实验透射电镜的结构原理及应用

合集下载

透射电镜的工作原理

透射电镜的工作原理

透射电镜的工作原理透射电镜(Transmission Electron Microscope,简称TEM)是一种利用电子束来观察样品的微观结构的高分辨率显微镜。

与光学显微镜不同,透射电镜使用的是电子而不是可见光来照射样品,因此能够获得比光学显微镜更高的分辨率。

透射电镜的工作原理涉及到电子的产生、聚焦、透射、成像和检测等多个方面,下面将详细介绍透射电镜的工作原理。

1. 电子的产生。

透射电镜使用的是电子束来照射样品,因此首先需要产生电子。

电子产生的常用方法是热发射和场发射。

热发射是利用热能使金属表面的电子逃逸而产生电子,而场发射则是利用电场使电子从金属表面逃逸。

在透射电镜中,通常使用的是热发射电子源,即利用钨丝或钨钢合金丝受热后发射电子。

2. 电子的聚焦。

产生的电子束需要经过一系列的聚焦系统,使其成为一个细小的束流,以便能够准确地照射到样品上。

透射电镜的聚焦系统通常包括电子透镜和磁透镜。

电子透镜利用电场来聚焦电子束,而磁透镜则利用磁场来聚焦电子束。

通过合理设计和调节,可以使电子束聚焦到非常小的尺寸,从而获得高分辨率的成像能力。

3. 电子的透射。

经过聚焦系统聚焦后的电子束将照射到样品上,这时的电子束被称为透射电子束。

透射电子束穿过样品时,会与样品中的原子和分子发生相互作用,产生散射和吸收。

透射电镜通过检测透射电子束的变化来获取样品的结构信息。

4. 成像。

透射电镜的成像原理是利用透射电子束与样品相互作用后产生的信号来获取样品的结构信息。

透射电镜通常采用透射电子显微镜来观察样品。

透射电子显微镜通过探测透射电子束的强度和位置来获得样品的结构信息,然后将这些信息转换成图像显示出来。

5. 检测。

透射电镜的检测系统通常包括电子探测器和图像处理系统。

电子探测器用于探测透射电子束的强度和位置,然后将这些信息传输给图像处理系统。

图像处理系统将探测到的信息转换成图像,并进行增强和处理,最终显示在显示屏上供用户观察。

总结来说,透射电镜的工作原理涉及到电子的产生、聚焦、透射、成像和检测等多个方面。

透射电镜实验报告

透射电镜实验报告

透射电镜实验报告透射电子显微镜透射电子显微镜简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。

散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。

通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2µm、光学显微镜下无法看清的结构,又称“亚显微结构”。

成像原理透射电子显微镜的成像原理可分为三种情况:吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。

样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。

早期的透射电子显微镜都是基于这种原理。

衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。

相位像:当样品薄至100Å以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。

组件电子枪:发射电子,由阴极、栅极、阳极组成。

阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。

聚光镜:将电子束聚集,可用已控制照明强度和孔径角。

样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。

物镜:为放大率很高的短距透镜,作用是放大电子像。

物镜是决定透射电子显微镜分辨能力和成像质量的关键。

中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。

通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。

透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。

此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。

透射电子显微镜结构包括两大部分:主体部分为照明系统、成像系统和观察照相室;辅助部分为真空系统和电气系统。

透射电镜的简单原理

透射电镜的简单原理

透射电镜的简单原理
透射电镜是一种用于观察材料内部结构的显微镜。

其简单原理如下:
1. 电子源:透射电镜使用电子束来照射样品。

电子源通常是一个发射电子的热阴极,例如钨丝。

2. 准直系统:电子束从电子源发射出来后,通过准直系统进行调整,以保持电子束的直线性质和平行性。

准直系统通常包括透镜和磁铁等。

3. 照射样品:经过准直系统调整后的电子束照射到待观察的样品上。

样品可以是薄片或厚块,这取决于所需的观察深度。

4. 样品交叉点:经过样品的电子束会与样品内部原子或分子相互作用。

这些相互作用会导致一部分电子束被散射、吸收或透射。

5. 过滤器:透射电镜使用不同的过滤器来选择散射、吸收和透射电子束。

通过调整过滤器,可以选择只让透射电子束通过。

6. 探测器:透过样品的透射电子束最终到达探测器,例如荧光屏或CCD。

探测器记录下电子束的位置和强度。

7. 数据处理:通过采集和处理探测器的数据,可以形成一个关于样品内部结构的电子图像。

透射电镜的原理包括产生平行且高能的电子束、调整电子束与样品之间的相对位置、选择透射电子束并记录下来。

通过这些原理,透射电镜可以产生高分辨率的样品内部结构图像。

透射电镜的原理

透射电镜的原理

透射电镜的原理
透射电镜是一种常用的电子显微镜技术,用于观察和研究物质的微观结构。

其原理基于电子的波粒二象性和物质对电子的散射效应。

透射电镜的工作原理可以概括为以下几个步骤:
1. 电子源:透射电镜使用的电子源一般为热阴极或冷阴极。

电子发射后,通过加速电压和电子透镜系统,使电子获得足够的能量和聚焦程度。

2. 样品:待观察的样品被制备成非晶态或薄片状,并放置在样品台上。

样品的厚度通常在纳米到亚微米级别,以保证电子的穿透性。

3. 散射:通过透射电镜的电子束,电子与样品内的原子或分子发生相互作用。

根据样品的组成和结构,电子会被散射并改变方向。

4. 对比度增强:经过样品后,电子束进入投影镜筒。

在此过程中,通过调节投影镜筒中的电子透镜,可以调整电子束的聚焦度和强度。

5. 形成显影:电子束通过样品后,穿过投影镜筒的屏幕或探测器。

探测器接收到散射电子并转化为电子信号,经过放大和处理后,形成最终的图像。

透射电镜的原理是基于电子的波性和散射现象,利用电子的穿透性观察物质的微观结构。

通过控制电子束的聚焦度和强度,结合样品的散射特性,透射电镜可以提供高分辨率和高对比度的图像,用于研究各种材料的微观结构和性质。

透射电镜结构原理及明暗场成像

透射电镜结构原理及明暗场成像

透射电镜结构原理及明暗场成像透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束来观察物质微观结构的仪器。

