北京市北京四中九年级上册期末数学试题(含答案)
【初三数学】北京市九年级数学上期末考试测试卷(含答案解析)

九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移九年级上册数学期末考试试题(含答案)一、选择题(3×12=36)1.点P(﹣2,4)关于坐标原点对称的点的坐标为()A.(4,﹣2)B.(﹣4,2)C.(2,4)D.(2,﹣4)2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为6的圆中,120°的圆心角所对的弧长是()A.4πB.5πC.6πD.8π4.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A.B.C.D.6.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C的度数为()A.22°B.26°C.28°D.30°7.将一个正方形纸片放在平面直角坐标系中,已知A(﹣1,0),B(﹣1,1),C(0,1),若绕点D(0,0)顺时针旋转这个正方形,旋转角为135°,则旋转后点B的坐标B′为()A.(1,1)B.(2,0)C.(,0)D.(1,﹣1)8.已知函数y=(x﹣1)2,下列结论正确的是()A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x<1时,y随x的增大而减小D.当x<﹣1时,y随x的增大而增大9.若抛物线y=2x2﹣3x﹣k与x轴没有交点,则k的取值范围为()A.k≤﹣B.k<﹣C.k≥﹣且k≠0D.k>﹣且k≠0 10.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD 的度数为()A.50°B.60°C.70°D.80°11.已知抛物线y=x2+2x+4的顶点为P,与y轴的交点为Q,则PQ的长度为()A.B.2C.D.12.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A.1B.C.2﹣D.2+二、填空题(3×6=18)13.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.14.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,若DE=4,BC=AE=6,则EC的长为.15.如图,A,B,C是⊙O上的三点,且OA=AB=BC=2,则AC的长为.16.把二次函数y=x2﹣4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,此时抛物线相应的函数表达式是.17.正方形ABCD的边长AB=2,E是AB的中点,F是BC的中点,AF分别与DE,BD相交于点M,N,则MN的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度)(2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,请用无刻度的直尺,画出旋转后的△ABC,并简要说明旋转后点C和点B的对应点点C′和点B′的位置是如何而找到的(不要求证明)三、解答题(66分)19.(8分)解方程:x2﹣5x﹣6=0.20.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.21.(10分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,(Ⅰ)求证:△AFE∽△CFD;(Ⅱ)若AB=4,AD=3,求CF的长.22.(10分)如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,连接BE.(Ⅰ)求证:AD⊥ED;(Ⅱ)若CD=4,AE=2,求⊙O的半径.23.(10分)某网商经销一种畅销玩具,每件进价为18元,每月销量y(件)与销售单价x(元)之间的函数关系如图中线段AB所示(Ⅰ)写出毎月销量y(件)与销售单价x(元)之间的函数关系式(含x的取值范围);(Ⅱ)当销售单价为多少元时,该网商毎月经销这种玩具能够获得最大销售利润?最大销售利润是多少?(销售利润=售价﹣进价)24.(10分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.25.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD =4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.2018-2019学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(3×12=36)1.【分析】根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.【解答】解:点P(﹣2,4)关于坐标原点对称的点的坐标为(2,﹣4),故选:D.【点评】本题考查了关于原点对称的点的坐标,关于原点对称,则两点的横、纵坐标都是互为相反数.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形.故本选项错误;B、不是中心对称图形.故本选项错误;C、不是中心对称图形.故本选项错误;D、是中心对称图形.故本选项正确.故选:D.【点评】本题考查了中心对称图形的概念,关键是根据中心对称图形是要寻找对称中心,旋转180度后与原图重合解答.3.