系中的Laplace算符、Green第一和第二公式1.4算子方程第2章数学物理定解问题2.1基本方程的建立2.1.1均匀弦的微小横振动2.1.2均匀膜的微小横振动2.1.3传输线方程2.1.4电磁场方程2.1.5热传导方程2.2定解条件2.2.1初始条件2.2.2边界条件2.3定解问题的提法2.4二阶线性偏微分方程的分类与化简2.4.1两个自变量方程的分类与化简2.4.2常系数偏微分方程的进一步简化2.4.3线性偏微分方程的叠加原理第3章分离变量法3.1(1+1)维齐次方程的分离变量法3.1.1有界弦的自由振动3.1.2有限长杆上的热传导3.22维Laplace方程的定解问题3.3高维Fourier级数及其在高维定解问题中的应用3.4非齐次方程的解法3.4.1固有函数法3.4.2冲量法3.4.3特解法3.5非齐次边界条件的处理第4章二阶常微分方程的级数解法本征值问题4.1二阶常微分方程系数与解的关系4.2二阶常微分方程的级数解法4.2.1常点邻域内的级数解法4.2.2正则奇点邻域内的级数解法4.3Legendre方程的级数解4.4Bessel方程的级数解4.5Sturm?Liouville本征值问题第5章特殊函数(一)Legendre 多项式5.1正交曲线坐标系中的分离变量法5.1.1Laplace方程5.1.2Helmholtz方程5.2Legendre 多项式及其性质5.2.1Legendre多项式的导出5.2.2Legendre多项式的性质5.3Legendre多项式的应用5.4一般球函数5.4.1关联Legendre函数5.4.2球函数第6章特殊函数(二)Bessel函数6.1Bessel函数的性质及其应用6.1.1柱函数6.1.2Bessel函数的性质6.1.3修正Bessel函数6.1.4Bessel函数的应用6.2球Bessel函数6.3柱面波与球面波6.3.1柱面波6.3.2球面波6.4可化为Bessel方程的方程6.5其他特殊函数方程简介6.5.1Hermite多项式6.5.2Laguerre多项式第7章行波法与积分变换法7.1一维波动方程的d′Alembert公式7.2三维波动方程的Poisson公式7.3Fourier积分变换法求定解问题7.3.1预备知识——Fourier变换及性质7.3.2Fourier变换法7.4Laplace变换法解定解问题7.4.1Laplace变换及其性质7.4.2Laplace变换法第8章Green函数法8.1引言8.2Poisson方程的边值问题8.2.1Green公式8.2.2解的积分形式——Green函数法8.2.3Green函数关于源点和场点是对称的8.3Green函数的一般求法8.3.1无界区域的Green函数8.3.2用本征函数展开法求边值问题的Green函数8.4用电像法求某些特殊区域的Dirichlet?Green函数8.4.1Poisson方程的Dirichlet?Green函数及其物理意义8.4.2用电像法求Green函数*8.5含时间的定解问题的Green函数第9章变分法9.1泛函和泛函的极值9.1.1泛函9.1.2泛函的极值与泛函的变分9.1.3泛函取极值的必要条件——Euler方程9.1.4复杂泛函的Euler方程9.1.5泛函的条件极值问题9.1.6求泛函极值的直接方法——Ritz方法9.2用变分法解数学物理方程9.2.1本征值问题和变分问题的关系9.2.2通过求泛函的极值来求本征值9.2.3边值问题与变分问题的关系*9.3与波导相关的变分原理及近似计算9.3.1共振频率的变分原理9.3.2波导的传播常数γ的变分原理9.3.3任意截面的柱形波导管截止频率的近似计算第10章积分方程的一般性质和解法10.1积分方程的概念与分类10.2积分方程的迭代解法10.2.1第二类Volterra方程的迭代解法10.2.2第一类Volterra方程的迭代解法10.2.3第二类Fredholm方程的迭代解法10.2.4叠核、预解核10.3退化核方程的求解10.4弱奇异核的Abel方程的解法10.5对称核的Fredholm方程10.6微分方程与积分方程的联系10.6.1二阶线性常微分方程与Volterra方程的联系10.6.2微分方程的本征值问题与对称核积分方程的联系参考文献三、西科大版第1章数学物理方程的定解问题1.1 