与光学显微镜相比,透射电镜具有更高的分辨率和更强的放大能力。

其结构原理主要包括电子源、透射电子束、样品与透射电镜之间的相互作用、透射电镜成像系统。

1.电子源:透射电子显微镜主要使用热电子发射阴极作为电子源。

通常使用钨丝发射、氧化物表面发射或冷钨阴极等方式来产生电子束。

2.透射电子束:电子源发射出的电子经过一系列的电子光学透镜系统进行聚焦和调节,形成一束准直的电子束。

透射电子束的能量通常为几千伏到几十万伏之间,能量越高,穿透力越强。

3.样品与透射电镜之间的相互作用:透射电子束通过样品后,会与样品中的原子和分子发生相互作用。

这些相互作用包括散射、散射衍射和吸收。

这些相互作用使得电子束的方向、速度、能量等发生变化。

透射电子显微镜中的明暗场成像原理如下:1.明场成像:在明场条件下,样品中的透射电子束被物镜聚焦,形成一个清晰的像。

物体的亮度取决于电子束的强度,在没有样品的地方透射电子束强度最大,物体越厚,透射强度就越小,呈现出亮度变暗的效果。

明场成像适合于观察形貌和表面特性。

2.暗场成像:在暗场条件下,样品被遮挡住一部分区域,只有经过遮挡区域的电子束能够通过。

这样,只有经过散射才能把电子束引入投影镜,通过暗场的形成,呈现出样品的内部结构。

暗场成像适合于观察晶体缺陷、界面反应等。

总之,透射电子显微镜利用电子束的穿透性质,通过样品与电子束的相互作用以及透射电镜的光学系统,实现了对物质微观结构的高分辨率观察。

明暗场成像原理使得我们可以观察到不同结构和特性的样品的不同信息。

透射电镜的原理和应用

透射电镜的原理和应用

透射电镜的原理和应用透射电镜(Transmission Electron Microscope,简称TEM)是一种使用电子束来对物质进行成像和分析的先进仪器。

相对于光学显微镜,透射电镜的分辨率更高,可以观察到更小尺寸的物体和更细微的细节。

下文将详细介绍透射电镜的原理和应用。

一、原理透射电镜的工作原理基于电子的波粒二象性。

当高速电子束穿过薄样品时,电子与样品原子发生散射或透射,这些散射和透射电子可以通过其中一种方式被聚焦后投射到屏幕上形成影像。

透射电镜的主要组成部分包括电子源、电子透镜系统、样品台、检测器和成像系统。

2.电子透镜系统:透射电镜中使用的电子透镜系统包括凸透镜、凹透镜和电磁透镜等,用于聚焦和控制电子束的路径。

3.样品台:样品台用于固定和支持待观察的样品。

在样品台上放置薄到几十纳米的切片样品,以便电子束能够透过。

4.检测器:透射电镜中常用的检测器包括透射电子探测器(TED)、散射电子探测器(SED)和能量散射光谱仪(EDS)等。

TED用于接收透射电子并产生明亮的影像,SED用于检测和分析散射电子的信息,EDS用于分析样品中的元素组成。

5.成像系统:透射电镜的成像系统包括投影屏幕、摄像机和电子显微图像处理设备。

通过调整电子透镜系统,可以将电子束上的信息转换成实时图像并显示在投影屏幕上。

二、应用透射电镜在材料科学、生物科学、纳米科学等领域有广泛的应用。

以下是透射电镜的几个主要应用。

1.结构表征:透射电镜可以用于观察材料的结构和形貌。

它能够提供高分辨率的图像,揭示物质的晶体结构、晶体缺陷、晶界和相界等微观结构信息。

2.成分分析:透射电镜结合能量散射光谱仪(EDS)可以分析样品中元素的组成。

EDS通过测量样品上散射电子的能量,确定样品中元素的成分和含量。

3.纳米材料研究:透射电镜可以研究和制备纳米尺寸的材料。

通过观察和测量纳米材料的形貌、尺寸和结构,可以了解纳米材料的特性和性能,并指导纳米材料的设计和合成。

透射电镜的成像原理及应用

透射电镜的成像原理及应用

透射电镜的成像原理及应用1. 引言透射电镜是一种使用电子束来成像的仪器。

它的原理是利用电子束通过样品的透射来形成图像,并通过对电子束的探测和处理来获得样品的详细信息。

透射电镜在材料科学、生物学和物理学等领域中有广泛的应用。

2. 成像原理透射电镜的成像原理基于电子的波粒二象性,即电子既具备粒子特性又具备波动特性。

在透射电镜中,电子从电子枪中发射出来,经过加速和聚焦,形成一束射线。

这束射线通过样品后,与样品中原子和电子相互作用,发生散射和透射现象。

电子的散射会导致图像的模糊和失真,因此透射电镜通常使用薄样品来减小散射效应。

在样品的背面或透射电镜的显微镜中,放置有一个焦平面衍射器。

这个衍射器可以将透射电子的波动性转化为干涉和衍射现象,从而产生有关样品的结构信息。

这些信息通过探测器进行收集,然后通过图像处理算法生成成像结果。

3. 应用领域透射电镜在材料科学、生物学和物理学等领域有广泛的应用。

以下列举了一些常见的应用领域:3.1 材料科学透射电镜在材料科学中的应用主要用于研究材料的微观结构和性能。

通过透射电镜,可以观察和分析材料中的晶体结构、晶界、缺陷和纳米结构等。

这些信息对于材料的设计、开发和性能优化非常重要。

3.2 生物学透射电镜在生物学中的应用主要用于研究生物样品的内部结构和功能。

通过透射电镜,可以观察和分析细胞器、蛋白质和核酸等生物分子的结构。

透射电镜还可以用于研究病原体、病毒和细菌等微生物的形态和生命周期。

3.3 物理学透射电镜在物理学领域中的应用涵盖了多个子领域。

在凝聚态物理学中,透射电镜可用于研究材料的电子结构、能带和费米面等特性。

在量子力学领域,透射电镜可用于研究电子的量子行为,如量子隧穿、波函数干涉和波粒二象性等。

3.4 其他领域透射电镜还在化学、地球科学和纳米技术等领域中有应用。

在化学中,透射电镜可用于研究化学反应的过程和产物。

在地球科学中,透射电镜可用于分析地质样品的矿物组成和结构。

透射电镜的结构原理及应用

透射电镜的结构原理及应用

透射电镜的结构原理及应用1. 介绍透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种基于电子束传输与样品交互作用的高分辨率显微镜。

