数学建模答案 (5)
数学建模试卷及参考答案
数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。
作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
数学建模题目及答案
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模与数学实验课后习题答案
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
数学建模教程课后答案
表1-6
单 人 理论 位数 值
1 404 40.4 2 204 20.4 3 104 10.4 4 54 5.4 5 14 1.4 合 780 78
取
qi2
整
9
10-6
41 0.02
20 0.04
11 0.30
5 0.64
1 16.00
78 17.00
取 qi2 整 10 10-6 41 0.02 21 0.08 10 0.16 5 0.64 1 16.00 78 16.90
=1+x+xn=2fnxn-1+x2n=2fn-1xn-2 =1+x+x(F(x)-1)+x2F(x).
整理得 F(x)(1-x-x2)=1.
由此推出
F(x)
1
1 x
x
2
1 1 ( u v ) (1ux)(1 vx) u v 1ux 1 vx
1( u v ) 5 1ux 1 vx
n1=987/6-n2-n3=84-54=30. 答案:锐,直,钝角三角形个数分别是30,0
和54.
注:锐角构形有4个,其中一个为等边只乘3.
#1-9 证明n为偶数时有n3=3n1
解:前面已证明n=2k时有
n2 =n(n-2)/2;
nn31
=(n/2)(n/2-1)(n/2-2)=n(n-2)(n-4)/8; =Cn3-n2-n3
上面已推出:x1=3;xk+1=xk+4,对任意正整数 k成立.于是
xn=xn-1+4=xn-2+24=…=x1+4(n-1)=4(n-1)+3
#1-5⒜ 五商人五随从安全过河问题
数学建模作业题+答案
数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。
答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。
答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。
要求,画线颜色调整为黑色,画布底面为白色。
(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。
) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。
6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。
数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。
附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。
高二数学数学建模练习题及答案
高二数学数学建模练习题及答案一、简答题1. 什么是数学建模?数学建模是将现实问题抽象为数学模型,通过数学方法进行分析、求解并得出相应结论的过程。
它将数学知识与实际问题相结合,帮助我们理解问题的本质,预测和优化相关情况。
2. 数学建模的步骤有哪些?数学建模通常包括以下步骤:(1)问题的理解和描述:明确问题的背景、目标和限制条件,并对问题进行适当的简化和抽象。
(2)建立数学模型:将问题转化为数学表达式,建立合适的数学模型。
(3)模型的求解:利用数学方法对模型进行求解,得到定量的结果或结论。
(4)模型的验证和分析:对模型的结果进行检验,分析结果的合理性和可靠性。
(5)结果的解释与应用:解释模型结果,为实际问题提供有效的解决方案,并给出具体的应用建议。
3. 数学建模的意义是什么?数学建模在许多领域都具有重要意义:(1)在科学研究中,数学建模可以帮助解决实际问题,推动科学发展。
(2)在工程技术中,数学建模可以优化设计,提高效率和质量。
(3)在经济管理中,数学建模可以帮助决策者制定合理的策略和政策。
(4)在社会科学中,数学建模可以辅助分析社会问题,提供决策依据。
(5)数学建模还培养了学生的创新思维和解决问题的能力。
4. 数学建模过程中需要的数学知识有哪些?数学建模需要的数学知识包括但不限于:(1)数学分析:微分方程、积分、极限等。
(2)线性代数:矩阵运算、特征值与特征向量等。
(3)概率与统计:概率分布、统计推断等。
(4)最优化理论:线性规划、非线性规划等。
(5)图论与网络优化:最短路径、最小生成树等。
二、应用题1. 盒子问题已知一长方体盒子的长为20cm,宽为15cm,高为10cm。
现在要将一个边长为2cm的小正方体放入该盒子中,问最多可以放多少个小正方体?解答:盒子的体积为20 cm × 15 cm × 10 cm = 3000 cm³。
小正方体的体积为2 cm × 2 cm × 2 cm = 8 cm³。
中南大学数学建模试卷及答案20套
U a, b, c, d , e 0.5 0.1 0.3 0.9 1 A a b c d e 0.4 0.2 0.6 0.6 0.7 B a b c d e
求 AB, A B
6.
