中考数学复习专题九全国创新题型推
中考数学创新题型

专题四新题型考点精要解析新题型是近几年中考试题的一个考试热点,这类试题取材广泛,题目灵活性较大.1.试题呈现形式主要有:纯文型(全部用文字展示条件和问题),图文型(用文字和图形结合展示条件和问题),表文型(用文字和表格结合展示条件和问题),改错型(条件、问题、解题过程都已展示,但解题过程可能要改正).2.常见的类型有:规律探索、图形变换与动手操作和阅读理解等.高频考点过关考点一:规律探索例题1.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),……,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( ).A.(45,77) B.(45,39) C.(32,46) D.(32,23)答案:C考点二:图形变换例题2.对正方形ABCD进行分割,如图(a)所示,其中E,F分别是BC,CD的中点,M,N,G分别是OB,O D,E F的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图(b)所示就是用其中6块拼出的“飞机”,若△GOM的面积为1,则“飞机”的面积为________________.答案:14考点三:阅读理解(新定义运算)例题3.对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(12,12),E(0,-2),F(230).(1) 当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是________.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围解:(1)①如右图所示,过点E作⊙O的切线,设切点为R,∵⊙O的半径为l,∴RO=l,∵EO=2,∴∠OER=30°,根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°∴E点是⊙O的关联点.∵D(12,12),E(0,-2),F(23,0),∴OF>EO,DO<EO.∴D点一定是⊙O的关联点,而在⊙O上不可能找到两点使得组成的角度等于60°,故在点D,E,F中,⊙的关联点是D,E.②由题意可知,若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,由右图可知∠APB=60°,则∠CPB=30°.连接BC,则PC=2BC=2r,∴若P点为⊙OC的关联点,则需点P到圆心的距离d满足0≤d≤2r;由上述证明可知,考虑临界点位置的P点,如下左图所示,点P到原点的距离OP=2×l=2,过点O作x轴的垂线OH,垂足为H,t an∠OGF=233 FOOG==.∴∠OGF=60°,∴OH=OG sin60°=3,sin∠OPH=3OHOP=.∴∠OPH=60°,可得点P1与点G重合.过点P2作P2M丄x轴于点M,可得∠P2OM=30°,∴OM=OP2cos30°=3.从而若点P为⊙O的关联点,则P点必在线段P1P2上,∴0≤m≤3.(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;考虑临界情况,如下右图所示,即恰好E,F点为⊙K的关联时,则KF=2KN=12EF=2,此时r=l.故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥l.中考真题链接真题1.(日照中考)如下图所示,下列各图形中的三个数之间均具有相同的规律,根据此规律,图形中M与m,n的关系是( )A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1) 真题2.(重庆中考)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为( )A.51 B.70 C.76 D.81真题3.(永州中考)我们知道,一元二次方程x2=-l没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i”,使其满足i2=-l(即方程x2=-1有一个根为i);并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i;i2=-1,i3=i2•i=(-l) •i,i4=(i2)2=(-1)2=1.从而对任意正整数n,我们可得到i4n+1=(i) 4n•i=(i4)n•i=i,同理可得i4n+2=-l,i4n+3=—i,i4n=l,那么,i+i2+i3+i4+…+i2012+i2013的值为( )A.0 B.1 C.-1 D.i真题4.(菏泽中考)我们规定:将一个平面图形分成面积相等的两部分的直线叫作该平面图形的“面线.“面线”被这个平面图形截得的线段叫作该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是________ (写出1个即可).真题5.(扬州中考)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b,n两个量之间的同一关系.1.根据劳格数的定义,填空d(10) = ______,d(10-2)=_________;2.劳格数有如下运算性质:若m,n为正数,则d(mn) =d(m)+d(n),d(mn)=d(m)-d(n).根据运算性质,填空:() ()3d ad a=_____________(a为正数),若d(2)=0.3010,则d(4)=_______,d(5)=_________,d(0.08)=__________.(3)下表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.真题6.(绍兴中考)如下图所示,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2……,第n次平移将矩形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向平移5个单位,得到矩形A n B n C n D n (n>2).⑴求AB1和AB2的长;⑵若AB n长为56,求n.真题7.(台州中考)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图(a)在Rt△ABC中,∠C=90°,tan A 3,求证:△ABC是“好玩三角形”;(3)如图(b),已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1).真题8.(宁波中考)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图(a),在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图(b),在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.真题9.(绵阳中考)我们知道,三角形的三条中线一定会交于一点,这一点就叫作三角形的重心.重心有很多美妙的性质,如关于线段的比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图(a)所示),连接AO并延长交BC于点D,证明:23 AOAD=.(2)若AD是△ABC的一条中线(如图(b)所示),O是AD上一点,且满足23AOAD=,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB,AC相交于G,H(均不与△ABC的顶点重合)(如图(c )所示),S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,试探究BCHG AGHS S V 四边形的最大值.创新思维训练创新1.△ABC 内部一点P ,若点P 与△ABC 其中两个顶点构成的一个三角形与△ABC 相似,则称点P 是△ABC 的内相似点.(1)对于一类特殊的三角形,譬如有一个角为30°的直角三角形,小峰同学说他可以仅利用一次折叠与直尺就可以找出这类三角形的内相似点.你能替小峰同学说明如何寻找这类三角形的内相似点的过程吗?(2)对于另一类特殊三角形,譬如满足∠A <36°,∠B =2∠A的△ABC ,小林同学说她利用两次折叠与直尺也可以找出这类三角形的内相似点.你能替小林同学说明如何寻找这类三角形的内相似点的过程吗?(3)如右图所示,在R t △ABC 中,∠A =30°,∠C =90°,AB =8,将△ABC 折叠一次后点A 恰好与其内相似点重合,求折痕的长度.若直线l :y kx b =+与抛物线C :2y ax bx c =++只有一个公共点P (x 0,y 0),那么称直线l 与抛物线C 相切于点P ,此时点P 成为切点,直线l 称为切线,直线l 的方程称为切线方程。
九年级数学中考复习创新题(满分120)人教版

2010年中考复习创新题(满分120)一、选择题:请将唯一正确答案的编号填入括号中,本题共4题,每题5分,共20分。
1、解不等式组2315236x x +<⎧⎪⎨+>⎪⎩所得结论正确的是( ) A 、该不等式组无解 B 、该不等式组解集为x ≠1C 、该不等式组的解集为x=1D 、该不等式组解集为x>1或x<1 2、掷两枚质地均匀的骰子,将落地后正面朝上的数字相加得到一个新数,则这个新数最有可能是( ) A 、6 B 、7 C 、8 D 、9 3、如图,将ΔABC 绕着C 点逆时针旋转90°得到ΔA'B'C.连接BB',则A'是ΔABB'的( ) A 、内心 B 、外心 C 、重心 D 、垂心(三条高线交点) 4、如图,一个圆锥的侧面展开图是扇形A 1HB ,设图中AHB=x , A 1HB=y 。
则y 与 x 的函数关系式为( )A 、y=360sin (2x )B 、y=180sin (2x)C 、y=360x +180D 、y= 1802x二、填空题:请将正确答案填入横线中,本题共5题,每题4分,共20分。
5.因式分解:44x y += 6.若+(z-9)2=0,则x y zxyz++= 7.已知在平行四边形ABCD 中,对角线BD=14.过平行四边形ABCD 的顶点D 做高,垂足为H,连接OH 则OH=8.下图是一个几何体主视图和左视图,已知这个几何体由5个相同的小正方体组成,请你在右边方框中补全这个几何体的俯视图:9.如下图所示:甲、乙两车沿两条互相平行的路线反向而行,在行驶过程中,甲车司机发现从甲车看乙车,视线总被路中央绿化带中的一棵树遮挡。
已知甲车行驶路线距绿化带5米,乙车行驶路线距绿化带7米.则甲乙两车的速度比为 :三、解答题:请写出必要的解答过程,本题共5题,共89分。
10、(6分)证明:如图,在梯形ACDB中,AD ∥BC.∠1=∠2 求证:AB=CD11、以下是一组选择题的答案:A 、B 、B 、D 、C 、B 、C 、D 、C 、D 、C 、A 、B 、D 、C 、A 、C 、D 、C 、B 、B 。
中考数学创新题型复习总结指要-

中考数学创新题型复习指要新仟年伊始,伴随着新教材的推广使用,以新《课程标准》的颁布为标志,数学教育迎来了它的新时代。
新教材以培养学生的创新意识和创新精神为宗旨,要求学生要有探究、创新和实践的能力。
如何以新标准考察学生?各地的中考试题都作了大胆尝试,以下尝试对新试题的测试的改革思路做出分析,谨供考生参考。
一.开放题型的引入“开放型”试题是指试题的条件、结论、解题依据、和方法四个要素中缺少一个或两个要素的命题。
例如:1.同学们知道:只有两边和一角对应相等的两个三角形不一定全等,你如何处理和安排这三个条件,使这两个三角形全等。
请你模仿方案(1),写出方案(2)、(3)、(4)。
解:设有两边和一角对应相等的两个三角形,方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等。
方案(2):方案(3):方案(4):2.请写出一个含1这个根且增根为2的分式方程。
3.已知:平面直角坐标系内,点P的纵坐标是横坐标的3倍,请写出过点P的一次函数解析式(至少三个)。
4.老师给出一个函数y=f(x),甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时,y>0。
已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数是。
5.在四边形ABCD中,给出下列条件:①AB∥CD,②AD=BC,③∠B=∠D,以其中两个作为题设,另一个作结论,用“如果……,那么……。
”的形式,写出一个真命题是。
6.小红同学编拟了这样一个数学命题:“如果在四边形ABCD中,AB=CD、AC=BD,那么四边形ABCD一定是平行四边形”。
若你认为这个命题的结论成立,请予以证明;若这个命题的结论不一定成立,请画图举出反例予以说明。
二.归纳法的渗透利用归纳法,通过观察、猜想、推理,总结规律,得到结论,以考察学生的观察、创新能力。
中考数学全国新题型展示

中考数学全国新题型展示中考数学考试是中国学生所面临的具有重要意义的考试之一。
为了适应时代发展的需求,近年来中考数学考试不断进行改革,引入了一些新的题型,以测试学生的综合能力和创新思维。
本文将介绍一些全国中学生数学能力竞赛中的新题型,以帮助学生了解并适应这些新题型的要求。
轨迹题轨迹题是一种新型的数学题型,要求通过几何图形的运动过程来分析和求解问题。
这类题目常涉及点、线、面的运动以及相互之间的关系。
在解答轨迹题时,学生需要运用几何知识和原理,同时还要有一定的推理和逻辑思维能力。
例如,一道典型的轨迹题可能是这样的:“将一个长度为2的针从一角挂在一边长为3的正方形的一角上,然后使针的另一头从原来位置不离开针内侧并沿边滑动,求针另一头所经过的轨迹。
”这个题目涉及到正方形、针的运动和轨迹的分析,需要学生综合运用相关的几何知识和定理来解答。
数表填空题数表填空题是一种对学生逻辑推理能力和数据分析能力进行考察的题型。
这种题型常常要求学生根据给出的部分数据,推断出数表中的规律,并填写缺失的数值。
通过解答这类题目,学生可以培养和提升自己的逻辑思维和数据分析能力,同时也提高了数学问题的实际应用能力。
例如,一个数表填空题可能是这样的:“已知数表的前4项分别是0,3,8,15,请根据这些数据填写数表第5项和第6项的数值。
”学生需要观察已知数表的数据,发现数列中的数字与前一项的数字之间存在什么样的关系,然后根据这个规律来填写缺失的数值。
实物建模题实物建模题是一种将实际生活中的问题用数学方法进行建模和求解的题型。
这类题目常常要求学生通过观察和思考,将问题中的实物或情境转化为数学模型,并进行分析和求解。
这种题型对学生的创新思维和实际应用能力有较高的要求。
例如,一个实物建模题可能是这样的:“某校将举行奖状设计比赛,要求设计一个边长为10厘米的正方形奖状,四个角上为等腰直角三角形的装饰(即正方形的四等分面积一样),请确定这个等腰直角三角形的形状和大小。
中考数学复习考点题型专题练习09 二次函数