透射电镜通过在样品上透射的电子束来形成图像,因此可以观察到原子尺度的细节。

本文将介绍透射电镜的结构原理以及其应用领域。

2. 结构原理透射电子显微镜的基本结构由以下几个主要组件组成:2.1 电子源透射电子显微镜使用高速电子束来照射样品。

电子源通常采用热阴极电子枪,通过加热阴极发射高能电子。

电子源生成的电子束必须具有高度的单色性和准直性。

2.2 准直系统准直系统用于控制电子束的方向和准直度,确保电子束可以尽可能准直地照射到样品上。

准直系统通常包括准直光阑和采购透镜。

2.3 束流衰减系统束流衰减系统用于控制电子束的强度,以适应不同的样品特性和实验需求。

束流衰减系统包括限制光阑、透镜和衰减器等组件。

2.4 对焦系统对焦系统用于控制电子束的焦距,以确保电子束能够聚焦在样品表面或其内部的特定区域。

对焦系统包括透镜和聚焦光阑。

2.5 样品台和检测系统样品台是放置样品的平台,通常具有三维移动的能力,以便于调整样品的位置和观察区域。

检测系统用于检测透射电子束与样品交互后的信号,并将其转化为图像。

3. 应用领域透射电子显微镜在各个科学领域中具有广泛的应用。

以下是几个常见的应用领域:3.1 材料科学透射电子显微镜可以观察和分析材料的微观结构、晶格缺陷、晶体取向等特征。

它被广泛应用于纳米材料、催化剂、半导体器件等领域。

3.2 生物学透射电子显微镜在生物学研究中发挥着重要作用,可以观察和研究生物细胞、组织和病毒等微观结构。

它被用于研究生物分子的结构、功能和相互作用。

3.3 纳米技术透射电子显微镜对于纳米技术的研究和开发非常关键。

它能够观察和控制纳米材料和纳米结构,有助于纳米器件的设计和制造。

3.4 地球科学透射电子显微镜在地质和地球科学中也具有重要的应用价值。

透射电镜的工作原理

透射电镜的工作原理

透射电镜的工作原理
透射电镜是一种高级显微镜,它利用电子束而不是光束来观察样品的微观结构。

透射电镜的工作原理主要包括电子源、电子透镜系统、样品台和检测系统。

首先,电子源产生高能电子束。

通常采用热阴极发射电子的方式,通过加热使
阴极发射出电子,然后经过一系列的加速器和聚焦器,将电子束聚焦到极小的直径,以便能够穿透样品并形成清晰的像。

其次,电子透镜系统起到聚焦和成像的作用。

透射电镜中的电子透镜系统通常
包括几个电磁透镜,通过调节透镜的电压和电流,可以控制电子束的聚焦和偏转,从而实现对样品的高分辨率成像。

然后,样品台是样品放置的地方。

在透射电镜中,样品通常需要制备成极薄的
切片,以便电子束可以穿透并形成像。

样品台通常可以在多个方向上进行微小的移动,以便对样品进行全方位的观察和分析。

最后,检测系统用于接收电子束穿过样品后的信号,并将其转换成图像。

检测
系统通常采用荧光屏或者数字传感器,将电子束的信号转换成可见的图像,并通过电子显微镜的显示器或者计算机进行观察和分析。

总的来说,透射电镜的工作原理是利用高能电子束穿透样品,通过电子透镜系
统的聚焦和成像,将样品的微观结构放大成可见的图像,从而实现对样品的高分辨率观察和分析。

透射电镜在生物学、材料科学、纳米技术等领域有着广泛的应用,对于研究微观结构和表征样品具有重要意义。

透射电镜的原理及应用摘要

透射电镜的原理及应用摘要

透射电镜的原理及应用摘要一、透射电镜的原理透射电镜是一种重要的电子显微镜技术,它能够利用电子束的透射性质来观察材料的微观结构和原子级别的细节。

透射电镜的工作原理基于电子的波粒二象性,其光学系统类似于光学显微镜。

透射电镜主要由电子源、准直系统、投射系统和探测系统等几个主要部分组成。

在透射电镜中,电子源产生的电子束通过准直系统准直后,进入投射系统。

投射系统中的透镜通过对电子束的聚焦和投射,使其经过待观察的样品。

样品会对电子束进行散射和吸收,形成投射电子束的衍射图样。

这些衍射图样经过探测系统的收集和处理后,可以得到材料的结构和成分信息。

二、透射电镜的应用1. 材料科学研究透射电镜在材料科学研究中发挥着重要作用。

通过透射电镜可以观察到材料的晶体结构、晶界、原子排列等微观细节。

借助透射电镜的高分辨率和高灵敏度,科学家们可以研究材料的相变行为、晶体生长机制、缺陷结构等,从而深入了解材料的性质和性能,并为材料的合成和改性提供科学依据。

2. 纳米技术研究透射电镜在纳米技术研究中也有广泛应用。

纳米材料具有独特的物理和化学性质,常常表现出与大尺度材料截然不同的行为。

透射电镜可以观察到纳米尺度下的材料结构和表面形态,可以直接了解纳米材料的大小、形状、分布和相界面等特征。

通过透射电镜的研究,可以揭示纳米尺度下的材料行为和性能,为纳米技术的应用提供重要支持。