请找出此无向带权图中顶点 A 到其余各顶点的最短路径。
第 6 页 共 55 页
7. 对于多元线形回归模型,证明:
e 0 ˆx ˆ e (a ˆ b (2) y
(1)
i
i i
1 1i
„ bk xki )ei 0
试题 3
一、填空题 1. 杜宾两步法用于修正( 2. )模型(Answer in English) 。 ) 。 ) 。
该工厂每生产一件产品Ⅰ可获利 2 元, 每生产一件产品Ⅱ可获利 3 元.问应如何安排计划 使该工厂获利最大?试建立数学模型. 4. 企业 1 的需求函数为 q1 ( p1 , p2 ) m p1 p2 ,企业 2 的需求函数为
q2 ( p1 , p2 ) m p2 p1 ,假设两个企业的生产成本为 0,求两个企业同时决策的纳什均
i 1 j 1 2 s.t. xi yi cij
m
n
为线性规划模型。
(
)
(i 1, 2, , m; j 1, 2,, m)
第 7 页 共 55 页
ˆx 是正确的。 ˆi a ˆ b 5. 表达形式 y i i ˆx 是正确的。 ˆ b 6. 表达形式 yi a i i ˆx e 是正确的。 ˆ b 7. 表达形式 yi a i i ˆx e 是正确的。 ˆi a ˆ b 8. 表达形式 y i i
min f ai 2 xi b j 2 y j ,
数学模型习题参考解答
综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题) (1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明n 支球队“各队每两场比赛最小相隔场次r 的上界”(如n =5时上界为1)是⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是i ,j 两队, i 队参加的下一场比赛是i ,k 两队(k ≠j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,k 以外的2r 支球队参赛,于是32+≥r n ,注意到r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的n 编排出达到该上界的赛程.如对于n =8, n =9可以得到:1A 2A 3A 4A 5A 6A 7A 8A每两场比赛相隔场次数相隔场次总数 1A × 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 19 3A5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 96 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 187 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 17 7A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 17 8A25 1621972212×4,4,3,2,2,2171A2A3A 4A5A 6A 7A 8A 9A每两场比赛相隔场次数 相隔场 次总数1A × 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 23 4,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 19 3,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 14 4,4,3,3,3,3 23 7A 16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A 21 17 25 13 29 9 33 × 5 3,3,3,3,3,3,3, 21 9A13210231914285×3,4,3,4,3,4,324可以看到, n =8时每两场比赛相隔场次数只有2,3,4, n =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即n 为偶数时每两场比赛相隔场次数只有22-n ,12-n ,2n,n 为奇数时只有23-n ,21-n . (4)衡量赛程优劣的其他指标如平均相隔场次 记第i 队第j 个间隔场次数为ij c ,2,2,1,,,2,1-==n j n i ,则平均相隔场次为∑∑=-=-=n i n j ij c n n r 121)2(1r 是赛程整体意义下的指标,它越大越好.可以计算n =8,n =9的r ,并讨论它是否达到上界.相隔场次的最大偏差 定义||,r c Max f ij j i -=∑-=--=21|)2(|n j ij r n c Max gf 为整个赛程相隔场次的最大偏差,g 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算n =8,n =9的f ,g ,并讨论它是否达到上界.参考文献工程数学学报第20卷第5期2003 2. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,h 取尽量简单的形式,如αα=)(g ;0)(=βh (030≤β),0)(h h =β)30(0>β. (1)可030≤β将作为必要条件,以α最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到⎪⎭⎫⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处030=β.