中考数学复习考点题型专题练习专题09 二次函数一.选择题1.(2022·陕西)已知二次函数223y x x =--的自变量123,,x x x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x 时,1y ,2y ,3y 三者之间的大小关系是( )A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<2.(2022·山东潍坊)抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14C .4-D .43.(2022·湖南郴州)关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大4.(2022·山东青岛)已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( ) A .0b > B .0c < C .0a b c ++> D .30a c +=5.(2022·黑龙江哈尔滨)抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-6.(2022·浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -7.(2022·湖北武汉)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.(2022·广西玉林)小嘉说:将二次函数2y x 的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度 ④沿x 轴翻折,再向上平移4个单位长度 你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个9.(2022·湖南岳阳)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-10.(2022·四川宜宾)已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( )A .13a ≥B .13a >C .103a <<D .103a <≤11.(2022·山东威海)如图,二次函数y =ax 2+bx (a ≠0)的图像过点(2,0),下列结论错误的是( )A .b >0B .a +b >0C .x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D .点(x 1,y 1),(x 2,y 2)在二次函数的图像上,当x 1>x 2>2时,y 2<y 1<012.(2022·广西)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .13.(2022·山东潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .14.(2022·辽宁)如图,在Rt ABC 中,90,24ABC AB BC ∠=︒==,动点P 从点A 出发,以每秒1个单位长度的速度沿线段AB 匀速运动,当点P 运动到点B 时,停止运动,过点P 作PQ AB ⊥交AC 于点Q ,将APQ 沿直线PQ 折叠得到A PQ ',设动点P 的运动时间为t 秒,A PQ '与ABC 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C.D.15.(2022·贵州铜仁)如图,若抛物线2(0)=++≠与x轴交于A、B两点,与yy ax bx c a轴交于点C,若OAC OCB∠=∠.则ac的值为()16.(2022·黑龙江牡丹江)若二次函数2=的图象经过点P(-2,4),则该图象必经y ax过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211=-+的图象向左平y x移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.()221=-+C.21y x=--B.()223y x=-y xy x=+D.2118.(2022·四川遂宁)如图,D、E、F分别是ABC三边上的点,其中8BC=,BC边上的高为6,且DE//BC,则DEF面积的最大值为()A.6B.8C.10D.1219.(2022·四川自贡)已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论: ①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,a =12.其中正确的是( )A .①③B.②③C.①④D.①③④20.(2022·江苏泰州)已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A .3y x =B .23y x =C .3y x =D .3y x=-21.(2022·广西贺州)已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .422.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .223.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=-(0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个24.(2022·湖北鄂州)如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( )A .2个B .3个C .4个D .5个25.(2022·四川雅安)抛物线的函数表达式为y =(x ﹣2)2﹣9,则下列结论中,正确的序号为( )①当x =2时,y 取得最小值﹣9;②若点(3,y 1),(4,y 2)在其图象上,则y 2>y 1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x ﹣5)2﹣5;④函数图象与x 轴有两个交点,且两交点的距离为6.A .②③④B.①②④C.①③D.①②③④二.填空题26.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P/s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .27.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.28.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.29.(2022·湖北荆州)规定:两个函数1y ,2y 的图象关于y 轴对称,则称这两个函数互为“Y 函数”.例如:函数122y x =+与222y x =-+的图象关于y 轴对称,则这两个函数互为“Y 函数”.若函数()2213y kx k x k =+-+-(k 为常数)的“Y 函数”图象与x 轴只有一个交点,则其“Y 函数”的解析式为______.30.(2022·贵州黔东南)在平面直角坐标系中,将抛物线221y x x =+-先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是_______.31.(2022·黑龙江大庆)已知函数231y mx mx m =++-的图象与坐标轴恰有两个公共点,则实数m 的值为____________.32.(2022·山东聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).33.(2022·广西贵港)已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:①0abc <;②240b ac ->;③0a b c ++=;④21(2)4am bm a b +<-(其中12m ≠-);⑤若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.34.(2022·辽宁)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()1,0-和点()2,0,以下结论:①0abc <;②420a b c -+<;③0a b +=;④当12x <时,y 随x 的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)35.(2022·四川广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.37.(2022·黑龙江牡丹江)把二次函数y=2x 2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.38.(2022·内蒙古赤峰)如图,抛物线265y x x =---交x 轴于A 、B 两点,交y 轴于点C ,点(),1D m m +是抛物线上的点,则点D 关于直线AC 的对称点的坐标为_________.39.(2022·吉林长春)已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______. 三.解答题40.(2022·山东潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.小亮认为,可以从y =kx +b (k >0) ,y =m x(m >0) ,y =−0.1x 2+ax +c 中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选(0)m y m x =>.你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量....在哪一年最大?最大是多少?41.(2022·广西贺州)如图,抛物线2y x bx c =-++过点(1,0),(3,0)A B -,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 为抛物线对称轴上一动点,当PCB 是以BC 为底边的等腰三角形时,求点P 的坐标;(3)在(2)条件下,是否存在点M 为抛物线第一象限上的点,使得BCM BCP S S =△△?若存在,求出点M 的横坐标;若不存在,请说明理由.42.(2022·广东)如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.43.(2022·湖南永州)已知关于x 的函数2y ax bx c =++.(1)若1a =,函数的图象经过点()1,4-和点()2,1,求该函数的表达式和最小值;(2)若1a =,2b =-,1c m =+时,函数的图象与x 轴有交点,求m 的取值范围.(3)阅读下面材料:设0a >,函数图象与x 轴有两个不同的交点A ,B ,若A ,B 两点均在原点左侧,探究系数a ,b ,c 应满足的条件,根据函数图像,思考以下三个方面: ①因为函数的图象与x 轴有两个不同的交点,所以2Δ40b ac =->;②因为A ,B 两点在原点左侧,所以0x =对应图象上的点在x 轴上方,即0c >; ③上述两个条件还不能确保A ,B 两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需02b a-<. 综上所述,系数a ,b ,c 应满足的条件可归纳为:20Δ40002a b ac c b a >⎧⎪=->⎪⎪>⎨⎪⎪-<⎪⎩请根据上面阅读材料,类比解决下面问题:若函数223y ax x =-+的图象在直线1x =的右侧与x 轴有且只有一个交点,求a 的取值范围.44.(2022·北京)在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围.45.(2022·贵州遵义)新定义:我们把抛物线2y ax bx c =++(其中0ab ≠)与抛物线2y bx ax c =++称为“关联抛物线”.例如:抛物线2231y x x =++的“关联抛物线”为:2321y x x =++.已知抛物线()21:4430C y ax ax a a =++-≠的“关联抛物线”为2C .(1)写出2C的解析式(用含a 的式子表示)及顶点坐标;(2)若0a >,过x 轴上一点P ,作x 轴的垂线分别交抛物线1C ,2C 于点M ,N .①当6MN a =时,求点P 的坐标;②当42a x a -≤≤-时,2C 的最大值与最小值的差为2a ,求a 的值.46.(2022·湖北十堰)已知抛物线294y ax x c =++与x 轴交于点1,0A 和点B 两点,与y 轴交于点()0,3C -.(1)求抛物线的解析式;(2)点P 是抛物线上一动点(不与点A ,B ,C 重合),作PD x ⊥轴,垂足为D ,连接PC .①如图1,若点P 在第三象限,且45CPD ∠=︒,求点P 的坐标;②直线PD 交直线BC 于点E ,当点E 关于直线PC 的对称点E '落在y 轴上时,求四边形PECE '的周长.47.(2022·河南)红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2=-+,其中xy a x h k(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.48.(2022·浙江台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3mDE=,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5EF=;①求上边缘抛物线的函数解析式,h=,0.5m并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若1mEF=.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.49.(2022·河北)如图,点(),3P a 在抛物线C :()246y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.50.(2022·四川雅安)已知二次函数y =ax 2+bx +c 的图象过点A (﹣1,0),B (3,0),且与y 轴交于点C (0,﹣3).(1)求此二次函数的表达式及图象顶点D 的坐标;(2)在此抛物线的对称轴上是否存在点E ,使△ACE 为Rt △,若存在,试求点E 的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P ,满足PA ⊥PD ,求线段PB 的最小值.51.(2022·江苏泰州)如图,二次函数211y x mx =++的图像与y 轴相交于点A ,与反比例函数2(0)k y x x=>的图像相交于点B (3,1).(1)求这两个函数的表达式;(2)当1y 随x 的增大而增大且12<y y 时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数1y 的图像相交于点C 、D (点C 在点D 的左边),与函数2y 的图像相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.53.(2022·浙江丽水)如图,已知点()()1122,,,M x y N x y 在二次函数2(2)1(0)y a x a =-->的图像上,且213x x -=.(1)若二次函数的图像经过点(3,1).①求这个二次函数的表达式;②若12y y =,求顶点到MN 的距离;(2)当12x x x ≤≤时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,求a 的取值范围.54.(2022·山东临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止本项目.主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:下图为该兴趣小组绘制的赛道截面图,以停止区CD 所在水平线为x 轴,过起跳点A 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系.着陆坡AC 的坡角为30°,65m OA =.某运动员在A 处起跳腾空后,飞行至着陆坡的B 处着陆,100m AB =.在空中飞行过程中,运动员到x 轴的距离()m y 与水平方向移动的距离()m x 具备二次函数关系,其解析式为2160y x bx c =-++. (1)求b 、c 的值;(2)进一步研究发现运动员在飞行过程中,其水平方向移动的距离()m x 与飞行时间()s t 具备一次函数关系,当运动员在起跳点腾空时,0=t ,0x =;空中飞行5s 后着陆.①求x 关于t 的函数解析式;②当t 为何值时,运动员离着陆坡....的竖直距离h 最大,最大值是多少?55.(2022·山东威海)探索发现(1)在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (﹣3,0),B (1,0),与y 轴交于点C ,顶点为点D ,连接AD .①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;(2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合),_______.56.(2022·内蒙古赤峰)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长4mAB的长=AD=,宽1m方形水池ABCD进行加长改造(如图①,改造后的水池ABNM仍为长方形,以下简称水池1),同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD 的边AD 加长长度DM 为()()m 0x x >,加长后水池1的总面积为()21m y ,则1y 关于x 的函数解析式为:()140y x x =+>;设水池2的边EF 的长为()()m 06x x <<,面积为()22m y ,则2y 关于x 的函数解析式为:()22606y x x x =-+<<,上述两个函数在同一平面直角坐标系中的图像如图③.【问题解决】(1)若水池2的面积随EF 长度的增加而减小,则EF 长度的取值范围是_________(可省略单位),水池2面积的最大值是_________2m ;(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的()m x 值是_________;(3)当水池1的面积大于水池2的面积时,()m x 的取值范围是_________; (4)在14x <<范围内,求两个水池面积差的最大值和此时x 的值;(5)假设水池ABCD 的边AD 的长度为()m b ,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积()23m y 关于()()m 0x x >的函数解析式为:()30y x b x =+>.若水池3与水池2的面积相等时,()m x 有唯一值,求b 的值.57.(2022·黑龙江)如图,抛物线2y x bx c =++经过点()1,0A -,点()2,3B -,与y 轴交于点C ,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PBC 的面积是BCD △面积的4倍,若存在,请直接写出点P 的坐标:若不存在,请说明理由.58.(2022·贵州贵阳)已知二次函数y =ax 2+4ax +b .(1)求二次函数图象的顶点坐标(用含a ,b 的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x 轴交于A ,B 两点,AB =6,且图象过(1,c ),(3,d ),(−1,e ),(−3,f )四点,判断c ,d ,e ,f 的大小,并说明理由;(3)点M (m ,n )是二次函数图象上的一个动点,当−2≤m ≤1时,n 的取值范围是−1≤n ≤1,求二次函数的表达式.59.(2022·山东青岛)已知二次函数y=x2+mx+m2−3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2−3的图象与x轴交点的个数,并说明理由.60.(2022·四川内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.61.(2022·湖北武汉)抛物线223y x x =--交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图(1),当OP OA =时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图(2),直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m .求FPOP的值(用含m 的式子表示).62.(2022·湖南常德)如图,已经抛物线经过点(0,0)O ,(5,5)A ,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时,求B 的坐标;(3)在(2)的条件下,P 是抛物线上的动点,当PA PB -的值最大时,求P 的坐标以及PA PB -的最大值63.(2022·湖南娄底)如图,抛物线21262y x x =--与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)点()(),06P m n m <<在抛物线上,当m 取何值时,PBC 的面积最大?并求出PBC 面积的最大值.(3)点F 是抛物线上的动点,作FE //AC 交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.64.(2022·广东深圳)二次函数21,2y x =先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.的值为 ;(2)在坐标系中画出平移后的图象并求出2152y x =-+与212y x =的交点坐标;(3)点()()1122,,,P x y Q x y 在新的函数图象上,且,P Q 两点均在对称轴的同一侧,若12,y y >则1x 2x (填“>”或“<”或“=”)。
专题09 几何最值问题-2024年中考数学二轮热点题型归纳与变式演练(全国通用)

