求数列极限的若干方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列极限的若干方法
求数列极限方法如下:
1、用夹逼准则求解数列极限夹逼定理是数列极限中非常重要的一种方法, 也是容易出综合题的点, 夹逼定理的核心就是如何对数列进行合理的放缩, 这个点也是夹逼定理使用过程中的难点。
适用情形:夹逼定理一般使用在 n 项和式极限中, 函数不易于连续化。
夹逼定理的适用情形和用定积分的定义十分相似,需要注意区分,它们的区别是夹逼定理适用的情形是一个分子分母齐次的形式。
放缩基本公式:
2.、用单调有界准则求极限
定理: 单调有界数列必有极限.具体来说,若数列 {xn} 单调增加(减少)且有上(下) 界M(m) , 则 limn→∞xn 存在,且 limn→∞xn⩽M (或 limn→∞
xn⩾m ). 定理同样适用于函数.
这个定理是证明数列(或函数) 极限存在的唯一依据, 一般分为两个步骤, 第一步证明单调性, 第二步证明有界。
3、用数列定义求解数列极限
主要运用数列的ε−N 定义: 对∀ε>0,∃N>0 , 使得当 n>N 时, 有 |an−a|<ε , 则称数列 {an} 收敛, 定数a 称为 {an} 的极限。
从定义上来看,我们的ε是可以任意小的正数, 那ε/2,3ε也可以任意小, 这一点大家要明确。
其次, 我们的 N 具有相应性, 一般地, N 随着ε的变小而增大, 也就是 N 依赖于ε0
从几何意义上来讲, 当我的 n 逐渐趋近于无穷时, 我的数列总围绕着 a 在波动, 也就是对∀ε>0, 在我们的 U(a;ε) 领域内有无穷个数。
这样就得到了一个关于数列极限的一个等价定义: 对∀ε>0 , 若在 U(a;ε) 之外数列 an 至多有有限项,那么数列 an 必定收敛于 a 。