又通过计算或分析可知α也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔l (如0.5m), x 从0(或030≤β处)到d D -按l 离散,对于)20~0(00θ计算α的平均值,得020=θ时其值最大.(3)可设地板线是x 的二次曲线2bx ax +,寻求a ,b 使α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线.3.节水洗衣机(1996年全国大学生数学建模竞赛B 题)该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和.假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数c .0x ~初始污水量,~k u 第k 轮加水量,k x ~第k 轮脱水量),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x c xc u x c x u x n n n =+=+=--11221110,,, , 得到)()(210c u c u u c x x n n n ++=. 在最终污物量与初始污物量之比0/x x n 小于给定的清洁度条件下,求各轮加水量k u ),,1(n k =,使总用水量最小,即∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n等价于)()(21c u c u u Min n u k +++++α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第n ~2轮加水量u u k =(常数),第1轮加水量c u u +=1.令cx u =,问题简化为nx Min u n ,ε<⎪⎭⎫ ⎝⎛+nx t s 11.. 其解为0→x ,即0→u ,而∞→n .这与实际上是不合理的.应该加上对u 的限制:21v u v ≤≤.则得max min n n n ≤≤,其中 max min n n n ≤≤,1)/1ln(2min +⎥⎦⎤⎢⎣⎡+=c v n α这样,n为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,19974.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxId .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的.按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,2001 5. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题) 设ij a 为第i 架飞机与第j 架飞机的碰撞角(即)8arcsin(ijij r a =其中ij r 为这两架飞机连线的长度),ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量.本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:∑=61i i Min θs.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL : 1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+ 7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J))); 8] );9] @FOR(LINK(I,J)|I#NE#J:10] (@SIN(alpha*3./180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endata END 计算结果如下:ija j=1 2 3 4 5 6i =1 0.000 0 5.391232.2315.091820.96342.23452 5.391 2 0.0000 4.804 0 6.61355.807 9 3.81593 32.2310 4.8040.000 0 4.364722.83372.12554 5.091 8 6.6135 4.364 7 0.0004.4.537 2.98985 20.9634 5.807922.83374.53770.000 0 2.30986 2.234 5 3.8159 2.125 5 2.98982.309 8 0.000ijβ也可类似地利用LINGO求得,计算结果如下:ijβj=1 2 3 4 5 6i =1 0.000109.263 6-128.250 024.179 8173.065 114.474 92 109.263 60.000 0-88.871 1-42.243 6-92.304 89.000 03 -128.250 0-88.871 10.00012.476 3-58.786 20.310 84 24.179 8-42.243 612.476 30.000 05.969 2-3.525.65 173.065 1-92.304 8-58.786 25.969 20.000 01.914 46 14.479.000.310 -3.5 1.910.04 9 0 0 8 256 4 4 00 0于是,该飞机管理的数学规划模型可如下输入LINGO求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2…..…2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddataEND[注] alpha,beta中数据略去,见上面表格.