专题09 几何最值问题目录热点题型归纳题型01 将军饮马模型题型02 费马点模型题型03 阿氏圆模型题型04 隐圆模型题型05 瓜豆圆模型中考练场题型01 将军饮马模型【解题策略】两定一动模型一定两动模型(同侧)(异侧)两线段相减的最大值模型(三点共线)【典例分析】例.(2022·黑龙江·中考真题)1.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,60BAD Ð=°,3AD =,AH 是BAC Ð的平分线,CE AH ^于点E ,点P 是直线AB 上的一个动点,则OP PE +的最小值是 .【变式演练】(2022·山东枣庄·二模)2.如图,点P 是AOB Ð内任意一点,3cm OP =,点M 和点N 分别是射线OA 和射线OB 上的动点,30AOB Ð=°,则PMN V 周长的最小值是 .(2023广东广州·模拟预测)3.如图,四边形ABCD 中,AB CD P ,AC BC ^,60DAB Ð= ,4AD CD ==,点M 是四边形ABCD 内的一个动点,满足90AMD Ð= ,则MBC V 面积的最小值为 .题型02 费马点模型【解题策略】将△APC 边以A 为顶点逆时针旋转60°,得到AQE ,连接PQ ,则△APQ 为等边三角形,PA =PQ .即PA +PB +PC =PQ +PB +PC ,当B 、P 、Q 、E 四点共线时取得最小值BE .【典例分析】例.(2023全国·中考模拟预测)4.如图1,在RT △ABC 中,∠ACB =90°,CB =4,CA =6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP ,求:①12AP BP +,②2+AP BP ,③13AP BP +,④3+AP BP 的最小值.【变式演练】(2022·广东广州·一模)5.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点P 是AB 边上一动点,作PD ⊥BC 于点D ,线段AD 上存在一点Q ,当QA +QB +QC 的值取得最小值,且AQ =2时,则PD = .(2023广东·一模)6.如图,△ABC 中,∠BAC =45°,AB =6,AC =4,P 为平面内一点,求3PC ++最小值(2024湖北中考·二模)7.如图,正方形ABCD 的边长为4,点P 是正方形内部一点,求2PA PB +的最小值.题型03 阿氏圆模型【解题策略】问题:在圆上找一点P 使得PA k PB + 的值最小,解决步骤具体如下:①如图,将系数不为1的线段两端点与圆心相连即OP ,OB②计算出这两条线段的长度比OP k OB=③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB=,PC k PB = ④则=PA k PB PA PC AC ++≥ ,当A 、P 、C 三点共线时可得最小值.【典例分析】例.(2023·广西·中考真题)8.如图,抛物线2y ax bx c =++与x 轴交于A 0),B 两点(点B 在点A 的左侧),与y轴交于点C ,且3OB OA ==,OAC Ð的平分线AD 交y 轴于点D ,过点A 且垂直于AD的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ^轴,垂足为F ,交直线AD 于点H .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作H e ,点Q 为H e 上的一个动点,求14AQ EQ +的最小值.【变式演练】(2023·甘肃天水·一模)9.如图,已知正方形ABCD 的边长为4,⊙B 的半径为2,点P 是⊙B 上的一个动点,则PD ﹣12PC 的最大值为 .(2023江苏·二模)10.如图,正方形ABCD 的边长为4,B e 的半径为2,P 为B e PD -的最大值是 .题型04 隐圆模型【解题策略】定点定长定弦定角四点共圆最短距离:“一箭穿心”,然后点到圆心的距离-半径;最长距离:“一箭穿心”,然后点到圆心的距离+半径.【典例分析】例.(2023·辽宁·中考真题)11.如图,在矩形ABCD 中,8AB =,10AD =,点M 为BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B ¢,连接DB ¢并延长交BC 于点F .当BF 最大时,点B ¢到BC 的距离是 .【变式演练】(2024浙江金华·模拟预测)12.如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且EAB EBC Ð=Ð.连结AE ,BE ,PD ,PE ,则PD PE +的最小值为( )A .2B .2C .2D .2(2022·山东泰安·三模)13.如图,在Rt △ABC 中,90ACB Ð= ,30BAC Ð= ,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是 .(2022·广东河源·二模)14.如图,已知28AC AO ==,平面内点P 到点O 的距离为2,连接AP ,若60APB Ð=°且12BP AP =,连接AB ,BC ,则线段BC 的最小值为 .题型05 瓜豆圆模型【解题策略】条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比.【典例分析】例.(2023·江苏·中考真题)15.在四边形ABCD 中,2,120,AB BC ABC BH ==Ð=°为ABC Ð内部的任一条射线(CBH Ð不等于60°),点C 关于BH 的对称点为C ¢,直线AC ¢与BH 交于点F ,连接CC CF ¢、,则CC F ¢△面积的最大值是 .【变式演练】(2023江苏无锡·二模)16.如图,线段AB 为O e 的直径,点C 在AB 的延长线上,4AB =,2BC =,点P 是O e 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt PCD V ,且使60DCP Ð=°,连接OD ,则OD 长的最大值为 .(2023·安徽·一模)17.如图,在矩形ABCD 中,8AB =,4=AD ,点E 是矩形ABCD 内部一动点,且90BEC Ð=°,点P 是AB 边上一动点,连接PD 、PE ,则PD PE +的最小值为( )A .8B .C .10D .2-(2023·江苏扬州·模拟预测)18.如图,A 是B e 上任意一点,点C 在B e 外,已知24AB BC ACD ==,,△是等边三角形,则BCD △的面积的最大值为( )A .4+B .4C .8D .6(2023·黑龙江绥化·中考真题)19.如图,ABC V 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60°得到CF .连接AF ,EF ,DF ,则CDF V 周长的最小值是 .(2022·四川成都·中考真题)20.如图,在菱形ABCD 中,过点D 作DE CD ^交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ¢,点Q 是AC 上一动点,连接P Q ¢,DQ .若14AE =,18CE =,则DQ P Q ¢-的最大值为 .(2022·广西柳州·中考真题)21.如图,在正方形ABCD 中,AB =4,G 是BC 的中点,点E 是正方形内一个动点,且EG =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连接CF ,则线段CF 长的最小值为 .(2022·江苏无锡·中考真题)22.△ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F .如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF =°;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是 .(2022·广西·中考真题)23.如图,在边长为ABCD 中,60C Ð=°,点,E F 分别是,AB AD 上的动点,且,AE DF DE =与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为 .(2023·新疆·中考真题)24.如图,在Rt ABC V 中,AB =AC =4,点E ,F 分别是AB ,AC 的中点,点P 是扇形AEF 的 E F 上任意一点,连接BP ,CP ,则12BP +CP 的最小值是 .1【分析】作点O 关于AB 的对称点F ,连接OF 交AB 于G ,连接PE 交直线AB 于P ,连接PO ,则PO =PF ,此时,PO +PE 最小,最小值=EF ,利用菱形的性质与直角三角形的性质,勾股定理,求出OF ,OE 长,再证明△EOF 是直角三角形,然后由勾股定理求出EF 长即可.【详解】解:如图,作点O 关于AB 的对称点F ,连接OF 交AB 于G ,连接PE 交直线AB 于P ,连接PO ,则PO =PF ,此时,PO +PE 最小,最小值=EF 的长,∵菱形ABCD ,∴AC ⊥BD ,OA =OC ,OB =OD ,AD =AB =3,∵∠BAD =60°,∴△ABD 是等边三角形,∴BD =AB =3,∠BAO =30°,∴OB =12AB =32,∴OA ∴点O 关于AB 的对称点F ,∴OF ⊥AB ,OG =FG ,∴OF =2OG =OA ∠AOG =60°,∵CE ⊥AH 于E ,OA =OC ,∴OE =OC =OA ∴∠AEC =∠CAE ,∵AH 平分∠BAC ,∴∠CAE =15°,∴∠AEO =∠CAE =15°,∴∠COE =∠AEO +∠CAE =30°,∴∠COE +∠AOG =30°+60°=90°,∴∠FOE =90°,∴由勾股定理,得EF ==,∴PO +PE 最小值.【点睛】本题考查菱形的性质,利用轴对称求最短距离问题,直角三角形的性质,勾股定理,作点O 关于AB 的对称点F ,连接OF 交AB 于G ,连接PE 交直线AB 于P ,连接PO ,则PO =PF ,则PO +PE 最小,最小值=EF 的长是解题的关键.2.3cm【分析】分别作点P 关于OA OB 、的对称点C 、D ,连接CD ,分别交OA OB 、于点M 、N ,连接OP OC OD PM PN 、、、、,当点M 、N 在CD 上时,PMN V 的周长最小.【详解】解:分别作点P 关于OA OB 、的对称点C 、D ,连接CD ,分别交OA OB 、于点M 、N ,连接OP OC OD PM PN 、、、、.∵点P 关于OA 的对称点为C ,关于OB 的对称点为D ,∴PM CM OP OC COA POA ==Ð=Ð,,;∵点P 关于OB 的对称点为D ,∴PN DN OP OD DOB POB ==Ð=Ð,,,∴3cm OC OD OP ===,22260COD COA POA POB DOB POA POB AOB Ð=Ð+Ð+Ð+Ð=Ð+Ð=Ð=°,∴COD △是等边三角形,∴()3cm CD OC OD ===.∴PMN V 的周长的最小值3cm PM MN PN CM MN DN CD =++=++≥=.故答案为:3cm .【点睛】本题主要考查最短路径问题和等边三角形的判定. 作点P 关于OA 、OB 的对称点C 、D 是解题的关键所在.3.4-【分析】取AD 的中点O ,连接OM ,过点M 作ME BC ^交BC 的延长线于点E ,过点O 作OF BC ^于F ,交CD 于G ,则OM ME OF +≥,通过计算得出当,,O M E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME BC ^交BC 的延长线于点E ,过点O 作OF BC ^于F ,交CD 于G ,则OM ME OF +≥,Q AB CD P ,60DAB Ð= ,4AD CD ==,\120ADC Ð=°,Q AD CD =,\30DAC Ð=°,\30CAB Ð=°,Q AC BC ^,\90ACB Ð=°903060B \Ð=°-°=°,\B DAB Ð=Ð,\四边形ABCD 为等腰梯形,\4BC AD ==,Q 90AMD Ð= ,4=AD ,OA OD =,\122OM AD ==,\点M 在以点O 为圆心,2为半径的圆上,Q AB CD ∥,\60GCF B Ð=Ð=°,\30DGO CGF Ð=Ð=°,Q OF BC ^,AC BC ^,\30DOG DAC DGO Ð=Ð=°=Ð,\2DG DO ==,\2cos30OG OD =×°=,GF =,OF =,\2ME OF OM ≥-=,\当,,O M E 三点共线时,ME 有最小值2,\MBC V 面积的最小值为()14242=´´=.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.4.;②④.【分析】①在CB 上取点D ,使1CD =,连接CP 、DP 、AD .根据作图结合题意易证~V V DCP PCB ,即可得出12PD BP =,从而推出12AP BP AP PD +=+,说明当A 、P 、D 三点共线时,AP PD +最小,最小值即为AD 长.最后在Rt ACD V 中,利用勾股定理求出AD 的长即可;②由122()2+=+AP BP AP BP ,即可求出结果;③在CA 上取点E ,使23CE =,连接CP 、EP 、BE .根据作图结合题意易证~V V ECP PCA ,即可得出13EP AP =,从而推出13AP BP EP BP +=+,说明当B 、P 、E 三点共线时,EP BP +最小,最小值即为BE 长.最后在Rt BCE △中,利用勾股定理求出BE 的长即可;④由133()3+=+AP BP AP BP ,即可求出结果.【详解】解:①如图,在CB 上取点D ,使1CD =,连接CP 、DP 、AD .∵1CD =,2CP =,4CB =,∴12CD CP CP CB ==.又∵DCP PCB Ð=Ð,∴~V V DCP PCB ,∴12PD BP =,即12PD BP =,∴12AP BP AP PD +=+,∴当A 、P 、D 三点共线时,AP PD +最小,最小值即为AD 长.∵在Rt ACD V 中,===AD∴12AP BP +;②∵122()2+=+AP BP AP BP ,∴2+AP BP 的最小值为2=③如图,在CA 上取点E ,使23CE =,连接CP 、EP 、BE .∵23CE =,2CP =,6CA =,∴13==CE CP CP CA .又∵Ð=ÐECP PCA ,∴~V V ECP PCA ,∴13=EP AP ,即13EP AP =,∴13AP BP EP BP +=+,∴当B 、P 、E 三点共线时,EP BP +长.∵在Rt BCE △中,===BE∴13AP BP +;④∵133()3+=+AP BP AP BP ,∴3+AP BP 的最小值为3=.【点睛】本题考查圆的基本性质,相似三角形的判定和性质,勾股定理.正确的作出辅助线,并且理解三点共线时线段最短是解答本题的关键.5.【分析】如图1,将△BQC 绕点B 顺时针旋转60°得到△BNM ,连接QN ,当点A ,点Q ,点N ,点M 共线时,QA +QB +QC 值最小,此时,如图2,连接MC ,证明AM 垂直平分BC ,证明AD =BD ,此时P 与D 重合,设PD =x ,则DQ =x -2,构建方程求出x 可得结论.【详解】解:如图1,将△BQC 绕点B 顺时针旋转60°得到△BNM ,连接QN ,∴BQ =BN ,QC =NM ,∠QBN =60°,∴△BQN 是等边三角形,∴BQ =QN ,∴QA +QB +QC =AQ +QN +MN ,∴当点A ,点Q ,点N ,点M 共线时,QA +QB +QC 值最小,此时,如图2,连接MC∵将△BQC 绕点B 顺时针旋转60°得到△BNM ,∴BQ =BN ,BC =BM ,∠QBN =60°=∠CBM ,∴△BQN 是等边三角形,△CBM 是等边三角形,∴∠BQN =∠BNQ =60°,BM =CM ,∵BM =CM ,AB =AC ,∴AM 垂直平分BC ,∵AD ⊥BC ,∠BQD =60°,∴BD ,∵AB =AC ,∠BAC =90°,AD ⊥BC ,∴AD =BD ,此时P 与D 重合,设PD =x ,则DQ =x -2,∴x =())tan 6022x x °´-=-,∴x∴PD故答案为:.【点睛】本题主要考查了等腰直角三角形的性质,旋转的性质,等边三角形的判定和性质,解题的关键是正确运用等边三角形的性质解决问题,学会构建方程解决问题.6.【分析】将△APC 绕点A 逆时针旋转45°,得到△A P ¢C ¢,将△A P ¢C ¢△AP C ¢¢¢¢,当点B 、P 、P ¢¢、C ¢¢在同一直线上时,3PC +=)''''''PB PP P C ++最短,利用勾股定理求出BC ¢¢即可.【详解】解:如图,将△APC 绕点A 逆时针旋转45°,得到△A ¢C ¢,将△A ¢C ¢扩大,相△AP C ¢¢¢¢,则AP AP ¢¢¢,P C C ¢¢¢¢¢¢,AC AC ¢¢¢,过点P 作PE ⊥A P ¢¢于E ,∴AE=PE AP =,∴P ¢¢E=A P ¢¢AP ,∴P P ¢¢AP =,当点B 、P 、P ¢¢、C ¢¢在同一直线上时,3PC +=)''''''PB PP P C ++最短,此时)''''''PB PP P C ++=C ¢¢,∵∠BA C ¢¢=∠BAC +∠CA C ¢¢=90°,AB =6,4AC AC ¢¢¢=∴BC ¢¢==.∴3PC +=C ¢¢=【点睛】此题考查旋转的性质,全等三角形的性质,勾股定理,正确理解费马点问题的造图方法:利用旋转及全等的性质构建等量的线段,利用三角形的三边关系及点共线的知识求解,有时根据系数将图形扩大或缩小构建图形.7.【分析】延长DC 到H ,使得28CH BC ==,则BH =,在CBH Ð的内部作射线BJ ,使得PBJ CBH Ð=Ð,使得BJ ,连接PJ ,JH ,AH .先证明JBP HBC △∽△,可得2PJ PB =,再证明PBC JBH △∽△,可得:HJ =,从而得到2PA PB PA PJ HJ AH +=++≥,计算出AH 的长度即可.【详解】解:延长DC 到H ,使得28CH BC ==,则BH =,在CBH Ð的内部作射线BJ ,使得PBJ CBH Ð=Ð,使得BJ ,连接PJ ,JH ,AH .PBJ CBH Ð=ÐQ ,BP BC BJ BH =,\PB BJ BC BH=,JBP HBC \V V ∽,90BPJ BCH \Ð=Ð=°,2PJ PB \===,PBC JBH Ð=ÐQ ,PB BC BJ BH=,PBC JBH \V V ∽,\PC PB JH BJ =HJ \2PA PB PA PJ H J \+=++,PA PJ JH AH ++≥Q ,2PA PB \+≥=2PA PB \+的值最小,最小值为.【点睛】本题考查相似三角形的判定与性质,勾股定理,两点之间线段最短,正方形的性质,,正确理解费马点问题,利用相似构造2PB ,根据系数将图形扩大或缩小构建图形是解决问题的关键.8.(1)y 13=x 2x ﹣3;(2)(3【分析】对于(1),结合已知先求出点B 和点C 的坐标,再利用待定系数法求解即可;对于(2),在Rt △OAC 中,利用三角函数的知识求出∠OAC 的度数,再利用角平分线的定义求出∠OAD 的度数,进而得到点D 的坐标;接下来求出直线AD 的解析式,表示出点P ,H ,F 3),首先求出⊙H 的半径,在HA 上取一点K ,使得HK=14,此时K (15-8);然后由HQ 2=HK·HA ,得到△QHK ∽△AHQ ,再利用相似三角形的性质求出KQ=14AQ ,进而可得当E 、Q 、K 共线时,14AQ+EQ 的值最小,据此解答.【详解】(1)由题意A 0),B (﹣0),C (0,﹣3),设抛物线的解析式为y =a (x (x ,把C (0,﹣3)代入得到a 13=,∴抛物线的解析式为y 13=x 2x ﹣3.(2)在Rt △AOC 中,tan ∠OAC OC OA=,∴∠OAC =60°.∵AD OAC ,∴∠OAD =30°,∴•tan30°=1,∴D (0,﹣1),∴直线AD 的解析式为y =﹣1,由题意P (m ,13m 2m ﹣3),H (m ﹣1),F (m ,0).∵FH =PH ,∴1=﹣1﹣(13m 2m ﹣3)解得m =,∴当FH =HP 时,m 的值为(3)如图,∵PF 是对称轴,∴F (0),H (,﹣2).∵AH ⊥AE ,∴∠EAO =60°,∴EO ==3,∴E (0,3).∵C (0,﹣3),∴HC =2,AH =2FH =4,∴QH 12=CH =1,在HA 上取一点K ,使得HK 14=,此时K (158-).∵HQ 2=1,HK •HA =1,∴HQ 2=HK •HA ,∴HQ KH AH HQ =.∵∠QHK =∠AHQ ,∴△QHK ∽△AHQ ,∴14KQ HQ AQ AH ==,∴KQ 14=AQ ,∴14AQ +QE =KQ +EQ ,∴当E 、Q 、K 共线时,14AQ +QE 的值最小,最小值==.【点睛】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.9.5【详解】分析: 由PD−12PC =PD−PG≤DG ,当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG =5.详解: 在BC 上取一点G ,使得BG =1,如图,∵221PB BG ==,422BC PB ==,∴PB BC BG PB=,∵∠PBG =∠PBC ,∴△PBG ∽△CBP ,∴12PG BG PC PB ==,∴PG =12PC ,当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG =5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.10.2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形PDM △,连接MC ,BD ,连接PM 、DM ,推得)PD PC PC PM ö-==-÷÷ø,因为PC PM MC -£,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP MP ,证明BMP V :BPD △,在BC 上做点N ,使1=2BN BP ,连接NP ,证明BNP △:BPC △,接着推导PD -,最后证明BMN V :BCD △,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形PDM △,连接MC ,BD ,∴45PDM Ð=,DM PM =,Q 四边形ABCD 正方形\45BDC Ð=°,DB DC=又Q PDM PDB MDB Ð=Ð+,BDC MDB MDCÐ=Ð+\PDB MDCÐ=Ð在BPD △与MPC V 中PDB MDC Ð=Ð,DB DP DC DM==\BPD △:MPCV\PB MC =Q 2BP =\MC =Q )PD PC PC PM ö-=-÷÷øQ PC PM MC-£)2PD PC PM -=-£=故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,B e 的半径为2\=2BP ,BDQBP BD在BD 上做点M ,使BM BP =BM MP 在BMP V 与BPD △中=MBP PBD ÐÐ,=BP BM BD BP\V BPD\PM PD PD Q 21==42BP BC 在BC 上做点N ,使1=2BN BP ,则=1BN ,连接NP 在BNP △与BPC △中=NBP PBC ÐÐ,=BN BP BP PC\BNP △:BPC△\1=2PN PC ,则=2PC PN \如图所示连接NM)2PD PN PN PM ---Q PN PM NM -£)PD PN PM --£在BMN V 与BCD △中=NBM DBC ÐÐ,BM BC BN BD \=BM BN BC BD\V BCD\MN CD Q CD\MN\2PD -£=故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.11.165【分析】如图,由题意可得:B ¢在A e 上,过B ¢作B H BC ¢^于H ,由点B 关于直线AE 的对称点B ¢,可得AB AB ¢=,BE B E ¢=,AEB AEB ¢Ð=Ð,ABE AB E ¢Ð=Ð,当DE 与A e 切于点B ¢时,BF 最大,此时DF AB ¢^,证明E ,F 重合,可得DAE AEB AEB ¢Ð=Ð=Ð,10AD DE ==,求解4BE B E ¢==,证明EB H EDC ¢V V ∽,可得EB B H ED CD¢¢=,从而可得答案.【详解】解:如图,由题意可得:B ¢在A e 上,过B ¢作B H BC ¢^于H ,∵点B 关于直线AE 的对称点B ¢,∴AB AB ¢=,BE B E ¢=,AEB AEB ¢Ð=Ð,ABE AB E ¢Ð=Ð,当DE 与A e 切于点B ¢时,BF 最大,此时DF AB ¢^,∴90ABE AB F ¢Ð=Ð=°,∴E ,F 重合,∴AEB AEB ¢Ð=Ð,∵矩形ABCD ,∴AD BC ∥,90C Ð=°,10AD BC ==,8AB CD ==,∴DAE AEB AEB ¢Ð=Ð=Ð,∴10AD DE ==,∴6CE ==,∴4BE B E ¢==,∵B H BC ¢^,90C Ð=°,∴B H CD ¢∥,∴EB H EDC ¢V V ∽,∴EB B H ED CD¢¢=,∴4108B H ¢=,∴165B H ¢=,∴点B ¢到BC 的距离是165.故答案为:165.【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,相似三角形的判定与性质,圆的基本性质,作出合适的辅助线是解本题的关键.12.A【分析】先证明90AEB Ð=°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD PF =,则有:PE PD PE PF +=+,则线段EF 的长即为PE PD +的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴90ABC Ð=°,∴90ABE EBC Ð+Ð=°,∵EAB EBC Ð=Ð,∴90EAB EBA Ð+Ð=°,∴90AEB Ð=°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD PF =,则有:PE PD PE PF +=+,则线段EF 的长即为PE PD +的长度最小值,E∵90G Ð=°,4FG BG AB ===,∴6OG =,2OA OB OE ===,∴OF ==∴2EF OF OE =-=,故PE PD +的长度最小值为2,故选:A .【点睛】本题考查了轴对称﹣最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E的运动路线是解题的关键.13.3【分析】通过已知求得D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,12B D长为半径的圆上运动,再运用圆外一定点到圆上动点距离的最大值=定点与圆心的距离+圆的半径,求得CE的最大值.【详解】解:∵BC=2,线段BC绕点B旋转到BD,∴BD=2,∴112BD=.由题意可知,D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,12B D长为半径的圆上运动,CE的最大值即C到BA中点的距离加上12B D长.∵90ACBÐ= ,30BACÐ= ,BC=2,∴C到BA中点的距离即122AB=,又∵112BD=,∴CE的最大值即11213 22AB BD+=+=.故答案为3.【点睛】本题考查了与圆相关的动点问题,正确识别E点运动轨迹是解题的关键.14.【分析】如图所示,延长PB到D使得PB=DB,先证明△APD是等边三角形,从而推出ABP=90°,∠BAP =30°,以AO 为斜边在AC 下方作Rt △∠MAO =30°,连接CM ,过点M 作MH ⊥AC 于H ,解直角三角形得到AM AB AO AP =△AMB ∽△AOP ,得到BM AB OP AP ==BM =,则点B 在以M M 、B 、C 三点共线时,即点B 在点B ¢的位置时,BC 有最小值,据此求解即可.【详解】解:如图所示,延长PB 到D 使得PB =DB ,∵12BP AP =,∴2AP PD PB ==,又∵∠APB =60°,∴△APD 是等边三角形,∵B 为PD 的中点,∴AB ⊥DP ,即∠ABP =90°,∴∠BAP =30°,以AO 为斜边在AC 下方作Rt △AMO ,使得∠MAO =30°,连接CM ,过点M 作MH ⊥AC 于H ,∴cos OAM ∠同理可得AB AP ∵∠OAM =30°=∠PAB ,∴∠BAM =∠PAO又∵AM AB AO AP =∴△AMB ∽△AOP∴BM AB OP AP ==∵点P 到点O 的距离为2,即OP =2,∴BM =∴点B 在以M连接CM 交圆M B ¢,∴当M 、B 、C 三点共线时,即点B 在点B ¢的位置时,BC 有最小值,∵AC =2AO =8,∴AO =4,∴cos AM AO OAM =×∠∴cos 3AH AM MAH =×Ð=,=sin HM AM MAH ×∠∴5CH =,∴CM ==∴B C CM MB ¢¢=-=,∴BC 的最小值为故答案为:.【点睛】本题主要考查了等边三角形的性质与判定,解直角三角形,相似三角形的性质与判定,勾股定理,圆外一点到圆上一点的最值问题,解题的关键在于能够熟练掌握瓜豆模型即证明点B 在以M15.【分析】连接BC ¢,根据轴对称的性质可得,CB C B CF C F ¢¢==,进而可得,,A C C ¢在半径为2的B e 上,证明CC F ¢△是等边三角形,当CC ¢取得最大值时,CC F ¢△面积最大,根据圆的直径最大,进而得出CC ¢最大值为4,即可求解.【详解】解:如图所示,连接BC ¢,∵点C 关于BH 的对称点为C ¢,∴,CB C B CF C F ¢¢==,∵2AB BC ==,∴,,A C C ¢在半径为2的B e 上,在优弧 AC 上任取一点E ,连接,AE EC ,则1602AEC ABC а=Ð=,∵120ABC Ð=°,∴11801801202AC C AEC ABC ¢Ð=°-Ð=°-Ð=°,∴60CC F ¢Ð=°,∴CC F ¢△是等边三角形,当CC ¢取得最大值时,CC F ¢△面积最大,∵C ¢在B e 上运动,则CC ¢4,则CC F ¢△24=故答案为:【点睛】本题考查了轴对称的性质,圆周角定理,圆内接四边形对角互补,等边三角形的性质,得出CC ¢最大值为4是解题的关键.16.1##1+【分析】作COE V ,使得90CEO Ð=°,60ECO Ð=°,则2CO CE =,OE =OCP ECD Ð=Ð,由COP CED ∽△△,推出2OP CP ED CD==,即112ED OP ==(定长),由点E 是定点,DE 是定长,点D 在半径为1的E e 上,由此即可解决问题.【详解】解:如图,作COE V ,使得90CEO Ð=°,60ECO Ð=°,则2CO CE =,OE =,OCP ECD Ð=Ð,90CDP Ð=°Q ,60DCP Ð=°,2CP CD \=,\2CO CP CE CD==,COP CED \V V ∽,\2OP CP ED CD==,即112ED OP ==(定长),Q 点E 是定点,DE 是定长,\点D 在半径为1的E e 上,1OD OE DE £+=Q ,OD \的最大值为1,故答案为:1.【点睛】本题考查了相似三角形的判定和性质、两圆的位置关系、轨迹等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.17.A【分析】根据90BEC Ð=°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆'O ),点E 的对称点为1E ,连接1'O E ,则1PE PE =,∴当点D 、P 、1E 、'O 共线时,PD PE +的值最小,最小值为1DE 的长,如图所示,在Rt 'DCO V 中,8CD =,'=6CO ,'10DO \==,又1'2O E =Q ,11''8DE DO O E \=-=,即PD PE +的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.18.A【分析】以BC 为边向上作等边三角形BCM ,连接DM ,证明DCM ACB △≌△得到2DM AB ==,分析出点D 的运动轨迹是以点M 为圆心,DM 长为半径的圆,在求出点D 到线段BC 的最大距离,即可求出面积的最大值.【详解】解:如图,以BC 为边向上作等边三角形BCM ,连接DM ,∵60DCA MCB Ð=Ð=°,∴DCA ACM MCB ACM Ð-Ð=Ð-Ð,即DCM ACB =∠∠,在DCM △和ACB △中,DC AC DCM ACB MC BC =ìïÐ=Ðíï=î,∴()SAS DCM ACB △≌△,∴2DM AB ==,∴点D 的运动轨迹是以点M 为圆心,DM 长为半径的圆,要使BCD △的面积最大,则求出点D 到线段BC 的最大距离,∵BCM V 是边长为4的等边三角形,∴点M 到BC 的距离为∴点D 到BC 的最大距离为2,∴BCD △的面积最大值是()14242´´=,故选A .【点睛】本题考查了动点轨迹是圆的问题,解决本题的关键是利用构造全等三角形找到动点D 的轨迹圆,再求出圆上一点到定线段距离的最大值.19.3+3【分析】根据题意,证明CBE CAF V V ≌,进而得出F 点在射线AF 上运动,作点C 关于AF 的对称点C ¢,连接DC ¢,设CC ¢交AF 于点O ,则=90AOC а,则当,,D F C ¢三点共线时,FC FD +取得最小值,即FC FD F C F D CD ¢¢¢¢+=+=,进而求得C D ¢,即可求解.【详解】解:∵E 为高BD 上的动点.∴1302CBE ABC Ð=Ð=°∵将CE 绕点C 顺时针旋转60°得到CF .ABC V 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC=Ð=Ð=°=∴CBE CAFV V ≌∴30CAF CBE Ð=Ð=°,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ¢,连接DC ¢,设CC ¢交AF 于点O ,则=90AOC а在Rt AOC V 中,30CAO Ð=°,则132CO AC ==,则当,,D F C ¢三点共线时,FC FD +取得最小值,即FC FD F C F D CD ¢¢¢¢+=+=∵6CC AC ¢==,ACO C CD ¢Ð=Ð,CO CD=∴ACO C CD¢V V ≌∴90C DC AOC ¢Ð=Ð=°在C DC ¢V 中,C D ¢===∴CDF V 周长的最小值为3CD FC CD CD DC ¢++=+=+故答案为:3+【点睛】本题考查了轴对称求线段和的最值问题,等边三角形的性质与判定,全等三角形的性质与判定,勾股定理,熟练掌握等边三角形的性质与判定以及轴对称的性质是解题的关键.20【分析】延长DE ,交AB 于点H ,确定点B 关于直线DE 的对称点F ,由点B ,D 关于直线AC 对称可知QD=QB ,求QD Q P ¢-最大,即求Q B Q P ¢-最大,点Q ,B ,P ¢共线时,Q D Q P Q B Q P B P ¢¢¢-=-=,根据“三角形两边之差小于第三边”可得BP ¢最大,当点P ¢与点F 重合时,得到最大值.连接BD ,即可求出CO ,EO ,再说明E OD D O C V :V ,可得DO ,根据勾股定理求出DE ,然后证明E O D B H D V :V ,可求BH ,即可得出答案.【详解】延长DE ,交AB 于点H ,∵AB CD P ,ED ⊥CD ,∴DH ⊥AB .取FH=BH ,∴点P 的对称点在EF 上.由点B ,D 关于直线AC 对称,∴QD=QB .要求QD Q P ¢-最大,即求Q B Q P ¢-最大,点Q ,B ,P ¢共线时,Q D Q P Q B Q P B P ¢¢¢-=-=,根据“三角形两边之差小于第三边”可得BP ¢最大,当点P ¢与点F 重合时,得到最大值BF .连接BD ,与AC 交于点O .∵AE=14,CE=18,∴AC=32,∴CO=16,EO=2.∵∠EDO+∠DEO=90°,∠EDO+∠CDO=90°,∴∠DEO=∠CDO.∵∠EOD=∠DOC,∴E O D D O CV:V,∴E O D O D O C O=,即221632D O=´=,解得DO=∴2B D D O==.在Rt△DEO中,6D E==.∵∠EDO=∠BDH,∠DOE=∠DHB,∴E O D B H DV:V,∴E O D EB H B D=,即2B H=解得B H∴B F=.【点睛】这是一道根据轴对称求线段差最大的问题,考查了菱形的性质,勾股定理,轴对称的性质,相似三角形的性质和判定等,确定最大值是解题的关键.21.2【分析】如图,由EG=2,确定E在以G为圆心,半径为2的圆上运动,连接AE,再证明ADE CDF V V ≌(SAS ), 可得,AE CF =可得当,,A E G 三点共线时,AE 最短,则CF 最短,再利用勾股定理可得答案.【详解】解:如图,由EG =2,可得E 在以G 为圆心,半径为2的圆上运动,连接AE ,∵正方形ABCD ,∴,90,AD CD ADC =Ð=° 90,ADC EDF \Ð=Ð=°∴,ADE CDF Ð=Ð ∵DE =DF ,∴ADE CDF V V ≌(SAS ),∴,AE CF =∴当,,A E G 三点共线时,AE 最短,则CF 最短,∵G 位BC 中点,4,BC AB == ∴2,BG =此时AG ===此时2,AE =所以CF 的最小值为: 2.故答案为:2【点睛】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.22. 80 44【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC =ìïÐ=Ðíï=î,∴△ACE ≌△BCD ( SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H ,如图:∵△ACE ≌△BCD∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD =4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32,∴FE =DF =cos30DG °∴AF =AE -FE故答案为:80;【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.23.43p 【分析】根据题意证得BFD DEA ≌V V ,推出∠BPE =60°,∠BPD =120°,得到C 、B 、P 、D 四点共圆,知点P 的运动路径长为BD n的长,利用弧长公式即可求解.【详解】连接BD ,∵菱形ABCD 中,60C Ð=°,∴∠C=∠A=60°,AB=BC=CD=AD ,∴△ABD 和△CBD 都为等边三角形,∴BD=AD ,∠BDF=∠DAE=60°,∵DF=AE ,∴BFD DEA ≌V V ,∴∠DBF=∠ADE ,∵∠BPE=∠BDP+∠DBF =∠BDP+∠ADE=∠BDF =60°,∴∠BPD=180°-∠BPE=120°,∵∠C=60°,∴∠C+∠BPD =180°,∴C 、B 、P 、D 四点共圆,即⊙O 是CBD △的外接圆,∴当点E 从点A 运动到点B 时,则点P 的运动路径长为BD n 的长,∴∠BOD =2∠BCD =120°,作OG ⊥BD 于G ,根据垂径定理得:BG=GD=12∠BOG =12∠BOD =60°,∵sin BOG BG OB Ð=,即sin 60°=,∴2OB =,从而P 点的路径长为212041801803n R p p p ´°×==°°.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,圆内接四边形的性质,弧长公式等知识,解题的关键是学会准确寻找点的运动轨迹.24【分析】在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .证明PAT BAP V V ∽,推出PT PB =AP AB =12,推出PT =12PB ,推出12PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题.【详解】解:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .∵PA =2.AT =1,AB =4,∴PA 2=4=AT •AB ,∴PA AT =AB PA ,∵∠PAT =∠PAB ,∴PAT BAPV V∽,∴PTPB=APAB=12,∴PT=12PB,∴12PB+CP=CP+PT,∵PC+PT≥TC,在Rt ACTV中,∵∠CAT=90°,AT=1,AC=4,∴CT,∴12PB+PC,∴12PB+PC..【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.。
九年级春季班第4讲:创新题型--教师版

