地球化学异常下限确定方法

合集下载

地球化学背景值及异常下限确定方法

地球化学背景值及异常下限确定方法

地球化学背景值及异常下限确定方法地球化学背景值是指地球表层物质的普遍背景含量或分布特征,它代表了地球自然状态下的正常水平。

异常下限是指地球化学异常的边界或基线,用于识别具有异常地球化学特征的物质。

确定地球化学背景值及异常下限的方法可以分为以下几种。

第一种方法是统计方法。

这种方法通过大量的样品分析数据来确定地球化学背景值及异常下限。

首先需要收集大量的样品数据,包括地球表层物质的各种元素含量数据。

然后对这些数据进行统计分析,例如计算平均值、标准差、分位数等。

通过统计分析可以确定地球化学背景值,它通常是根据样品数据的分布特征来确定的,例如取所有样品数据的中间值作为地球化学背景值。

异常下限可以根据统计分析的结果和专家经验来确定,例如确定一个范围,低于这个范围的数据可以被认为是异常值。

第二种方法是地表地质特征方法。

这种方法通过研究地球表层的地质特征,例如地貌、岩石类型、土壤类型等,来确定地球化学背景值及异常下限。

地球表层的地质特征通常与地球化学特征有一定的关联性,例如其中一种地貌环境下可能富含其中一种元素。

通过研究这些地质特征可以得出地球化学背景值及异常下限的范围,例如其中一种地貌环境下的元素含量可以被认为是正常的,低于或高于这个范围的元素含量可以被认为是异常的。

第三种方法是参照国内外标准方法。

许多国家和地区都有地球化学调查和研究的标准方法,例如美国地质调查局的“地球化学参考样品和数据计划”(Geochemical Reference Samples and Data)和欧洲的“Geochemical Atlas of Europe”等。

这些标准方法提供了丰富的样品数据和分析结果,可以作为确定地球化学背景值及异常下限的参考。

通过比对本地区样品数据和国际标准数据,可以确定地球化学背景值及异常下限的范围。

确定地球化学背景值及异常下限是地球化学调查和研究的基础工作,它对于判别地球化学异常、环境污染、资源勘查等方面具有重要意义。

多种地球化学异常下限确定方法的对比研究

多种地球化学异常下限确定方法的对比研究

多种地球化学异常下限确定方法的对比研究陈健;李正栋;钟皓;武明贵【摘要】地球化学异常下限值是区分背景区与异常区的基本参数,而异常下限的准确性直接关系到下一步找矿工作的实施.本文以青海省治多县区域1:1万土壤化探样品中Ag、Cu、Zn、Pb、Bi、Mo、W七种元素为例,使用传统计算方法、85%累计频率法、分形方法对测试数据进行处理,对比研究认为:传统计算方法求得的异常范围小,且较为分散;85%累计频率法与传统方法所得异常下限值比较接近,具有合理性与客观性,相对于传统计算方法,分形方法对弱小异常的识别效果显著,但异常范围过大,给异常查证工作带来难度.确定异常下限值时要研究数据分布模式和地质背景,分析区域地球化学特征差异,应采用多种分析法对比确定合理的异常下限,圈定出有效的异常区.【期刊名称】《地质调查与研究》【年(卷),期】2014(037)003【总页数】6页(P187-192)【关键词】地球化学异常;异常下限;分形方法;85%累计频率法;青海省【作者】陈健;李正栋;钟皓;武明贵【作者单位】青海省有色地质矿产勘查局地质矿产勘查院,青海西宁810007;青海省有色地质矿产勘查局地质矿产勘查院,青海西宁810007;青海省有色地质矿产勘查局地质矿产勘查院,青海西宁810007;青海省有色地质矿产勘查局地质矿产勘查院,青海西宁810007【正文语种】中文【中图分类】P632确定地球化学异常下限是勘查地球化学工作中的一个基本问题,也是勘查地球化学应用于矿产资源勘查工程中指导成矿远景评价的一个关键性环节[1]。