【分析】根据弧长的公式l=进行解答.【解答】解:根据弧长的公式l=,得到:l==4π.故选:A.【点评】本题考查了弧长的计算,熟记弧长公式即可解答该题,属于基础题.4.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.5.【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AC:DF=2:3,∴AC:4=2:3,则AC=.故选:C.【点评】本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.6.【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【解答】解:连接OD,如图,∵CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∴∠ODA=∠CDA﹣90°=122°﹣90°=32°,∵OA=OD,∴∠A=∠ODA=32°,∴∠C=180°﹣∠ADC+∠A=180°﹣122°﹣32°=26°.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.7.【分析】作出图形,解直角三角形求出BD=,根据旋转变换的性质可得点B′在x轴的正半轴上,且DB′=DB=,即可得解.【解答】解:如图,∵A(﹣1,0),B(﹣1,1),C(0,1),D(0,0),∴BD=,∵正方形ABCD绕点D顺时针旋转135°,∴点B′在x轴的正半轴上,且DB′=DB=,所以,点B′的坐标是(,0).故选:C.【点评】本题考查了坐标与图形的变化﹣旋转,根据点B的坐标求出BD=,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在x轴的正半轴上是解题的关键.8.【分析】直接利用二次函数的增减性进而分析得出答案.【解答】解:函数y=(x﹣1)2,对称轴为直线x=1,开口方向上,故当x<1时,y随x的增大而减小.故选:C.【点评】此题主要考查了二次函数的性质,正确把握二次函数的增减性是解题关键.9.【分析】由于抛物线y=2x2﹣3x﹣k与x轴没有交点,所以b2﹣4ac<0,所以(﹣3)2﹣4×2•(﹣k)=9+8k<0,所以k<﹣.【解答】解:∵抛物线y=2x2﹣3x﹣k与x轴没有交点,∴b2﹣4ac<0,(﹣3)2﹣4×2•(﹣k)=9+8k<0,k<﹣.故选:B.【点评】本题考查了抛物线与x轴的交点问题,熟知b2﹣4ac<0抛物线与x轴没有交点是解题的关键.10.【分析】根据圆周角定理求出∠BAD,根据圆内接四边形的性质计算,得到答案.【解答】解:由圆周角定理得,∠CAD=∠CBD=80°,∴∠BAD=80°+30°=110°,∵四边形ABCD是⊙O内接四边形,∴∠BCD=180°﹣∠BAD=70°,故选:C.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.11.【分析】二次函数y=(x﹣h)2+k的顶点坐标为(h,k),所以易知y=x2+2x+4=(x+1)2+3 的顶点为(﹣1,3),将x=0把代入y=x2+2x+4,得y=4,因此抛物线与y轴的交点为(0,4),最后根据根据两点坐标由求出PQ长度.【解答】解:∵y=x2+2x+4=(x+1)2+3抛物线的顶点为(﹣1,3),将x=0把代入y=x2+2x+4,得y=4,∴抛物线与y轴的交点为(0,4),∴PQ=故选:A.【点评】本题考查了二次函数的顶点坐标和y轴交点坐标,正确理解二次函数y=(x﹣h)2+k的顶点坐标(h,k)是解题的关键.12.【分析】设B(x1,n)、C(x2,n).因为△ABC是等腰直角三角形,作AD⊥BC,x2|=所以AD=BC,即BC=2AD,AD=n﹣(﹣1)=n+1,即:BC=|x1﹣==,所以=2(n+1),容易求出n=1.【解答】解:设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D连接AB,AC,∵y=(x﹣2)2﹣1,∴顶点A(2,﹣1),AD=n﹣(﹣1)=n+1∵直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B、C,∴(x﹣2)2﹣1=n,化简,得x2﹣4x+2﹣2n=0x1+x2=4,x1x2=2﹣2nx2|===∴BC=|x1﹣∵点B、C关于对称轴直线AD对称,∴D为线段BC的中点,∵△ABC是等腰直角三角形,∴AD=BC即BC=2AD=2(n+1),∴(2+2n)=(n+1)2,化简,得n2=1,∴n=1或﹣1,n=﹣1时直线y=n经过点A,不符合题意舍去,所以n=1.故选:A.【点评】本题考查了二次函数图象的性质以及根与系数的关系,正确理解二次函数的图象性质和根与系数的关系是解题的关键.二、填空题(3×6=18)13.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为.故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【分析】根据平行线判定△ADE∽△ABC,从而可得对应边成比例,即,利用已知数据即可求出EC的长.【解答】解:∵DE∥BC∴△ADE∽△ABC∴而DE=4,BC=AE=6∴=解得EC=3故答案为3.【点评】本题考查的是相似三角形的判定与性质,根据性质得到对应边成比例是解决本题的关键.15.【分析】依据A,B,C是⊙O上的三点,且OA=AB=BC=2,即可得到四边形ABCO 是菱形,△ABO和△BCO都是等边三角形,再根据勾股定理即可得到AD的长,进而得出AC的长.