【例1】 定义[x ]为不超过x 的最大整数,如[3.6] = 3,[ 3.6-] = 4-.对于任意实数x ,下列式子错误的是( ) A .[x ] = x (x 为整数) B .0[]1x x ≤-<C .[][][]x y x y +≤+D .[][]n x n x +=+(n 为整数)【难度】★★ 【答案】C .【解析】由反例[][3.8 2.7] 6.56+==,[3.8][2.7]325+=+=可知C 错误. 【总结】本题考查取整函数[x ]的定义及应用.创新题型知识结构模块一:定义应用例题解析【例2】 在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,'y ),给出如下定义:若()()0'0y x y y x ⎧≥⎪=⎨-<⎪⎩,则称点Q 为点P 的“可控变点”.如果点(1-,2-)为点M 的可控变点,则点M 的坐标为___________. 【难度】★★ 【答案】(-1,2)【解析】由题意得,当0<x 时,'=-y y ,且x 不变,所以当1x =-,时'2=y , 即点M 坐标为(1-,2).【总结】把握好“可控变点”的定义,找出'y 与y 两者之间存在的关系.【例3】 定义一种新运算:2x y x y x +*=,如2212122+⨯*==,则()()421**-=______. 【难度】★★ 【答案】0.【解析】先计算()4224224+⨯*==,再计算()()2122102+-⨯*-==. 【总结】根据运算法则进行运算,注意运算顺序.【例4】 已知1m x =+,2n x =-+,若规定()()11m n m n y m n m n ⎧+-≥⎪=⎨-+<⎪⎩,则y 的最小值为( )A .0B .1C .1-D .2【难度】★★ 【答案】B .【解析】把1m x =+,2n x =-+代入,得到1221222⎧⎛⎫≥ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩x x y x x ,当12≥x 时,1≥y ;当12<x 时,1>y .所以y 的最小值是1,故选B . 【总结】考查分段函数求最值的问题.【例5】 (2015学年·浦东新区二模·第17题)定义运算“*”:规定x y ax by *=+(其中a 、 b 为常数),若113*=,()111*-=,12*=______. 【难度】★★ 【答案】4.【解析】把113*=,()111*-=代入运算法则,得31+=⎧⎨-=⎩a b a b ,解得:21=⎧⎨=⎩a b ,所以12*=2×1+1×2=4.【总结】根据新运算,求出a 、b 的值是解答本题的关键.【例6】 对于实数m 、n ,定义一种运算“*”为:m n mn n *=+.如果关于x 的方程()14x a x **=-有两个相等的实数根,那么满足条件的实数a 的值是______.【难度】★★ 【答案】0.【解析】根据运算法则,()*=+a x ax x ,()()*+=+++x ax x x ax x ax x , 整理得()()211104++++=a x a x ,此方程有两个相等的实数根, 则()()210110+≠⎧⎪⎨=+-+=⎪⎩a a a ,解得:1201a a ==-,(舍),所以a=0. 【总结】由运算法则整理得一元二次方程的一般形式,再结合一元二次方程根的判别式进行 求解,注意二次项系数不能为零.【例7】 我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt ABC ∆和Rt ACD ∆中,90ACB ACD ∠=∠=︒,点D 在边BC 的延长线上,如果BC = DC = 3,那么ABC ∆和ACD∆的外心距是______. 【难度】★★ 【答案】3.【解析】直角三角形的外心为斜边的中点,所以ABC ∆和ACD ∆ 的外心分别为AB 和AD 的中点,这两个三角形的外心距即∆ABD 的中位线,长度是132=BD .【总结】本题考查的知识点有直角三角形的外心、三角形的中位线.【例8】 定义[a ,b ,c ]为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-的“特征数”是[1,3,2-],函数4y x =-+的“特征数”是[0,1-,4].如果将“特征数”是[2,0,4]的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是__________________. 【难度】★★ABD【答案】221=+y x .【解析】由题意得“特征数”是[2,0,4]的函数解析式为224=+y x ,向下平移3个单位可 得新函数的解析式为:221=+y x .【总结】特征数[a ,b ,c ]即为二次函数的三个系数,已知特征数则可求得二次函数的解析 式,再根据抛物线的平移法则“上加下减、左加右减”进行解题.【例9】 在平面直角坐标系xOy 中,C 的半径为r ,点P 是与圆心C 不重合的点,给出如下定义:若点'P 为射线CP 上一点,满足2'CP CP r =,则称点'P 为点P 关于C 的反演点.如图为点P 及其关于C 的反演点'P 的示意图.请写出点M (12,0)关于以原点O 为圆心,以1为半径的O 的反演点'M 的坐标 . 【难度】★★★ 【答案】(2,0).【解析】由反演点的定义可得2'=OM OM r ,即21'12=OM ,解得:'2=OM ,又点'M 在x 轴上, 所以点'M 的坐标为(2,0).【总结】掌握“反演点”的定义中,两点之间存在的关系.【例10】 如图1,对于平面上不大于90°的MON ∠,我们给出如下定义:如果点P 在MON ∠的内部,作PE OM ⊥,PF ON ⊥,垂足分别为点E 、F ,那么称PE + PE 的值为点P 相对于MON ∠的“点角距离”,记为d (P ,MON ∠).如图2,在平面直角坐标系xOy 中,点P 在第一象限内,且点P 的横坐标比纵坐标大1,对于xOy ∠,满足d (P ,xOy ∠)= 5,点P 的坐标是__________. 【难度】★★★ 【答案】(3,2).【解析】过点P 分别作PA ⊥x 轴,PB ⊥y 轴, ∵点P 在第一象限内且横坐标比纵坐标大1, ∴设PA =a ,则PB =a +1, ∵d (P ,xOy ∠)= 5,可得:PA +PB =5,即a +a +1=5,解得:a =2, 所以点P 的坐标为(3,2).【总结】本次考查“点角距离”的定义,利用定义求解相关点的坐标.xyP'CPO ENF OPM 图1yx-11-11O图2【例11】 一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为______. 【难度】★ 【答案】8.【解析】由题得,x =1+2=3,y =3+5=8. 【总结】本题难度不大,运算也比较简单.【例12】 四个数a 、b 、c 、d 排列成a b c d,我们称之为二阶行列式.规定它的运算法则为:a b ad bc c d=-.若331233x x x x +-=-+,则x =______.【难度】★★ 【答案】1.【解析】由运算法则得()()22333333+-=+---+x x x x x x ,整理得:1212=x ,解得:x =1.【总结】由运算法则整理,再解关于x 的方程即可.【例13】 对于两个不相等的实数a 、b ,我们规定符号{max a ,}b 表示a 、b 中的较大值,如:{max 2,}44=,按照这个规定,方程{max x ,}21x x x+-=的解为( ) A .12-B .22-C .12+或12-D .12+或1-【难度】★★ 【答案】D .【解析】当x >0时,{}max x x x -=,,解方程21+=x x x,得:12=±x ,所以12=+x ; 当x <0时,{}max x x x -=-,,解方程21x x x+-=,得:121==-x x ,所以1=-x ; 模块二:阅读理解例题解析D CBADCBA综上,1=+x 1-,故选D .【总结】本题注意分类讨论,根据定义进行取值,再解关于x 的方程.【例14】 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于______. 【难度】★★ 【答案】1或2.【解析】设最小角为x ,则最大角为45x +,当顶角为45x +,则45180x x x +++=,解得:45x =,此三角形为等腰直角三角形, 180=,解得:30x =.30,作CD ⊥AB ,在Rt ADC ,∵30A ∠=,∴112==CD AC , 211⨯=.综上所述,该三角形的面积等于1或2. 【总结】本题注意分类讨论.根据“内角正度值”的定义求出三角形各内角的度数,再进行面积的求解.【例15】 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆,90C ∠=︒,较短的一条直角边边长为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”长等于 . 【难度】★★ 【解析】“有趣中线”有三种情况:若“有趣中线”为斜边AB 上的中线,直角三角形的斜边中点到三顶点距离相等,不合 题意;若“有趣中线”为BC 边上的中线,根据斜边大于直角边,矛盾,不成立;若“有趣中线”为另一直角边AC 上的中线, 如图所示,BC =1,设2BD x=,则CD x =. 在Rt BCD 中,勾股定理得1+()222=x x , 解得:x ,所以BD =2x 【总结】本题考查“有趣中线”的定义,注意分类讨论.【例16】 如果一个平行四边形一个内角的平分线分它的一边为1 : 2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为______. 【难度】★★ 【答案】8或10.【解析】由题意可知,存在两种情况:(1)一组邻边长分别为3和1,周长=8; (2)一组邻边长分别为3和2,周长=10.【总结】本题考查“协调平行四边形”的定义及平行四边形的性质.【例17】 设正n 边形的半径为R ,边心距为r ,如果我们将Rr的值称为正n 边形的“接近度”,那么正六边形的“接近度”是______(结果保留根号). 【难度】★★【解析】设正六边形的边长为a ,则半径为R=a ,边心距为,所以R r. 【总结】本题考查“接近度”的定义及正六边形的性质.【例18】 将关于x 的一元二次方程20x px q ++=变形为2x px q =--,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知210x x --=,可用“降次法”求得431x x --的值是____________.【难度】★★ 【答案】1.【解析】由210x x --=,得21=+x x ,代入431x x --=()221311+--=-=x x x x . 【总结】本题运用“降次”及“整体代入”的思想进行解题.【例19】 在平面直角坐标系中,我们把半径相等且外切、连心线与直线y = x 平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(2-,3A 的所有“孪生圆”的圆心坐标为_________. 【难度】★★【答案】(0,5)或(-4,1).【解析】由题意得,连心线所在直线为5=+y x ,因为两圆外切,设另一圆心为圆B ,所以圆心距=AB (),5+B x x ,所以=AB 解得:10=x ,24=-x ,所以圆心B 的坐标为(0,5)或(-4,1).【总结】本题考查了“孪生圆”的定义、一次函数的图像以及圆与圆的位置关系.【例20】 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果1O 、2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是___________. 【难度】★★ 【答案】23<<d .【解析】两个圆有两个公共点即两圆相交,可得24<<d ,当小圆的圆心恰好在大圆上时,3=d ,所以内相交的圆心距d 取值范围是23<<d .【总结】本题考查圆与圆的位置关系及“内相交”的定义.【例21】 观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .6263【难度】★★ 【答案】B .【解析】根据题意,可知规律为221n n -,故第6个数为:3663,化简为47,故选C .【总结】本题考查针对给定的一列数字找规律.【例22】 按一定规律排列的一列数:12,22,32,52,82,132,….若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的解析式是____________. 【难度】★★ 【答案】=xy z .【解析】由给出的这一列数字,可得出规律:从第三个数字开始,每个数等于它两个数的乘积,所以=xy z .【总结】本题考查针对给定的一列数字找规律.【例23】 在平面直角坐标系中,有三个点A (1,1-)、B (1-,1-)、C (0,1),点P(0,2)关于点A 的对称点为1P ,1P 关于点B 的对称点为2P ,2P 关于点C 的对称点为3P ,按此规律,继续以点A 、B 、C 为对称中心重复前面的操作,依次得到点4P ,5P ,6P ,…,则点2017P 的坐标为( )A .(0,0)B .(0,2)C .(2,4-)D .(4-,2)【难度】★★ 【答案】C .【解析】由题意得1P (2,-4)、2P (-4,2)、3P (4,0)、4P (-2,-2)、 5P (0,0),6P (0,2),每6个数形成一个周期,2017÷6=336……1,所以2017P 的坐 标和1P 的坐标相同,故选C .【总结】本题考查了点的对称问题及周期问题的处理.模块三:规律探究例题解析DC AB【例24】 如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ,…,按照此规律继续下去,则2017S 的值为_____________. 【难度】★★★【答案】20141()2.【解析】由题意得1S =2×2=4=22,2S =1222⨯=,3S =111⨯==20,……由以上规律,可知2017S =2-201420141()2=.【总结】本题考查了找规律在几何图形中的应用.【习题1】 定义:如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,那么称这两个函数互为“旋转函数”.若函数2423y x mx =-+-与22y x nx n =-+互为“旋转函数”,则()2017m n +=________.【难度】★★ 【答案】-1.【解析】由“旋转函数”的定义得42320⎧=-⎪⎨⎪-+=⎩m nn ,解得:32=-⎧⎨=⎩m n ,所以()2017m n +=(-1)2017=-1.【总结】本题考查“旋转函数”的定义.【习题2】 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt ABC ∆中,90C ∠=︒,若Rt ABC ∆是“好玩三角形”,则tan A =_______. 【难度】★★随堂检测DCBA 3或23 【解析】由于直角三角形斜边上的中线等于斜边的一半,因此斜边上的中线不满足;故只能是直角边上的中线等于此直角边的长, 如图所示,设BD =2x ,CD =x ,则3=BC x ,在Rt ABC 中,AC =2x ,3=BC x . 当∠A 为较小锐角时,3tan A ; 当∠A 为较大锐角时,23tan A . 【总结】本题考查“好玩三角形”的定义,注意分类讨论.【习题3】 我们把四边形两条对角线中点的连线段称为“奇异中位线”.现有两个全等三角形,边长分别为3cm 、4cm 、5cm .将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是______cm . 【难度】★★【答案】710.【解析】如图,将两个全等的直角ABC 与DEF 的斜边AC 与DF 重合,拼成凸四边形ABCE ,AC 与BE 交于点O ,M 为AC 的中点.∵△ABC ≌△DEF ,易证AO ⊥BE .在Rt AOB 中,AO =AB •cos ∠BAO =95,因为1522==AM AC ,所以5972510=-=-=OM AM OA . 即奇异中位线的长是710. 【总结】本题考查了“奇异中位线”的定义,注意根据题目要求画出合适的图形.【习题4】 如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[p ,q ]称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[4-,2].请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[2,3],将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为______. 【难度】★★OPP'BOA图1 图2【答案】[6,8].【解析】特征数是[2,3]的二次函数为223=++y x x ,即2(1)2=++y x ,将其向左平移2个单位,再向下平移3个单位后得到的二次函数为2(3)1=+-y x ,即268=++y x x , 所以特征数为[6,8].【总结】本题考查了“特征数”的定义及二次函数图像的平移【习题5】 如图1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r =,则称点'P 是点P 关于圆O 的反演点.如图2,在Rt ABO ∆中,90B ∠=︒,AB = 2,BO = 4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么''A B 的长是______. 【难度】★★★ 【答案】55. 【解析】由反演点的定义,可知:2'=OA OA r ,2'=OB OB r , 则'=OA OA 'OB OB ,即''=OA OB OB OA ,又∠=∠O O ,可证''OA B ∽OBA , ∴'''=OB A B OA AB ,即1225''=A B ,解得:''A B =55. 【总结】本题考查了“反演点”的定义,以及相似三角形的判定与性质.【习题6】 正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…,分别在直线y kx b =+(0k >)和x 轴上,已知点 1B (1,1),2B (3,2),则点6B 的坐标是__________,点n B 的坐标是__________.【难度】★★★【答案】(63,32),1(212)n n --,. 【解析】由1A (0,1)、2A (1,2), 可求得直线解析式为1=+y x .可求得3A (3,4)、3B (7,4),4A (7,8)、 4B (15,8),5A (15,16)、5B (31,16), 6A (31,32)、6B (63,32), ……, 按照此规律可得n B 1(212)nn --,.【总结】本题考查了一次函数与几何图形背景下找出点坐标的规律.x yO【作业1】 对于函数()2y ax b =+,我们称[a ,b ]为这个函数的特征数.如果一个函数()2y ax b =+的特征数为[2,5-],那么这个函数图像与x 轴的交点坐标为_______.【难度】★★【答案】(52,0).【解析】特征数为[2,5-]的函数为()225=-y x ,令0=y ,解得52=x ,所以函数图像与x 轴的交点坐标为(52,0). 【总结】本题考查了“特征数”的定义,以及二次函数的图像.【作业2】 如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为 . 【难度】★★ 【答案】3或12. 【解析】当斜边长等于直角边长的两倍时,最小角为30°,正切值为3;当直角边长等于另一直角边长的两倍时,最小角的正切值为12. 【总结】本题考查了“倍边三角形”的定义,以及锐角三角比的求值.【作业3】 已知抛物线p :2y ax bx c =++的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为'C ,我们称以点A 为顶点且过点'C ,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线'AC 为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是221y x x =++和22y x =+,则这条抛物线的解析式为________________.【难度】★★【答案】223=--y x x .课后作业ABC DOxy 【解析】由221y x x =++=2(1)+x 可求得:A (-1,0).由22122++=+x x x ,可求得:1=±x ,所以点'C (1,4),点'C 关于x 轴的对称点为C (1,-4).那么所求的抛物线顶点为C (1,-4)且经过点A (-1,0),可求得:2(1)4=--y x 即223=--y x x .【总结】本题考查了“梦之星”抛物线和“梦之星”直线的定义,以及二次函数的图像与性 质求解函数的解析式.【作业4】 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为223y x x =--,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为__________. 【难度】★★ 【答案】33+【解析】抛物线223y x x =--与x 轴交点为A (-1,0)、B (3,0), 与y 轴交点为D (0,-3).半圆圆心为E (1,0), ∴CE =2,勾股定理,得:OC 3=CD 33 【总结】本题考查了二次函数的图像以及圆的基本性质.【作业5】 对于平面直角坐标系 xOy 中的点P (a ,b ),若点'P 的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点'P 为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为'P (412+,214⨯+),即'P (3,6).若点P 的“k 属派生点”'P 的坐标为(3,3),请写出一个符合条件的点P 的坐标:____________. 【难度】★★★ 【答案】(2,1).【解析】由题意得33⎧+⎪=⎨⎪+=⎩b a k ka b ,整理得:33+=⎧⎨+=⎩ka b k ka b ,所以1=k , 只要满足3+=a b 即可,可取点P (2,1).【总结】本题考查了“派生点”的定义,关键是求出k 的值,答案不唯一.ABC D E F GH【作业6】 如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,…,如此下去,第n 个正方形的边长为__________. 【难度】★★★ 12-n .【解析】第一个正方形的边长为12, 第三个正方形的边长为2,依次规律,第n 12-n .【总结】本题考查了几何图形背景下线段长度上存在的规律.。
初三数学创新试题及答案

