求数列极限的若干方法
数列求极限的方法总结
数列求极限的方法总结1、等价无穷小的转化,〔只能在乘除时候使用,但是不是说肯定在加减时候不能用,前提是必需证明拆分后极限依旧存在,e的X 次方1或者〔1+x〕的a次方1等价于Ax等等。
全部熟记〔x趋近无穷的时候还原成无穷小〕。
2、洛必达法则〔大题目有时候会有示意要你使用这个方法〕。
首先他的使用有严格的使用前提!必需是X趋近而不是N趋近!〔所以面对数列极限时候先要转化成求x趋近状况下的极限,当然n趋近是x趋近的一种状况而已,是必要条件〔还有一点数列极限的n当然是趋近于正无穷的,不行能是负无穷!〕必需是函数的导数要存在!〔假如告知你g〔x〕,没告知你是否可导,直接用,无疑于找死!!〕必需是0比0无穷大比无穷大!当然还要留意分母不能为0。
洛必达法则分为3种状况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的.形式了,〔这就是为什么只有3种形式的缘由,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0〕。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变留意!〕E的x绽开sina,绽开cosa,绽开ln1+x,对题目简化有很好关心。
4、面对无穷大比上无穷大形式的解决方法,取大头原则最大项除分子分母!!!看上去冗杂,处理很简洁!5、无穷小于有界函数的处理方法,面对冗杂函数时候,尤其是正余弦的冗杂函数与其他函数相乘的时候,肯定要留意这个方法。
面对特别冗杂的函数,可能只需要知道它的范围结果就出来了!6、夹逼定理〔主要应付的是数列极限!〕这个主要是观察极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用〔应付数列极限〕〔q肯定值符号要小于1〕。
求数列极限的十五种解法
求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
数列极限求解的几种常用方法
数列极限的若干计算法
其中( a >O) 的极限
解:设Xo=√:,咒:√口+√:=以丽…工+一石瓦伽=O, L2..●
则{五) 是单调有界数列,它必有极限,设其极限为A
*
…… ……… …… ……… ……… …~… …一 ……… ……· l 陟… …一
( 上接第120页)
。
所以 当x— ÷0时 ,si n 2x- t an Sx一2 x- 5x=一3x, 则由定 理2。 2易知 ,
【关键词] 数列极限计算 中国分类号:021 文献标识码:A 文章编号:1 671- - 7597( 2 008) 06201 30一Of
一.利用四舅运算法பைடு நூலகம்求囊习曩■
若{m】与{挑】为收 敛数列,则{幽+蜘,{函一6,I ) , {“·加】也都
是收敛数列,且有
l i ra (a, , 土妫=Funa -+l hnk l i m∞h)=t una.1i 衄k
因此一li man甜…=;‘
◆考文献:
[ 1]黄丹妹.试论极限的计算方法数列篇.福建:福矗省侨兴轻工学校:
[ 2】魏立明.一类数列极限求法的研究.广西贺洲.梧州师范高等专科学校.
行之有效的方法,角它可以求解某些用其他方法难以求解酊极限题,并且
”
使运算过程更为简洁。
参考文献; [ 1]范锦芳.无穷小量使用技巧,工科数学[ M] .北京高等教育出版社.1993. [ 2】李秀敏.无穷小量的等价代换在极限运算中的应甩[ J ] .高等数学研究.