【解答】解:∵A,B,C是⊙O上的三点,且OA=AB=BC=2,∴OA=AB=BC=OC=OB=2,∴四边形ABCO是菱形,△ABO和△BCO都是等边三角形,∴AC⊥OB,∠BAD=30°,BD=BO=1,AC=2AD,∴Rt△ABD中,AD=,∴AC=2AD=2,故答案为:2.【点评】本题主要考查了等边三角形的判定与性质,等边三角形是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.16.【分析】首先将原式转化为顶点式,进而利用二次函数平移规律进而求出即可.【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,得到抛物线解析是:y=(x﹣2+3)2﹣1﹣1=(x+1)2﹣2.故答案为:y=(x+1)2﹣2.【点评】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.17.【分析】根据△BNF∽△DNA,可求出AN的长;再根据△AME∽△ABF,求出AM的长,利用MN=AN﹣AM即可解决.【解答】解:∵BF∥AD∴△BNF∽△DNA∴而BF=BC=1,AF=∴AN=又∵△DAE≌△ABF(SAS)∴∠AED=∠BFA∴△AME∽△ABF∴即:∴AM=∴MN=AN﹣AM=﹣=故答案为.【点评】本题考查的是相似三角形的判定与性质,根据对应边成比例即可利用已知线段求出未知线段的长度.18.【分析】(1)利用勾股定理的逆定理即可解决问题.(2)如图,延长AC到格点B′,使得AB′=AB=5,延长BC到格点E,连接AE,取格点F,连接FB′交AE于点C′,△AB′C′即为所求.【解答】解:(1)∵AC=3,BC=4,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为90.(2)如图,延长AC到格点B′,使得AB′=AB=5,延长BC到格点E,连接AE,取格点F,连接FB′交AE于点C′,△AB′C′即为所求.【点评】本题考查作图﹣旋转变换,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(66分)19.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.20.【分析】通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.【解答】解:列表如下:由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(Ⅰ)根据矩形对边平行,有AE∥DC,可知△AFE∽△CFD;(Ⅱ)根据相似三角形的性质可得,再利用已知线段的长代入即可求出CF的长.【解答】(Ⅰ)证明:∵四边形ABCD是矩形,∴AE∥DC∴∠FAE=∠FCD,∠FEA=∠FDC∴△AFE∽△CFD故△AFE∽△CFD得证.(Ⅱ)解:由(1)知△AFE∽△CFD,∴而E是边AB的中点,且AB=4,AD=3∴AE=2,AC=5∴==而AC=5∴AF=,CF=故CF的长为.【点评】本题考查的是相似三角形的判定与性质,根据对应边成比例即可利用已知线段求出未知线段的长度.22.【分析】(Ⅰ)连接OC,易证OC⊥DC,由OA=OC,得出∠OAC=∠OCA,则可证明∠OCA=∠DAC,证得OC∥AD,根据平行线的性质即可证明;(Ⅱ)根据圆周角定理证得∠AEB=90°,根据垂径定理证得EF=BF,进而证得四边形EFCD是矩形,从而证得BE=8,然后根据勾股定理求得AB,即可求得半径.【解答】(Ⅰ)证明:连接OC,交BE于F,由DC是切线得OC⊥DC;又∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC∥AD,∴∠D=∠OCD=90°即AD⊥ED.(Ⅱ)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE∥CD,∵OC⊥CD,∴OC⊥BE,∴EF=BF,∵OC∥ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB===2∴⊙O的半径为.【点评】本题考查了圆的切线的性质,圆周角定理,垂径定理以及勾股定理的应用.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.23.【分析】(1)根据函数图象中的数据可以求得线段AB对应的函数解析式;(2)利用(1)所求可以得到利润和售价之间的函数关系式,然后根据二次函数的性质即可解答本题.【解答】解:(1)设AB段对应的函数解析式为y=kx+b,,解得:,即AB段对应的函数解析式为y=﹣20x+1000(20≤x≤50);故答案为:y=﹣20x+1000(20≤x≤50);(2)设销售利润为w元,w=(x﹣18)(﹣20x+1000)=﹣20x2+1360x﹣18000=﹣20(x﹣34)2+5120,∵20≤x≤50,∴当x=34时,w取得最大值,此时w=5120,答:当销售单价为34元时,该网商每月经销这种玩具能够获得最大销售利润,最大销售利润是5120元;【点评】本题考查二次函数的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.24.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.25.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+ t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,。
