原子物理学,褚圣麟第四章
原子物理学褚圣麟第四、五章复习
第四章:碱金属原子和电子自旋锂、钠、钾、铷、铯、钫化学性质相仿、都是一价、电离电势都比较小,容易被电离,具有金属的一般性质。
一、碱金属原子的光谱1、四个线系(锂为例):其他碱金属光谱系相仿,只是波长不同主线系:波长范围最广,第一条线是红色的,其余在紫外,系限2299.7埃;第一辅线系(漫线系):在可见部分;第二辅线系(锐线系):第一条线在红外,其余在可见部分;伯格漫线系(基线系):全在红外。
2、巴尔末氢原子光谱规律: ,5,4,3),1-21(1~22===n nR v H λ 碱金属原子光谱:2*∞-~~nR v v n = R 为里德伯常数,当,所以∞v ~是线系限的波数,且有效量子数*n 不是整数,Δ==-*n TR n 3、碱金属原子的光谱项:22*Δ)-(n R n R T == 4、同一线系的有效量子数与主量子数差别不大;与某一量子数对应不同线系的有效量子数差别明显,引进角量子数加以区分:5、每一线系线系限波数恰好是另一线系第二谱项值中最大的那个。
共振线:主线系第一条。
6、碱金属原子氢原子能级的比较n 很大时,碱金属原子能级 很接近氢原子能级;n 较小时,碱金属原子能级 与氢原子能级相差大; 且n 相同,l 不同的能级高低差别很大。
二、原子实极化和轨道贯穿:原子=原子实+价电子1、原子实:碱金属原子中的电子具有规则组合,共同点是在一个完整的结构之外,多余一个电子,这个完整而稳固的结构称为原子实。
由于原子实的存在,发生原子实的极化和轨道在原子实中的贯穿。
2、价电子:原子实外的那个电子称作价电子。
价电子在较大的轨道上运动,与原子实结合不是很强,容易脱离。
它决定元素的化学性质,在较大的轨道上运动。
3、原子实的极化:由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心发生微小相对位移,于是负电的中心不再在原子核上,形成一个电偶极子。
① 角量子数l 小:轨道偏心率大(椭圆),极化强,能量影响大;② 角量子数l 大:轨道偏心率小(接近圆),极化弱,能量影响小。
褚圣麟版 《原子物理》期末复习资料
Plz m l Psz m s P m j jz
l g l l ( l 1) B , g l 1 s g s s ( s 1) B , g s 2 g j ( j 1) B j j
lz m l g l B , g l 1 s ms g s B , g s 2 m g j j j B
0
) (
2
Ze Mv
2 2
)
2
d sin
4 2
d表示入射粒子被靶的一个原子散 射到θ → θ +d θ之间的立体角dΩ内 的散射截面,即每个靶原子对散射 几率的贡献,称为有效散射截面。 设有一薄膜,面积为A,厚度为t,单位体积内的原子数为N, 则被散射到dΩ内的粒子数dn占总入射粒子n的百分比,也 即是粒子被散射到dΩ内的几率:
ps s(s 1 ) 1 2 自旋量子数 s 1 2 1 2 所以 m s
p sz m s
第五章 多电子原子 1、氦原子光谱和能级 掌握氦原子光谱和能级的特点。(p145)
2、两个电子的耦合
(1)电子组态 n1l1n2l2-----L-S耦合: (s1s2…)(l1l2…)=(SL)=J
原子态:
2 S 1
Hale Waihona Puke LJj-j耦合: (s1l1)(s2l2) … =( j1j2… )=j
原子态: ( j1 , j2 ) j
跃迁选择定则 (1)宇称变化 偶性态( li=偶数) (2)总角动量变化规则 L-S耦合跃迁选择定则: j-j耦合跃迁选择定则: 奇性态( li=奇数)
ΔS 0 ΔL 0 , 1 ΔJ 0 , 1
原子物理学课后答案(褚圣麟)第3章第4章第6章
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
原子物理和量子力学
原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。
原子物理学(褚圣麟)完整答案
原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。
散射物质是原子序数 Z = 79 的金箔。
试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。
α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
《原子物理学》(褚圣麟)第四章 碱金属原子和电子自旋
玻尔理论
轨道磁矩
l
e P 2m e n n u B 2m
l
量子力学