3. 生物医学研究透射电镜在生物医学研究中也有广泛的应用。

生物组织和细胞结构复杂多变,透射电镜可以提供高分辨率的图像,帮助科学家们观察和研究生物样品的超微结构。

透射电镜可以用于观察生物细胞、细胞器和细胞核的内部结构,并进一步研究其功能和机制。

这些研究对于理解生物学过程、疾病诊断和治疗等具有重要意义。

三、总结透射电镜是一种强大的科学工具,它通过对电子束的透射和探测,帮助科学家们观察和研究材料的微观结构和原子级别的细节。

透射电镜在材料科学、纳米技术和生物医学等领域有着广泛的应用,为相关领域的研究和应用提供了强有力的支持。

透射电镜的原理

透射电镜的原理

透射电镜的原理透射电镜是一种高分辨率成像工具,通过平行束高速电子的透射来形成对样品的影像,其原理主要有三个部分组成,包括电子源、透射样品以及成像极板,下面将对其具体原理进行详细解析。

1.电子源透射电镜的首要任务是生成高能电子。

通常使用钨丝发射电子,当加热到足够温度时就能从其表面发射出电子,并通过电子加速器使其达到足够高的能量。

激发电子后,通过磁透镜进行聚焦使其能量更加聚焦。

电子通过磁透镜到达透射样品区域,并与样品产生相互作用。

2.透射样品透射电镜的样品非常小,通常被压制成薄片。

这种样品能够被插入到具有真空环境的电子显微镜中。

透射样品必须非常薄,通常几十nm或更薄。

这样可以有效让电子束穿过样品,从而更好的观察材料的微观结构特征。

透射样品需要满足几个要求。

首先,它必须足够薄,以使透射电镜的电子穿过样品而不被散射,损失强度或产生干扰。

其次,样品的成分和结构必须在非常高的分辨率下可见。

因此,样品通常需要在比表面积上被采取,并被压成薄膜以便被穿越。

3.成像极板成像极板是透射电镜的一个重要组成部分,主要是将电子穿过样品后产生的信息转化为可见的图像。

通过成像极板,电子会形成亮度和对比度极高的图像,表现出样品的微观特征。

成像极板通常包括荧光屏和相机,荧光屏会将电子转化为可见光,相机则用于捕捉照片将之转化为数字信号。

总体而言,透射电镜的原理是将均匀更高速的电子输送到透过样品中的电子,让电子与样品的原子或分子发生相互作用,这就造成了电子信号发生射线散射,电子在相应的方向整齐穿过样品,并最终在成像极板上被捕获和转换成可见的图像。

这种原理可以提供一种新的方式来观察和研究材料学、物理学、生物学和化学学科。

透射电子显微镜及其应用

透射电子显微镜及其应用

透射电子显微镜及其应用读书报告姓名:孙家宝学号:DG1022076电子科学与工程学院2021年3月31日目录第一章透射电子显微镜 (1)1.1 透射电子显微镜的结构 (1)1.1.1.电子光学部分 (1)1.1.2.真空系统 (3)1.1.3.供电控制系统 (4)1.2 透射电子显微镜主要的性能参数 (4)1.2.1 分辨率 (4)1.2.2 放大倍数 (4)1.2.3 加速电压 (5)1.3 透射电镜的成像原理 (5)1.3.1 透射电镜的成像方式 (5)1.3.2 衬度理论 (6)1.4 透射电镜的电子衍射花样 (6)1.4.1 电子衍射花样 (6)1.4.2电子衍射与X射线衍射相比的优点 (7)1.4.3电子衍射与X射线衍射相比的不足之处 (7)1.4.4选区电子衍射 (7)1.4.5常见的几种衍射图谱 (8)1.4.6单晶电子衍射花样的标定 (8)第二章透射电子显微镜分析样品制备 (10)2.1 透射电镜复型技术(间接样品) (10)2.1.1塑料——碳二级复型 (10)2.1.1萃取复型(半直接样品) (11)2.2 金属薄膜样品的制备 (11)1.2 电子显微镜中的电光学问题 (13)1.2.1 电子射线(束)的特性 (13)第一章 透射电子显微镜1.1 透射电子显微镜的结构透射电子显微镜(TEM )是观察和分析材料的形貌、组织和结构的有效工具。

TEM 用聚焦电子束作照明源,使用对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。

图 1.1(a )(b )是两种典型的透射电镜的实物照片。

透射电子显微镜的光路原理图如图1.2所示。

透射电镜一般是由电子光学部分、真空系统和供电系统三大部分组成。

1.1.1.电子光学部分(a) Philips CM12透射电镜(b) JEM-2010透射电镜 图1.1 透射电子显微镜图1.2透射电子显微镜的光路原理图图1.3透射电镜电子光学部分示意图整个电子光学部分完全置于镜筒之内,自上而下顺序排列着电子枪、聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏、照相机构等装置。

