长输水管道系统水力计算简化模型
《管道的水力计算》PPT课件
(1)按ΣQi=0分配流量 从A点和最远点F点分配,可假设
(2)计算各管段损失并填表 注意正负号 hi SiQi2
(3)计算校正流量ΔQ
注意公共段CD
环网计算表
环 管 假定流
路 段 量Qi
Si
管段校 校正后 校正后
hi
hi /Qi
ΔQ
正流量 的流量Qi 的hi
AB +0.15 59.76 +1.3346 8.897
vB2 2g
zA
zB
pA pB
g
v
2 A
2g
1 vB2Biblioteka 2gH0——作用水头
H0
1
vB2 2g
流速
vB
1
1
2gH0 2gH0
对锐缘进口的管嘴,ζ=0.5, 1 0.82
1 0.5
流量 Q vB A A 2gH0 A 2gH0
Qi 0 b.由流量确定各管段管径
d 4Qi ve
ve——经济流速(规范要求)
c.由控制线确定作用压力
p pi pc Spi Qi2 pc 或 H hi hc Shi Qi2 hc
d.阻力平衡,调整支管管径
(2)管网布置和作用压力已定,求di——校核计 算,扩建管网
短管的作用水头
H0
1
l d
v2 2g
1→突扩ζ=1,H0→H
H l v2
d 2g
v2
4Q
d
2
2
代入,得
排水管道水力简化计算模型建立
排水管道水力简化计算模型建立随着城市化进程的加速,城市排水问题越来越受到人们的关注。
而排水管道作为城市排水系统的重要组成部分,其水力计算模型的建立对于排水工程的设计和运行至关重要。
传统的水力计算方法需要大量的手工计算和试错,工作量大、效率低、精度不高。
因此,建立一种简化计算模型是十分必要的。
基于此,本文从排水管道水力计算模型的基本原理和建模方法出发,研究了基于连通图的排水管道水力简化计算模型的建立。
一、排水管道水力计算模型基本原理在建立排水管道水力计算模型之前,先来了解一下排水管道水力计算模型的基本原理。
排水管道水力计算模型是建立在热力学定律基础上的。
这些定律包括连续性方程和能量守恒方程。
连续性方程描述了液体在管道内的流动特性,而能量守恒方程描述了液体在管道内的能量转换。
通过对两个方程的求解,可以获得管道内的液体流动参数,如速度、压力等。
二、排水管道水力计算模型建模方法1.连通图建模连通图建模是一种用图表示管道系统结构和连通关系的方法。
通过连通图可以清晰地表示出管道系统的备件、节点和运行状态,同时还能较为准确地描述管道系统的水力性能。
在连通图中,排水管道可以看作一个由节点和管道组成的有向图。
其中,节点代表了系统中的汇水点、排水点、泵站等,而管道则用有向线段表示。
为了对管道进行水力计算,需要将管道划分为不同的段,计算每段管道中的水力特性。
2.模型参数确定在管道的水力计算中,需要确定一些模型参数。
这些参数包括:管道几何参数、液体物性参数、管道摩擦系数等。
管道几何参数包括:管道长度、管道内径、横截面积等。
这些参数可以通过实际勘测或测量获得。
液体物性参数包括:液体密度、液体粘度等。
这些参数可以通过液体的化学成分来确定。
而管道摩擦系数则需要根据不同材料的管道、流速和液体物性参数来确定。
3.数值方法求解在确定模型参数之后,需要对连通图进行求解。
常用的求解方法包括迭代法、稳态方法等。
通过数值方法求解可以得到排水管道的流量、压力、速度和水头等水力参数,进而评估排水管道运行状态。
基于matlab的长输成品油管线水力模型构建
2020年01月基于MATLAB 的长输成品油管线水力模型构建陈云(中国石化销售股份有限公司华东分公司,上海200050)摘要:文章基于MATLAB 建立了一个长输成品油管线的水力模型,该模型可自动完成水力模型的测算,不仅大幅提升了工作效率,而且该模型具备可推广性的特点,通过使用本模型的算法,可完成对任意一条长输管线的建模,具有较大的实用价值。
关键词:水力模型;长输管道;MATLAB1收集实际管道物理数据本文首先收集了一条实际在用某长输成品油管道的物理数据,该管道为支线架构,共5个站场,主线分为A 首站、B 中间站、C 中间站、D 末站、其中支线段在B 站处与主线汇集,支线末站为E 末站。
2模型构建该模型主要架构如下,模拟实际调度场景,用户输入相关参数(A 首站配泵、B 站、C 站下载量)计算稳态工况下所有节点的参数情况(为简化计算,本文仅考虑全线柴油工况,柴油密度定为840kg/m 3)。
为避免节流,节能降耗,管道正常运行时,主线调节阀及末站下载调节阀均处于全开状态,管线损耗以沿程摩阻损耗为主,管线运行人员在进行工况控制时,一般只会控制首站配泵组合以及中间下载站流量,而末站的流量无法直接控制。
根据该特点,我们设定的模型的输入量仅有3个,以模拟真实调度场景,即首站配泵模式、B 站下载流量、C 站下载流量,根据该部分输入可直接计算出管线稳态工况。