确定的异常下限过高,易遗漏隐伏矿床形成的矿致异常,而异常下限过低,容易干扰矿致异常的识别和弱异常的提取。

但由于区域地质背景和成岩、成矿作用的复杂多样,迄今仍没有发现一种普遍适用的异常下限的计算方法,各种方法各有优势,同时又存在假设条件的制约和使用的局限性。

因此,在生产与科研工作过程中,采取多种方法计算,并结合区域地质背景进行综合对比研究来确定异常下限,是能够圈定合理异常区的一种有效途径。

土壤化探中异常下限的确定(可编辑)

土壤化探中异常下限的确定(可编辑)

土壤化探中异常下限的确定土壤化探中异常下限的确定摘要土壤地球化学异常下限的确定是勘查地球化学的一个基本问题,也是勘查地球化学应用于矿产勘查时决定成败的一个关键性环节。

但由于地质背景和成矿模式的复杂多样,迄今为止仍然没有一种普遍适用的异常下限计算方法诞生,各种计算方法各有优势,同时又有假设条件的制约和使用的局限性。

为此,采取多种方法计算异常下限并根据地质背景进行综合比较以确定异常下限是当前圈定异常的一种有效途径。

地球化学异常下限值是区分背景区与异常区的基本指标,而计算异常下限值的准确性也直接关系到下一步探矿工作开展的关键。

本文分为三个部分论述土壤化探异常下限的确定。

首先介绍一些土壤化探异常下限的确定的相关概念;其次介绍各种方法,如:剖面图法、直方图解法、面积校正累积频率法、马氏距离法、单元素计算法、累积频率法、迭代法、传统统计方法、多重分形法分形、均值标准差法、含量-面积(C-A)分形方法、概率格纸图解法等);最后用一些矿床应用实例来验证及评价一些方法。

本文选取新疆西天山成矿带托逊地区1:50000土壤X荧光化探样品中Mn、Fe、Zn、As四种元素为例,使用传统统计方法、多重分形方法、85%累计频率法分别对化探数据进行处理后得出结论:传统统计方法计算出的异常范围小,且较为分散;多重分形方法对弱小异常的固定效果明显,但范围过大;85%累计频率法与传统方法所得异常下限值比较接近,但对弱小异常的识别效果相对于传统方法显著;对化探找金中背景值、异常下限的传统计算方法进行了讨论;土壤元素异常下限值的确定对环境地球化学评价具有重要意义。

传统异常下限值计算方法仅适用于元素含量数据呈正态分布的情况, 而事实上土壤元素含量的空间分布极其复杂, 很可能具有多重分形分布特征。

本文利用校正累积频率分形方法确定铜陵矿区土壤中的异常下限值为1.687 mg / kg , 并据此圈定了异常范围。

与传统方法所确定的异常下限值及相应异常区域对比, 分形方法圈定的异常区域范围更广, 更为合理、有效。

一种确定地球化学异常下限的简便方法

一种确定地球化学异常下限的简便方法

文章编号:100820244(2001)0320215206一种确定地球化学异常下限的简便方法龚庆杰,张德会,韩东昱(中国地质大学,北京100083)摘 要:本文从地球化学场元素的分布形式出发,探讨了理论分布形式的频率与含量双对数坐标图示特征,从而提出了一种确定地球化学异常下限的简便方法。

将该方法应用于湖南柿竹园钨多金属矿区,效果显著。

关键词:地球化学场;异常下限;分形;柿竹园中图分类号:P632文献标识码:A1 传统地球化学异常下限的确定方法 地球化学异常下限的确定是勘查地球化学的一个基本问题,也是勘查地球化学应用于矿产勘查时决定成败的一个关键性环节。

20世纪50年代以来,地球化学家基本认为元素在地球化学场中的分布接近正态分布或对数正态分布。

因此,传统地球化学异常下限的确定方法是统计勘查地球化学数据,检验其是否符合正态分布或对数正态分布,如果不符合,则剔除部分异常数据,通常是元素的高含量数据,直到数据符合正态分布或对数正态分布为止。