求解结果如下:OPTIMUM FOUND AT STEP 197SOLUTION OBJECTIVE VALUE= 3.630V ARIABLE V ALUE REDUCED COSTCITA(1) 0.E-06 -1.000 000 CITA(2) -0.E-05 -0.715 033 4CITA(3) 2.557 866 1.000 000 CITA(4) -0.E-04 0.E+00 CITA(5) 0.E-05 -1.000 000 CITA(6) 1.071 594 0.E+00 ………. (以下略)由此可知最优解为:︒︒≈≈07.1,56.263θθ (其它调整角度为0).评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,1996 6. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整.目标函数之降落伞的费用,可以根据表1数据拟合伞面费用1C 与伞的半径r 的关系。
数学建模陈东彦版课后答案
数学建模陈东彦版课后答案篇一:数学建模承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属(请填写完整的全名):参赛队员 (打印并签名) :1.指导教师或指导教师组负责人 (打印并签名)日期: 2010 年 11 月 22 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):对等高线图转化为三维地形图以及水的流向的探讨摘要:在等高线地形图上,根据等高线不同的弯曲形态,可以判读出地表形态的一般状况。
等高线呈封闭状时,高度是外低内高,则表示为凸地形(如山峰、山地、丘顶等);等高线高度是外高内低,则表示的是凹地形(如盆地、洼地等)。
等高线是曲线状时,等高线向高处弯曲的部分表示为山谷;等高线向低处凸出处为山脊。
数条高程不同的等高线相交一处时,该处的地形部位为陡崖,并在图上绘有陡崖图例。
由一对表示山谷与一对表示山脊的等高线组成的地形部位为鞍部。
等高线密集的地方表示该处坡度较陡;等高线稀疏的地方表示该处坡度较缓。
问题一:由等高线图转换为三维地形图有好多种方法,本文用坡度、坡向、等高线膨胀法以及建立空间直角坐标系的方法建立数学模型,把等高线图转化成三维地形图。
问题二:把地面无限细分为无限个单元格。
数学建模疫情题目及答案
数学建模疫情题目及答案1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D处,A、B,C、D的初始位置在与x轴平行,再假设有一条在x轴上的线ab,则ab也与A、B,C、D平行。
当方桌绕中心0旋转时,对角线ab与x轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令()gθ为fθ为A、B离地距离之和,() C、D离地距离之和,它们的值由θ唯一确定。
由假设(1),()gθfθ,()均为θ的连续函数。
又由假设(3),三条腿总能同时着地,故()gθfθ()=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
智慧树知到《数学建模》章节测试答案
智慧树知到《数学建模》章节测试答案智慧树知到《数学建模》章节测试答案第一章1、数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用,是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
A:对B:错正确答案:对2、数学模型是为了特定的目的,根据所研究对象的内在规律,经过必要的简化假设,再运用适当的数学工具而得到的一个数学结构。
A:对B:错正确答案:错3、人物写生课堂上真人模特是()。
A:道具B:模型C:临摹者D:原型正确答案:原型4、原型与模型的关系是()。
A:原型是模型的前提与基础B:模型只要求反映与某些目的有关的那些方面和层次C:原型有各个方面和各个层次的特征D:模型是原型的提炼与升华正确答案:原型是模型的前提与基础,模型只要求反映与某些目的有关的那些方面和层次,原型有各个方面和各个层次的特征,模型是原型的提炼与升华5、数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。
A:对B:错正确答案:对第二章1、建立数学模型之前首先需要做模型准备,即问题的提出和量的分析。
A:对B:错正确答案:对2、数学模型通常不会是一次就成功的,往往需要反复修正和逐渐完善,这是它的()。
A:可转移性B:可变化性C:承袭性D:渐进性正确答案:渐进性3、按照对问题的了解程度,可以将数学模型划分为()。
A:模糊模型B:灰色模型C:白箱模型D:灰箱模型E:黑箱模型正确答案:白箱模型,灰箱模型 ,黑箱模型4、运用八步建模法进行模型准备时,需要做()等工作。
A:明确建模目的B:分析了解问题的研究背景C:搜集相关的数据和资料信息D:分析研究对象的内在机理E:分析确定研究问题的特征正确答案:明确建模目的,分析了解问题的研究背景,搜集相关的数据和资料信息,分析研究对象的内在机理,分析确定研究问题的特征5、数学建模采用的基本方法有()。
A:计算机模拟仿真法B:机理分析法C:系统识别法D:假设检验法E:相似类比法正确答案:计算机模拟仿真法,机理分析法,系统识别法,假设检验法 ,相似类比法第三章1、斐波那契数列源于意大利数学家斐波那契著作《算经》中著名的“兔子繁殖问题”。
部分数学建模习题解答
第一章第5题一个男孩和一个女孩分别在离家2km和1km且方向相反的两所学校里上学,每天同时放学后分别以2km/h和1km/h的速度步行回家。
