高分辨扫描透射电子显微镜原理及其应用
扫描电子显微镜的结构原理和功能用途
扫描电子显微镜的结构原理和功能用途扫描电镜简介电子源发射的电子束经过电磁透镜的电子光学通路聚焦,电子源的直径被缩小到纳米尺度的电子束斑,与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在样品表面一定微小区域内,逐点逐行扫描。
电子束与样品相互作用,从样品中发射的具有成像反差的信号,由一个适当的图像探测器逐点收集,并将信号经过前置放大器和视频放大器,用调制解调电路调制显示器上相对应显示像素的亮度,形成我们人类观察习惯的,反映样品二维形貌的图像或者其他可以理解的反差机制图像。
由于图像显示器的像素尺寸远远大于电子束斑尺寸,(0.1mm/1nm=100,000倍)而且显示器的像素尺寸小于等于人类肉眼通常的分辨率,这样显示器上的图像相当于把样品上相应的微小区域进行了放大。
通过调节扫描线圈偏转磁场,可以控制电子束在样品表面扫描区域的大小,理论上扫描区域可以无限小,但可以显示的图像有效放大倍数的限度是扫描电镜分辨率的限度。
模拟图像扫描系统:样品上每个像素模拟信号直接调制阴极射线管对应显示像素的亮度,由于生成一幅高质量图像一般需要数秒或者数十秒/帧,所以模拟电镜使用慢余辉显像管终端显示一幅活图像,为了便于在显像管上观察图像,需要暗室,操作者可按照一定规程调整仪器参数,如图像聚焦,移动样品台搜索感兴趣区域,调节放大倍数,亮度对比度,消象散等从而获得最佳的图像质量。
模拟图像输出采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。
自1985年以来,模拟图像电镜已经被数字电镜取代。
数字图像扫描系统:样品上每个像素发出的成像信号,被图像探测器探测器后,经过前置放大器,和视频放大器放大,直接进行信号数字化,然后存储在图像采集卡的帧存器,形成数字图像数据,图像数据可被电镜操作软件读取,操作者在图形交互界面(GUI)上对图像进行调整控制,并把调整好的数字图像存储在计算机中硬盘中。
模拟控制是控制信号不经过计算机软件,直接由操作台按键旋钮等对执行机构进行控制,属于人工手动控制,控制精度由操作者观察仪表盘的变化决定.例如高压电源,扫描线圈,探测器电源,电子枪控制,磁透镜控制,样品台的运动控制等等。
透射电子显微镜下的生物大分子结构解析
透射电子显微镜下的生物大分子结构解析一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束穿透样品的高分辨率显微镜技术。
与传统的光学显微镜相比,透射电子显微镜能够提供纳米级别的分辨率,这使得它在生物大分子结构解析领域具有独特的优势。
本文将探讨透射电子显微镜在生物大分子结构解析中的应用,分析其原理、技术特点以及在生物科学领域的重要作用。
1.1 透射电子显微镜的基本原理透射电子显微镜的工作原理基于电子光学原理,电子束通过电磁透镜聚焦,穿透样品后,由检测器接收并转换成图像。
由于电子波长远小于可见光,因此TEM能够达到比光学显微镜更高的分辨率。
1.2 透射电子显微镜的技术特点透射电子显微镜具有以下技术特点:- 高分辨率:能够达到原子级别的分辨率,适合观察生物大分子的精细结构。
- 多模式成像:除了传统的透射成像外,还可以进行扫描透射成像(STEM)和电子衍射等。
- 样品制备要求:需要将生物样品制备成极薄的切片,以确保电子束的有效穿透。
- 环境控制:需要在高真空环境下操作,以避免电子束与空气分子的相互作用。
1.3 透射电子显微镜在生物大分子结构解析中的应用透射电子显微镜在生物大分子结构解析中的应用非常广泛,包括蛋白质、核酸、病毒等生物大分子的形态学研究和结构分析。
二、生物大分子结构解析的技术和方法生物大分子结构解析是一个复杂的过程,涉及多种技术和方法。
透射电子显微镜技术在这一过程中扮演着重要角色,但也需要与其他技术相结合,以获得更全面和准确的结构信息。
2.1 样品制备技术生物大分子的样品制备是结构解析的第一步,也是关键步骤之一。
透射电子显微镜要求样品必须足够薄,通常需要使用超微切割、冷冻断裂或聚焦离子束等技术来制备样品。
2.2 高分辨率成像技术高分辨率成像是获取生物大分子结构信息的基础。
透射电子显微镜通过优化电子束的聚焦、样品的放置和成像条件,可以获得高质量的图像。
TEM电子显微镜工作原理详解
TEM电子显微镜工作原理详解TEM电子显微镜是一种高分辨率的分析仪器,能够在纳米尺度下观察材料的微观结构和成分,对于研究材料的性质和特性具有重要意义。
本文将详细介绍TEM电子显微镜的工作原理,包括透射电子显微镜和扫描透射电子显微镜。
透射电子显微镜(Transmission Electron Microscope,TEM)工作原理:透射电子显微镜主要由电子光源、透镜和探测器组成。
首先,电子光源发射高能电子束,这些电子从阴极发射出来,经过加速器获得较高的能量。
然后,电子束通过一系列的电磁透镜进行聚焦,使电子束变得更加细致和密集。
接着,电子束通过物质样本,部分电子被样本吸收或散射,形成透射电子。
这些透射电子被接收器捕获和放大成像,形成TEM图像。
透射电子显微镜的工作原理是基于电子的波粒二象性。
电子是一种粒子同时也是一种波动,其波动性质使得它具备非常短的波长,远远小于可见光的波长。
这使得TEM能够观察到比传统光学显微镜更小的尺度。
另外,透射电子显微镜在工作中还需要考虑电子束的束流强度、对样本的破坏性和控制样本与探测器之间的距离等因素。
TEM电子显微镜通过透射电子成像方式观察样本,因此对样本的制备要求非常高。
样品需要制备成非常薄的切片,通常厚度在几十纳米到几百纳米之间,以保证电子可以穿透。
对于一些无法制备成切片的样品,可以利用离子切割或焦离子技术获得透明的样品。
此外,在观察样本时需要避免污染和氧化等现象。
扫描透射电子显微镜(Scanning Transmission Electron Microscope,STEM)工作原理:扫描透射电子显微镜是透射电子显微镜的一种变种,它在透射成像的基础上加入了扫描功能。
STEM可以实现高分辨率的成像,同时也可以进行能谱分析和电子衍射。
STEM电子显微镜工作原理类似于透射电子显微镜,但需要注意的是,STEM使用的电子束并不需要通过所有的样本区域。
电子束只需通过样本中的一个小区域,然后扫描整个样本,因此样本制备要求和透射电子显微镜相比较低。
