中考数学模拟试题(附标准答案)

合集下载

中考数学模拟试题及答案

中考数学模拟试题及答案

中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是整数?A. 3.14B. 0.98C. 2023D. -0.52. 如果一个数的平方根是它本身,那么这个数是:A. 0B. 1C. -1D. 43. 一个长方体的长、宽、高分别为a、b、c,其体积是:A. abcB. a + b + cC. a * b * cD. a / b / c4. 下列哪个选项是正确的不等式?A. 3 > 2B. 5 < 4C. 8 ≥ 8D. 6 ≤ 75. 一个圆的半径是r,其面积是:A. πrB. πr²C. 2πrD. r²6. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 可以是负数或零7. 一个等腰三角形的底边长度是10,两腰的长度相等,如果底角是45°,那么腰的长度是:A. 5B. 10C. 15D. 208. 一个数的立方根是它本身,那么这个数是:A. 1B. -1C. 0D. 89. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 810. 如果a和b是连续的整数,且a < b,那么a和b的乘积是:A. a² - 1B. b² - 1C. ab - a - bD. ab + a + b二、填空题(每题2分,共20分)11. 一个数的平方根是5,那么这个数是________。

12. 一个数的立方是-27,那么这个数是________。

13. 如果一个数的绝对值是8,那么这个数可以是________或________。

14. 一个长方体的长是5,宽是3,高是4,那么它的表面积是________。

15. 如果一个圆的直径是14,那么它的周长是________。

16. 一个直角三角形的斜边长度是13,一个直角边是5,另一个直角边的长度是________。

中考数学模拟卷50题及答案

中考数学模拟卷50题及答案

1.下列几何体的主视图和俯视图完全相同的是()A. B. C. D.2.在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD3.面对突如其来的疫情,全国广大医务工作者以白衣为战袍,义无反顾的冲在抗疫战争的一线,用生命捍卫人民的安全.据统计,全国共有346支医疗队,将近42600名医护工作者加入到支援湖北武汉的抗疫队伍,将42600用科学记数法表示为()A.0.426×105B.4.26×104C.42.6×103D.426×1024.下列各数中比3大比4小的无理数是()A. B. C.3.14159 D.﹣π5.如图,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED =40°,则∠A的度数是()A.40°B.50°C.80°D.90°6.如图,直线y=kx+b分别交x轴、y轴于点A、C,直线y=mx+n分别交x轴、y轴于点B、D,直线AC与直线BD相交于点M(﹣1,2),则不等式kx+b≤mx+n的解集为()A.x≥﹣1B.x≤﹣1C.x≥2D.x≤27.如图,已知菱形ABCD的顶点A的坐标为(1,0),顶点B 的坐标为(4,4),若将菱形ABCD绕原点O逆时针旋转45°称为1次变换,则经过2020次变换后点C的坐标为()A.(9,4)B.(4,﹣9)C.(﹣9,﹣4)D.(﹣4,﹣9)8.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A.400名学生中每位学生是个体B.400名学生是总体C.被抽取的50名学生是总体的一个样本D.样本的容量是509.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×10610.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.xy2﹣xy2=xy2C.a5÷a2=a3D.(﹣mn3)2=m2n511.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是()A.48°B.42°C.34°D.24°12.下列各数中,最小的是()A.πB.﹣3C.D.﹣13.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°14.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x615.不等式组的解集在数轴上表示正确的是()A. B.C. D.16.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.617.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)18.如图,在长方形ABCD中,AB=4,AD=5,E为AB的中点,点F,G分别在CD,AD上,△EFG为等腰直角三角形,则四边形BCFE的面积为()A.10B.9C.D.19.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.8,7B.6,7C.8,5D.5,720.二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A.函数y2的图象开口向上B.函数y2的图象与x轴没有公共点C.当x=1时,函数y2的值小于0D.当x>2时,y2随x的增大而减小21.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个B.1个C.2个D.3个22.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A. B. C. D.23.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个24.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)25.如图,矩形ABCD中,AB=3,BC=6,点E、F是BC的三等分点,连接AF,DE,相交于点M,则线段ME的长为.26.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x个,依题意可列方程得.27.若关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,则a+m﹣3的值为.28.如图,已知⊙O的半径为6,点A、B在⊙O上,∠AOB=60°,动点C在⊙O上(与A、B两点不重合),连接BC,点D是BC中点,连接AD,则线段AD的最大值为.29.不等式组的整数解是.30.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交于点D,连接BD,当BD⊥x轴时,k的值是.31.计算:2cos30°﹣﹣()﹣2=.32.如图,正方形ABCD的边长为4,连接AC,先以A为圆心,AB的长为半径作弧BD,再以A为圆心、AC的长为半径作弧CE,且A、D、E三点共线,则图中两个阴影部分的面积之和是.33.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D 是的中点,连接CD、CB.若OA=2,则阴影部分的面积为.(结果保留π)34.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为.35.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右数第5个阴影三角形的面积是,第2019个阴影三角形的面积是.36.如图,点A在反比例函数y1=(x>0)的图象上,点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为.37.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D是直角三角形时,DE的长为.38.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段AC ,CD ,FD 的长度的几组值,如表: 位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8AC /cm 0.1 0.5 1.0 1.9 2.6 3.2 4.2 4.9CD /cm 0.1 0.5 1.0 1.8 2.2 2.5 2.3 1.0FD /cm 0.2 1.0 1.8 2.8 3.0 2.7 1.8 0.5在AC ,CD ,FD 的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD >DF 时,AC 的长度的取值范围是 .39.如图,AB 是⊙O 的直径,NM 与⊙O 相切于点M ,与AB的延长线交于点N,MH⊥AB于点H.(1)求证:∠1=∠2;(2)若∠N=30°,BN=5,求⊙O的半径;(3)在(2)的条件下,求线段BN、MN及劣弧BM围成的阴影部分面积.40.先化简,再求值:•÷,其中x、y满足=2.41.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE =90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.42.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A 重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.43.如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ 的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.44.如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC =30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG 平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:≈1.7,结果保留一位小数)45.如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N 两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.46.某商店购进A、B两种商品,购买1个A商品比购买1个B 商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?47.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.48.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=;②连接BM,当∠AMB的度数为时,四边形AMBC是菱形.49.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC 上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF 的数量关系是什么?写出你的猜想,并给予证明.50.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q 从点B出发沿线段BC由B向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案1.D;2.D;3.B;4.A;5.B;6.B;7.C;8.D;9.D;10.D;11.B;12.B;13.C;14.D;15.A;16.C;17.B;18.D;19.A;20.D;21.C;22.B;23.C;24.C;25.;26.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60;27.1;28.3;29.﹣1,0,1;30.﹣12;31.﹣2﹣4;32.6π﹣8;33.+﹣1;34.或;35.29;24037;36.﹣3;37.3或;详细解析1.