e L 2m e 2m l (l 1) l (l 1)u B
n 1,2,3 n
l 0,1,2, n 1
轨道磁矩在外 磁场的分量
lZ
e P 2m e n n u B 2m
~ R ~ n 2 n
• 等式右边的第一项是固定项,它决定线系限及末态。第二 项是动项,它决定初态。 ~ ~ n 和 则可求出 Tn R2 • 实验上测量出 n • 由 Tn 和 R 我们可以求得 n * 。
第4章 碱金属原子和电子自旋
n *它不一定是整数,它通常比 n 略小 有效量子数
第4章 碱金属原子和电子自旋
§4.1 碱金属原子光谱
• 一、碱金属原子光谱的实验规律 • 二、碱金属原子的光谱项 • 三、碱金属原子的能量和能级
第4章 碱金属原子和电子自旋
一、碱金属原子光谱的实验规律
1、 碱金属原子光谱具有原子光谱的一般规律性;
2、通常可观察到四个谱线系。
各种碱金属原子的光谱,具有类似的结构。 主线系(也出现在吸收光谱中); 第二辅线系(又称锐线系);
5.955
6.954
0.05
第一辅 线系
4389.2 3046.9 2239.4 5.000 6.001 7.000 0.001
柏格曼系 f, =3
4381.2 3031.0 5.004
0.000
氢
T 27419.4 12186.4
6854.8
4387.1 3046.6 2238.3
第4章 碱金属原子和电子自旋
原子物理学第四,五,六,七章课后习题答案
第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。
原子物理学,褚圣麟第四章
(基线系)
柏格曼线系 f n
4.1 碱金属原子的光谱
~
第四章 碱金属原子和电子自旋
钠原子光谱线系
主线系 第二辅线系
第一辅线系
柏格曼线系
R R , n 3,4, p n 2 2 (3 S ) (n p ) ~ R R , n 4,5, s n 2 2 (3 p ) (n s ) ~ R R , n 3,4, d n 2 2 (3 p ) (n d ) ~ R R , n 4,5, f n 2 2 (3 d ) (n f )
* 2 2
第四章 碱金属原子和电子自旋
附加能量按相对论处理结果(1925年)
*2 *2
1 Z e h 1 j l s Els 3 2 2 2 4π 0 2m c 4π r 2 2 2 *4 *2 *2 *2 2πe Rch Z j l s Els 1 4π 0ch 2 3
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
元素周期表
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
碱金属元素 符 号 原子序数
锂 Li 3
钠 Na 11
钾 K 19
铷 Rb 37
铯 Cs 55
钫 Fr 87
特性:化学性质相仿,属于同一族,都是一价, 电离电势较小。
4 . 1 碱金属原子的光谱
Els s B cos
j l s 或 l s
h pj j 2π
pl ps
s
B
pl s
p
s
B
180 0
能量大(j 大)
原子物理学褚圣麟答案
原子物理学褚圣麟答案【篇一:原子物理课后习题答案褚圣麟】章作业到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r2-13m=z1*z2*e/4*?*?0*e = …… = 1.14 ? 10 m氕核情况结论相同----------------------------------------------------------------------------------------------- 21页 4题:?粒子的速度为 1.597 ? 107 m/s,正面垂直入射于厚度为 10-7米、密度为1.932 ?104 kg/m3 的金箔。
试求所有散射在 ? ? 90? 的?粒子占全部入射粒子的百分比。
金的原子量为197。
解:金原子质量 mau = 197 ? 1.66 ? 10-27 kg = 3.27 ? 10-25 kg 箔中金原子密度 n = ?/m28au = …… = 5.91 ? 10 个/m3入射粒子能量 e = 1/2 mv2= 1/2 ? 4 ? 1.66 ? 10-27 kg ? (1.597 ? 107 m/s)2 = 8.47 ? 10-13 j若做相对论修正 e = e0/(1-v2/c2)1/2 = 8.50 ? 10-13j对心碰撞最短距离a=z1?z2?e2/4????0?e = …. = 4.28 ? 10-14 m 百分比dn/n ?nta2(90??180?)=11?4????sin245??sin290??= ?… = 8.50 ? 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 mev ?粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。