电子显微镜高分辨率成像原理解析
电子显微镜高分辨率成像原理解析电子显微镜是一种利用电子束代替光束进行成像的高分辨率显微镜。
相比传统光学显微镜,电子显微镜具有更高的分辨率和更强的穿透能力,因此在物理学、材料科学、生物学等领域具有广泛的应用。
本文将解析电子显微镜的高分辨率成像原理。
电子显微镜的高分辨率成像原理基于电子波的性质。
与光波相比,电子波有更短的波长,因此可以提供更高的分辨率。
电子显微镜中使用的是加速的电子束,其波长约为0.004 nm,远远小于可见光的波长(约为500 nm)。
由于波长的差异,电子波在物质中传播时与光波有明显不同的相互作用。
在电子显微镜中,电子束首先通过电子枪发射出来。
电子枪由一个热阴极和一系列电场构成,使电子获得高速和定向。
然后,电子束经过一系列电磁透镜进行聚焦,以提高成像的分辨率。
透镜的聚焦原理与光学显微镜中的透镜类似,但是由于电磁透镜对电子束的作用是基于电磁力而不是折射,因此可以实现更高的分辨率。
在样品前面放置一个光学透镜或者一个透明的薄膜,这样可以让电子束在穿过样品之前先经过一次散射。
散射过程会产生一个衍射斑,其中包含了有关样品的信息。
这个衍射斑被成像系统接收,并通过数学逆变换(如傅里叶变换)来还原成样品的图像。
为了获得高分辨率的成像,电子显微镜通常使用透射电子显微镜(TEM)。
在TEM中,电子束穿过非常薄的样品,然后通过光学透镜进行成像。
这种设计可以减少样品与电子束之间的相互作用,提高成像的分辨率。
另一种常用的电子显微镜是扫描电子显微镜(SEM)。
在SEM中,电子束通过针尖和样品之间的空间,而不是穿过样品。
电子束扫描样品表面,并通过扫描电子显微镜的探测器接收反射、透射、散射的电子,然后将这些信号转化为图像。
SEM通常用于观察样品表面的形貌和细微结构。
除了分辨率,电子显微镜的成像质量还取决于样品的制备和环境条件。
样品的制备通常涉及将样品切割成非常薄的切片,并在真空或低压环境中进行观察,以避免电子束与空气分子相互作用。
透射电子显微镜的原理及应用
透射电子显微镜的原理及应用一.前言人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。
光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。
光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。
但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。
如要求分表几十埃或更小尺寸的分子或原子。
一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。
阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。
在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。
图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。
实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。
图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。
图中表示了像平面上光强度的分布。
约84%的强度集中在中央亮斑上。
其余则由内向外顺次递减,分散在第一、第二……亮环上。
一般将第一暗环半径定义为埃利斑的半径。
如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。
当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下:αλsin 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。
上式表明分辨的最小距离与波长成正比。
在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。
于是,人们用很长时间寻找波长短,又能聚焦成像的光波。
后来的X 射线和γ射线波长较短,但是难以会聚聚焦。
1924年德布罗(De Broglie )证明了快速粒子的辐射,并发现了一种高速运动电子,其波长为0.05A 。
,这比可见的绿光波长短十万倍!又过了两年布施(Busch )提出用轴对称的电场和磁场聚焦电子线。
扫描电子显微镜的原理和应用
扫描电子显微镜的原理和应用扫描电子显微镜是一种利用电子束扫描样品表面并对扫描到的电子信号进行成像的高分辨率显微镜。
与光学显微镜不同,扫描电子显微镜利用电子束通过透镜和场控制技术非常高效地聚焦并成像,以获得超高分辨率的成像效果,以及大量的表面和物质信息。
扫描电子显微镜的原理扫描电子显微镜的核心是电子光源,它利用热发射、光电发射或场致发射等方式产生的电子束,经过一系列的焦距透镜、偏转线圈、探针控制和信号采集系统组成。
扫描电子显微镜的成像原理和传统光学显微镜略有不同。
它不是通过透镜去聚焦光线来成像,而是通过利用电子作用在样品表面的电磁场和电子-物质相互作用来实现的。
扫描电子显微镜利用电子束在样品表面扫描出一个小点,由电子-物质相互作用产生的电子信号被收集并转化成电子图像数据,然后利用计算机对数据进行图像处理,形成高分辨率的显微成像,以及其它相关物化信息。
扫描电子显微镜的应用扫描电子显微镜因其超高分辨率和强大的化学和物理分析功能而广泛应用于许多领域。
在材料科学领域,扫描电子显微镜广泛用于各种材料的表面和微结构分析,包括晶体结构、颗粒形貌、纳米结构、原子局部构型等。
其中,扫描透射电子显微镜(STEM)可以提供比常规扫描电子显微镜更高的结构分辨率,可用于对材料和生物样品的超高分辨率成像和分析。
在生物科学领域,扫描电子显微镜广泛应用于生物样品的形态与结构分析,如细胞器、膜结构、细胞外矩阵等。
同时,扫描电子显微镜也被用于对代谢过程和细胞凋亡等重要生物过程的研究。
在微电子制造和半导体工业中,扫描电子显微镜用于分析芯片表面的纳米结构和性能,以及其他半导体材料和器件的研究和开发。