【解答】A、圆锥的主视图是等腰三角形,俯视图是圆,故A选项不合题意;B、圆柱主视图是矩形,俯视图是圆,故B选项不合题意;C、三棱柱主视图是一行两个矩形,俯视图是三角形,故C选项不合题意;D、正方体主视图和俯视图都为正方形,故D选项符合题意;故选:D.2.【解答】根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.3.【解答】将数据42600用科学记数法可表示为:4.26×104. 故选:B.4.【解答】3=,4=,A、是比3大比4小的无理数,故此选项符合题意;B、比4大的无理数,故此选项不合题意;C、3.14159是有理数,故此选项不合题意;D、﹣π是比﹣3小比﹣4大的无理数,故此选项不符合题意;故选:A.5.【解答】∵BE⊥AF,∠BED=40°,∴∠FED=50°,∵AB∥CD,∴∠A=∠FED=50°.故选:B.6.【解答】根据函数图象,当x≤﹣1时,kx+b≤mx+n,所以不等式kx+b≤mx+n的解集为x≤﹣1.故选:B.7.【解答】∵360°÷45°=8,∴菱形ABCD绕原点O逆时针旋转8次变换为一次循环,∵2020÷8=252…4,∴4×45=180°,∴经过2020次变换后点C的坐标处于点C绕原点逆时针旋转180°的位置.∵顶点A的坐标为(1,0),顶点B的坐标为(4,4),∴AB==5,∵四边形ABCD是菱形,∴BC∥AD,BC=AB=5,∴C(9,4),∴经过2020次变换后点C的坐标为(﹣9,﹣4).故选:C.8.【解答】A.400名学生中每位学生的体重是个体,故本选项不合题意;B.400名学生的体重是总体,故本选项不合题意;C.被抽取的50名学生的体重是总体的一个样本,故本选项不合题意;D.样本的容量是50,符号题意;故选:D.9.【解答】将1230000用科学记数法表示为1.23×106.故选:D.10.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,原计算正确,故此选项不符合题意;选项B,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,原计算正确,故此选项不符合题意;选项C,同底数幂的除法,a5÷a2=a5﹣2=a3,原计算正确,故此选项不符合题意;选项D,积的乘方,(﹣mn3)2=m2n6,原计算错误,故此选项符合题意;故选:D.11.【解答】∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.12.【解答】∵﹣=﹣2,π>>﹣>﹣3,∴这些数中最小的是:﹣3.故选:B.13.【解答】∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.14.【解答】∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.15.【解答】解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.16.【解答】由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为12,∴AF=BF=AB=3,在Rt△ABG中,∠1=30°,∴BG=AB=1.5,AG=BG=,∴AE=2AG=3,∴菱形ABEF的面积=BF×AE=×3×3=;故选:C.17.【解答】∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BF A=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF===,∴BG==,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴,∴BG2=BH•AB,∴BH==,∴OH=,∵OG=AB=1,∴HG==,∴G(,),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(,﹣),第二次旋转90°后对应的G点的坐标为(﹣,﹣),第三次旋转90°后对应的G点的坐标为(﹣,),第四次旋转90°后对应的G点的坐标为(,),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD 绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣,).故选:B.18.【解答】∵△GEF为等腰直角三角形,∴GE=GF,∠EGF=90°,∴∠AGE+∠DGF=90°,∵∠AEG+∠AGE=90°,∴∠AEG=∠DGF,∴△AEG≌△DGF(AAS),∴AE=GD,AG=DF,∵AB=4,AD=5,E为AB的中点,∴DG=AE=2,AG=DF=AD﹣DG=3,∴CF=CD﹣DF=4﹣3=1,∴S=(2+1)×5=,四边形BCFE故选:D.19.【解答】这组数据中出现次数最多的是8,出现了3次,故众数为8,这组数据重新排列为5、5、6、7、8、8、8,故中位数为7.故选:A.20.【解答】∵y1=ax2+bx+c,y1+y2=2,∴y2=2﹣y1,∴函数y2的图象是函数y1的图象关于x轴对称,然后再向上平移2个单位长度得到的,∴函数y2的图象开口向下,故选项A错误;函数y2的图象与x轴有两个交点,故选项B错误;当x=1时,函数y2的值大于0,故选项C错误;当x>2时,y随x的增大而减小,故选项D正确;故选:D.21.【解答】如图1,当BB′=B′C时,△BCB'是等腰三角形,如图2,当BC=BB′时,△BCB'是等腰三角形,故若△BCB'是等腰三角形,则符合条件的点D的个数是2,故选:C.22.【解答】由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.23.【解答】∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x 的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.24.【解答】∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OE=1,DE=,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.25.【解答】∵矩形ABCD中,AB=3,BC=6,点E、F是BC 的三等分点,∴CE=4,CD=3,EF=2,AD=6,∴Rt△CDE中,DE==5,∵AD∥EF,∴△ADM∽△FEM,∴=,即=,∴EM=DE=,故答案为:.26.【解答】设中间的那个人分得x个,由题意得:(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60,故答案为:(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60. 27.【解答】∵关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,∴△=b2﹣4ac=4a(a﹣4+m)=0,∵a≠0,∴a﹣4+m=0,∴a+m=4,∴a+m﹣3=4﹣3=1.故答案为:1.28.【解答】如图1,连接OC,Q取OB的中点E,连接DE. 则OE=EB=OB=3.在△OBC中,DE是△OBC的中位线,∴DE=OC=3,∴EO=ED=EB,即点D是在以E为圆心,2为半径的圆上,∴求AD的最大值就是求点A与⊙E上的点的距离的最大值,如图2,当D在线段AE延长线上时,AD取最大值,∵OA=OB=6,∠AOB=60°,OE=EB,∴AE=3,DE=3,∴AD取最大值为3+3.故答案为3.29.【解答】解不等式x+1≥0,得:x≥﹣1,解不等式2﹣x>0,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1,故答案为:﹣1、0、1.30.【解答】延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,而顶点C的坐标为(m,3),∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(﹣6,2),∵反比例函数y=的图象经过点D,∴k=﹣6×2=﹣12.故答案为﹣12.31.【解答】原式=2×﹣3﹣4=﹣3﹣4=﹣2﹣4,故答案为:﹣2﹣4.32.【解答】∵正方形ABCD的边长为4,∴AB=BC=4,∠ABC=90°,∴AC=4,∠EAC=∠CAB=45°,∴图中阴影部分的面积是:+[]=6π﹣8,故答案为:6π﹣8.33.【解答】连接OD,过D作DH⊥OA于H,∵∠AOB=90°,D是的中点,∴∠AOD=∠BOD=45°,∵OD=OA=2,∴DH=OC=,∵C是OA的中点,∴OC=1,∴阴影部分的面积=S+S△CDO﹣S△BCO=+×1﹣扇形DOB=+﹣1,故答案为:+﹣1.34.【解答】如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF⊥BC于F.∵AB=AC=,∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=,BF=AF=,∴BD=BF﹣DF=.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF=,BD=BF+FD=,综上所述,满足条件的BD的值时.故答案为或.35.【解答】当x=0时,y=x+2=2,∴OA1=OB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴A n+1B n=B n B n+1=2n+1,∴S n+1=×(2n+1)2=22n+1.当n=4时,S5=22×4+1=29;当n=2018时,S2019=22×2018+1=24037.故答案为:29,24037;36.【解答】设点A坐标(a,)∵点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,∴∴x=ak∴点B(ak,)∵△AOB的面积为2∴(a﹣ak)×=2∴1﹣k=4∴k=﹣3故答案为:﹣337.【解答】如图所示;点E与点C′重合时.在Rt△ABC中,BC===8,由翻折的性质可知;AE=AC=6、DC=DE.则EB=10﹣6=4. 设DC=ED=x,则BD=8﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+42=(8﹣x)2.解得x=3,如图所示:∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=6.∴DB=BC﹣DC=8﹣6=2.∵DE∥AC,∴△BDE∽△BCA.=,即,解得DE=,点D在CB上运动,∠DBC′<90°,(假设∠DBC′≥90°,则AC′≥BD,这个显然不可能,故∠DBC′<90°),故∠DBC′不可能为直角.故答案为3或.38.【解答】(1)由题意可知:AC是自变量,CD,DF是自变量AC的函数.故答案为:AC,CD,FD.(2)函数图象如图所示:(3)观察图象可知CD>DF时,3.5cm<x<5cm. 故答案为:3.5cm<x<5cm.39.【解答】(1)证明:连接OM,∵NM与⊙O相切,∴OM⊥MN,∵OB=OM,∴∠OBM=∠OMB,∵NH⊥AB,∴∠2+∠MBO=90°,∵∠1+∠BMO=∠NMO=90°,∴∠1=∠2;(2)∵∠N=30°,MH⊥AB,∴∠1+∠2=60°,∴∠1=∠2=30°,∠MON=60°,∴BM=BN=5,∵OB=OM,∴△OBM为等边三角形,∴OB=OM=BM=5,即⊙O的半径为5;(3)由(2)知,∠N=30°,OM=5,∴MN=5,∴S△OMN=MN•OM==,S扇形MOB==,∴线段BN、MN及劣弧BM围成的阴影部分面积=S△OMN﹣S=﹣.扇形MOB40.【解答】•÷==,=1+,当=2时,原式=1+2=3.41.【解答】(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.42.【解答】(1)∵y=﹣2x+c与x轴交于点A(3,0),与y 轴交于点B,∴﹣2×3+c=0,解得c=6,∴B(0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB==3,∵MP∥y轴,∴△APM∽△ABO,∴,即,∴AP=(3﹣m),∵NP=AP,∴﹣m2+3m=×(3﹣m),解得:m=或3(舍去3),∴m=.(3)点Q的坐标为(,)或(﹣2,0).①当点Q在AB上方时,。