原子物理学习题答案(褚圣麟)很详细资料
精品文档1.原子的基本状况1.1解:根据卢瑟福散射公式:ctg24Mv2Kb 42Ze2Ze 2b得到:Ze2ctgb 24K(479(1.601019)2ctg15028.851012)(7.681061019)3.971015米式中K1Mv22是粒子的功能。
1.2已知散射角为的粒子与散射核的最短距离为r m(41)2Ze21(1Mv2sin2),试问上题粒子与散射的金原子核之间的最短距离rm多大?解:将1.1题中各量代入rm的表达式,得:rmin(41)2Ze21(1Mv2sin2)9109479(1.601019)21(1)7.68106 1.601019sin753.021014米1.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:1Ze2 Mv2K24r0min ,故有:rmin 4Ze2Kp910979(1.601019)106 1.60101921.141013米p精品文档精品文档由上式看出:r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核min米。
13代替质子时,其与靶核的作用的最小距离仍为1.14101.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05102公斤/米2的银箔上,粒解:设靶厚度为t'。
非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的厚度t',而是t t'/sin60,如图1-1所示。
因为散射到与d 之间d立体角内的粒子数dn与总入射粒子数n的比为:dnnNtd (1)20º1ze2dd ()2( )24Mv20sin42把(2)式代入(1)式,得:(2)60°t60ºtdn1ze2Nt( )2()n 4Mv22dsin42 (3)图1.1式中立体角元d ds/L2,t t'/sin6002t'/ 3,200N为原子密度。
原子物理学(褚圣麟)完整答案
2
(2)
t, 60º t
图 1.1
Word 资料
.
把(2)式代入(1)式,得:
dn n
Nt (
1 40
)2 (Mzev22 )2
d sin 4
……(3)
2
式中立体角元 d ds/ L2 ,t t' / sin 600 2t' / 3, 200
N 为原子密度。 Nt' 为单位面上的原子数, Nt' / m Ag (AAg / N )0 1 ,其中是单位
下式决定:
1 Mv2 2
2Ze 2
/ 4
R0
3.78 1016 焦耳
2.36 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子
表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:
F 2Ze 2 / 4 R0 2和F 2Ze 2r/ 4 R 30。可见,原子表面处粒子所受的斥力最大,越
解:散射角在 d 之间的粒子数 dn与入射到箔上的总粒子数 n 的比是:
d n N td n
其中单位体积中的金原子数: N / mAu N0 / AAu
而散射角大于 900 的粒子数为: dn' dn nNt d 2
dn ' 所以有: n
1.5 粒子散射实验的数据在散射角很小( 15)时与理论值差得较远,时什么原
因?
答:粒子散射的理论值是在“一次散射“的假定下得出的。而 粒子通过金属箔,经过
Word 资料
.
好多原子核的附近,实际上经过多次散射。至于实际观察到较小的 角,那是多次小角散射 合成的结果。既然都是小角散射,哪一个也不能忽略,一次散射的理论就不适用。所以, 粒
原子物理学第四,五,六,七章课后习题答案-推荐下载
原子的基态为 4S. 试求 4S 、4P 谱项的量子数修正项∆S 、∆P 值各为 多少?
K 原子的主线系波数
~
p n
n ,
~
R (4 S )2
1 p
~
p n
~
1 2.858 107
~
T4S 3.4990 106 m 1
而
T4S
所以 4 S
R T4P
1.3046 106 m1
第五章 多电子原子
1. He 原子的两个电子处在 2p3d 电子组态.问可能组成哪几种原子态?用
原子态的符号表示之.已知电子间是 LS 耦合.
