超厚铜(10OZ)PCB的制作工艺研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超厚铜(10OZ)PCB试制

1.前言

随着汽车电子以及电源通讯技术的快速发展,10OZ及其以上超厚铜箔电路板逐渐成为一类具有广阔市场前景的特殊PCB板,受到越来越多的线路板制造商的关注,同时伴随着印制电路板在电子领域的应用越来越广,设备对印制板的功能要求也越来越高,我们的印制电路板将不仅要为电子元器件提供必要的电气连接以及机械支撑,同时也逐渐被赋予了更多的附加功能,而能够将电源集成、提供大电流、高可靠性的超厚铜箔印制板逐渐成为PCB行业研发的热门产品,该产品多用于军工产品。

目前行业内做的比较多的印制板的铜箔厚度通常在2OZ~4OZ之间,而对于成品铜厚达10OZ 及以上的超厚铜PCB的制作报道却几乎没有,本文主要针对10OZ超厚铜PCB的制作工艺以及制作过程中一些关键工序的控制了跟进,最终找到了较为理想的制作超厚铜PCB的工艺路线和工艺条件。

2.实验

2.1实验物料及设备

(1)FR-4基材,其中板厚为1.6mm,铜厚为4OZ;

(2)我司制作PCB的常规设备;

2.2流程设计

本次实验是制作成品铜厚达10OZ的双面印制电路板,具体的实验流程如图1所示:

图1 整体制作流程

对于流程中“图形转移▲→图形电镀▲”,本次实验设计了三种制作方案:

方案一:湿膜法,其主要制作思路为:利用湿膜良好的填充性将板面铺平然后进行图形转移,接下来电镀两个循环,加厚大约2OZ的厚度,也即是以2OZ的厚度叠加,具体流程如图2所示。

图2 湿膜法

Fig.2 Wet film method

方案二:一次干膜法,其主要制作思路为:贴干膜之后进行LDI 线路制作,然后再电镀一个循环,加厚大约1OZ 的厚度,即以1OZ 的厚度叠加,具体流程如图3所示。

图3 一次干膜法

Fig.3 Dry film once

方案三:两次干膜法,其主要制作思路为:第一次贴干膜之后进行LDI 线路制作,然后电镀一个循环(大约有1OZ 的厚度),此时干膜与线条基本水平,接下来再次贴干膜进行LDI 线路制作,然后再电镀一个循环(大约1OZ 的厚度),即以2OZ 的厚度叠加,具体流程如图4所示:

图4 两次干膜法

Fig.4 Dry film twice

3.结果与讨论

3.1工艺流程的优化

图5 湿膜法叠加一次的线路切片图

图5为方案一所设计的湿膜法叠加一次所得到的线路切片图,从图中可以看到线路呈典型的“蘑菇状”,且两次线路出现比较明显的错位,分析两次线路产生错位的主要原因在于用湿膜进行图形转移时需要用到菲林,而人工用菲林对位时其对准度难以得到保证;而线路呈现“蘑菇状”主要是由于人工印刷的湿膜厚度较薄(1/3OZ 左右),后期电镀上的铜(厚度为2OZ 左右)凸出线条造成的。贴干膜 LDI 线路制作 显影 图形电镀 贴干膜 LDI 线路制作 显影 电镀铜 贴干膜 显影 图形电镀 LDI 线路制作

图6两次干膜法叠加两次的线路切片图图7两次干膜法叠加三次的线路切片图

图8 10OZ线路切片图图9 10OZ线路切片图

图6为方案三所设计的两次干膜法叠加两次所得到的线路切片图,图7为方案三所设计的两次干膜法叠加三次所得到的线路切片图,图8、图9为方案三所设计的两次干膜法叠加四次所得到的10OZ线路切片图,从这几个图中可以看出线路的对准度良好且没有出现“蘑菇状”的线条,相比于湿膜法制作的线路得到了很大的改观,分析其原因在于用干膜法制作线路时用的是LDI对位,在线路的对准度上能够得到保证,且由于干膜的厚度为1OZ左右,而电镀一个循环也只能加厚1OZ左右的厚度,因而电镀的时候基本不会出现“蘑菇状”线路。