中考数学模拟考试试卷带答案

中考数学模拟考试试卷带答案

中考数学模拟考试试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A .B .C .D .2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和度数分别为α和β,则正确的是( ) A .0αβ-= B .0αβ-< C .0αβ-> D .无法比较α与β的大小3.下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( ) A .23︒B .24︒C .25︒D .26︒5.不等式组43264x x x +⎧-≤⎪⎨⎪-<-⎩的解集在数轴上表示为( )A .B .C .D .6.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象第1题图 第2题图 第4题图大致是( )A .B .C .D .7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 8.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是( )A .0abc >B .20a b -=C .方程20ax bx c ++=的两个根为3和1-D .当1x <时,y 随x 的增大而减小二、填空题(本大题共4小题,每小题5分,共20分)9.因式分解:229ax ay -= .10.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF 的周长比是 .11.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒则图中阴影部分的面积为 .12.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为 .第6题图第8题图三、解答题(本大题共3小题,共40分)13.(8分)计算:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+()﹣1﹣.14.(15分)如图,已知()1,0A -,()2,3B -两点在二次函数213y ax bx =+-与一次函数2y x m =-+的图象上.(1)求该一次函数和二次函数的表达式;(2)请直接写出当12y y >时,自变量x 的取值范围;(3)若二次函数的图象交y 轴于点C ,连接,AC BC ,求ABC 的面积.15.(17分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.第10题图 第11题图 第12题图请仅就图2的情形解答下列问题.(1)求证:2PAO PBO ∠=∠;(2)若O 的半径为5,203AP = 求BP 的长. 参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( B )A .B .C .D .2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和度数分别为α和β,则正确的是( A ) A .0αβ-= B .0αβ-< C .0αβ-> D .无法比较α与β的大小3.下列说法中,正确的是( A )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( D ) A .23︒B .24︒C .25︒D .26︒第1题图 第2题图 第4题图5.不等式组43264x x x +⎧-≤⎪⎨⎪-<-⎩的解集在数轴上表示为( A )A .B .C .D .6.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( D )A .B .C .D .7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( D )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 8.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是( B )A .0abc >B .20a b -=C .方程20ax bx c ++=的两个根为3和1-D .当1x <时,y 随x 的增大而减小二、填空题(本大题共4小题,每小题5分,共20分)第6题图第8题图9.因式分解:229ax ay -= ()()33a x y x y +- .10.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF 的周长比是 2:5 . 11.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒,则图中阴影部分的面积为 233π . 12.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为 2 .三、解答题(本大题共3小题,共40分)13.(8分)计算:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+()﹣1﹣. =﹣1﹣√22 +1+ √22﹣3 ...........................................................................................................................................6分=﹣3. ..................................................................................................................................................................8分14.(15分)如图,已知()1,0A -,()2,3B -两点在二次函数213y ax bx =+-与一次函数2y x m =-+的图象上.(1)求该一次函数和二次函数的表达式;(2)请直接写出当12y y >时,自变量x 的取值范围;(3)若二次函数的图象交y 轴于点C ,连接,AC BC ,求ABC 的面积.(1)解:∵()1,0A -在一次函数2y x m =-+的图象上∵01m =+,解得:1m =-.............................................................................................................................................1分 ∵一次函数的表达式为21y x =--;................................................................................................................................2分 第10题图 第11题图 第12题图∵()1,0A -,()2,3B -两点在二次函数213y ax bx =+-的图象上∵304233a b a b --=⎧⎨+-=-⎩..........................................................................................................................................................4分 解得12a b =⎧⎨=-⎩.....................................................................................................................................................................6分 ∵二次函数的表达式为:2123y x x =--;....................................................................................................................7分(2)解:()1,0A - ()2,3B -由图象可得当12y y >时,自变量x 的取值范围为1x <-或2x >;............................................................................11分(3)解:∵二次函数2123y x x =--交y 轴于点C∵()0,3C -,......................................................................................................................................................................12分 又∵()2,3B -∵BC y ⊥轴2BC =...................................................................................................................................................13分∵ABC 的面积为1123322B BC y ⋅=⨯⨯=..................................................................................................................15分 15.(17分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.请仅就图2的情形解答下列问题.(1)求证:2PAO PBO ∠=∠;(2)若O 的半径为5,203AP =求BP 的长 解:(1)证明:连接OP ,取y 轴正半轴与O 交点于点Q ,如下图:......................................................................1分 ,OP ON OPN PBO =∴∠=∠........................................................................................................................................2分 POQ ∠为PON △的外角2POQ OPN PBO PBO ∴∠=∠+∠=∠............................................................................................................................3分 90POQ POA POA PAO ∠+∠=∠+∠=︒......................................................................................................................4分 PAO POQ ∴∠=∠............................................................................................................................................................5分 2PAO PBO ∴∠=∠..........................................................................................................................................................6分 (2)过点Q 作PO 的垂线,交PO 与点C ,如下图:...................................................................................................7分由题意:在Rt APO 中53tan 2043OP PAO AP ∠===..........................................................................................................................................9分由(1)知:,QOC OAP APO OCQ ∠=∠∠=∠Rt APO Rt OCQ ∽......................................................................................................................................................11分 3tan ,54CQ COQ OQ CO ∴∠===....................................................................................................................................12分 4,3CO CQ ∴==............................................................................................................................................................13分 541PC PO CO ∴=-=-=............................................................................................................................................14分 221910PQ PC CQ ∴=++分 ∵NQ 是直径;∴∠BPQ=90。.....................................................................................................................................................................16分 在Rt QPB △中,由勾股定理得:2221010310BP BQ PQ --分 即310BP =。