例求坚罂√行(√n+l 一√n)
解 石 ( √ 而 一 而 =赤 ‰ =
,由l +!一。,( ^一嘞 n
锝靶石(√鬲一搦2罂 l
数列极限的求解技巧
数列极限的求解技巧数列极限是数学分析中的一个重要概念,它描述了一个数列在趋向于无穷大时的表现。
求解数列极限的过程涉及到各种技巧和方法。
本文将介绍一些常用的数列极限求解技巧。
1. 数列的定义和性质:首先,我们需要理解数列的定义和性质。
一个数列是由一个函数定义的,其中的每个项是函数在自然数集上的取值。
数列有许多重要的性质,如收敛、发散等。
我们需要熟悉这些性质,以便有效地求解极限。
2. 极限的定义和性质:了解极限的定义和性质也是求解数列极限的关键。
数列的极限定义为当数列中的项无限接近某个常数时,这个常数就是数列的极限。
极限有一些基本的性质,如唯一性和保序性等,我们要熟悉并应用这些性质来求解极限。
3. 递归关系:有些数列可以通过递推关系来定义,即每一项都是前一项的函数。
求解这种数列的极限可以利用递归的思想。
通常,我们可以通过递归关系将数列的项表示为较简单的形式,然后求解这个简化后的数列的极限。
4. 二次递推数列的求解:对于二次递推数列,即每一项都是前两项的函数,求解极限有特定的技巧。
通常,我们可以将这种数列的项表示为相关的二次方程,然后利用求解二次方程的方法求解极限。
5. 求和数列的求解:对于求和数列,即每一项是前若干项的求和,求解极限可以利用求和公式或求和性质。
例如,我们可以利用等差数列的求和公式或等比数列的求和公式来求解相应的极限。
6. 夹逼定理:夹逼定理是求解数列极限的重要工具。
夹逼定理的基本思想是通过构造两个夹逼数列,使得这两个数列的极限相等,从而求出原数列的极限。
夹逼定理可以用来解决一些复杂的极限问题,尤其是当数列无法直接求解时。
7. 最值性质:数列的最值性质也是求解极限的一种方法。
最大值或最小值定理可以用来确定数列的极限。
通过证明数列的项递增或递减,并有上界或下界,我们可以得出数列的极限。
8. 逐项相加:有些复杂的数列可以通过在等式两边逐项相加或相乘的方式来求解。
通过逐项相加或相乘,我们可以把复杂的数列分解成更简单的数列,然后求解这些简单数列的极限。
求极限的若干方法
求极限的若干方法一、数列极限的求解方法1、夹逼准则法(夹逼定理):若数列{an}、{bn}、{cn}满足an≤bn≤cn(n≥N0),且lim an=lim cn = L,则数列{bn}有极限且lim bn = L。
2、单调有界数列必有极限法:单调递增的数列有上确界、单调递减的数列有下确界,因此,单调有界数列必有极限。
3、数列按定义法:对于任何一个ε>0,只要找到一个正整数N,使得当n>N时,有|an-L|<ε,则该数列的极限为L。
二、函数极限的求解方法1、极限的定义法:通过定义式计算出函数在某一点的极限。
2、夹逼定理法:当x趋近于a时,若能找到两个函数f(x)≤g(x)≤h(x),且lim f(x) = lim h(x) = L,则函数g(x)在x→a时有极限,且lim g(x) = L。
3、函数的分解法(分子分母有理化、公式替代、三角函数化合成、指数幂换底等方式):通过对函数进行分解或替换等操作,将其转换为可以用其它非分数函数进行极限操作的形式。
4、洛必达求极限法:当函数f(x)和g(x)在某一点均为0或无穷大时,计算并求出函数f(x) / g(x) 的极限l。
如果极限l存在,则f(x) / g(x) 在该点处的极限也是l。
三、无穷级数的求极限方法1、比项法则法:若某一级数后一项于前一项同比变化的极限为L,则这个级数也有极限,且级数的极限为L。
2、积分判断法:对于大于1的自然数n,若函数f(x)在[1,n+1]上是单调递减的且非负,那么它可以累次积分,获得一个极限值;相反地,若g(x)在[1,∞)上是单调递增的和非负的,若及时积分比对之后的级数的部分和同比下减小,则极限l存在;否则若极限不存在,则级数发散。
3、柯西收敛定理法:当对于任意ε >0,存在自然数N>0,使得对于所有的n>m>N,都有|\sum_{k=m}^n a_k|<ε 成立,则此级数是收敛的;如果它不满足上述条件,则是发散的。
求数列极限的若干方法
求数列极限的若干方法求解数列极限是数学分析中一个重要的问题,常用的方法有以下几种:1.直接求解最简单的方法是直接计算数列的通项公式,然后逐渐增加项数,观察数列的变化趋势,看是否有收敛或发散的特性。
如果数列趋向于一个确定的数,即极限存在,则该数即为极限值。
这种方法适用于简单数列,例如等差数列、等比数列等。
2.夹逼定理夹逼定理是数学分析中的一个基本定理,可以用来求解一些复杂数列的极限。
夹逼定理的基本思想是将待求极限数列夹在两个已知极限数列之间。