对于符合正态分布或对数正态分布的数据,计算得到其平均值( C)和标准离差(σ),然后对全部数据进行异常筛选和评价。

一般是以平均值与2倍标准离差之和作为地球化学异常下限( C+2σ),根据具体情况也有采用 C+1.5σ或 C+3σ作为异常下限值的。

我国目前使用的地球化学勘查标准中规定的异常下限是 C+2σ[1]。

上述传统地球化学异常下限的确定方法以元素含量数据服从正态分布或对数正态分布为前提,但新的研究表明元素的地球化学分布并不局限于正态分布或对数正态分布[1,2]。

此外,异常下限的确定具有一定的可变性,即可采用平均值( C)与1.52或3倍标准离差(σ)作为异常下限。

收稿日期:2001205228基金项目:国家自然科学基金(49633120);国土资源大调查项目(20002010803056);国土资源部项目(2000401)。

第一作者简介:龚庆杰(1972-),男,博士,主要从事地球化学动力学方向的研究。

地球化学异常下限确定方法

地球化学异常下限确定方法

地球化学异常下限确定方法一、地球化学数据处理基础数据处理的意义是获得较为准确的平均值(背景)和异常下限。

1、地球化学数据处理归根结底仍属于统计学的范畴,所以要求数据应是正态分布的,不是拿来数据就能应用的,特别是用公式计算时更要注意这一点。

正态(μ =0, δ =1)----(偏态)。

大数定理:又称大数法则、大数率。

在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。

所以如果在计算时,数据中包含较多的野值时,实际获得的是一个不具稳定性的算术平均,它实际不能替代背景值。

2、异常是一个相对概念,有不同尺度上的要求,所以不要将其看作一个定值。

在悉尼国际化探会议上(1976),对异常下限定义:异常下限是地球化学工作者根据某种分析测试结果对样品所取定的一个数值,据此可以圈定能够识别出与矿化有关的异常。

并对异常下限提出了一个笼统的定义:凡能够划分出异常和非异常数据的数值即为异常下限。

据此,异常下限不能简单的理解为背景上限。

二、异常下限确定方法具体异常下限确定方法较多:地化剖面法、概率格纸法、直方图法、马氏距离法、单元素计算法、数据排序法、累积频率法……下面逐一介绍:1、地化剖面法:(可以不考虑野值)在已知区做地化剖面:要求剖面较长,穿过矿化区(含蚀变区)和正常地层(背景),能区分含矿区和非矿区就可确定为下限。

2、概率格纸法:(可以不考虑野值)以含量和频率作图15%--负异常50%--背景值85%--X+δ(高背景)98%-- ( X+2δ)异常下限3、直方图法:(可以不考虑野值)能分解出后期叠加的值就为异常下限4、马氏距离法:(在计算时已考虑野值)针对样本,实际为建立在多元素正态分布基础之上—多重样本的正态分布,超出椭球体时—异常样(如P3点)。