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

模拟中考数学试题及答案

模拟中考数学试题及答案

模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个数的倒数是1/4,那么这个数是______。

答案:413. 一个三角形的内角和是______度。

答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。

答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。

答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。

中考数学模拟测试卷带答案

中考数学模拟测试卷带答案

中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A .B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( )A .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x +=(k 为常数)的图象上123y y y 、、的大小关系为( ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 .11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 米(结果保留根号).三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)第5题图 第6题图 第8题图第10题图 第11题图 第12题图14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长?15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( B )B . B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( B )B .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( A )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上123y y y 、、的大小关系为( C ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( A )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( D ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( A )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( D )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= 1- .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 31 .第5题图 第6题图 第8题图11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 23 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 ()153 1.5 米(结果保留根号). 三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)1)由题意知60CAB ∠=︒,BC=4 ...................................................1分 ∴43tan603BC AB ==︒.................................................................3分 (2)43AB =30ACB ∠=︒ 90ABC ∠=︒ ⊙832AC AB = ...........................................................................................................................................................5分60BAC ∠=︒ 30ACB ∠=︒ 60DCE ∠=︒∴=90ACD ∠︒ 60DAC ∠=︒ ..........................................................................................................................................6分 ∴83tan6038DC AC =⋅︒== ...................................................................................................................................8分 在Rt CDE △中3sin60843DE CD =⋅︒==........................................................................................................10分 14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.第10题图 第11题图 第12题图(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;{}(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长? 1)解:设水温下降过程中,y 与x 的函数关系式为k y x=(k ≠0),...........................................1分 由题意得,点(4,100)在反比例函数k y x =的图象上 ∴4100k =..............................................................................................................................2分 解得:400k =∴水温下降过程中,y 与x 的函数关系式是400y x=;.....................................................3分 解:设在加热过程中,y 与x 的函数关系式为y=kx+b(k ≠0).......................................................................4分 把(0,20),(4,100)带入y=kx+b(k ≠0)得20=b, 100=4k+b.....................................................................................................................................................5分 解得:k=20,b=20..................................................................................................................................................6分 ∴y=20x+20当y=40时1x =.............................................................................................................................................7分在降温过程中,水温为40℃时40040x=..................................................................................................8分 解得:10x =...................................................................................................................................................9分1019-=........................................................................................................................................................10分∴一个加热周期内水温不低于40℃的时间为9min .15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.(1)证明:如图所示,连接OD ,.........................................................1分∵AD 平分∠CAB∴∠OAD =∠EAD ...........................................................................................................................................................2分 ∵OD =OA∴∠ODA =∠OAD ............................................................................................................................................................3分 ∴∠ODA =∠EAD .∴OD ∥AE .........................................................................................................................................................................4分 ∵AE PE ⊥∴OD PE ⊥∵D 在⊙O 上∴EP 与⊙O 相切...........................................................................................................................................................5分 (2)证明:OD PE ⊥∵∴90ODB BDP ∠+∠=︒.............................................................................................................................................6分 ∵AB 是⊙O 的直径⊙90ADB ∠=︒............................................................................................................................................................7分 即90ODB ODA ∠+∠=︒∴=ODA BDP ∠∠......................................................................................................................................................8分 ∵OD =OA∴∠ODA =∠OAD .⊙=OAD BDP ∠∠.....................................................................................................................................................9分 又∵APD DPB ∠=∠∴APD DPB ∆∆∽.....................................................................................................................................................10分 ∴AD AP BD DP=............................................................................................................................................................11分 ∴AD ·DP =BD ·AP ...................................................................................................................................................12分 解:作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB =90°∵AB =6,AD =2∴BD 22-AB AD 2 132OD AB ==.................................................................................................................15分 ∵12AB •DG =12AD •BD∴DG 423分 ∵AD 平分∠CAB ,AE ⊥DE ,DG ⊥AB∴DE =DG 423∴AE 22AD DE -163............................................................................................................................................17分 ∵OD ∥AE∴△ODP ∽△AEP .........................................................................................................................................................18分 ∴DP EP =OD AE ,即DP DE DP OD AE += ∴4213363DPDP =........................................................................................................................................................19分 ∴2721DP =分。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 25答案:B3. 计算下列哪个表达式的值等于0?A. 2x - 4 = 0B. 3x + 6 = 0C. 5x - 10 = 0D. 4x - 8 = 0答案:C4. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -8答案:A5. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 12B. 18C. 24D. 30答案:C6. 下列哪个选项是不等式的基本性质?A. 加法性质B. 乘法性质C. 除法性质D. 以上都是答案:D7. 计算下列哪个表达式的值大于0?A. 3x - 9B. 2x + 4C. 5x - 15D. 4x - 8答案:B8. 一个数的立方根是2,那么这个数是多少?A. 8B. -8C. 2D. -2答案:A9. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 7C. 9D. 12答案:A10. 下列哪个选项是等式的基本性质?A. 加法性质B. 乘法性质C. 除法性质D. 以上都是答案:D二、填空题(每题4分,共20分)1. 一个数的平方等于16,那么这个数是______。

答案:±42. 如果一个数的绝对值是5,那么这个数可以是______。

答案:±53. 一个数的倒数是1/2,那么这个数是______。

答案:24. 一个数的立方是8,那么这个数是______。

答案:25. 一个等差数列的首项是2,公差是3,那么它的第五项是______。

答案:17三、解答题(每题10分,共50分)1. 解方程:2x - 5 = 9答案:x = 72. 计算:(3x - 2) / (x + 1) = 2答案:x = 13. 已知一个直角三角形的两条直角边长分别为6和8,求斜边长。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

中考数学模拟试题及答案

中考数学模拟试题及答案

中考数学模拟试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 135°C. 90°D. 180°3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 44. 以下哪个选项不是二次根式?A. √2B. √(3x)C. √x/2D. √x²5. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是______。

7. 一个三角形的三边长分别为3、4、5,那么它的周长是______。

8. 如果一个数的立方根是2,那么这个数是______。

9. 一个直角三角形的两条直角边分别为6和8,那么它的斜边长是______。

10. 一个数的倒数是1/4,那么这个数是______。

三、解答题(共80分)11. 解一元一次方程:3x - 5 = 14(10分)12. 证明:如果一个三角形的两边长分别是a和b,且a > b,那么这个三角形的第三边c满足b - a < c < a + b。

(15分)13. 已知一个长方形的长是10cm,宽是5cm,求它的周长和面积。

(15分)14. 计算:(2 + √3)²(15分)15. 一个圆的直径是14cm,求它的半径、直径和面积。

(25分)四、附加题(10分)16. 一个数列的前三项是1,1,2,从第四项开始,每一项都是它前三项的和。

求这个数列的第10项。

答案:一、选择题1. C2. B3. C4. D5. B二、填空题6. ±57. 128. 89. 1010. 4三、解答题11. 解:3x - 5 = 14,移项得3x = 19,两边同时除以3得x = 19/3。

中考数学模拟测试卷(带答案)