初三数学创新试题及答案一、选择题(每题3分,共30分)1. 若一个数的平方等于4,则这个数是()。
A. 2B. -2C. 2或-2D. 以上都不是答案:C2. 下列哪个选项是一元二次方程的一般形式?()A. ax^2 + bx + c = 0B. ax^2 + bx - c = 0C. ax^2 - bx + c = 0D. ax^2 + bx + c答案:A3. 已知函数y = 2x + 3,当x = 1时,y的值是()。
A. 5B. 4C. 3D. 2答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是()。
A. 11B. 13C. 16D. 无法确定答案:B5. 下列哪个选项是不等式的基本性质?()A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^2答案:A6. 一个圆的半径为5,那么这个圆的面积是()。
A. 25πB. 50πC. 75πD. 100π答案:C7. 已知一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是()。
A. 5B. 6C. 7D. 8答案:A8. 一个数的立方等于-27,那么这个数是()。
A. 3B. -3C. 9D. -9答案:B9. 一个正比例函数的图象经过点(2,6),那么这个函数的解析式是()。
A. y = 3xB. y = 2xC. y = 4xD. y = 6x答案:A10. 一个反比例函数的图象经过点(3,4),那么这个函数的解析式是()。
A. y = 12/xB. y = 9/xC. y = 6/xD. y = 4/x答案:C二、填空题(每题4分,共20分)11. 一个数的绝对值等于5,那么这个数是_________。
答案:±512. 一个二次函数的顶点坐标为(1,-2),那么这个函数的解析式可以是_________。
最新人教版九年级全一册数学中考新题型(创新性题) 一元二次方程与几何的跨知识融合问题