如果两个已知极限数列的极限相同,那么待求极限就是它们的共同极限。
夹逼定理适用于求解一些无法通过直接求解得到极限的数列,例如级数、递推数列等。
3.利用数列性质数列具有一些基本性质,例如收敛数列的任意子列也收敛,并且极限相同;发散数列的一些子列无极限等。
可以通过这些性质来判断数列的极限是否存在,或者通过子列的极限值来确定数列的极限。
4.数列分解对于一些复杂的数列,可以将其分解成多个部分,然后分别求解每个部分的极限。
通过对各个部分的极限进行分析,再根据极限的性质进行组合,可以得到整个数列的极限。
这种方法常用于数列具有递推关系或递归定义的情况。
5.数列收敛性的判别数列收敛有一系列的判别法则,例如柯西收敛准则、单调有界准则、无穷大准则等。
这些准则可以用来判断一个数列是否收敛,或者一部分的数列是否收敛。
6.使用极限性质根据极限的性质,例如极限的四则运算性质、极限的保号性等,可以推导出一些数列的极限值。
通过运用这些性质,可以简化数列极限的求解过程。
总结起来,求解数列极限的方法是多种多样的。
我们可以根据数列的特点和性质,选择适合的方法进行求解。
常用的方法包括直接求解、夹逼定理、数列性质、数列分解、数列收敛性的判别和使用极限性质等。
数列极限的几种求法
数列极限的几种求法一、定义法:数列极限的定义如下:设{n a }是一个数列,若存在确定的数a,对ε∀>0 ∃N>0使当n>N 时,都有a a n -<ε则称数列{n a }收敛于a ,记为n n a ∞→lim =a ,否则称数列{n a }不收敛(或称数列{n a }发散)。
故可从最原始的定义出发计算数列极限。
例1、 用ε-N 方法求 nn n 1lim +∞→解:令 n n 1+=t+1 则 t>0∴ n+1=nt )1(+2)1(2)1(122t n n t n n nt -≥+-++≥ΛΛ ∴ 12)1(4)1()1(211-≤-≤-+≤=-+n n n n n n n t n n ∴ε∀>0 取 ⎥⎦⎤⎢⎣⎡+=142εN 则当N n >时,有 ε<-≤-+1211n n n∴n n n 1lim +∞→=1二、单调有界法: 首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。
证明:不妨设{n a }为有上界的递增数列。
由确界原理,数列{n a }有上界,记为sup =a {n a }。
以下证明a 就是{n a }的极限。
事实上,ε∀>0,按上确界的定义,存在数列{n a }中某一项N a ,使得N a a <-ε 又由{n a }的递增性,当N n ≥时有εε+<<-a a a n ,这就证得 a a n n =∞→lim 。
同理可证有下界的递减数列必有极限,且其极限即为它的下确界。
例2、证明数列ΛΛΛ,222,22,2+++ 收敛,并求其极限。
证:222Λ++=n a ,易见数列{n a }是递增的。
现用数学归纳法来证明{n a }有上界。
显然 221<=a 。
假设2<n a ,则有22221=+<+=+n n a a ,从而对一切n 有2<n a ,∑=∞→n k n k n 141lim ε即{n a }有上界。
求数列极限的技巧与方法
47关注[2012.6]一、引言数列极限是数学这门学科的重要内容之一。
对于一些复杂极限,直接按照极限的定义来求就显得很困难,不仅计算量大,而且不一定就能求出结果。
因此,为了解决求极限的问题,我们在研究比较复杂的数列极限问题时,通常先考查该数列极限的存在性问题;如果有极限,我们再考虑如何计算此极限(也就是极限值的计算问题)。
这就是极限理论的两个基本问题。
求数列极限的方法多种多样,比如:化简通项求极限、单调有界原理求极限等。
现在我通过一些具体的例子,和大家一起探讨求数列极限的常用技巧与方法。
二、求数列极限的常用技巧与方法1.化简通项求极限在求一些比较复杂的数列极限,特别是处理通项为n 项和式的一类很特殊的极限时,经常先对通项进行化简,化简时往往利用链锁消去法。
其工作原理如下:若lim n→∞a n=∞,a n≠0,则nk =1∑(1a k-1ak+1)=(1a 1-1a 2)+(1a 2-1a 3)+…+(1a k -1a k+1)=1a 1-1a k+1。
因此lim n→∞nk =1∑(1ak -1a k+1)=lim n→∞(1a 1-1a n+1)=1a 1。
应用时往往需要把通项nk =1∑x k 中的x k裂项为x k =1a k -1a k+1),具体实施可用待定系数法。
例1:求极限lim n→∞nk =1∑(-1)k+12k+1k(k+1)。