中考数学模拟测试卷(带答案)
三、解答题(每题10分,共40分)
1.解方程3x−5=2x+8。
2.计算
3.一个工厂生产一种零件,每个零件的成本是5元,售价是10元。如果工厂希望获得的利润至少是2000元,那么至少需要卖出多少个零件?
4.一个圆形花坛的直径是10米,围绕花坛周围铺设了一条2米宽的小路。这条小路的面积是多少?
四、应用题(每题20分,共40分)
5.函数y=2x+3与x轴的交点坐标是。
6.一个圆的半径是7厘米,那么它的面积是平方厘米。
7.函数y=x2−6x+9可以写成顶点式y=(x−3)2所以它的最小值是。
8.一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的表面积是平方厘米。
9.计算 的结果是。
10.解方程3x−7=2x+3的解是。
D. x=4
4.函数y=3x2+6x+3的顶点坐标是:
A. (−1,0)
B. (1,0)
C. (−1,2)
D. (1,2)
5.下列哪个选项是无理数?
A.
B. π
C. 0.5
D. 22/7
6.一个圆的直径是14厘米,那么它的半径是:ຫໍສະໝຸດ A. 7厘米B. 14厘米
C. 28厘米
D. 2厘米
7.下列哪个选项是等腰三角形?
3.A
4.C
5.B
6.A
7.A
8.A
9.A
10.D
二、填空题
1.5
2.3
3.180
4.9
5.
6.153.85
7.0
8.52
9.6.125
10.5
三、解答题
1.3x−5=2x+8

中考模拟数学试题及答案

中考模拟数学试题及答案

中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. -3B. πC. 0.5D. √42. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 7C. 8D. 93. 根据题目所给的函数y = 2x - 1,当x = 3时,y的值是:A. 3B. 5C. 7D. 94. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. 25. 一个圆的半径是5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π6. 根据题目所给的不等式3x - 5 > 10,解得x:A. x > 3B. x > 5C. x > 4D. x < 37. 一个正方体的表面积是150平方厘米,那么它的体积是:A. 125立方厘米B. 150立方厘米C. 175立方厘米D. 200立方厘米8. 一个数列的前三项分别是1, 3, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定9. 如果一个多项式f(x) = ax^2 + bx + c,其中a ≠ 0,那么这个多项式是:A. 一次多项式B. 二次多项式C. 三次多项式D. 高次多项式10. 一个班级有40个学生,其中30个学生喜欢数学,10个学生喜欢英语,那么至少有多少个学生喜欢数学或英语?A. 30B. 35C. 40D. 无法确定二、填空题(每题4分,共20分)11. 一个数的绝对值是5,这个数可以是______。

12. 如果一个三角形的内角和为180°,那么一个四边形的内角和是______。

13. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是______。

14. 一个分数的分子是5,分母是8,化简后是______。

15. 如果一个数的立方根是2,那么这个数是______。

三、解答题(每题10分,共50分)16. 解方程:2x + 5 = 13。

中考数学模拟试题及答案

中考数学模拟试题及答案

中考数学模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是答案:D3. 计算下列算式的结果:(3x - 2) - (x + 4) =A. 2x - 6B. 2x + 2C. x - 6D. x + 2答案:C4. 一个直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 6C. 7D. 8答案:A5. 下列哪个函数是二次函数?A. y = xB. y = x^2C. y = 2x + 1D. y = x^3答案:B6. 一个数的立方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D7. 计算下列算式的结果:(2x + 3)(2x - 3) =A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. 9 + 4x^2答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算下列算式的结果:(a^2 - b^2) / (a - b) =A. a + bB. a - bC. a^2 - b^2D. a^2 + b^2答案:B二、填空题(每题2分,共20分)1. 一个数的平方根是它本身,这个数是________。

答案:0或12. 一个数的立方根是它本身,这个数是________。

答案:0,1,-13. 一个数的相反数是它本身,这个数是________。

答案:04. 一个数的倒数是它本身,这个数是________。

答案:1或-15. 一个数的绝对值是它本身,这个数是________。

答案:非负数6. 一个数的平方是25,这个数是________。

答案:5或-57. 一个数的立方是-8,这个数是________。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列实数中,绝对值最小的是()A. 2B. -3C. 0D. 1/22. 一个数的相反数是3,这个数是()A. 3B. -3C. 0D. 13. 下列运算中,正确的是()A. (-2)^2 = 4B. √16 = 4C. √(-4) = 2D. (-3)^3 = -274. 一个角的补角是120°,则这个角是()A. 60°B. 30°C. 90°D. 120°5. 下列方程中,是一元二次方程的是()A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 3x - 2 = 0D. x^2 - 2xy + y^2 = 06. 在直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (-2, 3)D. (2, -3)7. 下列不等式中,解集为x > 2的是()A. x - 2 < 0B. x + 2 > 0C. x - 2 > 0D. x + 2 < 08. 一个三角形的两边长分别为3和5,第三边的长x满足()A. 2 < x < 8B. 3 < x < 8C. 2 < x < 7D. 3 < x < 79. 函数y = 2x + 3的图象是()A. 一条直线B. 一条双曲线C. 一条抛物线D. 一条曲线10. 下列统计量中,描述数据集中趋势的是()A. 中位数B. 众数C. 方差D. 极差二、填空题(本题共5小题,每小题3分,共15分)11. 一个数的平方根是2,这个数是______。

12. 一个数的立方根是-8,这个数是______。

13. 一个角的余角是30°,则这个角是______。

14. 一个等腰三角形的底角是45°,则顶角是______。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024的倒数是()A.2024B.C.D.2.如图是一个正方体的展开图,则与“承”字相对的是()A.华B.文C.中D.化3.下列函数中,其图象一定不经过第二象限的是()A. B.C. D.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为、,则点D的坐标为()A.B.C.D.5.在比小的数中,最大的整数是()A. B.0 C.1 D.26.下列运算错误的是()A. B.C. D.7.如图,矩形ABCD中以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.8.如图,四边形ABCD内接于,连接若,,则的度数是()A.B.C.D.9.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度:的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为,广告牌顶部E的仰角为小辉的身高忽略不计,已知广告牌米,则该主楼AD的高度约为结果精确到整数,参考数据:,,A.80mB.85mC.89mD.90m10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为小时,两车之间的距离为千米,图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二、填空题:本题共5小题,每小题3分,共15分。