基本概念1.1.1 偏微分方程的基本概念1.1.2 三类常见的数学物理方程1.1.3 数学物理方程的一般性问题1.2 数学物理方程的导出1.2.1 波动方程的导出1.2.2 输运方程的导出1.2.3 稳定场方程的导出1.3 定解条件与定解问题1.3.1 初始条件1.3.2 边界条件1.3.3 三类定解问题1.4 本章小结习题1第2章行波法2.1 一维波动方程的达朗贝尔公式2.1.1 达朗贝尔(D’Alembert)公式的导出2.1.2 达朗贝尔公式的物理意义2.1.3 依赖区间和影响区域2.2 半无限长弦的自由振动2.3 三维波动方程的泊松公式2.3.1 平均值法2.3.2 泊松公式2.3.3 泊松公式的物理意义2.4 强迫振动2.4.1 冲量原理2.4.2 纯强迫振动2.4.3 一般强迫振动2.5 三维无界空间的一般波动问题2.6 本章小结习题2第3章分离变量法3.1 双齐次问题3.1.1 有界弦的自由振动3.1.2 均匀细杆的热传导问题3.1.3 稳定场分布问题3.2 本征值问题3.2.1 斯特姆-刘维型方程3.2.2 斯特姆-刘维型方程的本征值问题3.2.3 斯特姆-刘维本征值问题的性质3.3 非齐次方程的处理3.3.1本征函数展开法3.3.2 冲量原理法3.4 非齐次边界条件的处理3.4.1 边界条件的齐次化原理3.4.2 其他非齐次边界条件的处理3.5 正交曲线坐标系下的分离变量法3.5.1 圆域内的二维拉普拉斯方程的定解问题3.5.2 正交曲线坐标系下分离变量法的基本概念3.5.3 正交曲线坐标系中的分离变量法3.6 本章小结习题3第4章特殊函数4.1 二阶线性常微分方程的级数解4.1.1 二阶线性常微分方程的常点与奇点4.1.2 方程常点邻域内的级数解4.1.3 方程正则奇点邻域内的级数解4.2勒让德多项式4.2.1 勒让德多项式4.2.2 勒让德多项式的微分和积分表示4.3 勒让德多项式的性质4.3.1 勒让德函数的母函数4.3.2 勒让德多项式的递推公式4.3.3 勒让德多项式的正交归一性4.3.4 广义傅里叶级数展开4.4 勒让德多项式在解数理方程中的应用4.5 连带勒让德函数4.5.1 连带勒让德函数本征值问题4.5.2 连带勒让德函数的性质4.5.3 连带勒让德函数在解数理方程中的应用4.6 球函数4.6.1 一般的球函数定义4.6.2 球函数的正交归一性4.6.3 球函数的应用4.7贝塞尔函数4.7.1 三类贝塞尔函数(贝塞尔方程的解) 4.7.2 贝塞尔方程的本征值问题4.8 贝塞尔函数的性质4.8.1 贝塞尔函数的母函数和积分表示4.8.2 贝塞尔函数的递推关系4.8.3 贝塞尔函数的正交归一性4.8.4 广义傅里叶-贝塞尔级数展开4.9 其他柱函数4.9.1 球贝塞尔函数4.9.2 虚宗量贝塞尔函数4.10 贝塞尔函数的应用4.11 本章小结习题4第5章积分变换法5.1 傅里叶变换5.1.1傅里叶积分5.1.2 傅里叶变换5.1.3 傅里叶变换的物理意义5.1.4 傅里叶变换的性质5.1.5 δ函数的傅里叶变换5.1.6 n维傅里叶变换5.2 傅里叶变换法5.2.1 波动问题5.2.2 输运问题5.2.3 稳定场问题5.3 拉普拉斯变换5.3.1 拉普拉斯变换5.3.2 拉普拉斯变换的基本定理5.3.3 拉普拉斯变换的基本性质5.4 拉普拉斯变换的应用5.4.1 拉普拉斯变换解常微分方程5.4.2 拉普拉斯变换解偏微分方程5.5 本章小结习题5第6章格林函数法6.1δ函数6.1.1 δ函数的定义6.1.2 δ函数的性质6.1.3 δ函数的应用6.2 泊松方程边值问题的格林函数法6.2.1 格林函数的一般概念6.2.2 泊松方程的基本积分公式6.3 格林函数的一般求法6.3.1 无界空间的格林函数6.3.2 一般边值问题的格林函数6.3.3 电像法6.3.4 电像法和格林函数的应用6.4 格林函数的其他求法6.4.1 本征函数展开法求解边值问题的格林函数6.4.2 