本模型主要基于MATLAB 平台,共包含两个M 文件、Calcu⁃late.M 和Calculate_error.M ,其中后者主要用于初始稳态的摩阻计算、泵的压力模拟及补偿、并根据全线流量消耗摩阻及泵提供的压力输出一个error 值,该值在Calculate.M 中得到引用,主要用于D 站的流量计算。
程序的初始稳态需要使用者提供3个参数、B 站下载量、C 站下载量、A 站配泵模式。
为了简化计算,本文假设管线流量和压力的变化都是实时无滞后的,即循环计算查找稳态流量时不考虑瞬态影响。
长距离输水管道水力计算公式的初探
长距离输水管道水力计算公式的初探在输水工程施工过程中,水流从管道经过时造成的水力损失是一个需要重点解决的问题,使用公式的合理性直接影响到设计方案的合理性及经济性,同时对水锤防护和泵型选择具有重要意义,基于此本文对长距离输水管道水力计算公式的选用进行探讨。
标签:长距离输水管道水力计算公式1长距离输水管道水力计算的公式长距离输水管道一般根据均匀流进行水力计算,当前主要使用的公式有:(1)谢才公式:V=C■(2)达西公式:hf=λ■■(3)海澄威廉公式:hf=■在公式中,沿程损失为hf,单位为m,管道长度为l,单位为m,沿程阻力系数为λ,管道计算内径为d,单位为m,重力加速度为g,单位为m/s2,谢才系数为C,水力坡降为i,水力半径为R,管道流量为Q,m3/s,流速为v,m/s。
海澄威廉系数为Ch。
在以上三个公式中,对于明渠水力和管道使用谢才公式和达西公式比较适用,由于海澄威廉公式对参数造成比较少,在计算管网系统时使用的比较多。
2选择的管道材料对计算公式造成的影响由于管道材质不同和工艺不同,管道表面的粗糙程度差异性较大。
长距离输水过程中,管道越粗糙,管道输送时产生的能耗就越大。
工程设计过程对于直径相同但是粗糙程度不同的管道,相同流速下管道中的水处于的紊流状态是不同的,当水流状态超过了使用的水力计算公式的适用范围,就会提高计算误差,而这一误差的出现会导致无法预计的后果出现。
大多数的管材使用达西公式进行计算,只有混凝土管道建议使用谢才公式。
新版《室外给水设计规范》中,将舍维列夫公式的有关条文取消,只是笼统的对达西公式进行使用,没有明确指出计算λ值时需要使用的经验公式,考虑到舍维列夫公式是在就铸铁管和旧钢管的基础上建立起来的,当前使用的铸铁材料或钢质管道通常会对管道的内壁进行防腐处理,经过处理后的钢管内壁比较光滑,摩擦力很小,如果仍然使用维列夫公式进行计算就会出现比较大的误差,所以对这些管道进行计算时,使用舍维列夫公式并不合适。
水力计算公式选用
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,md-----管道计算内径,mg----重力加速度,m/s 2C----谢才系数 i----水力坡降; R ―――水力半径,mQ ―――管道流量m/s 2v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
5.4 长管水力计算——学习材料
学习单元四、长管水力计算简单管路及其水力计算管径及流量沿程均不发生变化的管道称为简单管道,对于简单长管而言作用水头∑++=j f h h g v H 2220α中∑+j h g v 222α很小被忽略,因此在作用水头全部用来克服管路的沿程能量损失,有:f h H =0长管的沿程水头损失计算有通常有两种方法 :按达西公式或按谢才公式计算:1.根据达西公式:gV d l h H f220λ==因为 24d QV π=所以 25208lQ dg h H f ⋅==πλ,令 l dg S H ⋅=528πλ称为管路的综合阻力系数,在旺盛紊流该系数只和管道的几何和物理特征有关,管道确定了该系数就确定了。
上试反应了简单长管的作用水头(沿程损失和流量的平方成正比),该方程称为管路性能曲线方程。
引入单位管长的阻力系数l α称为管段的比阻抗:528dg l S H l πλα==(62/m s ) 则20Q l h H l f ⋅⋅==α比阻抗的确定可使用通用公式33.523.10dn l =α计算;也可使用专用的公式对旧钢管铸铁管进行计算3.5001736.0d l =α。
2.根据谢才公式因为 RJ C V = ,22KQ J J K RJ AC Q =⇒==,式中R AC K =称为管道的流量模数,综合反应管道的断面形状、大小和粗糙度等对输水流量的影响。
故l KQ J l h H f ⋅=⋅==22该式适用于粗糙紊流区,C 由曼宁公式或巴普罗夫斯基公式计算。
两种计算对于同一根管段的相同流动情况而言是统一的故lK α1=对于一般给水管道,当平均流速v<1.2m/s 时,管子可能在过渡区工作,h f 近似与流速v 的1.8次方成正比。