在环境科学领域,扫描电子显微镜可用于分析环境污染物的化学成分和形态,如粉尘、气溶胶、烟尘等,有助于研究它们的来源、形成机制和生物毒性。
结论扫描电子显微镜是一种高分辨率的显微镜技术,具有广泛的应用前景和重要的科学意义。
不仅能够提高我们对材料、生物样品、半导体和环境的理解,而且也在未来的许多领域中发挥着重要的作用。
扫描电子显微镜的原理及应用
扫描电子显微镜的原理及应用扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种使用电子束而不是光束的显微镜,它通过对被测样品表面进行扫描和检测,以获取高分辨率的图像。
SEM具有优秀的分辨率和放大倍数,被广泛应用于材料科学、生命科学、纳米技术、地质学等领域。
SEM的工作原理如下:1. 产生电子束:通过电子枪产生高能电子束,电子枪包括一个热阴极和一根聚焦的阳极。
电子束可以通过区域限制器(aperture)来控制束流的大小。
2.加速电子束:电子束通过电子镜来加速,这是一个由透镜组成的系统。
电子束在电子镜中得到聚焦,束流变窄,成为高能、高分辨率的束流。
3.扫描样品:样品被放置在SEM的样品台上,电子束通过磁场的作用进行X、Y方向扫描。
扫描电子镜的样品台通常也可以进行上下方向的运动,以获得不同深度的图像。
4.接收和检测:当电子束照射在样品表面上时,样品中发生的相互作用将会发射出各种信号,包括二次电子、透射电子、X射线以及退火融合过程产生的光谱信号等。
SEM通过收集并检测这些信号,并将其转化为电信号。
5.构建显像:电信号被转化为亮度信号,并用于构建图像。
SEM可以生成大量的图像类型,包括二次电子图像(SE图像)、透射电子图像(BSE图像)、X射线能谱图(EDS图像)等。
6.分析和测量:SEM可以提供非常详细的样品表面形貌信息,包括形貌、尺寸、形状、纹理等。
还可以使用EDS技术分析样品的化学元素组成。
SEM的应用范围十分广泛:1.材料科学:SEM可以研究材料的微观结构、相变过程、表面形貌以及晶格结构等。
它可以用于分析金属、陶瓷、纤维、塑料等材料的微观结构,从而改进材料的性能和开发新材料。
2.生命科学:SEM非常适合观察生物样品的微观结构,如昆虫、细胞、细菌等。
它可以研究生物样品的组织结构、表面形貌,以及细胞壁、细胞器等微观结构。
3.纳米技术:SEM可以观察和测量纳米级别的颗粒、膜、纳米线、纳米管等纳米材料。
扫描电镜的原理与应用
扫描电镜的原理与应用1. 扫描电镜的原理扫描电镜(Scanning Electron Microscopy,SEM)是一种高分辨率、高放大倍数的显微镜,它利用电子束对样本进行扫描,通过收集样本产生的散射电子和二次电子来生成图像。
其原理主要包括以下几个步骤:1.电子发射:在扫描电子显微镜中,首先需要产生高能的电子束。
这通常通过热力发射或场致发射来实现。
对于热力发射,根据石鹢-德拜方程,利用电子枪通过加热金属丝或陶瓷发射体,使其发射出的电子能够获得足够的能量进入到显微镜的系统中。
2.电子透镜系统:扫描电子显微镜中的电子束需要通过一系列的电子透镜系统进行聚焦。
这些电子透镜包括磁透镜、电透镜和取向透镜等。
通过精确控制这些电子透镜,可以获得较小的电子束尺寸和良好的分辨率。
3.样本交互:样本位于电子束进入样品室的位置。
当电子束与样品相互作用时,会产生多种相互作用,包括透射、反射、散射等。
通过控制电子束的扫描方式,可以对不同相互作用的电子进行收集和分析。
4.信号检测和图像生成:通过探测电子束与样品相互作用产生的信号,可以获取样品表面上的丰富细节信息。
最常用的信号检测方法包括二次电子检测和散射电子检测。
通过收集这些信号,并进行信号处理和图像生成,可以获得样品的高分辨率图像。
2. 扫描电镜的应用扫描电镜在各个领域中都有广泛的应用,其高分辨率和高放大倍数的特点使其成为了研究和观察微观结构的重要工具。
以下列举了几个扫描电镜应用的领域:2.1 材料科学•纳米材料研究和观察:扫描电镜可以对纳米材料进行表面和内部结构的观察,有助于研究纳米材料的物理性质和化学反应过程。
•材料表面形貌观察:扫描电镜可以观察材料表面的形貌特征,如晶体结构、表面缺陷、孔洞分布等,有助于研究材料的结构与性能。
2.2 生物科学•细胞观察:扫描电镜可以观察细胞的形态和结构,包括细胞壁、细胞膜、细胞核、细胞器等,有助于研究细胞的功能和生理过程。
•组织结构研究:扫描电镜可以观察组织的微观结构,有助于研究组织的生物学特性和病理学变化。
电子显微镜与扫描隧道显微镜的应用
电子显微镜与扫描隧道显微镜的应用当我们想要观察通常无法分辨的微观结构时,电子显微镜和扫描隧道显微镜这两种现代显微技术成为了不可或缺的工具。
它们可以将原本模糊和不清晰的物质信息变成高质量、高分辨率的图像,我们可以通过它们观察到最基本的元素和原子的结构,同时揭示出许多新颖的现象和材料特性。
在本文中,我们将会详细介绍这两种显微技术的原理和应用。
一、电子显微镜电子显微镜是一种基于电子束的显微技术,可以将电子束聚焦到纳米尺度的大小,它的分辨率比光学显微镜高出一个数量级以上。
电子显微镜主要分为两种类型:透射电子显微镜和扫描电子显微镜。
1. 透射电子显微镜透射电子显微镜(TEM)可以穿透样品,从而形成一个类似于投影的电子图像,并且可以将样品的内部细节显示出来。
它利用一个高能电子束透过样品,透射的电子会受到样品中原子的散射、吸收和衍射等过程的影响,最终被收集到一个荧光屏或摄像机上。
TEM的分辨率可以达到0.1纳米,可以用来观察纳米级别的结构和原子排列方式,因此在材料科学、生物医学等领域中有着广泛的应用。
例如,科学家们可以通过TEM观察到米粒、晶粒和原子的结构,以深入研究材料的特性,并利用这些知识开发出更高性能的材料。
在生物医学领域,TEM可以用来观察细胞超微结构,以探索细胞的生命活动。
2. 扫描电子显微镜扫描电子显微镜(SEM)则是一种利用电子束对样品进行扫描成像的技术,可以获得样品表面的三维结构。
SEM通过扫描物质表面形成图像,电子束会与样品表面原子发生相互作用,并在样品表面产生一系列的信号和反应,这些信号通过不同的探测器被检测并转换为图像。
相比于TEM,SEM的分辨率略低,一般在10-50纳米。
不过,它有着更广泛的应用,包括材料科学中的表面形貌研究、纳米技术研究、生物科学中的细胞外形状观测等。
例如,在材料科学中,SEM可以观察到纳米结构表面的缺陷和形貌,对研究材料力学性能有着很大的帮助。