相似于因子得分的计算,最后为一个剔除异常样本时的计算值,实际计算出综合异常边界线。

当令m=1时,上式化解为Xa=Xo?KS,这是我们较为熟悉的单元素(一维)计算异常下限常用公式。

地球化学异常异常下限确定及异常圈定探讨-地质所-朱斌

地球化学异常异常下限确定及异常圈定探讨-地质所-朱斌

2、概率格纸法(可以不考虑奇异值)
将实测数据点以含量和频率作 图投绘在正态概率格纸图上,如果 基本分布在一条直线上,就可以读 出任一分位数值,分位数值就是某 一累积频率所对应的含量值。 15%——负异常 50%——背景值 98%——(X+2δ)异常下限 分位数值是一组很有用的统计 特征值。
如果为两条斜率不等的 直线所综合形成的曲线,应 用多重母体分解法,以拐点 为界,左侧背景占60%,右 侧异常占40%,换算成单一 母体累计频率。 背景母体的累计频率=背景 部分每个点的累计概率 *100/60。 异常母体累计频率=(异常 部分每个点的累计频率-60) *100/40。 再分别绘累计频率图。 所得背景部分累计频率基本 为一条直线,50处的横坐标 即为背景值。98处的横坐标 即为异常下限。
3、直方图法(可以不考虑奇异值)
背景值 研究子样分布直方图为单峰、并接 近对称的近似正态分布,则对最大频率 柱左侧顶角与右邻直方柱左顶角连线, 两条线交点在横坐标上的投影为众值M0, 即可作为背景值。以最大频率直方柱高 的0.6倍作横线,与频率密度曲线有左右 两交点,左交点至众值投影线间长度对 应的含量为均方差S。由向右量2-3倍S长 度,该处所指的含量即为异常下限。
S
2S
异常下限
如果是明显的双峰分布、且各自较为对称, 即可以在衔接部位定位异常界限,也可以按上 法对低含量的母体进行图解求众值、均方差和 异常下限。
如果分布直方图为单峰正偏形态,仍按下 述方法图解,因为确定均方差S时,只考虑未 受高含量矿化影响的样品,只对低含量部分进 行图解。
4、多重分形法

多重分形法将背景与矿化 异常的形成认为是两个相互独 立的过程,它们分别满足不同 的幂指数分别。目前利用分形 技术进行地球化学异常下限确 定的方法主要有(含量)周长 法、(含量)面积法、(含量) 距离法、(含量)频数法等, (含量)求和法,以(含量) 求和法进行讲解。

青海省锡铁山地区地球化学异常下限确定方法的探究

青海省锡铁山地区地球化学异常下限确定方法的探究

青海省锡铁山地区地球化学异常下限确定方法的探究
韩朝辉;庄光军;赵海舟
【期刊名称】《安徽地质》
【年(卷),期】2013(23)1
【摘要】地球化学异常下限的确定对圈定成矿有利靶区及指导找矿非常关键.本文以青海省锡铁山地区水系沉积物测量中As、Cr、Ni、Sn、Th等5个元素为例,分别运用剔除法、EDA法、迭代法对数据进行处理,确定异常下限,圈定异常.通过三种方法圈定异常结果对比发现,剔除法和EDA法确定的异常下限值偏高,不能够有效的圈出成矿有利靶区,而迭代法确定的异常下限,圈出了很多弱异常,与客观实际相符,故迭代法是适合本区比较合理的方法.
【总页数】4页(P74-77)
【作者】韩朝辉;庄光军;赵海舟
【作者单位】武警黄金部队第六支队,河南三门峡472000;武警黄金部队第六支队,河南三门峡472000;武警黄金部队第六支队,河南三门峡472000
【正文语种】中文
【中图分类】P632
【相关文献】
1.岩石地球化学异常下限的确定方法对比——以云南思姑锡矿区为例 [J], 李前志;周军;刘磊;张继荣;张建超
2.地球化学异常下限不同确定方法及合理性探讨 [J], 姚涛;陈守余;廖阮颖子
3.多种地球化学异常下限确定方法的对比研究 [J], 陈健;李正栋;钟皓;武明贵
4.青海省五龙沟地区化探金异常下限确定方法探讨 [J], 邱瑜;田滔;沈骁;杨言辰
5.地球化学背景值及异常下限确定方法 [J], 颜世成
因版权原因,仅展示原文概要,查看原文内容请购买。