计算水头损失时,可在上述式中乘以一修正系数k ,即l KQ k h H f ⋅⋅==220或20Q l k h H l f ⋅⋅⋅==α来进行计算,修正系数k 请查阅水力计算相关表格。
浅议长距离输水管道水力计算公式的选用
浅议长距离输水管道水力计算公式的选用摘要:结合通常情况下长距离输水管道内水流型态,对《室外给水设计规范》修订制定的3种不同类型水力计算公式的适用范围进行分析,认为魏斯巴赫-达西公式具有更广泛的适用性。
求解魏斯巴赫-达西公式中沿程水头损失系数,可通过查穆迪图或求解柯列布鲁克-怀特方程等方式。
针对柯列布鲁克-怀特公式求解时运算复杂的问题,本文提出了利用Excel“单变量求解”功能计算的简便易行方法。
关键词:长距离输水管道工程水力计算沿程水头损失系数Excel单变量求解Pick to: combined with usually long water pipe flow patterns in the water supply outdoor design code for revision of the three types of hydraulic calculation formula applied range analysis, think Wesley Bach-darcy formula has a wider range of application. Solving Wesley Bach-in the formula of darcy along the riser head loss coefficient, but through the check moody’s figure or solving ko column brooke white way equation and so on. In ko column brooke white formula to solve complex problems in operation, this paper puts forwa rd the use of Excel “single variable solving” function of calculation method and simple.Keywords: long water pipe engineering hydraulic calculation frictional head loss coefficient Excel single variable solution中图分类号:C64文献标识码:A 文章编号:近年来,随着我国城市化快速推进,城市规模扩张和居民生活水平提高,城市综合用水量急剧增加,供水与需水矛盾日益突出。
水力公式
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
《管道的水力计算》课件
日常工作中需要注意管道流量、阻力和维护等问题,确保系统正常运行。
3 管道水力计算的应用前景
在工程建设、水资源管理和环境保护等领域具有广阔的应用前景。
ቤተ መጻሕፍቲ ባይዱ
3
管道保养的注意事项
4
保养时需要注意使用正确的材料和方法, 遵守相关规定和标准。
维护工作的必要性
管道的维护可以保证管道系统的正常运 行和延长使用寿命。
管道的保养措施
保养包括防锈、防腐、除垢、消毒等措 施,可以延缓管道老化和减少故障。
总结
1 管道水力计算知识的重要性
掌握管道水力计算知识可以提高工作效率和减少系统故障。
《管道的水力计算》PPT 课件
# 管道的水力计算
管道流量的计算
1
流量的定义
流量是单位时间内通过管道的液体或气
流速与断面积的关系
2
体的体积。
流速是单位时间内通过断面的液体或气
体的体积,与断面积成反比。
3
流量计算公式
流量(Q)= 流速(V)× 断面积(A)
实际管道流量实例
4
通过实例计算管道流量,考虑测量误差 和流体性质变化。
泥沙径流的特点
泥沙径流是带有泥沙的水流,通过计算降雨量和土 壤侵蚀来估算泥沙径流。
泥沙径流计算公式
泥沙径流(Qs)= 雨量(P)× 土壤侵蚀量(E)
径流计算实例
通过实例计算管道的径流,考虑降雨强度和土壤类 型。
管道的维护与保养
1
管道维护的注意事项
2
维护时需要注意安全、定期检查和清洁、
修复漏水等问题。
管道阻力的计算
阻力的定义
阻力是管道内液体或气体流动时受到的阻碍力。
输水管道水力计算公式