二、扫描隧道显微镜扫描隧道显微镜(STM)是一种基于隧道效应的显微技术,它是以极高的分辨率扫描表面上绝缘或半导体物质表面的电子结构的一种方法。
电子显微镜与扫描电子显微镜
电子显微镜与扫描电子显微镜电子显微镜(Electron Microscope,简称EM)和扫描电子显微镜(Scanning Electron Microscope,简称SEM)是现代科学研究中常用的高分辨率显微技术。
本文将介绍电子显微镜和扫描电子显微镜的工作原理、技术应用和优势。
一、电子显微镜的工作原理电子显微镜利用电子束的物理性质来实现对样品的高分辨率成像。
其工作原理可以概括为电子束的发射、聚焦、扫描和检测。
1.1 电子束的发射电子显微镜中的电子束由电子枪产生。
电子枪内的发射丝加热后会发射出电子,产生的电子在加速电场的作用下获得高能量,形成高速电子束。
1.2 电子束的聚焦电子束经过准直系统和透镜系统的聚焦,使得电子束的直径变得更小,从而提高成像的分辨率。
1.3 电子束的扫描电子显微镜中的样品通常需要进行扫描,以获取整个样品的显微图像。
电子束通过扫描线圈进行水平和垂直方向的移动,扫描整个样品表面。
1.4 电子束的检测当电子束与样品相互作用时,会产生多种信号。
电子显微镜常用的检测技术包括二次电子检测、透射电子检测和能量散布谱检测等。
二、电子显微镜的技术应用电子显微镜作为高分辨率显微技术,被广泛应用于各个学科领域。
以下是几个典型的应用案例。
2.1 材料科学领域电子显微镜可以对材料的微观结构和形貌进行观察和分析,揭示材料的组织结构、晶体缺陷和界面性质等。
2.2 生物学领域生物学家利用电子显微镜观察细胞和组织的超微结构,研究生物大分子的形态和功能,探索生物体的工作原理。
2.3 医学领域电子显微镜对临床医学和生物医学研究有重要的应用。
它可以帮助医生观察病毒、细菌和组织样本等,辅助医学诊断和疾病治疗。
2.4 纳米技术领域电子显微镜对纳米材料和纳米器件的观察和测试具有重要意义。
它能够揭示纳米结构的形貌和性质,为纳米科技的发展提供有力支持。
三、扫描电子显微镜的工作原理扫描电子显微镜是电子显微镜的一种改进型式,它主要用于表面形貌的观察和分析。
扫描透射电子显微镜
虽然扫描透射电子显微镜的分辨率 已经非常高,但仍受到电子束穿透 深度的限制。对于较厚的样品,可 能无法获得清晰的图像。因此,需 要进一步优化电子束的聚焦和扫描
扫描透射电子显微镜
缺点
(1) 成本高:扫描透射电子显微镜的价格较 高,需要投入大量的资金 (2) 技术难度大:相对于其他电子显微镜, 扫描透射电子显微镜的技术难度较大,需要 专业的技术人员操作和维护 (3) 对样品的要求较高:扫描透射电子显微 镜对样品的厚度和均匀性要求较高,需要选 择合适的样品进行观察
扫描透射电子显微镜
扫描透射电子显微镜的优缺点
优点
扫描透射电子显微镜
1
扫描透射 电子显微 2
镜
3
(1) 高分辨率:扫描透射电子显微镜具有原子尺度的 分辨率,可以观察到样品的微观结构和细节
(2) 样品制备简单:相对于其他电子显微镜,扫描透 射电子显微镜的样品制备相对简单,不需要特殊的样 品制备技术
(3) 多种分析功能:扫描透射电子显微镜可以配备多 种分析功能,如能量散射谱(EDS)、X射线能谱(XEDS) 等,可以对样品进行多方面的分析
技术,以提高穿透深度和分辨率
扫描透射电子显微镜
分辨率 与穿透 深度
数据分 析与处
理
设备成 本与维
护
扫描透射电子显微镜产生的数据量 巨大,需要高效的数据处理和分析 技术。目前,尽管有许多算法和软 件可用于数据处理,但仍需要进一 步优化以提高效率和准确性
扫描透射电子显微镜的价格较高, 且需要专业的技术人员进行操作和 维护。这限制了其在一些科研机构 和学校的普及。因此,需要降低设 备成本,并简化操作和维护流程, 以扩大其应用范围
透射电子显微镜在纳米材料合成中的应用
透射电子显微镜在纳米材料合成中的应用一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束作为照明源,通过样品的透射电子成像的高分辨率显微镜。
它在纳米材料的合成与研究中扮演着至关重要的角色。
透射电子显微镜通过电子束的高穿透力,能够观察到纳米尺度的材料结构,从而为纳米材料的合成提供了强有力的技术支持。
1.1 透射电子显微镜的基本原理透射电子显微镜的基本原理是利用电子束照射样品,电子束通过样品后,部分电子被样品吸收,部分电子透过样品并被探测器接收。
通过分析透过电子的强度和分布,可以获得样品的形貌和结构信息。
透射电子显微镜的分辨率可以达到原子级别,是研究纳米材料的理想工具。
1.2 透射电子显微镜的应用领域透射电子显微镜的应用领域非常广泛,包括但不限于材料科学、纳米技术、生物医学、化学等领域。
在纳米材料的合成中,透射电子显微镜不仅可以观察材料的形貌,还可以分析材料的晶体结构、缺陷、界面等微观特征。
二、透射电子显微镜在纳米材料合成中的应用2.1 纳米材料的形貌观察透射电子显微镜在纳米材料的形貌观察中发挥着重要作用。
通过TEM,可以直观地观察到纳米材料的形状、尺寸和分布。
例如,纳米颗粒、纳米线、纳米管等不同形态的纳米材料都可以通过TEM进行观察。
这种观察对于理解材料的合成机制和优化合成条件具有重要意义。
2.2 纳米材料的晶体结构分析纳米材料的晶体结构对其性能有着决定性的影响。
透射电子显微镜可以通过高分辨电子衍射(High-Resolution Electron Diffraction, HRED)技术,对纳米材料的晶体结构进行精确分析。
通过分析电子衍射图谱,可以获得材料的晶格参数、晶体取向等信息,从而为材料的合成和应用提供理论基础。
2.3 纳米材料的缺陷与界面研究纳米材料的缺陷和界面是影响其性能的关键因素。
透射电子显微镜可以通过高角环形暗场成像(High-Angle Annular Dark Field Imaging, HAADF)技术,对纳米材料的缺陷和界面进行高分辨率成像。
高分辨透射电子显微术优秀课件.ppt
波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。
《透射电子显微镜》课件
透射电子显微镜的优点包括高分辨率、高对比度、高灵敏度、大深度和号称百万倍的放大倍 数。缺点则包括成本高,需要复杂的样品处理和分析技能。