方案二中的一次贴干膜法制作的线路在对准度上相比于方案三中的两次贴干膜法制作的线路要差一些,主要原因在于用一次贴干膜法制作线路时其阻焊对位为7次,而用两次干膜法制作线路时其阻焊对位次数仅为4次,很明显人工阻焊对位的次数越多,“线路的错位就越明显,另外阻焊对位的次数越多,制作周期也就越长,因而从品质以及交货期两方面考虑,方案三要比方案二更可取一些。

通过以上的分析可以看出方案三(也即是两次贴膜法)是制作超厚铜箔线路板的较为理想的工艺流程。

3.2特殊工序的控制

3.2.1图形电镀

通过图形电镀来加厚线路的铜厚,使得线路与干膜持平以利于下一次贴干膜。图形电镀的电流要比实际计算出的电流值略小一些,一般以小2~3A为宜,并且要适时的用手试一下板面的平整度,以免电镀上的铜凸出线条而呈现“蘑菇状”,另外在电镀的时候要在板的周围夹上分流条同时颠倒印制板的方向来提高镀铜的均匀性。

3.2.2阻焊

方案三的制作流程中,在最后一次印阻焊之前,前期印刷的阻焊油墨主要是用来铺平板面以利

于后期干膜能贴紧,如图10所示:

线路图形

图10 阻焊示意图

Fig.10 Solder Mask

具体操作时要控制好以下几个方面:

①采用两次印油的方式做板,第一次使用43T的网版,静止时间做适当的延长,以便于消除线路间

的气泡,预烘后再使用77T的网版进行第二次印油,正常静止后烤板。其中在静置和烘板时,板子应该水平放置,以防垂流。

②曝光时,其能量要比普通板的曝光能量略低一些,曝光级数控制在10级左右,防止因光散射而

产生显影不净,进而导致油墨进入图形造成明显“阶梯状”线路的产生。

3.2.3阻焊后固化

阻焊后固化时,要进行分段固化且在最高温度(150℃)下要加烤30min。其原因在于阻焊之后的板子接下来要进行沉铜,如果油墨后固化不充分,那么其耐热、耐化学性能都会很差,沉铜槽中的强碱性物质就会与油墨中没有固化完全的酸性树脂反生中和反应,造成油墨脱落。

3.2.4沉铜、板电

沉铜之前要过机械前处理,以提高板面的粗糙度,增大其比表面积,进而提高沉铜层与板面的结合力。在沉铜的过程中,板子在溶胀槽和除胶渣槽中的时间不能太久,一般以5~7min为最佳,此时板子已有足够的活性,如果时间再延长,那么油墨就有可能耐不住强碱的侵蚀而造成阻焊层脱落。

板电之前要将板子放在100℃下烤1h,以除去沉铜层与阻焊层之间湿气,进而提高二者之间的结合力,防止板电之后铜层起泡而造成脱落。板电时,以1.2ASD的电流密度镀一个循环,此时表面铜厚可以达到1/3OZ左右。

3.2.5关键工序蚀刻

一般覆铜箔板材,表面铜箔厚度为HOZ~2OZ,但对于厚铜箔印制板来说,其表面铜箔厚度达到了3OZ以上,在进行蚀刻时就不可避免的要采用多次蚀刻的方法,蚀刻的次数越多其侧蚀也就越严重,对线路的精度影响也就越大。

对于本次实验试验而言,后期逐层叠加上去的线路是在沉铜、板电(大约1/3OZ的铜厚)的基础上制作的,也即是说在进行图形蚀刻时,需要蚀刻掉的底铜厚度只有1/3OZ左右,此时基本上不存在侧蚀。而需要重点考虑的是以4OZ的底铜下料进行图形蚀刻时的侧蚀量,这就需要我们对线路进行适当的补偿,以弥补其侧蚀量,使线条的精度满足设计的要求。表1列出了铜箔厚度与单边侧蚀量之间的关系。

铜箔厚度(OZ) 1 2 3 4

侧蚀量(mil)0.4 0.6 0.9 1.4

表1 铜箔厚度与单边侧蚀量之间的关系

Table.1 The relationship between copper foil thickness and unilateral erosion 一般来说,我们以蚀刻因子作为定量衡量蚀刻质量和蚀刻线蚀刻能力的指标[2],蚀刻因子越小表示侧蚀量越大,反之,蚀刻因子越大则表示侧蚀量越小,蚀刻因子的计算标准及方法如图11所示:

相关文档
最新文档