透射电镜的成像原理

透射电镜的成像原理

透射电镜的成像原理
透射电镜(TransmissionElectronMicroscopy,TEM)是利用电磁理论设计出来的一种新型电镜,它主要用来观察生物大分子的结构,通过电子束的照射使样品表面产生各种变化,从而反映出样品表面的形貌、尺寸、元素组成等信息。

TEM还可用于观察原子和分子水平的物理和化学现象。

下面简单介绍一下TEM成像原理。

一、电子束扫描
电子束是一种很强的电磁波,当它照射到样品上时,一部分能量被反射回来,一部分能量被发射出去,在样品表面产生散射光。

散射光穿过样品后被收集起来。

通过对收集到的散射光进行测量,就可以得到样品表面的散射光强度、波长等信息。

二、成像原理
TEM的基本工作原理是:在电子束的作用下,样品表面产生周期性的振动和反弹,引起电子-声子耦合并产生电磁波,从而使样品表面产生一系列不同波长、不同振幅和不同相位的电子波,这些波通过聚焦系统聚焦到物镜的中心并通过透镜汇聚到焦点。

—— 1 —1 —。

TEM的结构原理及其操作使用

TEM的结构原理及其操作使用

透 射 电 镜 的 结 构 、 原 理 、 及 操 作
JEM-2100F场发射透射电子显微镜(FETEM)
Field Emission Transmission Electron Microscope
一、透射电镜的结构与工作原理
成像方式
(n通常为3~6)
衍射方式
二、透射电镜的用途

透射电镜是研究固态物质显微形貌、晶体结构和测量微 小物体的尺寸和形状的仪器,广泛应用于高分子材料、纳 米材料、金属材料、陶瓷、冶金、生物、医学、地质、半 导体、仿生学等各个领域以及工农业生产中。通过透射电 镜可以方便的观察到物质的微观结构、晶体的生长规律, 检测各种材料的老化及其疲劳损害程度,分析各种材料中 各种成分的分布规律及其各种元素间的比例关系。


明场像
离轴暗场像
中心暗场像

影响衍射强度的主要因素是晶体取向和结构振幅,主要是晶体对电子的衍射。 由于晶体样品的复杂性和不完整性,样品衍射衬度也有多种表现形式,例如:


1)衍射明场像中两个晶粒一明一暗,说明前者不处于布拉格衍射条件位置, 而后者处于布拉格衍射条件位置;
2)由于电子波长短,衍射角小,晶体中位错、层错、空位等的缺陷的存在, 致使局部晶格发生畸变,改变了这些部位的衍射条件,正常的周期性遭到了破 坏,使其与周围有不同的成像电子束强度而显示衬度; 3)基体中微区域元素的富集,使正常的晶面间距发生变化,也会改变局部 区域的衍射条件,提供新的衬度; 4)两种不同的物相,组成不同,对电子散射本领不同,结构振幅不同,引 起衬度差别; 5)电子衍射强度由于样品厚度的变化在像中会产生等厚条纹(同一条纹上 的样品厚度相同);而由于晶体的弯曲在像中会产生等倾条纹(同一条纹上晶 体偏离矢量的数值相等)。 通常衍射衬度明、暗场成像分析常与衍射方式中的选区电子衍射相结合来确 定物相的显微形态、点阵类型和参数。