冲量法求解含时间的格林函数6.5 本章小结习题6第7章数学物理方程的其他解法7.1 延拓法7.1.1 半无界杆的热传导问题7.1.2 有界弦的自由振动7.2 保角变换法7.2.1 单叶解析函数与保角变换的定义7.2.2 拉普拉斯方程的解7.3积分方程的迭代解法7.3.1 积分方程的几种分类7.3.2 迭代解法7.4变分法7.4.1 泛函和泛函的极值7.4.2 里兹方法第8章数学物理方程的可视化计算8.1 分离变量法的可视化计算8.1.1 矩形区泊松方程的求解8.1.2直角坐标系下的分离变量法在电磁场中的应用8.2 特殊函数的应用8.2.1 平面波展开为柱面波的叠加8.2.2 平面波展开为球面波的叠加8.2.3 特殊函数在波动问题中的应用8.2.4 球体雷达散射截面的解析解8.3 积分变换法的可视化计算8.4 格林函数的可视化计算参考文献四、北理工版基本信息作者: 闫桂峰出版社: 北京理工大学出版社ISBN: 9787564023485装帧:平装页码: 279开本: 16中文:简体中文简介本书主要介绍了三类典型数学物理方程定解问题的多种求解方法。
数学物理方法讲义
《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。
课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。
数学物理方法(第四版)高等教育出版社第一章2
③等温网为: 等温网为:
u( x, y) = x − y = c1 v( x, y) = 2 xy = c2
2 2
u是电场线,v电势线的话,表示两块无限大均匀带电平面 电场线, 电势线的话 电势线的话, 所产生的静电场。两板的截口位于Ox轴和 轴和Oy轴 所产生的静电场。两板的截口位于 轴和 轴。
2 2 2
二 维 拉 普 拉 斯 (Laplace)方程 )
则称H 为在区域B上的调和函数 则称 (x,y)为在区域 上的调和函数 u、v为调和函数 、 为调和函数
∂ 2u ∂ 2u ∂ 2v ∂ 2v + 2 =0 + 2 =0 2 2 ∂x ∂y ∂x ∂y
证明: 证明:
∂u ∂v Q = ∂x ∂y ∂u ∂v =− ∂y ∂x
∂v ⇒ = 2y ∂x
∂u ∂v = − = −2 y ∂y ∂x
∂v = 2x ∂y
全微分方程: 1)全微分方程:
(用该方法时尽力凑 出全微分形式) 出全微分形式)
2)不定积分方法: 不定积分方法:
∂v = 2 y 对x积分,将y视为 积分, 视为 将 积分 ∂x 常数, 常数,则
(此方法 f ' ( y)易求解) 易求解)
= d (2 xy )
v( x, y ) = ∫ dv = ∫ d (2 xy )
= 2xy + C
∂v = 2 x + f '( y ) = 2 x f ' ( y ) = 0 ∂y
f ( y ) = C v( x, y ) = 2 xy + C
3) 曲线积分法: 曲线积分法: 方程知。 ①由Cauchy—Riemann方程知。 方程知
数学物理方法第一章
1.1 复数与复数运算
(一)复数的基本概念
复数定义:复数——形如 z=x+iy 的数 (x,y 为实数,i2 =−1,i:虚数单位,一种记号约定)
将有争议的虚数合法化: 一维实数 二维实数
复数的本质:有序实数对 (大x家, 好y)
11
复数 :i2 = −1,为什么?
简单概念的引入可 解决世界性的难题 高斯:正十七边形作图
定义了虚数单位 i=(0, 1)
i 2=-1
复数 z 可记为 zxiy xRe z
特殊的复数:0
y I mz
(x, y) +(0, 0) = (x, y) 大家(好x, y) (0, 0) = (0, 0)
13
复数的共轭: z* x iy 与 z x iy 互为共轭 (xiy)(xiy)x2y2
f (x)
n0
f (n)(0) xn n!
例
f
(x)
e1/
x2
0
(满足泰勒展开条件)
x 0 在x0各阶导数均存在, x 0 在x=0各阶导数均存在,其值为0
f(x)
f(n)(0)xn 0
n0 n!