解:p 电子的轨道角动量和自旋角动量量子数分别为 l1 1,
d 电子的轨道角动量和自旋角动量量子数分别为 l1
R (4 S )2
R R 1.0973731107 m1
4 S 1.7709
S 2.2291
R (n P )2
R (4 S )2
R T4S
m 1
,
n 4,5,
3.4990 106 m1
K 原子共振线为主线系第一条线, 是原子从 4P 到 4S 跃迁产生的光
1.2206 106 m1
~
f 1
T3D
T4F
1 1.8459 106 m
T4F T3D 5.4174 105 m 1 6.8496 105 m 1
5.4174 105 m 1
3. K 原子共振线波长为 7665Å,主线系系限波长为 2858Å. 已知 K
第四章 碱金属原子
0
原子物理学习题标准答案(褚圣麟)很详细
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求
、
、
、
4F
各
3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013
米
106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t
原子物理学详解答案(褚圣麟)
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理褚圣麟课后习题答案和解析
原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13 m氕核情况结论相同-----------------------------------------------------------------------------------------------21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。
试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。
金的原子量为197。
解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028 个/m 3入射粒子能量 E = 1/2 MV 2 = 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27 kg ⨯ (1.597 ⨯ 107 m/s)2 = 8.47 ⨯ 10-13 J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13 J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n(90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin 145sin 14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。
原子物理学复习资料
原子物理学(褚圣麟编著高等教育出版社)第一章 原子的基本状况1、α粒子散射实验结论p9:卢瑟福的α粒子散射实验观察到,绝大多数电子只有2~3度的偏转,有1/8000的α粒子偏转大于90°,其中有接近180°的。
2、卢瑟福散射公式p13:22224014sin 2Ze d Ωd Mv σθπε⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,d σ是立体角d Ω内每个原子的散射截面 dnd Ntnσ=;N 为薄膜中单位体积中原子的个数;t 为薄膜厚度;有n 个α粒子射到薄膜上,其中d n 个落在d Ω中第二章 原子的能级和辐射1、光谱的分类p23:(1)线装光谱:是原子所发的; (2)带状光谱:是分子所发的;(3)连续光谱:固体加热所发的,原子和分子在某些情况下也会发连续光谱。
2、波数p243、谱线系p25(m < n , m = 1,2,3…),表示第m 条谱线到第n 条谱线的能量差;对于氢原子,Z = 1。
R 是里德伯常数,它由11/e R R m M∞=+确定,其中M 是原子核质量,m e 是绕核旋转的电子的质量.对于氢原子,R H = 1.09677576×107 m -1。
m = 1时的谱线系称为赖曼系;m = 2时的谱线系称为巴耳末系; m = 3时的谱线系称为帕邢系; m = 4时的谱线系称为布喇开系; m = 5时的谱线系称为普丰特系。