11.农业生产保持稳中有进,粮食产量连续9年保持在万亿斤以上,将数据“万亿”用科学记数法表示为______.12.若分式的值为0,则______.13.方程的根为______.14.现有4张完全相同的卡片分别写着数字,1,3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线与x轴有交点的概率为______.15.如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的是______.三、解答题:本题共8小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学全真模拟试题 24座位号考生注意:1.本卷共8页,三大题共26小题,满分150分.考试形式为闭卷,考试时间为120分钟.2.答题时要冷静思考、仔细检查.预祝你取得好成绩!1•据中新社报道:2010年我国粮食产量将达到 540000000000千克,用科学记数法表示这个粮食产量为 _______ 千克•2.分解因式:x 2-仁 ___________ .3•如图 1,直线 a // b ,则/ ACB= ______ .24•抛物线y= —4(x+2) +5的对称轴是 ____ .5.如图2,菱形ABCD 的对角线的长分别为 2和5,P 是对角线AC 上任一点(点P 不 与点A 、C 重合),且PE // BC 交AB 于E, PF // CD 交AD 于F ,则阴影部分的面积是 _______________ .6•口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别 •随机从口袋中任取一只球,取到黄球的概率是 _______ •7•如图3,在O O 中,弦AB=1.8cm ,圆周角/ ACB=30。