化探异常圈定、分类、评价及查证

化探异常圈定、分类、评价及查证

化探异常圈定、分类、评价及查证目录●1/5万地球化学普查 (1)1.异常圈定 (1)1.1异常下限的确定方法 (1)1.2异常浓度分级(带)方法 (3)2.化探异常分类 (3)2.1 找矿意义分类 (3)2.2按采样介质分类 (4)2.3按引起异常的地质因素划分 (4)2.4按异常范围与强度(浓度)划分 (4)3.化探异常优选及评价 (5)3.1化探异常的特点 (5)3.2异常优选与评价准则 (5)3.3 化探异常本身的评价参数 (6)3.4 化探异常的初步筛选 (8)3.5优选化探异常的方法技术 (9)3.6非找矿目的化探异常评价 (10)3.7异常评价和查证工作程序 (10)3.8异常评价与找矿效果 (12)4.化探异常查证 (12)4.1化探异常查证的目的 (12)4.2化探异常查证方法 (13)4.3化探异常查证须配快速分析 (13)●土壤地球化学测量 (13)1.1原始资料 (13)1.2成果报告 (14)2.资料的检查与验收 (14)3.资料整理的基本步骤和内容 (14)4.异常的解释推断 (14)附录F 土壤测量地球化学异常登记卡 (16)●1/5万地球化学普查1.异常圈定1.1异常下限的确定方法地质情况较简单,元素呈单峰分布,或者可以看出分布中有一个单一的背景全域和一个异常全域,就可以在全测区内(剔除高值点)计算出一个统一的背景平均值及异常下限,单峰分布时其计算式为:对数背景平均值:∑∑=ffXX L 对数标准离差:1)(22--=∑∑n nfX fX L L λ对数异常下限:λ2+=L L X T∑=57f ∑=9.83L fX ∑=53.1252L fX ∑=21.7039)(2L fX 对数背景平均值: g g f fXX L /lg 4719.1579.83μ===∑∑其反对数,即背景平均值 g g X /64.29μ= 对数标准离差:)/(lg 1909.0565721.703953.1251)(22g g n n fX fX L L μλ=-=--=∑∑ 对数异常下限: )/(40.71)/(lg 8537.11909.024719.12g g g g X T L L μμλ==⨯+=+=当1:5万化探普查区部署在异常区或矿区外围时,往往在频率分布中有一个单一的背景全域和一个异常全域交迭而出现双峰,或频率分布曲线呈不对称的正向偏斜,此时一般可利用众值m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、地球化学数据处理基础
数据处理的意义是获得较为准确的平均值(背景)和异常下限。

1、地球化学数据处理归根结底仍属于统计学的范畴,所以要求数据应是正态分布的,不是拿来数据就能应用的,特别是用公式计算时更要注意这一点。

正态(μ=0, δ=1)----(偏态)。

大数定理:又称大数法则、大数率。

在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。

所以如果在计算时,数据中包含较多的野值时,实际获得的是一个不具稳定性的算术平均,它实际不能替代背景值。

2、异常是一个相对概念,有不同尺度上的要求,所以不要将其看作一个定值。

在悉尼国际化探会议上(1976),对异常下限定义:异常下限是地球化学工作者根据某种分析测试结果对样品所取定的
一个数值,据此可以圈定能够识别出与矿化有关的异常。

并对异常下限提出了一个笼统的定义:凡能够划分出异常和非异常数据的数值即为异常下限。

据此,异常下限不能简单的理解为背景上限。

二、异常下限确定方法
具体异常下限确定方法较多:地化剖面法、概率格纸法、直方图法、马氏距离法、单元素计算法、数据排序法、累积频率法……
下面逐一介绍:
1、地化剖面法:(可以不考虑野值)
在已知区做地化剖面:要求剖面较长,穿过矿化区(含蚀变区)和正常地层(背景),能区分含矿区和非矿区就可确定为下限。

2、概率格纸法:(可以不考虑野值)
以含量和频率作图
15%--负异常
50%--背景值
85%--X+δ(高背景)
98%-- (X+2δ)异常下限
3、直方图法:(可以不考虑
野值)
能分解出后期叠加的
值就为异常下限
4、马氏距离法:(在计算时已考虑野值)
针对样本,实际为建
立在多元素正态分布基
础之上—多重样本的正
态分布,超出椭球体时—
异常样(如P3点)。