主要部件
透射电子显微镜主要由以下几个部分组成。
电子源
在透射电子显微镜中使用的电子通常来自热丝或发 射枪。电子的产生必须在真空下进行,以避免与气 体分子相互作用。
透镜系统
透射电子显微镜的透镜系统主要包括透镜、压电陶 瓷和扫描线圈等。这些设备可在电子束内部转移和 聚焦电子以生成清晰的图像。
检测器
工作原理
透射电子显微镜将电子束传递到样品中。当电子束穿过样品时,它们与样品中的原子和分子发生相互作用,并 形成一张图像。
1
电子束的生成
通过电子源产生电子束。在常见的电子源
潜在应用
透射电子显微镜在材料科学、生物学和半导体和微 电子学以外,有许多潜在应用。例如,透射电子显 微镜可以用于分析能量存储、生物医学和太阳能等 领域。
结束语
透射电子显微镜是一种强大的工具,可用于分析微观结构、了解材料性质和研究新技术。希望这个PPT课件能 让更多的人了解透射电子显微镜,并鼓励更多的人来研究和应用这项技术。
电子束的准直和聚焦
2
中,通过加热钨丝等材料来产生电子。
使用透镜系统将电子束准直和聚焦,以使
电子束具有较小的纵向、径向直径和透射
度。
3
电子束与样品的相互作用
电子束穿过样品并与样品中的电子云相互
作用,同时使样品产生信号。这些信号被
信号的检测检测器收集并解析透射电子显微镜样品与 电子束相互作用所生成的信号。
应用
透射电子显微镜在各种不同的领域中都有广泛的应用,其中包括材料科学、生物学和半导体和微电子学。
高分辨率电子显微镜技术
高分辨率电子显微镜技术电子显微镜(Electronic Microscope)是一种使用电子豪森对物体进行照射并通过对电子束散射的收集与分析得到物体细节的一种显微镜。
高分辨率电子显微镜技术(High-Resolution Electron Microscopy,简称HRTEM)是现代科学研究中非常重要的一项技术。
一、电子显微镜技术的发展历史电子显微镜技术起源于1931年,由德国物理学家布舍发明,但由于受限于技术条件,直到20世纪40年代中期才真正得到发展。
1942年,于堪萨斯州的University of Toronto的莱斯特·布罗德比率先提出了电子显微镜的设计图纸,开创了电子显微镜的时代。
50年代,随着透射电子显微镜的发展,人们开始能够观察到原子尺度下的细节。
在20世纪60年代,随着扫描电子显微镜的问世,人们能够观察到更高的分辨率,表面形貌也可见,这推动了材料科学和生物科学的研究。
二、高分辨率电子显微镜的原理与结构高分辨率电子显微镜主要包括以下三个部分:电子源、透射系统和检测系统。
电子源是指发射电子的装置,常见的有热阴极和场发射电子源。
透射系统是指将电子束引导到样品的过程,其中最关键的是电子透镜系统,用于聚焦电子束。
检测系统可以分为像差补偿系统和探测器系统。
在高分辨率电子显微镜中,通过控制电子的聚焦和倾斜,利用电子在物质中的相互作用与散射产生的信息,可以得到高分辨率的图像。
三、高分辨率电子显微镜应用领域1. 材料科学领域:高分辨率电子显微镜技术可以观察到材料的原子结构、晶格缺陷、界面结构等细节,有助于研究新材料的合成和性能优化。
2. 纳米科学与纳米技术领域:高分辨率电子显微镜技术能够观察到纳米材料的形貌、内部结构和元素成分等信息,对纳米材料的制备和性质研究有重要意义。
3. 生物学领域:高分辨率电子显微镜技术可以观察到生物组织细胞的超微结构,对于解析生物分子的结构和功能具有重要的作用,如观察到蛋白质的三维结构、细胞器的形态和分布等。
高分辨扫描透射电子显微镜原理及其应用_贾志宏
一次实验中可以同时对样品的化学成分、原子结
构、电子结构进行分析[7]。
3 扫描透射电子显微术成像
3.1 原子分辨率 HAADF 像
获得高分辨 Z 衬度像的两个必要条件是原 子尺度的高亮度电子束斑和环形探测器。电子 束的束斑只有小于或等于 0.2 nm 时才能获得原 子分辨率的图像,因此将电子束聚焦为小而亮 的束斑对于提高扫描透射电镜的分辨率至关重 要。由于透射电子显微镜的电磁透镜存在很大的 像差,限制了可形成的最小束斑及其电流强度, 从而直接影响像的分辨率和信噪比。利用球差校 正技术,可以使得电镜获得更小的电子束斑及更 高的束斑电流强度。配备球差校正器的电镜在 200 kV 电压下可获得至少 0.1 nm 的电子束斑,同 时电子束电流密度提高 10 倍以上,使得 Z 衬度像 的分辨率和探测敏感度进一度提高,电镜的分辨 率进入亚埃尺度,可以获得单个原子的成像 。 [8] 高分辨率 Z 衬度像可以从原子尺度来研究界面、 纳米相和缺陷结构成分以及元素偏聚等复杂的 材料结构[9]。2011 年,FEI 公司推出了配有 ChemiSTEM 技术的球差校正 Titan G2 80-200 电镜,将 超稳定的高亮度 Schottky FEG 源与探针校正技 术结合,实现了 0.08 nm 的原子分辨成像。2014 年 5 月,日本电子株式会社(JEOL)发布了其新一 代球差校正电镜 JEM-ARM300F,HRTEM 的分辨 率 可 以 达 到 0.05 nm, HAADF-STEM 分 辨 率 达 到 0.063 nm,将商业化的透射电镜推向了一个新 极限。
Keywords scanning transmission electron microscopy, high angle annular dark field imaging, X-ray energy-dispersive spectrometry, electron energy loss spectrometry
透射电子显微镜在材料科学中的应用
透射电子显微镜在材料科学中的应用材料科学是研究材料的性质、结构和制备方法的学科。
其中,电子显微镜在材料科学领域中有着至关重要的作用。
其原理是通过将电子束聚焦后照射在样品表面,通过对电子的散射和透射来观察样品的内部结构和表面形貌。
其中透射电子显微镜(TEM)在材料科学领域中的应用更是十分广泛。
透射电子显微镜是一种高分辨率的显微镜,它可以显微观察材料的内部结构和微观形貌。
其分辨率可达到0.1纳米以下,甚至可以观察到原子级别的结构和构型。
因此,透射电子显微镜被广泛应用于材料科学中对新材料的研究、性能改进和制备方法的研究等方面。
首先,透射电子显微镜可以用于材料的微观结构研究。
通过透射电子显微镜,我们可以观察到材料的晶体结构、氧化物的形态及其分布、合金结构、纳米材料的形态等等。