输水管道水力计算公式1.常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:g d v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,mλ----------沿程阻力系数l -----------管段长度,md-----------管道计算内径,mg-----------重力加速度,m/s 2C-----------谢才系数i------------水力坡降;R-----------水力半径,mQ-----------管道流量m/s 2v------------流速 m/sC n -----------海澄―威廉系数其中达西公式、谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108。
管材水力损失计算公式
管材水力损失计算公式管道输水是工程中常见的一项工作,而管道输水中会伴随着水力损失。
水力损失是指水在管道中流动时,由于摩擦、弯头、突变、阀门等原因所带来的能量损失。
水力损失的计算对于管道工程设计和运行具有重要的意义。
在工程实践中,通常采用一些公式来计算管道中的水力损失,以便合理地选择管材和管道尺寸,以及合理地设计管道布局。
一般情况下,管道中的水力损失可以通过以下公式进行计算:hf = f (L/D) (V^2/2g)。
其中,hf表示单位长度管道的水力损失,单位为米;f表示摩擦阻力系数;L表示管道长度,单位为米;D表示管道直径,单位为米;V表示流速,单位为米/秒;g表示重力加速度,取9.81m/s^2。
在这个公式中,摩擦阻力系数f是一个非常重要的参数,它取决于管道的粗糙度和流态状态。
一般情况下,可以通过查表或者使用经验公式来确定摩擦阻力系数的数值。
管道长度L、管道直径D和流速V都是直接影响水力损失的因素,它们的数值越大,水力损失就越大。
在实际工程中,为了更准确地计算管道的水力损失,还可以考虑一些修正系数。
比如,对于弯头、管道突变、阀门等附件,可以通过相应的修正系数来修正水力损失的计算。
此外,对于不同材质的管道,也可以根据其特性引入相应的修正系数。
在进行管道水力损失的计算时,还需要考虑管道系统中的水泵提供的压力。
水泵提供的压力越大,管道中的水力损失就越小。
因此,在设计管道系统时,需要综合考虑水泵的选型和管道的水力损失,以便实现系统的高效运行。
除了上述的基本公式外,对于特定情况下的管道水力损失,还可以采用一些专用的公式进行计算。
比如,对于管道中的节流装置,可以采用孔口流量计算公式来计算水力损失;对于管道中的水泵站,可以采用水泵特性曲线来计算水力损失。
总的来说,管道水力损失的计算是管道工程设计和运行中的重要内容。
合理地计算水力损失可以帮助工程师选择合适的管材和管道尺寸,合理地设计管道布局,以及实现管道系统的高效运行。
简单长管的水力计算
简单长管的水力计算由前可知,长管中的局部水头损失、流速水头两项之和与沿程水头损失的比小于5%,局部水头损失及流速水头可忽略不计,因而可使管道计算大为简化,而且对计算精度影响不大。
一般情况下,给水管路、抽水机的压水管、输油管道等均可按长管计算。
(一)简单长管水力计算的基本公式由长管的定义,长管水力计算时,局部水头损失和流速水头忽略不计,能量方程式可简化为1. 由谢才公式计算沿程水头损失 水利工程中的有压管道,水流一般属于紊流的水力粗糙区,其水头损失可直接由谢才公式计算。
,, lH l h J f ==,联立求解有l RC A Q H 222=令即得 l KQ H 22= (5-15)或 lH KQ = (5-16)式中K——流量模数。
由上式可以看出,当水力坡降J =1时,Q =K ,故K 具有与流量相同的量纲,在水力学中称为流量模数,或特性流量。
它综合反映管道断面形状、尺寸及边壁粗糙对输水能力的影响。
水力坡度J 相同时,输水能力与流量模数成正比。
对于粗糙系数n 为定值的圆管,K 值为管径的函数。
不同直径及糙率的圆管,当谢才系采用611R nC =计算时,其流量模数K 值如表(5-2)所示。
表5-2 给水管道的流量模数数值 (按611=R nC ) 单位:L/sfhH =Av Q =RJ C v =R AC K =K R AC K =对于一般给水管道,一般流速不太大,可能属于紊流的粗糙区或过渡区。
可以近似认为当米/秒时,管流属于过渡区,h f 约与流速v 的1.8次方成正比。
计算水头损失时,可在公式(5-15)中乘以修正系数k ,即l KQ k H 22= (5-17)对于钢管或铸铁管,修正系数可查表5-3表 5-3 钢管及铸铁管修正系数k 值2. 按《标准》(灌溉排水卷)公式计算管道沿程水头损失L DQ f h b mf = (5-18)式中 Q —— 流量,m 3/h ;f —— 管材摩阻系数; L —— 管长,m ;D —— 管道直径,mm ; m —— 流量指数; b —— 管径指数。
水力计算公式选用