大家好
f (x)
4
复变函数论(theory of complex functions): 研究自变量是复数的函数的基本理论及应用的数学分支,
生了一些信心。在18世纪,尽管一些数学家已较为广泛地使用复
数,但无论欧拉还是别的数学家大对家这好 些数都还不甚清楚。
8
Euler 认为复数仅在想象中存在, 1777年,Euler采用 i 代表 1
4 复数真正被接受主要归功于德国数学家高斯 (C.F.Gauss,1777-1855), 1799年,他把复数的 思想融入到对代数学基本定理的证明中。
(整理)数学物理方法教案
中国海洋大学数学系教案
------《数学物理方法》
课程英文名称:Methods of Mathematical Physics
课程总学时:85
总学分:5
教材:高等数学(四)
编者:四川大学数学系
出版社:高等教育出版社
出版时间及版次:1985年6月第2版
授课对象:全校理工科学生
撰写人:尹彦彬赵元章王丽萍
撰写时间:2006年3月
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案
《数学物理方法》教案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i =试用三角形式表示12z z 及12z z 。
解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。
证明:1230;z z ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。
1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。
即123z ,z ,z 是内接于单位圆的正三角形。
.17.证明:三角形内角和等于。
证明:有复数的性质得:3213 213arg;arg;arg;z z z zz zz z z z z zαβγ---===---21z zz z-•-arg(1)2;kαβγπ∴++=-+0;k∴=;αβγπ∴++=第一章复数与复变函数(2)7.试解方程()4400z a a+=>。
解:由题意44z a=-,所以有()410zaa⎛⎫=->⎪⎝⎭;4cos sin izi eaπππ⎛⎫=+=⎪⎝⎭;所以24(0,1,2,3)kize kaθπ+==;41iz aeπ=;342iz aeπ=;543iz aeπ=;744iz aeπ=.12.下列关系表示的z点的轨迹的图形是什么?它是不是区域?1212(1).()z z z z z z-=-≠解:此图形表示一条直线,它不是区域。
(2).4;z z≤-≤816;2;x x≤≤此图形为≤x2的区域。
1(3).1;1zz-<+解:222211(1)(1);z z x y x y -<+-+<++;22;0;x x x -<>此图形为x>0的区域。
(4).0arg(1)2Re()3;4z z π<-<≤≤且解:此图形表示[2,3]区间辐角在[0,]4π的部分。
(5).1Im 0;z z ≥>且解:1z ≥表示半径为1的圆的外上半部分及边界,它是区域。
12(6).Im ;y z y <≤解:它表示虚部大于1y 小于等于2y 的一个带形区域。
(7).231;z z >->且解:此图形表示两圆的外部。
131(8).;2222i i z z ->->且解:211()22y +->2x ,2231()22x y +->,它表示两相切圆半径为12的外部区域。
(9).Im 12;z z ><且解:此图形表示半径为2的圆的内部,且Im 1z >的部分,它是区域。
(10).20arg ;4z z π<<<且)解:此图象表示半径为2的圆的内部且辐角主值在4π⎡⎤⎢⎥⎣⎦0,的部分,它是区域。
第二章 解析函数(1)4.若函数()f z 在区域D 上解析,并满足下列的条件,证明()f z 必为常数.()()0f z z D '=∈证明:因为()f z 在区域上解析,所以,u v u v x y yx ∂∂∂∂==-∂∂∂∂。
令()()(),,f z u x y iv x y =+,即()0u vf z i x y ∂∂'=+=∂∂。
由复数相等的定义得:0u v x y ∂∂==∂∂,0u vy x ∂∂=-=∂∂。
所以,()1,u x y C =(常数) ,()2,v x y C =(常数),即()12f z C iC =+为常数。
5 .证明函数在z 平面上解析,并求出其导数。
(1)(cos sin )(cos sin ).x x e x y y y ie y y x y -++ 证明:设()()(),,f z u x y iv x y =+=(cos sin )(cos sin ).x xe x y y y ie y y x y -++ 则(),(cos sin )x u x y e x y y y =-,(),(cos sin )xv x y e y y x y =+ (cos sin )cos x x u e x y y y e yx ∂=-+∂;cos sin cos x x x v e y y ye x ye y ∂=-+∂(sin sin cos )x u e x y y y y y ∂=-++∂; (cos sin sin )x v e y y x y y x ∂=++∂满足;u v u vx y yx ∂∂∂∂==-∂∂∂∂。