透射电镜的原理

透射电镜的原理

透射电镜的原理透射电镜(Transmission Electron Microscope, TEM)是一种利用电子束来观察样品内部微观结构的高分辨率显微镜。

它的原理是利用电子的波粒二象性,通过透射样品并对透射电子进行成像,从而获得样品内部的高分辨率图像。

透射电镜的原理主要包括电子发射、电子透射、成像和检测四个主要步骤。

首先是电子发射。

透射电镜使用的电子源通常是热阴极,通过加热阴极,使其发射出高速电子。

这些电子经过加速和聚焦后形成电子束,用于透射样品。

其次是电子透射。

电子束穿过样品时,会与样品中的原子核和电子发生相互作用,产生散射和吸收。

透射电子束的强度和方向会受到样品内部结构的影响,因此可以通过测量透射电子的强度和方向来获取样品的内部结构信息。

然后是成像。

透射电镜使用电磁透镜来对透射电子进行成像。

透射电子束通过样品后,会被透镜聚焦成一个细小的电子束,然后投射到感光底片或电子传感器上,形成样品的高分辨率图像。

最后是检测。

透射电镜的成像系统会将透射电子束转换成可见的图像,通过调节透镜和检测器的参数,可以获得不同对比度和分辨率的图像。

透射电镜的原理虽然简单,但是在实际操作中需要考虑许多因素,比如样品的制备、透射电子的能量、透镜的性能等。

同时,透射电镜的应用也非常广泛,可以用于生物学、材料科学、纳米技术等领域的研究。

总的来说,透射电镜的原理是利用电子的波粒二象性,通过透射样品并对透射电子进行成像,从而获得样品内部的高分辨率图像。

它的应用范围广泛,对于研究微观结构和纳米材料具有重要意义。

希望本文能够对透射电镜的原理有一个简要的了解。

透射电镜工作原理

透射电镜工作原理

透射电镜工作原理透射电镜是一种利用电子束来观察样品表面微观结构的仪器。

它是一种非常重要的科学研究工具,能够帮助科学家们观察到微观世界中的细微结构,从而为材料科学、生物学、医学等领域的研究提供重要的数据支持。

透射电镜的工作原理主要包括电子源、电子透镜系统、样品台和检测系统等几个关键部分。

下面我们将逐一介绍这些部分的工作原理。

首先是电子源。

透射电镜使用的电子源通常是热阴极电子枪,它通过加热阴极来产生高能电子。

这些高能电子被加速器加速后形成电子束,然后聚焦到样品表面。

其次是电子透镜系统。

电子透镜系统主要由几个电磁透镜组成,包括减速器、准直器和物镜等。

减速器主要用于调节电子束的能量,准直器用于使电子束保持平行,而物镜则用于将电子束聚焦到样品表面上。

接下来是样品台。

样品台是透射电镜中支撑样品的平台,通常可以在三个方向上进行微小的调节,以便将样品放置到最佳的观察位置。

最后是检测系统。

透射电镜的检测系统通常由荧光屏和摄像机组成。

当电子束照射到样品表面时,样品会产生一些相互作用,如散射、透射、吸收等。

这些相互作用产生的信号会被检测系统捕捉到,并转换成图像显示在荧光屏上,然后再由摄像机拍摄下来。

通过上述工作原理,透射电镜能够以高分辨率观察样品表面的微观结构。

它的分辨率通常可以达到纳米甚至亚纳米级别,远远超过了光学显微镜的分辨率。

这使得透射电镜成为研究纳米材料、生物细胞、微生物等微观结构的理想工具。

总之,透射电镜是一种利用电子束来观察样品表面微观结构的仪器,它的工作原理主要包括电子源、电子透镜系统、样品台和检测系统等几个关键部分。

通过这些部分的协同工作,透射电镜能够以高分辨率观察样品表面的微观结构,为科学研究提供重要的数据支持。

透射电子显微镜实验报告

透射电子显微镜实验报告

透射电子显微镜实验报告透射电子显微镜的基本结构及成像原理认知实验一、实验目的1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理。

2.观察透射电子显微镜基本部件的名称,了解其用途;二、实验仪器仪器:JEM-2100UHR 透射电子显微镜(JEOL)透射电子显微镜用高能电子束作为照明源。

利用从样品下表面透出的电子束来成像。

原理及结构与透射式光学显微镜一样。

世界第一台透射电子显微镜是德国人鲁斯卡1936年发明的。

他与发明扫描隧道显微镜的学者一起获得1982年的诺贝尔物理奖。

目前透射电子显微镜的生产厂家有日本的日立(HITACHI)、日本电子(JEOL)、美国FEI、德国LEO。

透射电子显微镜的功能:主要应用于材料的形貌、内部组织结构和晶体缺陷的观察;物相鉴定,包括晶胞参数的电子衍射测定;高分辨晶格和结构像观察;纳米微粒和微区的形态、大小及化学成分的点、线和面元素定性定量和分布分析。

样品要求为非磁性的稳定样品。

可观察的试样种类:复型样品,金属薄膜和粉末试样,玻璃薄膜和粉末试样,陶瓷薄膜和粉末试样。

三、实验内容(一)透射电镜成像原理透射电子显微镜电子光学系统的工作原理可以用普通光学成像原理进行描述,也就是:平行光照射到一个光栅或周期物样上时,将产生各级衍射,在透镜的后焦面上出现各级衍射分布,得到与光栅或周期物样结构密切相关的衍射谱;这些衍射又作为次级波源,产生的次级波在高斯像面上发生干涉叠加,得到光栅或周期物样倒立的实像。

图1示意地画出了平行光照射到光栅后,在衍射角为θ的方向发生的衍射以及透射光线的光路图。

如果没有透镜,则这些平行的衍射光和透射光将在无穷远处出现夫琅和费衍射花样,形成衍射斑D和透射斑T。

插入透镜的作用就是把无穷远处的夫琅和费衍射花样前移到透镜的后焦面上。

后焦面上的衍射斑(透射斑视为零级衍射斑)作为光源产生次波干涉,在透镜的像平面上出现一个倒立的实像。

透射电镜的工作原理和应用

透射电镜的工作原理和应用

透射电镜的工作原理和应用1. 介绍透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高分辨率的显微镜,可以用来观察和研究非常小的生物和物质的结构。