材料的晶体结构是材料科学中的一个重要参数,在新材料的研究中也是一个不可缺少的参数。
通过透射电子显微镜,可以观察到材料的晶体面、晶粒大小、晶格缺陷等参数,从而了解材料的晶体结构,有助于材料的性质改进和新材料的制备。
其次,透射电子显微镜可以用于材料的性能研究。
例如,透射电子显微镜可以用于研究各种材料的疲劳性能、塑性变形特性、应力分布等。
通过对这些性能的研究,可以了解材料的机械性能、热性能、电性能等方面的特点,为材料的性能改进提供依据。
第三,透射电子显微镜可以用于纳米材料的研究。
通过透射电子显微镜,可以观察到纳米材料的微观形态和动态过程。
例如,可以观察到纳米材料的结晶状态和缺陷、微观结构、成核和生长机制等。
同时,也可以通过透射电子显微镜来探索纳米材料与其他材料的相互作用和反应机制,如纳米材料与生物大分子、其他材料的交互作用,从而为纳米材料的性能改进提供基础。
第四,透射电子显微镜可以用于研究新型材料的制备方法。
通过透射电子显微镜,可以观察材料的制备过程中样品的结构演变情况,从而了解制备方法对材料内部结构的影响。
例如,在合金制备中,可以通过透射电子显微镜了解不同材料的混合过程,分析制备后的合金材料结构和性能变化,从而为新型材料的制备提供参考和方法。
第十二章高分辨透射电子显微术ppt课件
第八章 电子光学基础 第九章 透射电子显微镜 第十章 电子衍射 第十一章 晶体薄膜衍衬成像分析 第十二章 高分辨透射电子显微术 第十三章 扫描电子显微镜 第十四章 电子背散射衍射分析技术 第十五章 电子探针显微分析 第十六章 其他显微结构分析方法
1
第十二章 高分辨透射电子显微术
图12-14 Al-Si合金粉末的高分辨像 a)、SEM像 b)和TEM明场像 c) 22
第三节 高分辨电子显微术的应用
六、高分辨像的计算机模拟
由图12-15可说明,Si3N4晶界上有一非晶层, NiAl2O4 与NiO相界为稳定界面, Fe2O3表面为其(0001)面
图12-15 几种平面界面的高分辨像 a) Ge的晶界 b) Si3N4的晶界
的实验像a)、b)、c)及模拟高分辨像d)、e)、f)
16
第三节 高分辨电子显微术的应用
材料的微观结构与缺陷结构,对材料的物理、化学和力 学性质有重要影响。利用高分辨电子显微术,可以在原子尺 度对材料微观结构和缺陷进行研究,其应用主要包括 1) 晶体缺陷结构的研究 2) 界面结构的研究 3) 表面结构的研究 4) 各种物质结构的研究 下面给出一些典型的高分辨像,用图示说明高分辨透射电镜 在材料原子尺度显微组织结构、表面与界面以及纳米粉末结 构等分析研究中的应用
电子束倾斜和样品倾斜均会影响高分辨像衬度,电子 束 轻微倾斜,将在衍射束中引入不对称的相位移动
图12-6所示为 Ti2Nb10O29 样品厚度为7.6 nm时的高分辨模 拟 像。图中清楚表明,电子束或样品即使是轻微倾斜,对高 分 辨像衬度也会产生较明显影响
样品倾斜 / mrad
电子束倾斜 / mrad
六、高分辨像的计算机模拟
高分辨率电子显微技术
高分辨率电子显微技术电子显微技术是一种通过利用电子束来观察微观结构的方法。
自电子显微镜(Electron Microscope,简称EM)诞生以来,高分辨率电子显微技术逐渐成为科学研究和工业生产中不可或缺的手段。
本文将详细介绍高分辨率电子显微技术的原理、应用以及近年来的发展趋势。
一、原理和分类高分辨率电子显微技术主要包括透射电子显微镜(Transmission Electron Microscope,简称TEM)和扫描电子显微镜(Scanning Electron Microscope,简称SEM)两种类型。
1. 透射电子显微镜(TEM)透射电子显微镜通过将电子束穿过样品并收集经过样品传输的电子,使用电子透镜来聚焦电子束,从而形成高分辨率的显微图像。
TEM可以提供样品的细节结构信息,并且能够观察到纳米级别的物质。
2. 扫描电子显微镜(SEM)扫描电子显微镜通过在样品上扫描电子束,并测量扫描电子的反向散射电子,从而获得样品表面的形貌信息。
与透射电子显微镜相比,SEM能够提供更高的表面分辨率,并且对于不同形态的样品具有更广泛的适用性。
二、应用领域高分辨率电子显微技术在许多科学研究领域和工业生产中发挥着重要作用。
1. 材料科学高分辨率电子显微技术被广泛应用于材料科学研究中,用于观察材料的微观结构、晶体结构、晶格缺陷和界面等。
这有助于了解材料的性能和性质,并为材料的制备和改良提供指导。
2. 生物学在生物学研究中,高分辨率电子显微技术可以提供有关生物细胞、细胞器和生物分子的详细信息。
它能够揭示生物体内各种超微结构的存在及其相互关系,如细胞核、线粒体、内质网等。
3. 纳米技术高分辨率电子显微技术对纳米技术的研究和开发发挥着重要作用。
通过TEM和SEM,可以观察和研究纳米材料的形貌、尺寸和微观结构,帮助开发新型纳米材料,应用于纳米电子器件、生物传感器等领域。
4. 化学分析高分辨率电子显微技术在化学分析中也具有重要地位。
扫描电镜工作原理
扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它利用电子束与样品的相互作用来获取样品的表面形貌和成分信息。
下面将详细介绍扫描电镜的工作原理。
一、电子束的产生与聚焦扫描电镜中的关键部件是电子枪,它通过热发射或场发射的方式产生高能电子束。
电子束经过聚焦系统,通过一系列的电磁透镜进行聚焦,使电子束变得更加细致和聚焦,从而提高分辨率。
二、样品的制备与加载在进行扫描电镜观察之前,需要对样品进行制备。
常见的样品制备方法包括金属涂层、冷冻切片、离子切割等。
制备完成后,将样品加载到扫描电镜的样品室中。
三、扫描电子显微镜的工作模式1. 透射电子显微镜模式(TEM)透射电子显微镜模式是将电子束穿透样品,然后通过样品上的透射电子显微镜探测器进行成像。
这种模式适用于对样品内部结构的观察,可以提供高分辨率的成像。
2. 扫描电子显微镜模式(SEM)扫描电子显微镜模式是将电子束聚焦到样品表面,然后通过样品表面反射的次级电子、反射电子或后向散射电子进行成像。
这种模式适用于对样品表面形貌和成分的观察。
四、扫描电子显微镜的成像原理1. 次级电子成像(SEI)次级电子成像是通过探测样品表面次级电子的信号来获得图像。
当电子束与样品表面相互作用时,会产生次级电子。