一只小狗以6km/h的速度由男孩奔向女孩,又从女孩处跑向跑回男孩处,如此往返的奔跑,直至回到家中。
问小狗总共奔波了多少路程?解:由于男孩、女孩与小狗跑的时间一样,所以把时间设为t,则有2t+1t=3,得到t=1h。
所以小狗跑了6km/h*1h=6km。
第一章10题一位探险家必须穿过一片宽度为800 km的沙漠,他仅有的交通工具是一辆每升汽油可行驶10km的吉普车.吉普车的油箱可装10升汽油。
另外吉普车上可携带8个可装5升汽油的油桶,也就是说,吉普车最多可带50升汽油(最多能在沙漠中连续行驶500 km)。
现假定在探险家出发地的汽油是无限充足的.问这位保险家应怎样设计他的旅行才能通过此沙漠?他要通过沙漠所需的汽油最少是多少升?为了穿越这片800km宽的沙漠,他总共需要行驶多少公里路程。
总共要花费多少升的汽油?思路:1、若沙漠只有500公里或者更短,这时很简单,一次搞定。
2、若沙漠有550km,怎么办?需要保证的是:车到了离沙漠终点还有500km的地方,能恰恰加满油且不会有多余。
方案可为:600-550=50,从起点处加5*3(升)=15升油,开出50km,设一加油站,存下5升,剩下5升刚好使得汽车返回起点。
再在起点处加满50升油,到加油站时,只乘45升了,把存放在那儿的5升油加上。
则可跑出沙漠。
(这样共加油15+50=65,总路程为150+500=650km)3、再看2的情况,符合这种情况的沙漠的最大距离是多少呢:答案是500*(1+1/3)公里。
即在起点准备100升油,第一次装50升,跑了500/3公里后存放50*1/3升油,然后返回起点,这时车里的油也正好用完,然后再在起点处装50升,跑了550/3公里后,车内剩下(50*2/3)升油,再加上存放的50*1/3升油,恰好为50升油,则可跑出沙漠。
数学建模课程及答案
《数学建模课程》练习题一一、填空题一、填空题1.1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为长问题的马尔萨斯模型应为 。
2.2. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 。
3. 3. 某服装店经营的某种服装平均每天卖出某服装店经营的某种服装平均每天卖出110件,进货一次的手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 。
4. 4. 一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是 .5.5.设开始时的人口数为设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为表示,则人口增长问题的罗捷斯蒂克模型为 . 6. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:将和下列因素有关:(1)参加展览会的人数n ; (2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为由此建立的冰淇淋销量的比例模型应为 . 7、若银行的年利率是x %,则需要则需要 时间,存入的钱才可翻番存入的钱才可翻番.. 若每个小长方形街路的路的8. . 如图是一个邮路,邮递员从邮局如图是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局出发走遍所有长方形街路后再返回邮局.. 边长横向均为1km ,纵向均为2km ,则他至少要走,则他至少要走 km.. A9. 设某种新产品的社会需求量为无限,开始时的生产量为100件,且设产品生产的增长率控制在0.1,t 时刻产品量为)(t x ,则)(t x = . 10. 商店以10元/件的进价购进衬衫,若衬衫的需求量模型是802,Q p p =-是销售单价(元(元//件),为获得最大利润,商店的出售价是,为获得最大利润,商店的出售价是 . 二、分析判断题二、分析判断题1.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个)个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
《数学建模》习题及参考答案 第五章 微分方程模型
第五章部分习题1. 对于5.1节传染病的SIR 模型,证明:(1)若σ/10>s ,则()t i 先增加,在σ/1=s 处最大,然后减少并趋于零;()t s 单调减少至∞s 。
(2)若σ/10>s ,则()t i 单调减少并趋于零,()t s 单调减少至∞s 。
9. 在5.6节人口的预测和控制模型中,总和生育率()t β和生育模式()t r h ,是两种控制人口增长的手段,试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,及生育第2胎的一些规定,可以怎样通过这两种手段加以实施。
*16. 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为∂(与地面夹角),建立投掷距离与∂,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。
参考答案1. SIR 模型(14)式可写作().,1si dt di s i dt di λσμ-=-=由后一方程知()t s dtds ,0<单调减少。
1) 若σ10>s ,当01s s <<σ时,()t i dt di ,0>增加;当σ1=s 时,()t i dt di ,0=达到最大值m i ;当σ1<s 时,()t i dt di ,0<减少且()()式180=∞i 2) 若σ10<s ,()t i dt di ,0<单调减少至零 9. 一对夫妻只生一个孩子,即总和生育率()1=t β;晚婚晚育相当于生育模式()r h 中(5。