4、原子的能量p29:2hcRE n=-5、氢原子半径p3021n r a Z =,2012244h a meπεπ=.对于氢原子,a 1 = 0.529166×10-10m.6、氢原子能级p31212Z E E n =,2412202(4)me E hππε=-.对于氢原子,E 1 = -13.59 eV . 7、折合质量p39若不满足m << M ,则计算时的质量m 需要使用折合质量MmM mμ=+.8、电离电势(ionizing potential )p46在赖曼系中取n = ∞求得,则电离电势为.9、激发电势(excitation potential )p42原子由第m 条谱线激发到第n 条谱激发电势为.10、两个实验p42 p55:(1)夫兰克—赫兹实验证明原子能级的存在(2)史特恩—盖拉赫实验证明原子空间取向的量子化第三章 量子力学初步1、光子的能量p78E h ν=2、德布罗意(de Broglie )波长p79h pλ=3、不确定性原理(Uncertainty principle )p82/2p x ∆∆≥, /2E t ∆∆≥4、薛定谔方程(Schrodinger equation )p89定态薛定谔方程(time-independent Schrodinger equation ):5、球坐标下的薛定谔方程p1046、波函数必须满足的三个条件:有限;连续;单值(唯一) 7、五个量子数主量子数n = 1, 2, 3 ···角量子数l = 0, 1, 2 ··· (n - 1)角量子数在z 轴的分量(磁量子数)m l = 0, ±1, ±2, ··· ±l 自旋量子数s = 1/2自旋量子数在z 轴的分量m s = ±1/2第四章 碱金属原子和电子自旋1、四种线系2、锂(Li)3、钠(Na)4、碱金属的光谱项表达式*22(Δ)R RT n n ==- 5、原子实的极化和轨道贯穿使电子的能级偏低,其中轨道贯穿影响较大。
《原子物理学》教学大纲(修订)2016
《原子物理学》教学大纲一、教学目的与任务课程性质:《原子物理学》是物理教育专业的专业必修课程。
本课程着重从物理实验规律出发,引进近代物理关于微观世界的重要概念和原理,探讨原子、原子核及基本粒子的结构和运动规律,解释它们的宏观性质,以及在现代科学技术上的重大应用。
本课程强调物理实验的分析、微观物理概念、物理图像和物理模型的建立和理解。
教学目的:物理学对物质微观结构的研究已经从原子层次深入到了原子核及基本粒子等层次,原子物理学又作为进一步学习原子层次以下其它物质微观结构层次的起点,通过原子物理学课程的学习,使学生掌握原子结构及核结构图象,原子的能级与辐射,外磁场对原子的作用、原子光谱规律及其产生机制等知识,使学生逐步掌握原子物理学中的实验事实和基本规律、基本原理及研究有关问题的思路和方法,培养学生发现和提出问题、建立物理模型、定性分析与定量计算的能力、理论联系实际的能力和独立获取知识的能力,开阔学生的思路,激发学生的探索和创新精神,提升其科学技术的整体素养,并为进一步学习量子力学、固体物理学及近代物理实验等课程打好基础。
二、教学基本要求从原子结构模型出发使学生对原子的结构有个初步认识,理解原子核式结构,掌握原子能级概念和光谱的一般知识;理解氢原子的波尔理论,了解伏兰克-赫兹实验;了解氢原子能量的相对论效应;了解斯特恩-盖拉赫实验,理解原子的空间取向量子化;了解碱金属光谱的精细结构,电子自旋与轨道的相互作用;理解两个价电子的原子态,了解泡利原理;理解原子磁矩及外磁场对原子的作用,了解顺磁共振和塞曼效应;掌握原子的壳层结构和原子基态的电子组态;了解康普顿效应,理解X射线的衍射。
三、教学内容、要求与学时分配绪论 2学时介绍原子物理学的地位与作用、研究对象与研究方法、发展史以及学习上应注意的问题。
第一章原子的基本状况 3学时1.1 原子的质量和大小 1学时1.2 原子核式结构 1学时1.3 同位素 1学时教学重点与难点:(1)卢瑟福原子核式结构模型;(2)α粒子散射理论与卢瑟福散射公式及其应用。
《原子物理》(褚圣麟)习题解答
1
3
=RH [
4.试估算一次电离的氦离子 He 、二次电离的锂离子 Li
的第一玻尔轨道半径、电离电
势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解: He 、 Li
都是类氢粒子,由玻尔理论可列表如下:
r1 ( A)
H 0.529 0.265 0.176
0
V (V )