2022年北京市第四中学九年级数学第一学期期末复习检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.在如图所示的网格中,每个小正方形的边长均为1,ABC 的三个顶点都是网格线的交点.已知(22)A -,,()12C --,,将ABC 绕着点C 顺时针旋转90︒,则点B 对应点的坐标为( )A .()2,2-B .()5,3--C .()2,2D .()0,0 2.若反比例函数k y x =的图象经过点(2,-3),则k 值是( ) A .6 B .-6 C .16 D .16- 3.如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P 、Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .3B .2131+C .9D .104.如图,经过原点O 的⊙P 与x y 、轴分别交于A B 、两点,点C 是劣弧OB 上一点,则ACB ∠( )A .是锐角B .是直角C .是钝角D .大小无法确定5.将二次函数y =2x 2﹣4x +5的右边进行配方,正确的结果是( )A .y =2(x ﹣1)2﹣3B .y =2(x ﹣2)2﹣3C .y =2(x ﹣1)2+3D .y =2(x ﹣2)2+36.以下事件属于随机事件的是( )A .小明买体育彩票中了一等奖B .2019年是中华人民共和国建国70周年C .正方体共有四个面D .2比1大7.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时8.如图,在平面直角坐标系中,点()2,5P 、(),Q a b ()2a >在函数k y x=()0x >的图象上,过点P 分别作x 轴、y 轴的垂线,垂足为A 、B ;过点Q 分别作x 轴、y 轴的垂线,垂足为C 、D .QD 交PA 于点E ,随着a 的增大,四边形ACQE 的面积( )A .增大B .减小C .先减小后增大D .先增大后减小9.关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则整数a 的最大值是( )A .1B .﹣4C .3D .410.如图,在半径为50mm 的O 中,弦AB 长50mm ,则点O 到AB 的距离为( )A .50mmB .253mmC .25mmD .252mm二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,()()()0,00,22,0O A B ,,,P 是经过O,A,B 三点的圆上的一个动点(P 与O,B 两点不重合),则OAB ∠=__________°,OPB ∠=__________°.12.如图,Rt ABC 中,∠C =90°,AC =10,BC =1.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当BN ∥PE 时,t 的值为_____.13.已知点P 是线段AB 的黄金分割点,AP >PB .若AB =2,则AP =_____.14.如图,是某同学制作的一个圆锥形纸帽的示意图,则围成这个纸帽的纸的面积为______.15.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.16.如图,在菱形ABCD 中,边长为10,60A ∠=︒.顺次连结菱形ABCD 各边中点,可得四边形1111D C B A ;顺次连结四边形1111D C B A 各边中点,可得四边形2222A B C D ;顺次连结四边形2222A B C D 各边中点,可得四边形3333A B C D ;按此规律继续下去….则四边形2019201920192019A B C D 的周长是_________.17.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.18.如图,点B ,E 分别在线段AC ,DF 上,若////AD BE CF ,3AB =,2BC =, 4.5DE =,则DF 的长为________.三、解答题(共66分)19.(10分)如图,河的两岸MN 与PQ 相互平行,点A ,B 是PQ 上的两点,C 是MN 上的点,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据2≈1.414,3≈1.732)20.(6分)如图,已知△ABC ,∠B =90゜,AB =3,BC =6,动点P 、Q 同时从点B 出发,动点P 沿BA 以1个单位长度/秒的速度向点A 移动,动点Q 沿BC 以2个单位长度/秒的速度向点C 移动,运动时间为t 秒.连接PQ ,将△QBP 绕点Q 顺时针旋转90°得到△QB P '',设△QB P ''与△ABC 重合部分面积是S .(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.21.(6分)解方程:(1)x2﹣1x+5=0(配方法) (2)(x+1)2=1x+1.22.(8分)图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC是可伸缩的,其转动点A距离地面BD的高度AE为3.5m.当AC长度为9m,张角∠CAE为112°时,求云梯消防车最高点C距离地面的高度CF.