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用. 布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106. 通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾.海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2)表2 常见管材粗糙度相关系数参考值根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS和HAZEN在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
水力学8.3短,长管的水力计算
v 1
式中
c
1 l d
l d
2 gH0 c 2 gH0
(8.14)
称为淹没出流的流量系数 (8.15) Q vA c 2gH0
(8.16)
若v0≈0,则H0≈H,于是 Q vA c 2gH
8.3.1 短管的水力计算 8.3.1.2 淹没出流 淹没出流的流量系数与自由出流的流量系数虽 有不同,但数值相等. 因为自由出流时,出口有流速水头而无水头损 失,而淹没出流时,出口无流速水头,但有局部水 头损失,其系数为 1 .
短管,长管的水力计算的基本依据是连续性方程 和能量方程.
如给水工程中的给水管.
8.3.1 短管的水力计算 8.3.1.1 自由出流 如图,水流自水池经管道流入大气,直径不变,以 过出口管轴的平面0-0为基准面,写出1-1,2-2断 面的能量方程。
H pa
2 0v0
2g
0
2 0v0
本章主要任务:
介绍短管和长管的水力计算
8.3 短管,长管的水力计算
短管:指局部水头损失与流速水头之和所 v 2 占的比重较大,即 (h j 2 g ) 5%h f ,计算中不 能忽略.
如:虹吸管,倒虹吸管以及抽水机的吸水管.
长管:
指局部水头损失与流速水头之和所 v 2 占的比重较小,即 (h j ) 5%h f ,计算中可 2g 以忽略.
简单管:凡是管径沿程不变、流量也不变的管路。 简单管路的计算是一切复杂管路计算的基础.
这里只介绍简单管路的计算(P114)
长距离输水管道水力计算
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
长距输水管道水力计算公式
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd vl h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h hf ***=(3)式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re51.27.3lg(21λλ+∆*-=d(Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式yeR n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式. 在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾.海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.5. 值得提出得是, 上述所有水力计算公式中采用得管径均为计算内径, 各种管道均应采用管道净内空直径计算, 对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响. 大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
长输水管道系统水力计算简化模型
长输水管道系统水力计算简化模型
陈继泉
【期刊名称】《水利科技》
【年(卷),期】2001(000)004
【摘要】在长输水管道系统水力计算中,常需要对系统的某些局部管网或节点状态进行适当简化,以便于水泵选型设计和整个系统多方案的比较分析及优化布置.该文针对长输水管道系统中常见的并联运行水泵及其分支管道系统和并联布置管道系统分别导出了其水力计算简化模型.
【总页数】2页(P55-56)
【作者】陈继泉
【作者单位】福建省水利水电勘测设计研究院,福建,福州,350001
【正文语种】中文
【中图分类】TV1
【相关文献】
1.流体的几种简化模型在输水隧道抗震计算中的应用 [J], 刘金云;陈健云;张兆强;姜伟
2.管道系统的水力计算 [J], 陆昌根;李志忠
3.多目标长距离输水管道系统调压设计探讨 [J], 李朋
4.高压输水管道系统的水锤防护分析 [J], 詹芹;陈博;何洋;陈名泉
5.泵站加压输水管道系统充水过程研究进展 [J], 张子健
因版权原因,仅展示原文概要,查看原文内容请购买。