解:(-1)k+12k+1k(k+1)=(-1)k+1(1k +1k+1)=-[(-1)k k -(-1)k+1k+1],n k =1∑(-1)k+12k+1k(k+1)=-n k =1∑((-1)k k -(-1)k+1k+1=-(-1-(-1)n+1n+1→1(n→∞),所以lim n→∞nk =1∑(-1)k+12k+1k(k+1)=1。
2.利用级数求n 项和式的极限通项为和式的数列极限,可以化为积分或级数求和问题,当然也是计算这类数列极限的一个重要方法。
求数列极限的几种方法
求数列极限的几种方法求数列极限是数学中一个重要的概念,它也是数学家研究多类数列的重要理论基础。
求数列极限有几种方法,下面我们来权衡它们。
- 单调变换法:单调变换法是将求取极限转化为求内隐函数极限的方法,从而实现极限求取。
单调变换法使用连续性、联系性和函数极限的概念,允许在一定范围内,特定的函数值不断变化,推到特定的独立的函数的极值。
单调变换法可以用来求取数列的极限,但它需要求出原函数的极限才有效。
- 无穷级数法:无穷级数法也称为极限法,它是一种利用级数无限增长变成收敛的定义来求取数列极限的方法。
无穷级数法要求数列中各项均为连续函数。
使用本方法求解的特点是,数列的有限项收敛速度越快,其极限就越容易求解。
比如多项式无穷级数,若多项式的项数不断增加,多项式前n项的和就会越来越接近多项式的极限,最后当n趋于无穷,多项式无穷级数的和就会收敛至它的极限。
- 分析法:分析法是求数列极限的一种有效方法,它利用大数量数学分析手段,包括局部函数之间的联系、连续性、导数法则等,把数列中的局部性函数转换成无穷级数法来求取极限,从而解决数列极限问题。
这样不仅能够求出数列极限,还能得出某一种函数的定义。
- 平方根测试法:平方根测试法,不仅可以求取数列的极限,也可以用来判断某数列是否存在极限。
特别是求取不可分解的方程的极限的时候,可以应用此方法。
它的基本原理是:如果某一数列的 n 项和有如下关系,即 an ∗ an+1=bn,那么该数列必须存在极限,并且极限的值为 b 的平方根;如果 an ∗ an+1=ln,则表明该数列无限增长,即有极限,而且极限值为∞。
以上就是常见求数列极限的几种方法,在不同的情况下,可以根据特定的情况来选择合适的方法,来实现数列极限的求取。
求数列极限的24种方法及例题分析
18 幂级数
50
18.1 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
19 微分中值定理
52
19.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
目录
– 2/65 –
11 Toeplitz 定理
32
11.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
19.2 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
20 Taylor 公式
54
20.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.2 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13 Stirling 公式
36
13.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
数列求极限的方法
数列求极限的方法数列求极限是数学中一个重要的概念和技巧,被广泛应用于解析几何、微积分、数学分析等领域。
数列的极限是指当数列的项无限接近某一个常数时,这个常数就是数列的极限。
数列的极限可以通过多种方法来求解,以下将介绍一些常用的方法。
1. 代入法代入法是数列求极限中最简单的方法之一。
它要求我们将自变量n代入数列的通项公式,然后计算出相应的函数值。
当n趋于无穷大时,如果函数值趋于一个有限的常数,那么这个常数就是数列的极限。
例如,考虑数列an = (2n + 1) / (3n - 1),我们可以将n代入到an中,得到an = (2n + 1) / (3n - 1) = 2/3 + 3/(3n - 1)。
当n趋于无穷大时,3/(3n - 1)趋于0,所以数列的极限为2/3。
2. 变形法对于一些复杂的数列,可以通过变形来简化计算。
变形法通过对数列的通项公式进行一系列的代数操作,得到一个更简单的数列,从而求出极限。
例如,考虑数列an = (n^2 - 5n + 6) / (2n^2 - 3n + 1),我们可以将分子和分母同时除以n^2得到an = (1 - 5/n + 6/n^2) / (2 - 3/n + 1/n^2)。
当n趋于无穷大时,5/n和3/n趋于0,1/n^2趋于0^2=0,所以数列的极限为1/2。