4 0 h 2 v2 e2 m 0.529 10 10 (m) ,其中 a1 2 2 a1 4 0 a1 4 me
由此求得电子的线速度: v 2.18核转动的频率: f
v 6.56 1015 ( s 1 ) 。 2a1
电子的加速度: a
v2 8.98 10 22 (ms 2 ) 。 a1
2. 试用氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
第 4 页
~ =RH 〔 解:∵
1 1 ~ =RH 。∴ U hcR H 13.6(V ) 2 〕,电离情况对应于 n=∞,即 2 1 n e 3 RH , 4
4 2 me 4 2n 当 n 1 时, n cR 2 2 = n n 4 0 2 n 3 h 3
第 7 页
9. Li 原子序数 Z=3,其光谱的主线系可用下式表示:
~=
R R 2 (1 0.5951) (n 0.0401) 2
+++ + ++
已知 Li 原子电离成 Li 离子需要 203.44ev 的功。问如果把 Li 离子电离成 Li 离子, 需要多少 ev 的功? 解:第一步,由已知公式求出 Li Li 所需的功:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 碱金属原子和电子自旋
元素周期表
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
碱金属元素 符 号 原子序数
锂 Li 3
钠 Na 11
钾 K 19
铷 Rb 37
铯 Cs 55
钫 Fr 87
特性:化学性质相仿,属于同一族,都是一价, 电离电势较小。
4 . 1 碱金属原子的光谱
p
l2
4
d
l 3
5
柏 格 曼 系
f
H n
7 6
5
4
锂 原 子 能 级 图
10 000
3
20 000
30 000
2
2
氢 原 子 能 级 图
40 000
cm-1 2
4.1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
锂原子光谱线系
主线系
第二辅线系
R R , n 2,3, p n 2 2 (2 S ) (n p )
第四章 碱金属原子和电子自旋
锂的光谱线系
紫外 可见
线系限
红外
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
巴耳末氢原子光谱规律
1 1 RH ( 2 2 ), 2 n
碱金属原子的光谱公式
~
1
动项(初态)
n 3,4.5.
固定项(末态)
决定系限 非整数
*
n
4.000
27419. 4 12186. 4 6854. 8
5.004
4387. 1 3046. 6 2238. 3
氢
n
~
~
R n
*2
n
*
RLi 109729 T T
4.1 碱金属原子的光谱
光谱项值
0
第四章 碱金属原子和电子自旋
l0
5 4 3 5 4 3
s
l 1
5 4 3碱金Biblioteka 原子的光谱项TR n
*2
R ( n ) 2
4.1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
总结 谱线特征:1)四套线系(四套动项); 2)三个终端(三套固定项); 3)两个量子数(n,l)确定能级 。 光谱项
T
R n
*2
R 2 ( n )
与氢原子相仿
碱金属原子能级
~
~
~
R n
*2
线系限波数 角量子数:
n , n
~
l = 0 、 1 、 2 、 3 、 4、 光谱项标记(电子态) :s 、p 、d 、f、 g、
4.1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
锂的光谱项值和有效量子数
数据来源
第二辅线系
电子态
n= 2
3
2.596 2.956 2.999
第四章 碱金属原子和电子自旋
e
e
E
hcR n
*2
*2
非贯穿轨道
贯穿轨道
Z R R R T 2 2 * * * 2 n n Z 1 * n (n Z ) n 结果:l 较小轨道,偏心率大,引起较强极化,
极化产生的电场为另加的吸引力,使能量降低;同 时引起轨道贯穿,平均有效电荷数增大,能量减小。
~
~
R R , n 3,4, (锐线系) s n (2 ) 2 (n ) 2 p s
(漫线系)
第一辅线系 d n
~ ~
R R , n 3,4, 2 2 (2 p ) (n d ) R R , n 4,5, 2 2 (3 d ) (n f )
第四章 碱金属原子和电子自旋