(结果精确到0.1m,参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.1.)23.(8分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.24.(8分)某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?25.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF分别交边AC、BC于点E、F,且32 AEEC.(1)求BFFC的值;(2)联结EF,设BC=a,AC=b,用含a、b的式子表示EF.26.(10分)将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B 顺时针旋转30°后得到如图所示的图形,A B '与直径AB 交于点C ,连接点与圆心O′.(1)求BC 的长;(2)求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积.参考答案一、选择题(每小题3分,共30分)1、D【分析】由(22)A -,,()12C --,,确定坐标原点的位置,再根据题意画出图形,即可得到答案. 【详解】如图所示:∴点B 对应点的坐标为()0,0.故选:D .【点睛】本题主要考查平面坐标系中,图形的旋转变换和坐标,根据题意,画出图形,是解题的关键.2、B【分析】直接把点()23-,代入反比例函数解析式即可得出k 的值.【详解】∵反比例函数k y x =的图象经过点()23-,, ∴32k -=, 解得:6k =-.故选:B .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、C【解析】如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1﹣OQ 1,求出OP 1,如图当Q 2在AB 边上时,P 2与B 重合时,P 2Q 2最大值=5+3=8,由此不难解决问题.【详解】如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1,交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1﹣OQ 1.∵AB =10,AC =8,BC =6,∴AB 2=AC 2+BC 2,∴∠C =20°.∵∠OP 1B =20°,∴OP 1∥AC .∵AO =OB ,∴P 1C =P 1B ,∴OP 112=AC =4,∴P 1Q 1最小值为OP 1﹣OQ 1=1,如图,当Q 2在AB 边上时,P 2与B 重合时,P 2Q 2经过圆心,经过圆心的弦最长,P 2Q 2最大值=5+3=8,∴PQ 长的最大值与最小值的和是2.故选C .【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.4、B【分析】根据圆周角定理的推论即可得出答案.【详解】∵ACB ∠和AOB ∠对应着同一段弧AB ,∴90ACB AOB ∠=∠=︒,∴ACB ∠是直角.故选:B .【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.5、C【解析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y =2(x 2﹣2x )+5,配方得,y =2(x 2﹣2x+1)+5﹣2,即y =2(x ﹣1)2+1.故选:C .【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx +c ,顶点式:y=a(x-h)2+k ;两根式:y= ()12).a x x x x --(6、A【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据随机事件定义可以作出判断.【详解】A 、小明买体育彩票中了一等奖是随机事件,故本选项正确;B 、2019年是中华人民共和国建国70周年是确定性事件,故本选项错误;C 、正方体共有四个面是不可能事件,故本选项错误;D 、2比1大是确定性事件,故本选项错误;故选:A .【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】根据图像可知为反比例函数,图像过点(3000,20),代入v k F=(k 0≠),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可. 【详解】设函数为v k F=(k 0≠), 代入(3000,20),得203000k =,得k=60000,∴60000v F=, ∴牵引力为1 200牛时,汽车的速度为60000v 1200== 50千米/时,故选C. 【点睛】此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式.8、A【分析】首先利用a 和b 表示出AC 和CQ 的长,则四边形ACQE 的面积即可利用a 、b 表示,然后根据函数的性质判断.【详解】解:AC =a−2,CQ =b ,则S 四边形ACQE =AC•CQ =(a−2)b =ab−2b .∵()2,5P 、(),Q a b 在函数k y x=()0x >的图象上, ∴ab 25=⨯=k =10(常数).∴S 四边形ACQE =AC•CQ =10−2b ,∵当a >2时,b 随a 的增大而减小,∴S 四边形ACQE =10−2b 随a 的增大而增大.故选:A .