3. 夹逼法夹逼法是数列求极限中一个重要的理论工具。
它基于这样一个事实:如果数列bn ≤an ≤cn,且极限lim(bn) = lim(cn) = L,那么极限lim(an)也等于L。
夹逼法常用于求解一些难以直接计算的极限,特别适用于处理无限次方根等问题。
例如,考虑数列an = (n^2 + 2)^(1/n),可以发现an > 1对任意n成立。
另一方面,通过放缩可以得到an < (n^4 + 2n^2)^(1/n) = (n^2(1 + 2/n^2))^(1/n) = sqrt(n^2) = n。
求极限的方法
求数列极限的方法极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。
求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。
夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。
泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。
还有一些比较常用的方法,在本文中都一一列举了。
1.定义法利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞→lim .例1: 按定义证明0!1lim=∞→n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n令1/n<ε,则让n>ε1即可,存在N=[ε1],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成立,所以0!1lim =∞→n n .2.利用极限四则运算法则对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则.例2: 求nnn b b b a a a ++++++++∞→ 2211lim ,其中1,1<<b a .解: 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限bb b b b a a a a a n nn n --=++++--=++++++111,1111212 ,原式=a b ba b b a a n n n n --=--=----+∞→+∞→11111111lim11lim 11, 3. 利用夹逼性定理求极限若存在正整数N,当n>N 时,有Xn ≤Yn ≤Zn,且a Zn Xn n n ==∞→∞→lim lim ,则有a Yn n =∞→lim .例3:求{21nn+}的极限. 解: 对任意正整数n,显然有n nn n n n 221122=≤+<,而01→n ,02→n,由夹逼性定理得 01lim 2=+∞→nnn .4.换元法通过换元将复杂的极限化为简单.例4.求极限21lim +-∞→n n n a a ,此时解:若 有 ,令 则5.单调有界原理 例5.证明数列有极限,并求其极限。
高数求数列极限的方法
高数求数列极限的方法
求解数列的极限通常可以采用以下方法:
1. 通过数列的通项公式来进行推导。
如果能够找到数列的通项公式,那么可以直接将自变量趋于无穷大或其他特定值,从而得到极限值。
2. 利用数列的性质来进行分析。
有些数列具有特定的性质,比如递推关系、对称性、特定的递增递减性等,可以利用这些性质来推导数列的极限。
3. 使用重要的极限定理。
比如夹逼定理、单调有界数列极限定理、柯西收敛原理等。
这些定理可以用于判断数列是否有极限,以及求得极限值。
4. 利用等比数列或等差数列的性质。
对于等比数列和等差数列,常常可以通过求和公式或差分公式来求得数列的极限。
5. 运用洛必达法则。
当遇到不定型的极限表达式时,可以利用洛必达法则将其转化为极限值已知的形式,从而求得极限。
需要注意的是,求解数列极限的方法并不限于以上几种,具体问题需要具体分析,并根据数列的特点选择相应的方法。
数列极限的几种计算方.