,则O O 的直径等于 _________ cm.8•某班50名学生在适应性考试中,分数段在 90~100分的频率为0.1,则该班在这个分数段的学生有 ______ 人.9•正n 边形的内角和等于1080 °,那么这个正n 边形的边数n= ________ • 10. —串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图 4),则这串珠子被盒子遮住的部分有颗•得分评卷人题号 -一- -二二三总分17 18192021 22 23 24 25 26得分、填空题(每题 3分,共30 分)AD(图2)C(图4)二、选择题(以下每小题均有 A 、B C 、D 四个选项,其中只有一个选项 正确,请把正确选项的字母选入该题括号内 •每小题4分,共24分)(B ) y v 0 (C )5次数学模拟考试进行统计分析,判断小明的数学成绩5次数学成绩的( (B )方差或极差 (D )频数或众数1 2 一16.已知抛物线y (x-4) -3的部分图象(如图7),图象再次与x 轴相交时的坐标是()3(A ) ( 5, 0)(B ) (6, 0)先化简,再求值:(空 —x —1 x+1得分评卷人11. 下列调查,比较容易用普查方式的是( (A ) 了解贵阳市居民年人均收入 (C ) 了解贵阳市中小学生的近视率 12. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下(A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长(D )无法判断谁的影子长13. 棱长是1cm 的小立方体组成如图 5所示的几何体,那么这个几何体的表面积是( 2) (B ) 了解贵阳市初中生体育中考的成绩 (D ) 了解某一天离开贵阳市的人口流量)(D) 227cm 6),当x v 0时,y 的取值范围是(-2v y v 0 ( D ) y v - 2 14.已知一次函数(A ) y >0 15•数学老师对小明在参加高考前的 是否稳定,于是老师需要知道小明这 (A )平均数或中位数 (C 众数或频率 得分评卷人(本题满分8分)(D) (8, 0)(图5)(B) 33cm(C ) ( 7, 0) 17. 三、解答题:18.(本题满分10分)11)得分评卷人F 面两幅统计图(如图8、图9),反映了某市甲、乙两所中学学生参加课外活动的情况•请你 通过图中信息回答下面的问题(1) 通过对图8的分析,写出一条你认为正确的结论;(3分) (2) 通过对图9的分析,写出一条你认为正确的结论;(3分)(3)2003年甲、乙两所中学参加科技活动的学生人数共有多少?(4分)k如图10,一次函数 y=ax ・b 的图象与反比例函数 y 的图象交于 M 、N 两点.x(1) 求反比例函数和一次函数的解析式;(8分)(2) 根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.(4 分)(1)请你画出这个几何体的一种左视图; (5分)得分评卷人19.(本题满分12分)得分评卷人20.(本题满分9分)甲、乙两校参加课外活动的学生 人数统计图(1997~2003年)(图8) 2003年甲、乙两校学生参加课 外活动情况统计图 |文体活动厂科技活动—其他(图9)(2)若组成这个几何体的小正方体的块数为 n ,请你写出n 的所有可能值.(4 分)(图 11)质量检查员准备从一批产品中抽取 10件进行检查,如果是随机抽取,为了保证每件产品被 检的机会均等•(1) 请采用计算器模拟实验的方法,帮质检员抽取被检产品; (3分) (2)如果没有计算器,你能用什么方法抽取被检产品? (3分)1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元•小彬经常来该店租碟,若每月租碟数量为 x 张.(1) 写出零星租碟方式应付金额y 1(元)与租碟数量x (张)之间的函数关系式;(2分)(2) 写出会员卡租碟方式应付金额y 2(元)与租碟数量x (张)之间的函数关系式;(2分)(3) 小彬选取哪种租碟方式更合算? ( 4分)21.(本题满分6分)22.(本题满分8分)23.(本题满分8分)同一底上的两底角相等的梯形是等腰梯形吗?如果是,请给出证明(要求画出图形,写出已 知、求证、证明);如果不是,请给出反例(只需画图说明).某居民小区有一朝向为正南方向的居民楼 (如图12),该居民楼的一楼是高6米的小区超市, 超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线 的夹角为32°时.(1) 问超市以上的居民住房采光是否有影响,为什么? (5分)(2) 若要使超市采光不受影响,两楼应相距多少米?(4分)53 1065(结果保留整数,参考数据:sin 32鞍 ——,cos32 ——,tan32?、一)100125 8某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:24.(本题满分9分)25.(本题满分12分)B (图 12)居民楼24.(本题满分8分)若日销售量y是销售价x的一次函数.(1)求出日销售量y (件)与销售价x(元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)26.(本题满分14分)得分评卷人如图13,四边形ABCD 中,AC=6, BD=8且AC 丄BD 顺次连接四边形ABCD 各边中点,得 到四边形A i B i C i D i ;再顺次连接四边形A i B i C i D i 各边中点,得到四边形A 2B 2C 2D 2……如此进行 下去得到四边形A n B n C n D n .(1) 证明:四边形A i B i C i D i 是矩形;(6分)(2) 写出四边形A i B i C i D i 和四边形A 2B 2C 2D 2的面积;(2分) (3) 写出四边形A n B n C n D n 的面积;(2分) (4) 求四边形A 5B 5C 5D 5的周长.(4分)参考解答及评分标准评卷教师注意:如果学生用其它方法,只要正确、合理,酌情给分. 一、 填空题(每小题3分,共30分)iiiii. 5.4 i0 ; 2. (x i )(x-1) ; 3. 78; 4. X - -2 ;5. 2.5;6.i47. 3.6;8. 5 ;9. 8;i0. 27.二、 选择题(每小题4分,共24分) ii. Bi2.D i3.A i4.D i5.B i6.C三、 解答题i7•原式=3(X i )-(X-i ) .................................................................................... (4 分)=2x 4 ……(5 分)当 x — 2 -2时,原式=2^. 2 -2) 4 =2、三 .............. (8 分) i8.(i ) i997年至2003年甲校学生参加课外活动的人数比乙校增长的快 .............. (3分)(学生给出其它答案,只要正确、合理均给 3分)(2) 甲校学生参加文体活动的人数比参加科技活动的人数多; ..................... (6分) (学生给出其它答案,只要正确、合理均给 3分)D(图 i3)(3)2000 38% ii05 60% =i423(9分)27.