这些次级电子被探测器捕捉到,并转换成图像。
2. 反射电子成像(BEI)反射电子成像是通过探测样品表面反射电子的信号来获得图像。
当电子束与样品表面相互作用时,一部分电子会被样品表面反射出来,这些反射电子被探测器捕捉到,并转换成图像。
3. 后向散射电子成像(BSEI)后向散射电子成像是通过探测样品表面后向散射电子的信号来获得图像。
当电子束与样品表面相互作用时,部分电子会发生散射,并改变其运动方向。
这些后向散射电子被探测器捕捉到,并转换成图像。
五、扫描电子显微镜的分辨率扫描电子显微镜的分辨率是指它可以分辨出两个相邻物体之间的最小距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
近 20 年来,随着电子显微技术的不断发展, 高分辨扫描透射电子显微术(STEM)已经成为目前 最为流行和广泛应用的电子显微表征手段和测试 方法。相比于传统的高分辨相位衬度成像技术, 高分辨扫描透射电子显微镜可提供具有更高分辨
* 国家自然科学基金(批准号:51271209)资助项目
率、对化学成分敏感以及可直接解释的图像,因 而被广泛应用于从原子尺度研究材料的微观结构 及成分。其中高角环形暗场像(HAADF-STEM,Z 衬度像)为非相干高分辨像,图像衬度不会随着样 品的厚度及物镜的聚焦的改变而发生明显的变 化,像中亮点能反映真实的原子或原子对,且像 点的强度与原子序数的平方成正比,因而可以获 得原子分辨率的化学成分信息 。 [1] 近年来,随着
繁琐的计算机模拟,因而 Z 衬度像尤其适合于材 料中缺陷及界面的研究[6]。
STEM 中除了通过环形探测器接收散射电子
的信号成像,还可以通过后置的电子能量损失谱
仪检测非弹性散射电子信号,得到电子能量损失
谱(EELS),分析样品的化学成分和电子结构。此
外,还可以通过在镜筒中样品上方区域安置 X 射 线能谱探测器进行微区元素分析(EDS)。因此在
摘 要 扫描透射电子显微术是目前应用最广泛的电子显微表征手段之一,具有分辨 率高、对化学成分敏感和图像直观易解释等特点。其中高分辨扫描电子显微镜可以直接获得 原子分辨率的 Z 衬度像,结合 X 射线能谱(EDS)和电子能量损失谱(EELS),可在亚埃尺度上对 材料的原子和电子结构进行分析。文章简述了扫描透射电子显微镜的基本原理及其应用现 状,重点论述了高角环形暗场(HAADF)和环形明场(ABF)像的成像原理、特征和应用。此外, 文中还对原子尺度分辨率的 X 射线能谱及电子能量损失谱元素分析方法进行了简述。
所包括的环形区域中,散射电子的散射截面σ可 以用卢瑟夫散射强度θ1 到θ2 的积分来表示,经过 积分后可以得到
σቤተ መጻሕፍቲ ባይዱ
=
æ
ç
è
m m0
ö
÷
ø
Z 2 λ4
4π3
a2 0
æ ç è
θ2 1
1 +
θ2 0
-
θ2 2
1 +
θ2 0
ö ÷ ø
,
其中 m 为高速电子的质量,m0 为电子的静止质 量,Z 为原子序数,λ为电子的波长,a0为玻尔半 径,θ0为博恩特征散射角。因此,在厚度为 t 的试
实验技术
高分辨扫描透射电子显微镜原理及其应用*
贾志宏† 丁立鹏 陈厚文
( 重庆大学材料科学与工程学院 重庆 400044 )
The principle and applications of high-resolution scanning electron microscopy
JIA Zhi-Hong† DING Li-Peng Chen Hou-Wen
( College of Materials Science and Engineering,Chongqing University,Chongqing 400044,China)
2015-01-20 收到 † email:zhihongjia@
DOI:10.7693/wl20150704
别 发 现 了 Gd, Zn 原 子 的 周 期 性 偏 聚 。 由 于 HAADF-STEM 中原子柱的亮度与原子序数成正 比,因而 Gd 和 Zn 的原子柱可以在孪晶界上明 显观察到。Gd 和 Zn 在孪晶界面上的周期性偏 聚可有效地降低孪晶的弹性应变能,并对孪晶 的运动起到钉扎作用,从而产生一定的强化作 用。这一发现可以为理解六方和面心立方金属的 孪晶结构、成分开拓新的视野,并为有效调控合 金的成分及热处理工艺奠定基础。
关键词 扫描透射电子显微镜,高角环形暗场像,X 射线能谱,电子能量损失谱
Abstract Scanning transmission electron microscopy (STEM) is currently one of the most widely used methods for microscopic imaging, due to its advantages of improved resolution, high compositional sensitivity, and directly interpretable images. High-resolution STEM can directly obtain atomic resolution Z-contrast images, and also analyze the atomic and electronic structure of materials on a sub- angstrom scale in combination with X- ray energy- dispersive spectrometry (EDS) and electron energy loss spectrometry (EELS). The fundamental concept and applications of STEM are briefly introduced, and the principle, characteristics and applications of high angle annular dark field and annular bright field imaging are described. The characteristics and applications of EDS and EELS are also briefly described.