6节(13)式)使1r 和c r 增大;生育第2胎一些规定可相当于()t β略高于1,且()r h 曲线(5。
6节图19)扁平一些(规定生2胎要间隔多少年)*16. 在图中坐标下铅球运动方程为()()()().sin 0,cos 0,0,00,,0ααv y v x h y x g yx ====-== 解出()t x ,()t y 后,可以求得铅球掷远为,cos 2sin cos sin 2/12222ααααv g h g v g v R ⎪⎪⎭⎫ ⎝⎛++=这个关系还可表为()ααtan cos 2222R h v g R +=由此计算0*=ααd dR,得最佳出手角度()gh v v +=-21*2sin α,和最佳成绩gh v g v R 22*+=设m h 5.1=,s m v /10=,则0*4.41≈α,m R 4.11*=。
数学建模试题卷及答案
西安邮电大学2011-2012第一学期《数学建模》选修课试题卷班级:软件1003班姓名:学号:成绩:一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:模型:所研究的系统、过程、事物或概念的一种表达形式,也可指根据实验、图样放大或缩小而制作的样品,一般用于展览或实验或铸造机器零件等用的模子。
例如飞机模型,用压制或浇灌方法使材料成为一定形状的工具。
通称“模型”。
2.数学模型答:数学模型:用数学语言描述的一类模型。
数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。
除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。
需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
3.抽象模型答:抽象模型:是三维建模里这么称呼的就跟抽象雕塑的一样的。
实际不存在,理论上却存在,并用思维对事物进行客观认识的理论或者框架。
对获得的感性材料和感性经验,运用理性思维进行一番老粗取梢、去伪存真、由此及彼、由表及里的改造制作工夫,去掉事物非本质的、表面的、偶然的东西,抽取出事物本质的、内在的、必然的东西,揭示客观对象的本质和规律而建立的模型。
二、简答题(每小题满分8分,共24分)1.模型的分类答:按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类,形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型,数学模型等。
2.数学建模的基本步骤答:(1)建模准备:数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。
建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对;(2)建模假设:根据实际对象的的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。
《数学建模》试题解答要点及部分答案
2002年《数学建模》试题解答要点及部分答案阅卷原则:以假设的合理性、建模的创新性、结果的正确性、文字表述的清晰程度为主要标准.说明:该套题目分为基本题目和分析题,其中分析题应在仔细分析和深入思考的基础上,发挥自己的创造能力,留下独立思考的痕迹.这里给出的答题要点是教师个人的想法,鼓励同学们的其它正确合理的解答.一.(基本题目)(1)在一个密度为ρ的流质表面下深 h 处的压强P=ρgh (g 是重力加速度),试检验此公式的量纲是否正确?(2)在弹簧—质量—阻力系统中,质量为m 的物体在外力F(t)的作用下,在 t 时刻的位置x(t)满足以下方程:)(22t F kx dtdx r dt xd m =++, 其中r 是阻尼系数,k 是弹簧的弹性系数,试确定r, k 的量纲.解答(1)[p] =L —1MT —2, 公式量纲正确;(2)[ r]= MT —1, [k]= MT —2.二. (分析题)一个细菌培养器皿中细菌的繁殖速度很快,目前器皿中有100个细菌,每隔5分钟细菌个数就会加倍,请仔细分析实际情况,建立一个函数表示出 t 时刻的细菌数量.解答 关键语句:“仔细分析实际情况”1.讲义p54的 模型 0,)139.0exp(100≥=t t y 是理想化的结果,不合乎实际情况。
2. 结合实际情况可考虑以下因素:细菌的繁殖、死亡、营养、培养器皿的空间大小等.3.做合理的假设,如:*1 器皿中的营养足够细菌的繁殖需要;*2 细菌个数是连续变化的,细菌的增加理解为自然繁殖个数减去自然死亡个数;*3 培养器皿的空间所限,器皿中存活细菌个数有上限Y M (类似于相对于人类生存的地球)。
4. 对理想化模型进行改进:⎩⎨⎧>≤<=.,;0,)139.0exp(100)(MM M t t Y t t t t y 其中,有M M Y t y =)(。
256注:针对对不同情况的考虑,可做出不同的假设,建立不同的模型.但应考虑马尔萨斯模型是否满足条件“有100个细菌,每隔5分钟细菌个数加倍”.三.(基本题目) (见概率论教材p41)许多人有过这样的经历,进行一次医疗检查,结果呈阳性提示此人患病,但实际上却虚惊一场,究其原因往往是检查的技术水平等因素造成错误所致。
姜启源数学模型课后答案(3版)