(本题满分14分)答:2003年两所中学的学生参加科技活动的总人数是 1423人. ................... (10分)k19. (1)将 N ( 一1, 一 4)代入 y 中 得 k=4 .............................................................. ( 2分)x4反比例函数的解析式为 y .............................................................................. (3分)x 4将M (2, m )代入解析式y 中 得m=2( ................. 4分)彳 _解得a=2 b=-2 ...................................................................... ( 7分)-a b = -4一次函数的解析式为y =2x - 2 ............................................................................. (8分) (2)由图象可知:当x v -1或0v x v 2时反比例函数的值大于一次函数的值 .......... (12分)20. (1)左视图有以下5种情形(只要画对一种即给5分):(2) n -8,9,10,11.21. (1)利用计算器模拟产生随机数与这批产品编号相对应, 产生10个号码即可. ..... (3分)(2)利用摸球游戏或抽签等 .............................................. ( 6分)22. (1)旳=x(2 分)(2) y2=0.4x 12 ................................................. (4 分)(3)当x >20时,选择会员卡方式合算 当x=20时,两种方式一样当x v 20时,选择零星租碟方式合算 .................................... (8分)23•是等腰梯形 ................................................................ (1分)已知:梯形 ABCD, AD //BC 且/B= Z C (或/ A= Z D ) ......................... ( 2 分)求证:梯形ABCD 是等腰梯形 ............................................. ( 3分)证明一:过点A 作AE// DC ,交BC 于E ..............................'/AD //BC AE // DC•••四边形AECD 是平行四边形,•••/ AEB=Z C ,x 将 M (2, 2), N (— 1, — 4)代入 y =ax+b 中2a b= 2(9分)E(5 分)/Z B=Z C • Z AEB=Z BAE=DC(6分)•••AB=AE •••AB=DC •梯形ABCD 是等腰梯形证明二:过A 、D 两点分别作AE 丄BC , DF 丄BC 垂足为E 、•••AE 丄BC 、DF 丄BC • AE // DF 且/ AEB=Z DFCV AD // BC•四边形AEFD 是平行四边形• AE=DF•••/ AEB=Z DFC / B= Z C• △ AEB ^A DFC/-AB=DC•梯形ABCD 是等腰梯形证明三:延长BA 、CD 交于E 点vZ B=Z C •BE=CE • AD // BC EAD=Z B ,Z EDA=Z C• AE=DE• AB=DC•梯形ABCD 是等腰梯形24. (1)如图设 CE=x 米,贝卩 AF= (20_x )米 ..... (1 分)AFtan32?,即 20-x=15jtan32°,x : 11 ......... ( 4分)•••11>6, •居民住房的采光有影响.(5分)A B8⑵如图:sin32?-,BF ^205 =32…8分)两楼应相距32米 ............................... (9分) 25. (1 )设此一次函数解析式为y 二kx • b. ....................... ( 1分)15k b =25则,解得:k= -1,b=40, ............................. ( 5 分)20k b =20L即:一次函数解析式为y = -X • 40 ................................ ( 6分) (2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w = (x -10)(40 -x ) = -x 2 50x -400=-(x-25)2 225 ........................................................................................ (10 分)产品的销售价应定为25元,此时每日获得最大销售利润为225元 .................. (12分)26(1)证明v •点A 1, D 1分别是AB 、AD 的中点,• A 1D 1是厶ABD 的中位线 .......... (1分)1 1• A 1D 1 // BD , AD I = — BD ,同理:B 1C 1 // BD , B rG = — BD ............................. ( 2分)2 2(7 分) 8 分)E ftE F • Z EAD=Z EDA(7分)•A D1 // B C1, A1D1 = B1G , •四边形AB1G D1是平行四边形.............. (4分)v AC丄BD, AC / A1B1, BD // A1D1, • A1B1 丄^D1即Z B1A D1=90°(5分)•••四边形是矩形......................................................... (6分)(2)四边形ABGD!的面积为12;四边形A2B2C2D2的面积为6; ................ (8分)1(3)四边形A n B n C n D n的面积为24 - ;.................................. (10分)2n(4)方法一:由(1)得矩形AB I CQ I的长为4,宽为3;•••矩形A5B5C5D5 s矩形ABCQ I;•••可设矩形A5B5C5D5的长为4x,宽为3x,则14^_3x 524, ....................................................................................... (12 分)1 3解得x ; • 4x冷x ; ...................................................... (13分)4 43 7••矩形A5B5C5D5的周长=生(1盲).................................. (14分)方法二:矩形A5B5C5D5的面积/矩形A1BC1D1的面积=(矩形A5B5C5D5的周长)2/ (矩形ABQ1D1的周长)Q即一:12=(矩形A5B5C5D5的周长):144••矩形A5B5C5D5的周长=J?x丄心42=7V 4 12 2。

相关文档
最新文档