样中,单位原子数为 N 时的散射强度 Is为 Is= σNtI ,
这里的 I 为单个原子柱的散射强度。
从以上两式可以看出,HAADF 探测器得到
的像点强度正比于原子序数的平方,因而也被称
为 Z 衬度像,这使我们能够凭借像点的强度来区 分不同元素的原子,由此得到原子分辨率的化学
成分信息,像的解释简明直接,一般不需要复杂
Z 衬度像)。
Z 衬度像利用高角散射电子,为非相干像,
是原子列投影的直接成像,其分辨率主要取决于
电子束斑的尺寸,因而它比相干像具有更高的分
辨率。Z 衬度像随试样厚度和物镜聚焦不会有很
大变化,不会出现衬度反转,所以像中的亮点总
是对应原子列的位置[4]。 根据 Pennycook 等人的理论,在散射角θ1和θ2
Keywords scanning transmission electron microscopy, high angle annular dark field imaging, X-ray energy-dispersive spectrometry, electron energy loss spectrometry
一次实验中可以同时对样品的化学成分、原子结
构、电子结构进行分析[7]。
3 扫描透射电子显微术成像
3.1 原子分辨率 HAADF 像
获得高分辨 Z 衬度像的两个必要条件是原 子尺度的高亮度电子束斑和环形探测器。电子 束的束斑只有小于或等于 0.2 nm 时才能获得原 子分辨率的图像,因此将电子束聚焦为小而亮 的束斑对于提高扫描透射电镜的分辨率至关重 要。由于透射电子显微镜的电磁透镜存在很大的 像差,限制了可形成的最小束斑及其电流强度, 从而直接影响像的分辨率和信噪比。利用球差校 正技术,可以使得电镜获得更小的电子束斑及更 高的束斑电流强度。配备球差校正器的电镜在 200 kV 电压下可获得至少 0.1 nm 的电子束斑,同 时电子束电流密度提高 10 倍以上,使得 Z 衬度像 的分辨率和探测敏感度进一度提高,电镜的分辨 率进入亚埃尺度,可以获得单个原子的成像 。 [8] 高分辨率 Z 衬度像可以从原子尺度来研究界面、 纳米相和缺陷结构成分以及元素偏聚等复杂的 材料结构[9]。2011 年,FEI 公司推出了配有 ChemiSTEM 技术的球差校正 Titan G2 80-200 电镜,将 超稳定的高亮度 Schottky FEG 源与探针校正技 术结合,实现了 0.08 nm 的原子分辨成像。2014 年 5 月,日本电子株式会社(JEOL)发布了其新一 代球差校正电镜 JEM-ARM300F,HRTEM 的分辨 率 可 以 达 到 0.05 nm, HAADF-STEM 分 辨 率 达 到 0.063 nm,将商业化的透射电镜推向了一个新 极限。
· 446 ·
· 44卷 (2015 年) 7 期
球差校正技术的发展,扫描透射电镜的分辨率及 探测敏感度进一步提高,分辨率达到亚埃尺度, 使得单个原子的成像成为可能。此外,配备先进 能谱仪及电子能量损失谱的电镜在获得原子分辨 率 Z 衬度像的同时,还可以获得原子分辨率的元 素分布图及单个原子列的电子能量损失谱。因而 我们可以在一次实验中同时获得原子分辨率的晶 体结构、成分和电子结构信息,为解决许多材料 科学中的疑难问题(如催化剂、陶瓷材料、复杂 氧化物界面、晶界等)提供新的视野[2]。目前商业 化的场发射扫描透射电子显微镜,不仅可以得到 高分辨的 Z 衬度像和原子分辨率的能量损失谱, 而且其他各种普通透射电子显微术(如衍射成 像、普通高分辨相位衬度像、选区电子衍射、会 聚电子衍射、微区成分分析等)均可以在一次实 验中完成,因而高分辨扫描透射电子显微术将在 材料科学、化学、物理等学科中发挥更加重要的 作用。
近几年来,球差校正扫描透射电子显微镜 已经在从原子尺度认识材料发挥了重要作用。 以镁合金材料为例,孪晶是镁合金塑性变形的重 要方式,控制孪晶的形成及生长是使镁合金获 得良好成形性的关键。如图 3 所示,Jianfeng Nie[10] 等采用 HAADF-STEM 对经过室温压缩和回火后 Mg-Gd,Mg-Zn 合金的孪晶界进行原子尺度的