3n 2 n 2-3-3数列极限的几种计算方法1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1数学的应用,在我们的生活中随处可见,而数学分析中的数列极限是高等数学的重 要内容,是贯穿于整个微积分教学的主线,它描述了变量在运动过程中的变化趋势,是 从有限认识无限,从近似认识精确,从量变认识质变的必备推理工具.同时,数列极限又 是极限的基础,它的计算是微积分教学中的重点和难点,所以本文通过典型实例,对数 列极限的计算方法做了一些规律性的分析和总结.二计算方法 1定义法设为数列,a 为任一常数,若对任给的;7,总存在N>0,使得当n>N 时,有a. - a c s 则称数列牯,收敛于a ,或称数列以为极限a.注1 一般来说,用定义求数列极限局限性很大,它更多地被应用于有关极限值 的相关证明,对于如何用数列极限定义证明数列极限问题, 常用的基本方法有:适当 放大法,条件放大法.3n 2例题1用定义法证明数列极限冋厂弋 分析由于 9n 一3 .n因此,对任给的;0,只要9 :::;,便有n3n 2 n 2-33即当?:::;时,左边的式子成立•又由于(1)式是在n —3的条件下成立的,故应取n9N 二 max{3, —}.z9 证明 任给;0,取N = max{3, -}. z根据分析,当n • N 时3n 2n 2-3于是此题得证.2利用数列极限的四则运算法则计算数列极限设极限lim a n 与lim b n 均存在,则nn _po(1) lim a n士b n= lim a n士 lim b n;n — %f n —sc n _咨(2) lim a nb n=lima nlimb n;n — * * n —sc(3) lim ca n= clim a n;n ^^ n _iClim a n--limb n";注2数列极限的四则运算只能推广到有限个数列的情况, 而不能推广到无限个数列 或不定个数的数列上去.1 1 c2 2 5 6 = 2n 5n -n n 解 lim 2limn------- -- n「n 3n 4 n「3 ]4 q n n 2( 1 1 )lim2 5 - -6 飞 n1 n n 2( 1 1 \ lim 13 4 2nn n 23利用数列的一些特征计算数列极限a nb nlimb n n/n _ac2n 25n - 6例题2求极限lim 2nTc n +3n +4分析由于n r ",,所以有-r 0, n数列极限四则运算法计算即可.4 > 0.于是给分子分母同时除以n 2,再利用 n4利用夹逼准则计算数列极限设 lim a n ,lim g 均存在,且 lim a “ 二 A,lim g 二 A ,若数列{c n}满足 a n_c n — b n,则有n ^^ n ^^ n _^c11 111111lim c n = A.n _j :注4利用夹逼准则求极限的关键是:将原数列适当地放大和缩小,使得放大后和缩小后的两个新数列的极限值相等,贝U 原数列的极限值存在且等于新数列的极限值 .111 1例题 4 计算数歹U 极限 lim —^=2+ / 2+ /2 = +,''十 』2 :f &n 2 +1 J n 2+2 J n 2+3 J n 2+n 丿分析 括号里的数列极限不能用上面的方法,但是,数列可以放大和缩小,所以关 键是找到极限值相等的数列{a n}与{b n},进而可以用夹逼准则来计算数列极限注3此种方法也就是直接将数列进行化简,从而计算出数列极限 •方法只适用于些特殊的数列,不具有一般性.例题 f 1 1 13计算极限lim + ++' ■■+J X 2 2x3 3x41(n —1" n 』 f n 1 、 1分析 观察数列,可以看出数列极限为lim = —1—,通项a 」=―1—,由(i —1)如, (n — 1)x n- --,所以括号中的式子可用裂项相消法计算,以此可以解出数列极限(n -1) n n -1 nlimn L :(n 一1)汉 n y-•丄2 2解5利用“单调有界数列必有极限”准则求解数列极限(a) 如果数列{a n}单调增加且有上界,即存在数M,使得a^M n = 1,2….那么lim a n* * n^ic存在且不大于M.(b) 如果数列{a n}单调递减且下界,即存在数m,使得a n_ m n =1,2…,那么lim a.存在且不小于m.注5递推数列极限的计算是数列极限计算中的一大类问题.而“单调有界准则”是判别递推数列极限是否存在最常用的一种方法,它不用借助其它数列而是直接利用所给数列自身的单调性和有界性来判别极限的存在性.例题5计算数列极限人-2, x2 - • 2 • . 2 ,…,x n = 2 x n,求lim x n分析(1)通过观察可以看出x, :::x2…x^即数列{x n}单调增加;(2)X1 :::2,X2「WE —W2 =2,…,X n 二-.2 •X n',厂2 =2,即数列{x n}有上界. 所以,由单调有界准则知,数列极限存在,设lim = a,然后计算出常数a即为数列极限.解由单调有界准则知,数列极限存在,设lim焉二a,V X n =逗:x 4所以给等式两边取极限得]叫& jm广2也,也即a二庞―a,解出a =2或a =T.又由于X n 0,所以取a =2.例题6设捲=丄,y i =1,X n =族川」,丄J 丄+丄,证明数列{焉} , { y .