∴原方程为 4x2-10x+4=0,∴AB+AD=10 = 5,
42
∴平行四边形 ABCD 的周长=2×5=5.
2
返回
谢谢观看
∴方程化为x2+x=0,解得x1=0,x2=-1.
返回
数学
4.(新题速递)(2020杭州二模)已知平行四边形ABCD 的两边 AB,AD的长是关于x的一元二次方程4x2-4ax+2a-1=0的 两个实数根. (1)当a为何值时,四边形ABCD是菱形?求此时菱形的边长; (2)当AD=2时,求平行四边形ABCD的周长.
返回
数学
3.(新题速递)(2021浙江模拟)已知三角形两边的长分别是8和6, 第三边的长是一元二次方程x2-16x+60=0的一个实数根,则 该三角形的面积是( D )
A.24 或 2 5 B.24
C.8 5
D.24 或 8 5
Байду номын сангаас返回
数学
2.【例2】(新题速递)已知关于x的一元二次方程(a+c)x2+ 2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长. (1)若x=-1是方程的根,试判断△ABC的形状,并说明理由; (2)若方程有两个相等的实数根,试判断△ABC的形状,并说明 理由; (3)若△ABC是等边三角形,试求这个一元二次方程的根.
返回
数学
解:(1)△ABC是等腰三角形,理由如下:
把x=-1代入方程得a+c-2b+a-c=0,
则a=b,∴△ABC为等腰三角形. (2)△ABC为直角三角形,理由如下:
根据题意得Δ=(2b)2-4(a+c)(a-c)=0,即b2+c2=a2,
∴△ABC为直角三角形. (3)∵△ABC为等边三角形,∴a=b=c,
初三数学创新试题及答案