本文将介绍透射电镜的工作原理和应用。

2. 工作原理透射电镜的工作原理基于电子的波动性质和透射性质。

其基本组成包括电子源、减速器、透镜系统和检测器。

2.1 电子源透射电镜使用的电子源通常是热发射型阴极,通过加热阴极产生高能电子。

这些高能电子被发射到一个真空管中,形成电子束。

2.2 减速器电子束经过减速器会进一步调整电子能量,以适应样品的要求。

减速器可以利用磁场或电场控制电子束的速度和能量。

2.3 透镜系统透镜系统主要由磁透镜和电透镜组成,用于控制电子束的聚焦和定位。

透镜可以通过改变磁场或电场的强度来控制电子束的走向和聚焦效果。

2.4 检测器透射电镜的检测器通常是一个荧光屏,用于接收透过样品的电子束并转化为可见光。

这些可见光会被放大并转化为图像,可以被观察和记录。

3. 应用透射电镜在许多领域中有广泛的应用。

以下是一些常见的应用领域。

3.1 材料科学透射电镜可以用来研究各种材料的晶体结构和微观结构。

通过观察和分析材料的原子排列和组织结构,可以深入了解材料的力学性质、电子性质和热性质。

3.2 纳米技术透射电镜在纳米技术中起着重要作用。

它可以用来观察和研究纳米材料的结构、形貌和性质,帮助研究人员设计和制造更高效的纳米器件。

3.3 生物科学透射电镜在生物科学研究中也有广泛的应用。

它可以用来观察和研究生物样品的细胞结构、细胞器和分子组织,从而深入了解生物系统的功能和机制。

3.4 太空科学透射电镜在太空科学研究中发挥着重要作用。

它可以用来观察和研究来自外太空的微小颗粒、陨石和行星样品,帮助科学家了解太阳系的形成和演化过程。

3.5 医学研究透射电镜在医学研究中也有许多应用。

它可以用来观察和研究病毒、细菌和细胞的结构,从而增进对疾病的认识和治疗方法的研发。

透射电镜的原理和应用

透射电镜的原理和应用
电子透镜一般分为静电透镜和磁透镜 (如图) 在这种静电场中, 前一半是电透镜,通过电透镜电子轨迹已向轴心折 射。, 在通过后半个磁透镜(对称磁场)加速之后,形成的电子轨迹具有 会聚的特性。
螺管线圈 螺管线圈 螺管线圈
照明系统组成:由电子枪、聚光镜(1、2级)和相应的平移对中、 倾斜调节装置组成。作用:提供一束亮度高、照明孔径角小、平行度 高、束斑小、束流稳定的照明源。为满足明场和暗场成像需要,照明 束可在20-30范围内倾斜。
1.观察室 透射电镜的最终成像结果,显现在观察室内的荧光
屏上,观察室处于投影镜下,空间较大,开有1~3个 铅玻璃窗,可供操作者从外部观察分析用。对铅玻璃 的要求是既有良好的透光特性,又能阻断X线散射和其 他有害射线的逸出,还要能可靠地耐受极高的压力差 以隔离真空。
成像原理
透射电镜是以电子束透过样品经过聚焦与放大后所產生 的物像,投射到荧光屏上或照相底片上进行观察。透射 电镜是以电子束透过样品经过聚焦与放大后所产生的物 像,投射到荧光屏上或照相底片上进行观察。透射电镜 的分辨率為0.1~0.2nm,放大倍数為几万~几十万倍。 由於电子易散射或被物体吸收,故穿透力低,必须制备 更薄的超薄切片(通常為50~100nm)。其制备过程与 石蜡切片相似,但要求极严格。
电子枪电子枪是电镜的电子源。其作用是发射并加速电子,并会 聚成交叉点。 目前电子显微镜使用的电子源有两类:热电子源——加 热时产生电子,W丝,LaB6场发射源——在强电场作用下产生电子, 场发射电镜FE热阴极电子源电子枪的结构如图2-2所示,形成自偏压回 路,栅极和阴极之间存在数百伏的电位差。电子束在栅极和阳极间会 聚为尺寸为d0的交叉点,通常为几十um。 栅极的作用:限制和稳定 电流。
1.取材和前固定:快速的切取大小为0.5~1.0mm3的样品块,一分钟内把组 织(样品) 块浸入2.5%戊二醛(进口品质)溶液(取样前来平台领取),每个离心管内装 20个以上的样品块,作为一个样送到平台。 要求:①取材前一定要和工作人员取得电话联系!②取材选择部位要准确可靠, 确保 每块材料都是要观察的部位。③所有植物样品一定要抽真空,能够沉底的样品 也抽真空15mins,不能沉底的样品一定要抽真空致沉底!④细菌、散在细胞等 不能成块的样品,加戊二醛固定液,离心沉淀后送到平台,由平台工作人员处 理。⑤泡在前固定液的材料最多可以放2周。

实验透射电镜的结构原理及应用

实验透射电镜的结构原理及应用

实验透射电镜的结构原理及应用一、目的要求1.结合透射电镜实物,介绍其基本结构和工作原理,以加深对透射电镜的了解。

2.学习衍射图谱的分析步骤。

3.学习操作透射电镜,获得的明暗场像二、透射电镜的基本结构透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。

透射电镜由电子光学系统、真空系统及电源与控制系统三部分组成。

电子光学系统是透射电子显微镜的核心,而其他两个系统为电子光学系统顺利工作提供支持。

2.1 电子光学系统电子光学系统通常称镜筒,是透射电子显微镜的核心,由于工作原理相同,在光路结构上电子显微镜与光学显微镜有很大的相似之处。

只不过在电子显微镜中,用高能电子束代替可见光源,以电磁透镜代替光学透镜,获得了更高的分辨率(图9-6)电子光学系统分为三部分,即照明部分、成像部分和观察记录部分。

照明部分的作用是提供亮度高、相干性好、束流稳定的照明电子束。

它主要由发射并使电子加速的电子枪、会聚电子束的聚光镜和电子束平移、倾斜调节装置组成。

成像部分主要由物镜、中间镜,投影镜及物镜光阑和选区光阑组成。

穿过试样的透射电子束在物镜后焦面成衍射花样,在物镜像面成放大的组织像,并经过中间镜、投影镜的接力放大,获得最终的图像。

观察记录部分由荧光屏及照像机组成。

试样图像经过透镜多次放大后,在荧光屏上显示出高倍放大的像。

如需照像,掀起荧光屏,使像机中底片曝光,底片在荧光屏之下,由于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数厘米的间距,但仍能得到清晰的图像。

2.2 真空系统电子光学系统的工作过程要求在真空条件下进行,这是因为在充气条件下会发生以下情况:栅极与阳极间的空气分子电离,导致高电位差的两极之间放电;炽热灯丝迅速氧化,无法正常工作;电子与空气分子碰撞,影响成像质量;试样易于氧化,产生失真。

目前一般电镜的真空度为10-5托左右。

真空泵组经常由机械泵和扩散泵两级串联成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验透射电镜的结构原理及应用
一、目的要求
1.结合透射电镜实物,介绍其基本结构和工作原理,以加深对透射电镜的了解。

2.学习衍射图谱的分析步骤。

3.学习操作透射电镜,获得的明暗场像
二、透射电镜的基本结构
透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。

透射电镜由电子光学系统、真空系统及电源与控制系统三部分组成。

电子光学系统是透射电子显微镜的核心,而其他两个系统为电子光学系统顺利工作提供支持。

2.1 电子光学系统
电子光学系统通常称镜筒,是透射电子显微镜的核心,由于工作原理相同,在光路结构上电子显微镜与光学显微镜有很大的相似之处。

只不过在电子显微镜中,用高能电子束代替可见光源,以电磁透镜代替光学透镜,获得了更高的分辨率(图9-6)电子光学系统分为三部分,即照明部分、成像部分和观察记录部分。