《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QCTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β)(2)8322(22022bp a T T t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域.925002+-=TdT dC直线l :20x+30y=c 在可行域内平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te V kD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==,()()()TAS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()TS 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章。
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型是系统知识的抽象表示。
我们不能仅仅通过语言来描述一个系统,也不能仅仅通过记忆来记录关于系统的知识。
知识是通过某种媒介来表达的,这种媒介所表达的内容就是模型。
而知识形成媒介的过程就是建模,或者称为模型化。
通常模型可以使用多种不同的媒介来表达,比如纸质或电子文档、缩微模型/原型、音像制品等等。
而表达模型的体现方式也是多种多样的,常见的有图表、公式、原型、文字描述等等。
2.数学模型由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。
具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构称之为数学模型.如概率的功利化定义。
3.抽象模型通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型。
从实际的人、物、事和概念中抽取所关心的共同特性,忽略非本质的细节把这些特性用各种概念精确地加以描述。
二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类.形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型、数学模型等。
2.数学建模的基本步骤1)建模准备:确立建模课题的过程;2)建模假设:根据建模的目的对原型进行抽象、简化。
有目的性原则、简明性原则、真实性原则和全面性原则;3)构造模型:在建模假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻划实际问题的数学模型.;4)模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;5)模型分析:根据建模的目的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。
;6)模型检验:模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;7)模型应用:模型应用是数学建模的宗旨,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用.3.数学模型的作用数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题。
正因为如此,数学模型在科学发展、科学预见、科学预测、科学管理、科学决策、驾控市场经济乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。
数学不仅是人们认识世界的有力工具,而且对于人的素质培养,无论是在自然科学,还是社会科学中都随时发生着作用,使其终生受益。
特别是,当代计算机科学的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。
数学模型还物化于各种高新科技之中,从家用电器到天气预报,从通信到广播电视,从核电站到卫星,从新材料到生物工程,高科技的高精度、高速度、高安全、高质量、高效率等特点无一不是通过数学模型和数学方法并借助计算机的计算、控制来实现的。
三、解答题(满分20分)B 题 (9n+1, 9n+6)国庆庆典活动的中心广场有数万名学生手持花环组成大型图案方阵,方阵前排距观礼台120米,方阵纵列95人,每列长度192米,试问第一、二两排间距多大能够达到满意的观礼效果?解:可以认为从观礼位置看到的纵列上每个花的部分是一样的。
设观礼者居高a 米,从观礼位置看到的纵列上每个花的部分高度为b 米。
依题意,每列从第一个人到最后一个人(第95人)有94个间空,列长192米,则每列相邻二人平均间距约2米。
为简单起见,不妨设位于192米长的队列中点前后的两人间隔是2米,则设第一、二排间距为 x 米,则于是, (米)四、综合题(21分)M. 飞机降落曲线(7n+3, 7n+5, 7n+6)在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线(图1). 根据经验,一架水平飞行的飞机,其降落曲线是一条五次多项式. 飞行的高度为h ,飞机着陆点O 为原点,且在这个降落过程中,飞机的水平速度始终保持为常数u . 出于安全考虑,飞机垂直加速度的最大绝对值不得超过10g,此处g 是重力加速度. 1.若飞机从距降落点水平距离s 处开始降落,试确定出飞机的降落曲线. 2. 求开始下降点s 所能允许的最小值.解: 设飞机开始降落时,距离落点的水平距离为l (km ),机高为h(m)(机场的地面高度取作0)。
飞机开始降落和着陆时,都保持水平飞行姿态。
1.可以用不同的函数来模拟飞机的降落曲线。