初三数学创新试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. 0.33333…C. πD. √22. 如果一个二次方程的判别式Δ < 0,那么这个方程:A. 有一个实数解B. 有两个实数解C. 没有实数解D. 有无穷多个解3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π4. 一个正方体的棱长为a,它的表面积是:A. 6aB. 6a²C. 12aD. 12a²5. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是二、填空题(每题3分,共15分)6. 一个数的相反数是它自己,这个数是______。
7. 如果一个角的度数是45°,那么它的余角是______。
8. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是______。
9. 一个数的绝对值是10,这个数可以是______或______。
10. 如果一个分数的分子和分母都乘以同一个数,那么它的值______。
三、解答题(每题10分,共20分)11. 已知一个等腰三角形的底边长为6,两腰相等,且周长为18,求两腰的长度。
12. 某工厂生产一批零件,每件零件的成本为5元,售价为10元。
如果工厂希望获得的利润为总成本的60%,求每件零件的售价。
四、证明题(每题10分,共10分)13. 证明:在直角三角形中,斜边的中线等于斜边的一半。
五、综合题(每题10分,共10分)14. 某班级有40名学生,其中30名学生参加了数学竞赛,20名学生参加了物理竞赛,5名学生同时参加了数学和物理竞赛。
求只参加数学竞赛的学生人数。
答案:一、选择题1. C2. C3. B4. B5. A二、填空题6. 07. 45°8. 59. 10,-10 10. 不变三、解答题11. 设两腰的长度为x,则底边长为6,周长为18,所以2x + 6 = 18,解得x = 6。
初三数学创新试题及答案

初三数学创新试题及答案在数学的海洋里,创新试题总能激发学生的思维火花。
下面是一道初三数学的创新试题,旨在考察学生对函数、几何和代数的综合运用能力。
试题:小明在一次数学竞赛中遇到了一个有趣的问题。
题目是这样的:给定一个二次函数 \( y = ax^2 + bx + c \),其中 \( a \)、\( b \)和 \( c \) 是常数,且 \( a \neq 0 \)。
这个二次函数的图像与\( x \) 轴交于点 \( A \) 和 \( B \),且 \( A \) 和 \( B \) 的横坐标分别为 \( x_1 \) 和 \( x_2 \)。
现在,小明需要找到一个新的二次函数 \( y = Ax^2 + Bx + C \),使得它的图像与原函数的图像关于 \( x \) 轴对称,并且与 \( y \) 轴交于点 \( D \),其纵坐标为 \( C \)。
小明首先需要确定原函数与 \( x \) 轴的交点坐标,然后根据对称性找到新函数的表达式,最后计算出点 \( D \) 的坐标。
解答:首先,我们知道二次函数 \( y = ax^2 + bx + c \) 与 \( x \) 轴的交点可以通过解方程 \( ax^2 + bx + c = 0 \) 得到。
根据韦达定理,\( x_1 \) 和 \( x_2 \) 是这个方程的两个根,因此有 \( x_1+ x_2 = -\frac{b}{a} \) 和 \( x_1 \cdot x_2 = \frac{c}{a} \)。
由于新函数的图像与原函数关于 \( x \) 轴对称,我们可以推断新函数的形式为 \( y = -ax^2 - bx - c \)。
这是因为关于 \( x \) 轴的对称意味着 \( y \) 值取反,而 \( x^2 \) 和 \( x \) 的系数保持不变。
接下来,我们需要找到新函数与 \( y \) 轴的交点 \( D \)。
专题09 二次函数与实际应用(喷水问题)-2024年中考数学之二次函数重点题型专题(全国通用版)(原

专题09 二次函数与实际应用(喷水问题)一、单选题1.(2024·山东夏津·九年级期末)某地要建造一个圆形喷水池,在水池垂直于地面安装一个柱子,OA O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,在过OA 的任一平面上,建立平面直角 坐标系(如图),水流喷出的高度()y m 与水平距离()x m 之间的关系式是 2y x 2x 3=-++,则下列结论错误的是( ) A .柱子OA 的高度为3mB .喷出的水流距柱子1m 处达到最大高度C .喷出的水流距水平面的最大高度是3mD .水池的半径至少要3m 才能使喷出的水流不至于落在池外2.(2024·安徽芜湖·九年级月考)某广场有一个小型喷泉,水流从垂直于地面的水管OA 喷出,OA 长为1.5m .水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到O 的距离为3m .建立平面直角坐标系,水流喷出的高度()y m 与水平距离()x m 之间近似满足函数关系()20y ax x c a =++≠,则水流喷出的最大高度为( )A .1mB .32mC .138mD .2m3.(2024·河北张家口·中考一模)如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时.达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O 处,草坡上距离O 的水平距离为30米处有一棵高度约为2.3米的石榴树AB ,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是( ) A .水流运行轨迹满足函数y =﹣140x 2﹣x +1 B .水流喷射的最远水平距离是40米C .喷射出的水流与坡面OA 之间的最大铅直高度是9.1米D .若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌第3题图 第4题图二、填空题4.(2024·湖北襄阳·中考真题)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是______m .5.(2024·浙江浙江·九年级期末)图1是一种360︒自动旋转农业灌溉摇臂喷枪.点P 为喷水口,水雾喷出的路径可以近似看作抛物线213504y x x c =-++的一部分(如图2),已知120OP OQ =,则喷洒半径OQ 为______米(喷枪长度忽略不计);现有一块四边形农田,它的四个顶点,,,A B C D 恰好在O 上(如图3),90ABC ∠=︒,60AD =米,2515BD =米,1cos 4C ∠=.焊接一个底座支架可升高喷水口,如果喷水口上升时,水雾喷出的形状与原来相同,要使喷水区域覆盖整块四边形ABCD 农田,那么喷水口点P 应至少升高_____米.6.(2024·浙江湖州·九年级月考)各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为20cm ,如果在离水面竖直距离为h (单位:cm )的地方开大小合适的小孔,那么从小孔射出水的射程s (单位:cm )与h 的关系式为24(20)s h h =-,则射程s 最大值是_______cm .(射程是指水流落地点离小孔的水平距离)第6题图第7题图7.(2024·浙江浙江·九年级期末)某游乐园有一圆形喷水池(如图),中心立柱AM上有一喷水头A,其喷出的水柱距池中心3米处达到最高,最远落点到中心M的距离为9米,距立柱4米处地面上有一射灯C,现将喷水头A向上移动1.5米至点B(其余条件均不变),若此时水柱最高处D与A,C在同一直线上,则水柱最远落点到中心M的距离增加了_____米.8.(2024·江苏滨海·九年级期末)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是________m.第8题图第9题图第10题图9.(2024·湖北·武汉九年级月考)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为_____m.10.(·福建福州·九年级月考)学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图①),于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B流出,路线近似呈抛物线状,且a=118.洗手液瓶子的截面图下部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是________cm.三、解答题11.(2024·湖北省水果湖第一中学九年级月考)一台自动喷灌设备的喷流情况如图所示,设水管在高出地面1.5米的A 处有一自动旋转的喷水头,一瞬间流出的水流是抛物线状,喷头A 与水流最高点B 连线与y 轴成45︒角,水流最高点B 比喷头A 高2米. (1)求抛物线解析式;(2)求水流落地点C 到O 的距离;(3)若水流的水平位移s 米(抛物线上两对称点之间的距离)与水流的运动时间t 之间的函数关系为0.8s t =,求共有几秒钟,水流的高度不低于2米?12.(2024·浙江浙江·九年级期末)“科学防控疫情,文明实践随行,讲卫生,勤洗手,常通风,健康有”现有一瓶洗手液如图1所示.已知洗手液瓶子的轴截面上部分有两段圆弧CE 和DF ,它们的圆心分别为点D 和点C ,下部分是矩形CGHD ,且6cm,10cm CG GH ==,点E 到台面GH 的距离为12cm ,如图2所示,若以GH 所在的直线为x 轴,GH 的垂直平分线为y 轴,建立平面直角坐标系,当手按住项部才下压时,洗手液从喷口B 流出,其路线呈抛物线形,此时喷口B 距台面GH 的距离为18cm ,且到OA 的距离为3cm ,此时该抛物线形的表达式为213y x bx c =-++,且恰好经过点E .(1)请求出点E 的坐标,并求出b ,c 的值.(2)接洗手液时,当手心R 距DH 所在直线的水平距离为3cm 时,手心R 距水平台面GH 的高度为多少? (3)如果该洗手液的路线与GH 的交点为点P ,请求出BPH ∠的正切值.13.(2024·浙江金华·中考真题)某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.14.(2024·浙江绍兴市·九年级期末)某喷泉中间的喷水管0.5m OA =,喷水点A 向各个方向喷射出去的水柱为形状相同的抛物线,以水平方向为x 轴,喷水管所在直线为y 轴,喷水管与地面的接触点O 为原点建立直角坐标系,如图所示,已知喷出的水柱距原点3m 处达到最高,高度为2m . (1)求水柱所在抛物线(第一象限)的函数表达式.(2)身高为1.7m 的小明站在距离喷水管4m 的地方,他会被水喷到吗?(3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离7m ,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点3m 处达到最高,则喷水管OA 要升高多少?15.(2024·浙江·九年级期末)如图1,游乐园要建行一个直径为20m 的圆形喷水池,计划在喷水池周边安装一圈喷水头.如图2,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系,根据下表记录的水柱高度y (m )与水柱距离喷水池中心的水平距离x (m )之间的关系画出部分图象. 水柱距离喷水池中心的水平距离x (m )… 0 2 5 8 10 … 水柱的高度y (m )…46.474…(1)位于第二象限的抛物线与第一象限的抛物线关于y 轴对称,请你在所给的平面直角坐标系第二象限画出它的图象;(2)该种喷水头喷水的最大高度是多少?(3)为了形成不同高度的喷水景观,在地面上安装了另一种喷水头,它的位置在直角坐标系中可用(),0d 表示,喷水水柱形状与214y x =- 形状相同,喷出的水柱最大高度为6.25米,水柱下落时也过点()0,4,求该种喷水头安装的位置(),0d 的坐标.16.(2024·安徽合肥·中考三模)某游乐园要建造一个直径为20m的圆形喷水池,计划在喷水池周边安装一圈喷水头,使喷出的水柱距池中心4m处达到最高,最大高度为6m.如图,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1) 若要在喷水池的中心设计一个装饰物,使各方向喷出的水柱在此汇合,则这个装饰物的高度为多少,请计算说明理由.(2)为了增加喷水池的观赏性,游乐园新增加了一批向上直线型喷射的喷水头,这些喷水头以水池为圆心,分别以1.5米,3米,4.5米,6米,7.5米为半径呈圆形放置,为了保证喷水时互不干扰,防止水花四溅,且所有直线喷水头射程高度均为一致,则直线型喷水头最高喷射高度为多少米?(假设所有喷水头高度忽略不计).17.(·福建宁德·中考一模)如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度v x和纵向初始速度v y,θ是水龙头的仰角,且v02=v x2+v y2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=v y t-5t2;M与A的水平距离为v x t米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x和纵向初始速度v y;(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围);(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)。
历年初三数学中考创新性应用题及答案

中考数学创新性应用题1、近期,海峡两岸关系的气氛大为改善。
大陆相关部门于2005年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。
某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:(1)写出y 与x 间的函数关系式;(2)如果凤梨的进价是20元/千克,当该经销商把售价定为多少元时,他能获得日最大利润? (3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,问一次进货最多只能是多少千克? 解:2、为了迎接2008年北京奥运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:当比赛进行到14轮结束(每队均需比赛14场)时,甲队积分28分,设甲队胜x 场,平y 场. ⑴用x 的代数式表示y ;⑵判断甲队胜、平、负各几场?并说明理由;⑶若每赛一场,每名参赛队员均得出场费600元。
设甲队中一名参赛队员所得的奖金与出场费的和为W (元),试求出W 的最大值和最小值。
解:3、一座拱桥的轮廓是抛物线型(如图10所示),拱高6 m ,跨度20 m ,相邻两支柱间的距离均为5 m . (1) 将抛物线放在所给的直角坐标系中(如图11所示),其表达式是c ax y +=2的形式.请根据所给的数据求出c a ,的值.(2) 求支柱MN 的长度.(3) 拱桥下地平面是双向行车道(正中间是一条宽2 m 的隔离带),其中的一条行车道能否并排行驶宽2 m 、高3 m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.图1010m20m 6mN解:3、随着温州经济的快速发展,温州已越来越吸引外来人员(新温州人)前来淘金创业,下列是市统计局公布的2004年,2006年新温州人相关的数据:2004年,2006年温州新温州人人数统计图 2006年新温州人的温从业情况统计图80.78%3%14.20%务工务农经商服务居住场所租赁房屋暂住 单位内部宿舍 暂住当地居民家中 工地现场旅店及其他场所 所占比例 56.57%32.53%3.55%2.14%5.21%请利用上述统计图表提供的信息回答下列问题:(1)从2004年到2006年温州的“新温州人”增加了多少万人? (2)2006年的“新温州人”中,经商的约为多少万人?(3)请结合2006年“新温州人”在温州的居住情况统计表,谈谈你的看法或建议. 解:图11O xABCy4、某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元? 解:5、本商店积压了100件某种商品,为使这批货物尽快出售,该商店采取了如下销售方案,先将价格提高到原来的2.5倍,再作三次降价处理;第一次降价30%标出了“亏本价”,第二次降价30%,标出“破产价”,第三次又降价30%,标出“跳楼价”,三次降价处理销售情况如右表。
九年级数学创新题型