照明部分的作用是提供亮度高、相干性好、束流稳定的照明电子束。

它主要由发射并使电子加速的电子枪、会聚电子束的聚光镜和电子束平移、倾斜调节装置组成。

成像部分主要由物镜、中间镜,投影镜及物镜光阑和选区光阑组成。

穿过试样的透射电子束在物镜后焦面成衍射花样,在物镜像面成放大的组织像,并经过中间镜、投影镜的接力放大,获得最终
的图像。

观察记录部分由荧光屏及照像机组成。

试样图像经过透镜多次放大后,在荧光屏上
显示出高倍放大的像。

如需照像,掀起荧光屏,使像机中底片曝光,底片在荧光屏之下,由
于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数厘米的间距,但仍能得到清晰的
图像。

2.2 真空系统
电子光学系统的工作过程要求在真空条件下进行,这是因为在充气条件下会发生以下情
况:栅极与阳极间的空气分子电离,导致高电位差的两极之间放电;炽热灯丝迅速氧化,无
法正常工作;电子与空气分子碰撞,影响成像质量;试样易于氧化,产生失真。

目前一般电镜的真空度为10-5托左右。

真空泵组经常由机械泵和扩散泵两级串联成。


了进一步提高真空度,可采用分子泵、离子泵,真空度可达到10-8托或更高。

2.3 电源与控制系统
供电系统主要用于提供两部分电源:一是电子枪加速电子用的小电流高压电源;一是透
镜激磁用的大电流低压电源。

一个稳定的电源对透射电镜非常重要,对电源的要求为:最大
透镜电流和高压的波动引起的分辨率下降要小于物镜的极限分辨本领。

三、透射电镜的工作原理
透射电子显微镜是依照阿贝成像原理工作的,即:平行入射波受到有周期性特征物体的
散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的
特征的像。

因此根据阿贝成像原理,在电磁透镜的后焦面上可以获得晶体的衍射谱,故透射
电子显微镜可以做物相分析;在物镜的像面上形成反映样品特征的形貌像,故透射电镜可以
做组织分析。

四、衍射花样标定
以已知晶体结构,定晶面取向的标定为例,基本程序如下:
1)测量距离中心斑点最近的三个衍射斑点到中心斑点的距离R;
2)测量所选衍射斑点之间的夹角φ;
3)根据公式λL Rd =,将测得的距离换算成面间距d;
4)因为晶体结构是已知的,将求得的d值与该物质的面间距表(如PDF卡片)相对照,
得出每个斑点的晶面族指数;
}{HKL 5)决定离中心斑点最近衍射斑点的指数。

若R1最短,则相应斑点的指数可以取等价晶
面中的任意一个;
}{111L K H )(111L K H 6)决定第二个斑点的指数。

第二个斑点的指数不能任选,因为它和第一个斑点间的夹角必须符合夹角公式。

对立方晶系来说,两者的夹角可用下式(9.6)求得
)()(cos 22222221212
12
12121L K H L K H L L K K H H ++++++=φ (9.6)
在决定第二个斑点指数时,应进行所谓尝试校核,即只有代人夹角公式后
)(222L K H
求出的φ角和实测的一致时,指数才是正确的,否则必须重新尝试。

应该指出的
是晶面族可供选择的特定 值往往不止一个,因此第二个斑点的指数
也带有一定的任意性;
)(222L K H }{222L K H )(222L K H 7)决定了两个斑点,其它斑点可以根据矢量运算法则求得;
)()()(222111333L K H L K H L K H +=
8)根据晶带定理,求晶带轴的指数,即零层倒易截面法线的方向。

222111][L K H L K H g g UVW ×=
其中
1221L K L K U −=
1221H L H L V −=
1221K H K H W −=
五、衍射衬度及明暗场像
衍射衬度的形成。

(a)明场像(b)中心暗场像
衍射衬度是由晶体满足布拉格反射条件程度不同而形成的衍射强度差异。

设想晶体薄
膜里有两个晶粒A和B,它们之间的唯一的差别在于它们的晶体学位向不同,其中A晶粒内的
所有晶面组与入射束不成布拉格角,强度为的入射束穿过试样时,A晶粒不产生衍射,透
射束强度等于入射束强度,即,而B晶粒的某(hkl)晶面组恰好与入射方向成精确
的布拉格角, 而其余的晶面均与衍射条件存在较大的偏差,即B晶粒的位向满足“双光束条
0I 0I I A =
件”。

此时,(hkl)晶面产生衍射,衍射束强度为,如果假定对于足够薄的样品,入射电子受到的吸收效应可不予考虑,且在所谓“双光束条件”下忽略所有其他较弱的衍射束,则强度为的入射电子束在B晶粒区域内经过散射之后,将成为强度为的衍射束和强度为的透射束两个部分。

如果让透射束进入物镜光阑,而将衍射束挡掉,在荧光屏上,A晶粒比B晶粒亮,就得到明场象。

如果把物镜光阑孔套住(hkl)衍射斑,而把透射束挡掉,则B晶粒比A晶粒亮,就得到暗场像。

hkl I 0I hkl I hklL I I −
晶体衍射衬度的明场像(a) 和暗场像(b)
五、思考题
l. 透射电子显微镜和光学显微镜结构上有何异同?
2.为什么明场像和暗场像的衬度存在互补性?
六、实验报告要求
1. 简述透射电镜的结构和工作原理。

2. 已知纯镍的结构为面心立方(fcc),晶格常数a=0.3523nm,相机常数为1.12mm ⋅nm,根据
衍射花样确定晶面指数和晶体取向。

单晶镍的电子衍射花样。

相关文档
最新文档