}收敛, 2 y n 2Mn 」 y n 」丿 且有相同的极限•分析 因数列{X n }与数列{y n }之间有大小关系,所以只要明确两者之间的关系,利 用夹逼准则,就可证明两个数列极限均存在,进而证明两个极限相等又:X n 二JX^i y nd j X n-i X n 」二X n" 数列仇}单调递减,且有0 ::::::为=1且有1二力”:y n ,于是1二力疳y 2疳…”:y n 疳x .:::…:::捲=1.2所以 数列{X n }单调递减有下界,数列{Y n }单调增加有上界; 由单调有界准则知两个数列的极限均存在设 lim x n = a,lim y n 二 b. n ^^ n ^c 于是有a= ab,^ - 1 1 , 求出a = b. b 2 (a b 丿 即两个数列有相等的极限.6利用多项式型极限性质求得数列极限多项式型极限:0,k clk亠k -1 I Ii..a°n +dn + …+ azn+ak a 。
求数列极限的各种方法
求数列极限的各种方法说实话求数列极限这事,我一开始也是瞎摸索。
我试过很多方法,现在就跟你唠唠。
首先就是直接代入法。
有时候数列那表达式特简单,就像有个数列An = n + 1,当n趋向于某个数,比如n趋向于3的时候,直接把3代进去就行,得到极限是4。
这就相当于你找东西,东西就在明面儿上,直接拿就行。
但这个我也犯过错,有一次看见数列表达式带个分母,我也没想就直接代,结果分母为0了,那肯定不对啊,所以代之前还得看看分母会不会出现0这种情况。
然后就是很重要的一种方法,叫极限的四则运算法则。
我就感觉这像是搭积木一样,一块一块垒起来。
比如说有两个数列An和Bn,它们极限都存在,那An + Bn的极限就等于An的极限加上Bn的极限。
像An = 2n,Bn = 3n,它们极限是正无穷,那2n + 3n 的极限也是正无穷,这就符合四则运算法则。
但是这里得小心哦,要是分母的极限为0的时候,就不能直接用法则了,这方面我可吃过亏呢。
我之前做题,看到两个式子就直接用法则,没注意分母极限,算出来结果完全错了。
还有一种我觉得挺神奇的方法是夹逼准则。
想象有三个人挤在一个小过道里,中间那个人只能在两边人固定的空间里活动。
比如说数列An,Bn,Cn,满足Bn <= An <= Cn,当n趋向于无穷的时候,Bn和Cn的极限都是A,那An的极限也是A。
我曾经做过一个题,数列An = sin n / n,我当时就想找到它两边能夹住它的数列。
我发现-1/n <= sin n / n <= 1/n,而-1/n和1/n当n趋向于无穷的时候极限都是0,所以sin n / n 的极限就是0。
另外,单调有界准则也很有用。
就好比一个数列是一条永远在一定范围内波动,而且还是单调变化的线,那它肯定是有极限的。
比如数列An+1 = √(An + 2),A1 = 0,要先证明这个数列是单调递增的,再证明它有上界,就能得出极限存在了。
不过证明单调和有界有时候挺麻烦的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列极限的若干方法
求数列极限方法如下:
1、用夹逼准则求解数列极限夹逼定理是数列极限中非常重要的一种方法, 也是容易出综合题的点, 夹逼定理的核心就是如何对数列进行合理的放缩, 这个点也是夹逼定理使用过程中的难点。
适用情形:夹逼定理一般使用在 n 项和式极限中, 函数不易于连续化。
夹逼定理的适用情形和用定积分的定义十分相似,需要注意区分,它们的区别是夹逼定理适用的情形是一个分子分母齐次的形式。
放缩基本公式:
2.、用单调有界准则求极限
定理: 单调有界数列必有极限.具体来说,若数列 {xn} 单调增加(减少)且有上(下) 界M(m) , 则 limn→∞xn 存在,且 limn→∞xn⩽M (或 limn→∞
xn⩾m ). 定理同样适用于函数.
这个定理是证明数列(或函数) 极限存在的唯一依据, 一般分为两个步骤, 第一步证明单调性, 第二步证明有界。
3、用数列定义求解数列极限
主要运用数列的ε−N 定义: 对∀ε>0,∃N>0 , 使得当 n>N 时, 有 |an−a|<ε , 则称数列 {an} 收敛, 定数a 称为 {an} 的极限。
从定义上来看,我们的ε是可以任意小的正数, 那ε/2,3ε也可以任意小, 这一点大家要明确。
其次, 我们的 N 具有相应性, 一般地, N 随着ε的变小而增大, 也就是 N 依赖于ε0
从几何意义上来讲, 当我的 n 逐渐趋近于无穷时, 我的数列总围绕着 a 在波动, 也就是对∀ε>0, 在我们的 U(a;ε) 领域内有无穷个数。
这样就得到了一个关于数列极限的一个等价定义: 对∀ε>0 , 若在 U(a;ε) 之外数列 an 至多有有限项,那么数列 an 必定收敛于 a 。