即函数在z 平面上(),x y 可微且满足C R -条件,故函数在z 平面上解析。
()(cos sin cos )(cos sin sin )x x u vf z i e x y y y y ie y y x y y x x ∂∂'=+=-++++∂∂8.由已知条件求解析函数()f z u iv =+, 22u x y xy =-+,()1f i i =-+。
解:2,2x y u x y u y x =+=-+,2,2xx yy u u ==-。
所以xx yy u u +=即u 是平面上调和函数。
由于函数解析,根据C R -条件得2x y u v x y ==+,于是,22()2y v xy x ψ=++,其中()x ψ是x 的待定函数,再由C —R 条件的另一个方程得2'()x v y x ψ=+=2y u y x-=-,所以'()x x ψ=-,即2()2x x c ψ=-+。
于是22222y x v xy c=+-+又因为()1f i i =-+,所以当0,1x y ==,时1u =,112v c =+=得12c =所以()22221(2)222y x f z x y xy i xy =-+++-+。
第二章 解析函数(2)12.设ω是z 的解析函数,证明x y u v ∂∂=∂∂,x y vu ∂∂=-∂∂ (,)u iv z x iy ω=+=+。
证明:ω是z 上的解析函数,所以,ω在(),x y 上处处可微,即u v x y ∂∂=∂∂,u vy x ∂∂=-∂∂,所以,u v y v u x x y v y x u ∂∂∂∂∂∂=∂∂∂∂∂∂,所以x y u v ∂∂=∂∂, 同理,u v y v u x y y vx x u ∂∂∂∂∂∂=-∂∂∂∂∂∂,所以,x y v v ∂∂=-∂∂ 即得所证。
14.若z x iy =+,试证:(1)sin sin cos z xchy i xshy =+。
证:sin sin()sin cos cos sin z x iy x iy x iy =+=+=()sin cos 22iiy i iy iiy iiye e e e x xi --+-+ =()sin cos 22y y i iy ye e e e x i x--+-+sin cos xchy i xshy =+18.解方程ln 2i z π=。
解:ln ln arg 02i z z i z π=+=+, 即1,arg 2z z π==,设z x iy =+1=,()arg 2x iy π+=得0,1x y ==,即z i =。
20.试求2(1),3,,i i i ii i e ++及(1)Ln i +。
解:(2)222,0,1,2,i k ik iiLnii eeek ππππ+--====±±⋅⋅⋅(2)(1)244(1)(cos ln sin ln i k i iLn i k i eei e e ππππ+++===,0,1,2,k =±±⋅⋅⋅(1)ln(1)22(2)44Ln i i i k ii k i k πππππ+=++=+=+0,1,2,k =±±⋅⋅⋅3(ln32)3cosln3sin ln3i iLn i k e e i π+===+ 222(cos1sin1)i i e e e e i +==+22,求证0sin lim 1z z z →=证: z x iy =+(x,y,均为实数),所以,sin sin()lim lim z x y z x iy z x iy →∞→∞+=+ 当0x →则极限趋近于z 轴,有sin lim 1iy iyi y iy e e iy iyz -→∞-==当0y →时,则极限趋于z 轴,有sin lim 1x x x →∞=,故sin lim 1z z z →∞=。
第三章 柯西定理 柯西积分(1)1.计算积分120),ix y ix dz +-+⎰(积分路径是直线段。
解:令z=(1+i)dz , dz=(1+i)dt ,则:120(1)it i dz =+⎰⎰1+i20(x-y+ix )dz 312011(1)(1)033t i i t dt i -=-=-=⎰。
2.计算积分路径是(1)直线段,(2)右半单位圆,(3)左半单位圆。
解:1(11)z it t dz idt z t =-≤≤==()令,, ,11111()iiz dz t idt i t dt i tdt i---==-+=⎰⎰⎰⎰所以(2).cos sin ()(sin cos )122z i dz d z ππθθθθθθ=+-≤≤=-+=令:,, ,则2222sin cos 022iiz i d i d i iππππθθθθ---=-+=+=⎰⎰⎰3(3).cos sin ((sin cos )122z i dz i d z ππθθθθθθ=+=-+=令 从到),, ,223322sin cos 022iiz d i d i iππππθθθθ-=-+=+=⎰⎰⎰5.不用计算,证明下列分之值为零,其中C 为单位圆。