由于有4个隐藏的假定条件,因此我采用三次抛物线(方程假设如下)来模拟飞机的降落曲线,则由上面的初始假定,可以得到4个蕴涵的初始条件,如下:图1①:在整个降落过程中,飞机的水平速度保持不变;②:f(0)=0,f'(0)=0;③:f(l)=h,f'(l)=0;④:在竖直方向的加速度的绝对值不能超过一个常数K=g/10(K远小于重力加速度)。
2、假设飞机降落曲线的三次抛物线方程为:根据②③上述所得到的已知条件求出方程中的四个待定系数a,b,c,d,即在Mathmatica运行环境下输入如下公式:输入:f = a*x^3 + b*x^2 + c*x + dD[f, x]输出:即为f(x)即为f’(x)输入:运行后得到如下解:把上述解代入f(x),则运算后即可得到f(x)的表达式如下:f(x)=-xlh323+223xlh3、代入具体数据进行验证并画出飞机的降落曲线假定h=1100m,l= 15km,在Mathmatica运行环境下输入:运行后即可得到f(x)的图形如下:4.讨论飞机降落时的铅直加速度 先讨论飞机铅直加速度应满足的条件:由题意可知水平方向的速度u 为一个常数,则令u=dx/dt (常数),这时由复合函数求导法,可求出飞机在点(x ,y )处的铅直速度为:)('*x uf dt dxdx dy dx dy ==我们以][x v y 表示点(x ,y )处的铅直速度,即在Mathmatica 运行环境下输入:],[][x f D u x v y *=输出: )66(][322l hx l hx u x v y +=再次利用复合函数求导法,可求得飞机在点(x ,y )处的铅直加速度如下:()()*'22x uf dx ddt dy dt d dt y d =⎪⎭⎫ ⎝⎛=()()''x uf u dt dx =在上述运行环境下,输入如下公式用来表示点(x ,y )处的铅直加速度:]),66([*][322x l hx l hx u D u x a y += 输出:)126(][322l hxl h u x a y +=经过运行后则可得到铅直加速度为:u ()x l l hul hx l h 2612632322+=⎪⎭⎫ ⎝⎛+ 其中x ∈[-l ,0],容易看出铅直加速度的绝对值在开始降落(x=-l )和飞机着陆时(x=0)达到最大,我们在上述运行环境下输入:即可得到飞机降落竖直方向上铅直加速度的最大值为:必须不超过0.98m/s 2现在来判断上述所给的已知条件能否满足条件而安全着陆,则由高度h=1100m ,水平距离l=15m ,水平速度u=540km/h ,在Mathmatica 运行环境下输入如下:Solve[6*1100*540^2/15^2,x]运行后显示结果为:0.1296m/s 2由此可见该最大铅直加速度小于允许值,所以飞机可以安全着陆。
我们可得到飞机降落是的水平位移函数为: x=ut由此可知,只要求出飞机降落是所用的最小时间即可求出最小水平位移,则要求时间最少,即在竖直方向上飞机一直保持着最大铅直加速度,则可以得到解。
由上述解释可知,飞机在降落的过程中一直保持最大铅直加速度,此时时间最短, 已知h=1100 u=540m ,且铅直加速度不超过g/10,则输入:则经过运行后结果为:则由此可知,飞机能够安全着陆是水平距离所能允许的最小值为:44315.2m五、复述题(21分)Q .三级火箭发射卫星模型.(3n+1)摘 要发射人造卫星是一个复杂的系统工程,我们从中抽出几个问题,忽略一些次要因素将问题简化得到几个简单的数学模型。
首先通过天体物理学知识求解得到发人造卫星的在轨速度。
又通过动力守恒定律求解出火箭的飞行速度与其喷气推动力、火箭初始质量和飞行过程中的质量有关,进而分析得出提高火箭的飞行速度的简单措施。
226l hu问题一:由万有引力定律及牛顿第三定律推理得到r gRv =,当skm r 600=时,带入(5-1-3)式得:skm v 58.7=末问题二:由)(ln)(0t m m u t v =式得火箭的末速度有喷气速度及火箭在飞行中的质量决定,为了提高火箭的末速度可以通过提高喷气速度和减少火箭在飞行过程中的质量。
具体地说就是加大火箭推力,抛掉已经没用的结构,以此来加大火箭末速度。
问题三:由计算得到λln u v m -=,当s km u 3=,%10=λ时:skm v m 6.6=,由此得到结论:使用一级火箭不能发射人造卫星。
问题四:燃料用完时末速度为()P m m u v 0ln1λ-=问题五:理想过程的实际逼近——多级火箭卫星系统二级火箭:要使s km v /5.102=,则应使: 2.11≈k ,而:14921≈++P Pm m m m 即发射一吨重的卫星需要148吨重的火箭。
三级火箭:要使skm v /5.103=,则25.3≈k ,而()77321≈+++P P m m m m m 即发射一吨重的卫星需要76吨重的火箭,由此可见三级火箭比二级火箭几乎节省了一半。
四级火箭:⎪⎭⎫⎝⎛++=⎪⎭⎫ ⎝⎛++=11.01ln 1211.01ln 344k k k k v 要使s km v /5.104=,则()()92.1,45.211.01≈≈++k k k ,而()654321≈++++PP m m m m m m 。
即使用四级火箭发射1吨重的卫星需要64吨重的火箭,比三级火箭要省。
但是由于工艺的复杂性及每节火箭都需配备一个推进器,所以使用四级或四级以上火箭是不合算的,三级火箭提供了一个最好的方案。
当然若燃料的价钱很便宜而推进器的价钱很贵切且制作工艺非常复杂的话,也可选择二级火箭。
关键词:动量守恒定律 万有引力定律 牛顿第三定律一、 问题重述建立一个模型说明要用三级火箭发射人造卫星的道理。
1设卫星绕地球做匀速圆周运动,证明其速度为r gRv =,R 为地球半径,r为卫星与地心距离,g 为地球地面重力加速度。