九年级数学上册 圆 几何综合检测题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册圆几何综合检测题(Word版含答案)

一、初三数学圆易错题压轴题(难)

1.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•

(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;

(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:

①当D、M、Q三点在同一直线上时,求运动时间t;

②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.

【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.

【解析】

试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;

②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.

试题解析:(1)四边形EFPQ是菱形.

理由:过点Q作QH⊥AB于H,如图①,

∵t=5,∴AP=2×5=10.

∵点Q是AP的中点,

∴AQ=PQ=5.

∵∠EDF=90°,DE=4,DF=3,

∴EF==5,

∴PQ=EF=5.

∵AC∥EF,

∴四边形EFPQ是平行四边形,且∠A=∠FEB.

又∵∠QHA=∠FDE=90°,

∴△AHQ∽△EDF,

∴.

∵AQ=EF=5,

∴AH=ED=4.

∵AE=12-4=8,

∴HE=8-4=4,

∴AH=EH,

∴AQ=EQ,

∴PQ=EQ,

∴平行四边形EFPQ是菱形;

(2)①当D、M、Q三点在同一直线上时,如图②,

此时AQ=t,EM=EF=,AD=12-t,DE=4.

∵EF∥AC,

∴△DEM∽△DAQ,

∴,

∴,

解得t=;

②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,

过点Q作QH⊥AB于H,如图③,

则有∠HQD=∠HDQ=45°,

∴QH=DH.

∵△AHQ∽△EDF(已证),

∴,

∴,

∴QH=,AH=,

∴DH=QH=.

∵AB=AH+HD+BD=12,DB=t,

∴++t=12,

∴t=5;

Ⅱ.当点Q在∠FDB的角平分线上时,

过点Q作QH⊥AB于H,如图④,

同理可得DH=QH=,AH=.

∵AB=AD+DB=AH-DH+DB=12,DB=t,

∴-+t=12,

∴t=10.

综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.

考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.

2.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,

(1)求证:直线AB是⊙O的切线;

(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.

【答案】(1)见解析;(2)

5

【解析】

【分析】

(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;

(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出

DC=35

5

x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.

【详解】

(1)证明:连接OC,如图1,

∵OA=OB,AC=BC,

∴OC⊥AB,

∵OC过O,

∴直线AB是⊙O的切线;

(2)解:连接OC、DC,如图2,

∵AB=4AD,

∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,

∴∠DCF=90°,

∵OC⊥AB,

∴∠ACO=∠DCF=90°,

∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,

∴∠AFC=∠OCF,

∴∠ACD=∠AFC,

∵∠A=∠A,

∴△ADC∽△ACF,

1

22 AC AD DC x

AF AC CF x

====,

∴AF=2AC=4x,FC=2DC,

∵AD=x,

∴DF=4x﹣x=3x,

在Rt△DCF中,(3x)2=DC2+(2DC)2,

解得:DC

x,

∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC

=,

∴∠CFE=∠AFC,

∴sin∠CFE=sin∠AFC=DC

DF

=5

3

x

x

=

【点睛】

本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.

3.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.

(1)求证:∠E=∠C;

(2)若⊙O的半径为3,AD=2,试求AE的长;

(3)在(2)的条件下,求△ABC的面积.

相关文档
最新文档