九年级数学创新题型
以下是一些可能的九年级数学创新题型:
1. 探究题:探究函数图像的性质,例如对称性、单调性、极值点等,以及这些性质在解决实际问题中的应用。
2. 开放题:题目给出一定条件,让学生根据条件自己提出问题并解答。
例如,给定一个几何图形,让学生自己设计一个问题并解答。
3. 跨学科题:结合其他学科的知识来设计数学题目,例如物理、化学、生物等。
4. 实际应用题:设计一些与实际生活密切相关的题目,例如建筑、环保、经济等领域的实际问题,让学生运用数学知识解决实际问题。
5. 团队合作题:设计一些需要团队合作才能完成的题目,例如让学生分组讨论并解答一些综合性的问题,或者让学生一起完成一个实际项目。
6. 数学建模题:让学生通过数学建模来解决一些实际问题,例如预测未来趋势、优化资源配置等。
7. 数学文化题:结合数学历史和数学文化来设计题目,例如让学生了解数学家的生平、探究数学定理的证明过程等。
8. 创新题:设计一些形式新颖、思路独特的题目,例如让学生自己设计一个数学游戏并制定游戏规则,或者让学生通过实验来探究数学定理的正确性等。
希望这些创新题型能够启发你的教学思路,培养学生的创新思维和实践能力。
九年级数学 聚焦几何变换创题例析 试题

制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日无棣县埕口中学九年级数学 聚焦几何变换创新题例析图形的变换是新课标下的新增知识点,是中考命题的热点题型.纵观2021年全国各地中考数学试题来, 考察几何变换的创新题层出不穷,现例析如下,供同学们复习时参考. 例1、〔如图1,ABC △中(23)A -,,(31)B -,,(12)C -,. 〔1〕将ABC △向右平移4个单位长度,画出平移后的111A B C △; 〔2〕画出ABC △关于x 轴对称的222A B C △;〔3〕将ABC △绕原点O 旋转180,画出旋转后的333A B C △;〔4〕在111A B C △,222A B C △,333A B C △中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.分析:此题借助直角坐标系综合考察平移、轴对称、旋转三种几何变换的画法及它们之间的互相关系.在作出相应图形后,变换后的图形之间关系一目了然.解:(1)、(2)、(3)如图2:OyxA 3A 2A 1C 3C 2B 3B 2C 1B 1CB A图1图2〔4〕222A B C △与333A B C △成轴对称,对称轴是y 轴.333A B C △与111A B C △成中心对称,对称中心的坐标是)0,2(.例2如图3,在66⨯的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换.将图形F 沿x 轴向右平移1格得图形1F ,称为作1次P 变换;将图形F 沿y 轴翻折得图形2F ,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90得图形3F ,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再依1次Q 变换;nR 变换表示作n 次R 变换. 解答以下问题:〔1〕作4R 变换相当于至少作次Q 变换;〔2〕请在图4中画出图形F 作2007R变换后得到的图形4F ;〔3〕PQ 变换与QP 变换是否是一样的变换?请在图5中画出PQ 变换后得到的图形5F ,在图HY 画出QP 变换后得到的图形6F .析解:R 变换是旋转变换,将原图形绕点O 按顺时针旋转︒90,作4R 变换后的图形与原图形重合,而Q 变换是将原图形沿y 轴作的轴对称变换,2次Q 变换后与原图形重合,故作4R 变换相当于至少作2次Q 变换.由于3345012007R R R==+⨯,故图形4F 见〔答图4〕. 作出变换PQ 与变换QP 如下面〔答图5〕与〔答图6〕,由图可知:变换PQ 与变换QP 不是一样的变换.x 图3图4图5图6评注:此题是几何变换的阅读理解题,主要考察对获得新知识进展迁移、运用的才能.解答这种试题时,必须仔细阅读给定材料,深入理解新定义的各种变换的含义,然后将获得的新知识进展迁移,解决题目中提出的问题.此题在几何变换中又定义新的变换,不失为考察图形的变换的最大亮点.例3、〕如图7,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片〔如图8〕,量得他们的斜边长为10cm ,较小锐角为30°,再将这两张三角纸片摆成如图9的形状,但点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合〔在图9至图12中统一用F 表示〕〔图7〕 〔图8〕 〔图9〕小明在对这两张三角形纸片进展如下操作时遇到了三个问题,请你帮助解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)由于9月份用电量过大,华阳家决定节约用电,使得10月用电的平均费用不超过 0.50元/度,试计算华阳家10月用电量a的范围(保留整数).
(2)①当a ≤200度时,0.49a≤0.50a,符合题意; ②当200度<a ≤400度时,200×0.49+(a-200)×0.54≤0.50a, 解得:200度<a ≤250度; ③当a>400度时,200×0.49+(400-200)×0.54+(a-400)×0.79≤0.50a, 解得a≤379,此时无解; 综上所述,华阳家10月用电量的范围为a ≤250度.
2. 有这样一个问题:探究函数 y x 2 的图象和性质.小奥根据学习函数的经验,
对函数
y
x
2
2x
的图象和性质进行了探究.下面是小奥的探究过程,请补充完整:
2x
(1)函数 y x 2 的自变量x的取值范围是__x_≠_0__;
2x
13
(2)下表是y与x的几组对应值,则m的值为_-__4_,n的值为____6____;
1000
∴月均用水是不超过14.72 t的户数小于60%.
∵该市政府希望70%的家庭的月均用水量不超过标准m,
∴不合理.
4. 出行是人们日常生活必不可少的组成部分,随着人们环保观念的加深,绿色出行 也成了许多人的首要选择.小建为了了解自己每年的出行方式,收集了其中60次的 数据,整理成条形统计图. (1)以这60次出行方式为样本,估计小建“选择骑自行车出行”的概率; 解:(1)由条形统计图可知,小建选择骑自行车出 行的次数为20次, ∴P(小建“选择骑自行车出行”)= 20 1 ;
(2) 8 ×3000=480(只);
50
答:这批鸡中质量不小于1.7 kg的大约有480只;
(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出
这批鸡后,该村贫困户能否脱贫?
(3) 6 1.0+ 9 1.2+ 12 1.4+ 15 1.6+ 8 1.8=1.44(千克)
第3题解图
(2)根据小文设计的作图过程,完成下面的证明. 证明:连接OA,OB. ∵OP为⊙M的直径, ∴∠OAP=∠__O__B_P___=___9_0_°___(__直__径__所__对__的__圆__周__角AP,___O__B___⊥BP. ∵OA,OB为⊙O的半径, ∴直线PA,PB为⊙O的切线(_经__过__半__径__的__外__端__并__且__垂__直__于__这__条__半__径__的__直__线__是__圆__的__切__线__) (填写推理依据).
电价(单位:元/度) 0.49 0.54 0.79
例:若某住户2019年8月份的用电量为300度,则需缴电费为:200×0.49+(300- 200)×0.54=152(元).
(1)若华阳家2019年9月份共缴电费162.8元,求该月华阳家的用电量x; 解:(1)∵200×0.49=98(元), 200×0.49+(400-200)×0.54=206(元), 98<162.8<206, ∴200度<x<400度. 依题意,得:200×0.49+(x-200)×0.54=162.8, 解得:x=320. 答:该月华阳家的用电量为320度;
1000
30×20)=14.72;
∴估计这1000户家庭月均用水量的平均数是14.72 t.
(2)假定该市政府希望70%的家庭的月均用水量不超过标准m.请判断若以(1)中所求得
的平均数作为标准m是否合理?并说明理由. (2)不合理.理由如下:
由(1)可得14.72在12≤x<16内,
∴这1000户家庭中月均用水量小于16 t的户数有40+100+180+280=600(户), ∴这1000户家庭中月均用水量小于16 t的家庭所占的百分比是 600 ×100%=60%,
x…
-5
m
-3
-2
-1
-1
2
y…
- 29
-5
10
2
-13 -2
6
5
-2
- 17
4
x
1
1
2
3
4
5
…
2
y
17
5
4
2
2
n
5
29
…
2
10
【解法提示】当y= 5 时, 5
2
2
x 2
2 x
,得x1=-4,x2=-1,由表格可知,m
=-4,当x=3时, y 3 2 13 ,即n= 13 .
23 6
6
(3)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点.根据描 出的点,画出该函数的图象; 解:(3)画出函数图象如解图:
(2)①列表:根据(1)中所求函数关系式计算并补全表格(结果精确到0.1):
x(单位:cm)
73
73.5
74
74.5
75
76
y
17.4
17.7
18.1
18.4
_1_8_._7 19.3
x(单位:cm)
78.5
79
80.5 81.5
83
y
20.9
_2_1_._0
21.8
22.8
23.0
【解法提示】当x=75时,代入得 y 3400 64 18.7 ,当x=79时,代入得
组中值 1.0 1.2 1.4 1.6 1.8
频数(只) 6 9 a 15 8
第1题图
根据以上信息,解答下列问题: (1)表中a=____1_2___,补全频数分布直方图;
解:(1)补全频数分布直方图如解图; 【解法提示】50-6-9-15-8=12(只);
第1题解图
(2)这批鸡中质量不小于1.7 kg的大约有多少只?
3. 下面是小文设计的“过圆外一点作圆的切线”的作图过程. 已知:⊙O和圆外一点P. 求作:过点P的⊙O的切线. 作法:①连接OP; ②以OP为直径作⊙M,交⊙O于点A,B; ③作直线PA,PB; 所以直线PA,PB为⊙O的切线.
第3题图
(1)使用直尺和圆规,补全图形(保留作图痕迹); 解:(1)补全图形如解图,直线PA、PB即为所求;
3. 某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的 月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费.为此拟 召开听证会,以确定一个合理的月均用水量标准m.通过抽样,获得了前一年1000户 家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8,…, 28≤x<32分成8组,制成了如图所示的频数分布直方图.
第1题图
(1)使用直尺和圆规,补全图形(保留作图痕迹); 解:(1)补全图形如解图所示;
第1题解图
(2)完成下面的证明. 证明:作DE⊥AB于点E,作DF⊥AC于点F, ∵AD平分∠BAC, ∴___D_E____=___D_F____(__角__平__分__线__上__的__点__到__角__两__边__的__距__离__相__等____)(填写推理依据).
③连接AC,BC,BD,AD.
所以四边形ACBD就是所求作的菱形. 根据小东设计的尺规作图过程,完成下面题目.
第2题图
(1)使用直尺和圆规,补全图形(保留作图痕迹); 解:(1)补全图形如解图,四边形ACBD为所求;
第2题解图
(2)完成下面的证明. 证明:∵点B,C,D在⊙A上, ∴AB=AC=AD(__圆__的__半__径__相__等____)(填写推理依据). 同理∵点A,C,D在⊙B上, ∴AB=BC=BD. ∴___A_D____=___A__C___=___B__C___=____B_D___. ∴四边形ACBD是菱形.(___四__条__边__相__等__的__四__边__形__为__菱__形______)(填写推理依据).
60 3
第4题图
(2)已知每种出行方式的平均花费如下表:
出行 方式
单价 (元/次)
步行
骑自行车 乘公交车 乘地铁 乘出租车
0
0.5
1
3
11
小建的妈妈每年给小建的出行费用为1500元,一年按365天算.若小建平均每天出行2 次,试说明小建的出行费用是否足够?
(2)小建的出行费用足够,理由如下:
由题意可得,小建平均每次的出行费用为 1 ×(10×0+20×0.5+10×1+15×3+5×11)=2(元),
y 3400 64 21.0.
75
79
②描点:根据表中数据,继续描出①中剩余的两个点(x,y); ③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象; 解:②③描点及连线如解图所示;
第1题图
第1题解图
(3)请结合函数图象,写出该函数的两条性质或结论. ①观察图象得,y(RFM指数)随x(腰围)的增大而增大; ②自变量x的值不能为0.(答案合理即可)
专题九 全国创新题型推荐
编者按:自2018年教育部组织命题评估后,部分省市的试题发生了变化,特别是一 些省份试题有借鉴评估省市往年试题的命题特点,因此,我们分析全国 70个省市近 三年210套试题,总结全国创新题型和创新考查形式,再结合河北中考考情,特设置 “全国创新题型推荐”.
一、尺规作图补充过程、依据
【解法提示】证明:作DE⊥AB于点E,作DF⊥AC于点F,∵AD平分∠BAC, ∴DE=DF(角平分线的性质).
2. 下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.
已知:线段AB.
求作:菱形ACBD.
作法:如图,
①以点A为圆心,以AB长为半径作⊙A;
②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;