相似于因子得分的计算,最后为一个剔除异常样本时的计算值,实际计算出综合异常边界线。

当令m=1时,
上式化解为Xa=Xo±KS,这是我们较为熟悉的单元素(一维)计算异常下限常用公式。

该方法计算较为复杂:下面给出一个实例:
马氏距离(黑色虚线)圈定异常基本为两种以上元素异常的重合的部分。

上图中Hy-44与Hy-45综合异常中,由于As 元素相连,传统方法无法分割。

用该方法可分解为两个异常,后来实际查证中也证明:左边Hy-44为Au 、Cu 、Co 的成矿,右边Hy-45为Au 、Cu 的成矿。

解决手工的随意性。

5、单元素计算法:(必须剔除野值)
Xa=Xo ±KS
(Xa —异常下限,Xo —背景值,K —取值系数,S —标准离差) 从标准正态累积频率密度函数公式: 推断出当K=、2、3时,密度函数分别为95%,%,%
一般为计算方便,通常取K=2,这就是Xa=Xo ±2S 的来源。

dk
k
t t ⋅=⎰∞--2221 πϕ
通常应用时,用Xa=Xo±3S无限循环剔除,直到无剔除数据时,对于地球化学通常几百—上千的数据,基本保证数据为正态分布。

则此时Xa=Xo+2S定为异常下限
为保证数据为正态分布,实际计算时先将数据转换为对数,此时由于数据离差变小,在剔除野值后,基本都能保证为正态分布。

为进行下步计算处理有了理论保障。

6、数据排序法:(不考虑
野值)
比较简单、实用
所有数据从小到大,
按含量排序
做图(含量—纵坐标,1,2……n含量顺序序列
----横坐标)
异常有明显的一斜率
但数据太多时不适合
7、累积频率法:(不考虑野值,在使用时为网格化数
据)
目前较为普遍
元素含量高低分级,采用累频分级方式,分19
级,
分级频率:
2-2-3(%)
异常85-90-95-100(%)和<15%
8、实际使用异常下限值的确定:
实际上各方法确定的异常下限都是可行的,关健是确定的这个值合不合理是值得商榷的。

在1:20万区域化探中,由于一般取水系沉积物,样品经过了充分的均一化,方差较小,数据基本为正态分布,剔除不了几个野值,此时计算下限与实际使用值变化不是很大(当然1:20万或1:25万由于区域较大,各分区中元素背景不一,异常下限是不同的,应该适当考虑分区,分别确定异常下限)。

1:5万相对样点较密,部分可能涉及矿区,数据变化较大,此时必须考虑剔除野值,保证数据为正态分布。

1:1万等数据以土壤或岩石原生晕为主,此时主要在矿区工作,数据高的达矿体边界品位,低得很低,在剔除野值,保证数据为正态分布后,剩余数据计算的异常下限明显偏低,有时导致2/3区域都为异常,如我曾经有个工作区,1:1万岩石测量,经计算Au异常下限为30PPb,最后使用值为80PPb。

矿区化探异常下限的确定需根据实际情况。

实际上述只是给出了一个计算确定异常下限的方法,实际上上面计算的异常下限值在使用时只是一种参考,使用值是根据该计算值在地球化学图面上最终的确定的,确定依据:
1、异常占总体地球化学图面的15%左右
2、保证异常的连续性(不出现较多的星点状异常)
在异常下限确定后,后面的异常分带就简单多了,一般以异常下限有0、2、4倍划分为外、中、内带,它是推断是否矿致异常的基础,一般矿致异常都有明显分带,而地层引起的异常一般只出现高背景,也即无分带现象。

三、地球化学各参数意义
均值(原始数据直接计算)—平均含量大小
离差(原始数据直接计算)—相对平均值的离散程度(反映成矿的可能)
背景值(剔除所有野值后计算,一般此时为正态分布,符合概率统计概念)----真实背景大小
背景离差(剔除所有野值后计算)—计算异常下限需要
变异系数—离差/平均值,越大更易成矿,一般用大于1判别,如大于5肯定可成矿。

衬值—原数据/(背景值、异常下限、同类岩石…)--比较值
异常强度—最大值/异常下限
面金属量—平均值*面积,成矿规模大小
NAP值—衬值*面积,不同异常间相加或比较
外、中、内带—异常下限的2n(n=0、1、2或其它等),平面分带性
相关系数—相关程度,用临界相关系数判别。

相关文档
最新文档