碱金属原子三个光谱线系的精细结构示意图
主线系 np 2s 第二辅线系 ns 2p
线 系 限
第 四 条
第 三 条
第 二 条
第 一 条
第一辅线系 nd 2p
1)竖线表示光谱精细结构;2)高低代表谱线 强度;3)间隔表示谱线成分波数。
4 . 3 碱金属原子光谱的精细结构 第二辅线系(各S态
4.4 电子自旋同轨道运动的相互作用
第四章 碱金属原子和电子自旋
正确的矢量图
pj
B
pl
3 j 2
pj
1 j 2 B
pl
s
pl
ps
pj
s
ps
p j 旋进,二者夹角不变。
ps
p j 守恒,pl 和 p s 绕
2 pj
90
6 1 6 1
T3P T3S 1.69710 m 2.44710 m
4.2 原子实的极化和轨道贯穿
第四章 碱金属原子和电子自旋
1. 原子中(碱金属)电子的组合
Li 3 2 12 1 Na 11 2 (12 22 ) 1 K 19 2 (12 22 22 ) 1
90
cos
2 pl
2 ps
2 pl ps
第四章 4.4 电子自旋同轨道运动的相互作用 2.电子自旋与与轨道运动相互作用能量计算
碱金属原子和电子自旋
e ps 电子自旋磁矩 s m e 1 1 h s ( 1)
m 2 2 2π he 3 1.7 B 4πm
4
3.598
7017. 0
5
4.599
4472. 8
6
5.599
3094. 4
7
6.579
2268. 9
0.40 0.05
s, l 0 n*
T
43484.4 16280. 5
8474.1 5186. 9
3499. 6 2535. 3
1.589
主线系
第一辅线系 柏格曼线系
p, l 1
n* 1.960
Z *e
r
H
e m
H
v
v
Z *e
r e
0 Z ev
*
pl mvr sin 附加能量 Els s B cos B pj
轨道角动量
B
4π r
2
sin
2 ps
pl
s
ps
cos
2 pj
2 pl
2 pl ps
4.4 电子自旋同轨道运动的相互作用
主线系
R R , n 3,4, p n 2 2 (3 S ) (n p )
~ ~
~
R n , p n 2 (3 S )
T3S
241 .3nm
(系限波长)
1 m 1 4.144106 m 1 241.3 109
4.1 碱金属原子的光谱
h h (l s) 或 (l s ) 2π 2π h pj j j l s 或 l s 2π
ps pl p j
pl ps
pj
电子角动量等于 原子角动量
4.4 电子自旋同轨道运动的相互作用
第四章 碱金属原子和电子自旋
具有自旋磁矩 s 的电子处在轨道运动磁场中的 附加能量
(基线系)
柏格曼线系 f n
4.1 碱金属原子的光谱
~
第四章 碱金属原子和电子自旋
钠原子光谱线系
主线系 第二辅线系
第一辅线系
柏格曼线系
R R , n 3,4, p n 2 2 (3 S ) (n p ) ~ R R , n 4,5, s n 2 2 (3 p ) (n s ) ~ R R , n 3,4, d n 2 2 (3 p ) (n d ) ~ R R , n 4,5, f n 2 2 (3 d ) (n f )
T T
*
28581. 4 12559. 9
3.954 3.999
6855. 5
4.954
4389. 2
5.955
3046. 9
6.954
2239. 4
d,l 2 n
12202. 5 6862. 5
0.001
0.000
5.000
4381. 2
6.001
3031. 0
7.000
f ,l 3
n*
T T
Els s B cos
电子总角动量 = 原子的总角动量(原子实角动量为零)
量子力学角动量的表达式
h * h pl l (l 1) l 2π 2π
l l (l 1)
*
h 1 * h ps s( s 1) s , (s ) 2π 2π 2
pj
h * h j ( j 1) j , j ls 或 ls 2π 2π
n l (l )(l 1) 2
里德伯常数
光谱项改变
*2
Els j l s Tls a hc 2 l l 1 T j l s a T j l s a 2 2
*2
*2
*2
R Z a 1 3 n l (l )(l 1) 2
* 2 2
第四章 碱金属原子和电子自旋
附加能量按相对论处理结果(1925年)
*2 *2
1 Z e h 1 j l s Els 3 2 2 2 4π 0 2m c 4π r 2 2 2 *4 *2 *2 *2 2πe Rch Z j l s Els 1 4π 0ch 2 3