【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用b 表示出四边形ACQE 的面积是关键.9、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a ≥0且a ≠0,∴a ≤4且a ≠0,所以a 的最大值为4,故选:D .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.10、B【分析】过点O 作OC ⊥AB 于点C ,由在半径为50cm 的⊙O 中,弦AB 的长为50cm ,可得△OAB 是等边三角形,继而求得∠AOB 的度数,然后由三角函数的性质,求得点O 到AB 的距离.【详解】解:过点O 作OC ⊥AB 于点C ,如图所示:∵OA=OB=AB=50cm ,∴△OAB 是等边三角形,∴∠OAB=60°,∵OC ⊥AB 3sin 6050253(cm)2OC OA ︒∴=⋅=⨯= 故选:B【点睛】 此题考查了垂径定理、等边三角形的判定与性质、三角函数,熟练掌握垂径定理,证明△OAB 是等边三角形是解决问题的关键.二、填空题(每小题3分,共24分)11、45 45或135【分析】易证△OAB 是等腰直角三角形,据此即可求得∠OAB 的度数,然后分当P 在弦OB 所对的优弧上和在弦OB 所对的劣弧上,两种情况进行讨论,利用圆周角定理求解.【详解】解:∵O (0,0)、A (0,2)、B (2,0),∴OA=2,OB=2,∴△OAB 是等腰直角三角形.∴∠OAB=45°,当P 在弦OB 所对的优弧上时,∠OPB=∠OAB=45°,当P 在弦OB 所对的劣弧上时,∠OPB=180°-∠OAB=135°.故答案是:45°,45°或135°.【点睛】本题考查了圆周角定理,正确理解应分两种情况进行讨论是关键.12、40 21【分析】作NH⊥BC于H.首先证明∠PEC=∠NEB=∠NBE,推出EH=BH,根据cos∠PEC=cos∠NEB,推出EC PE=EHEN,由此构建方程解决问题即可.【详解】解:作NH⊥BC于H.∵EF⊥BC,∠PEF=∠NEF,∴∠FEC=∠FEB=90°,∵∠PEC+∠PEF=90°,∠NEB+∠FEN=90°,∴∠PEC=∠NEB,∵PE∥BN,∴∠PEC=∠NBE,∴∠NEB=∠NBE,∴NE=NB,∵HN⊥BE,∴EH=BH,∴cos∠PEC=cos∠NEB,∴ECPE=EHEN,∵EF ∥AC , ∴EF AC =BE BC, ∴10EF =16316t -, ∴EF =EN =58(1﹣3t ),=1(163)25(163)8t t --, 整理得:63t 2﹣960t +100=0,解得t =4021或403(舍弃), 故答案为:4021. 【点睛】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13【详解】解:如果一点为线段的黄金分割点,那么被分割的较短的边比较大的边等于较大的边比上这一线段的长=12≈0.618. ∵AB=2,AP ﹥BP,∴×14、2300cm π【分析】根据已知得出圆锥的底面半径为10cm ,圆锥的侧面积=π×底面半径×母线长,即可得出答案.【详解】解:底面圆的半径为10,则底面周长=10π,侧面面积=12×10π×30=300πcm 1. 故答案为:300πcm 1.【点睛】本题主要考查了圆锥的侧面积公式,掌握圆锥侧面积公式是解决问题的关键,此问题是中考中考查重点.15、30°【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可.【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD ,∴∠BOD=45°,又∵∠AOB=15°, ∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°. 16、20185532+ 【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD 中,边长为10,∠A=60°,设菱形对角线交于点O ,∴30DAO ∠=︒,∴152OD AD ==,353AO OD ==, ∴10BD =,103AC =,顺次连结菱形ABCD 各边中点,∴△AA 1D 1是等边三角形,四边形A 2B 2C 2D 2是菱形,∴A 1D 1=A A 1=12AB =5,C 1D 1 =123,A 2B 2=C 2D 2=C 2B 2=A 2D 2=12AB=5, ∴四边形A 2B 2C 2D 2的周长是:5×4=20, 同理可得出:A 3D 3=5×12,C 3D 3=12C 1D 1=12⨯3 A 5D 5=5212⎛⎫⨯ ⎪⎝⎭,C 5D 5=12C 3D 3=212⎛⎫⨯ ⎪⎝⎭3∴四边形A 2019B 2019C 2019D 2019的周长是:20185532+ 故答案为:20185532+ 【点睛】 本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键. 17、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=14cm 1, 故答案为14.18、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:////AD BE CF ,∴AB DE BC EF=,即3 4.52EF =, 解得,3EF =,7.5DF DE EF ∴=+=,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.三、解答题(共66分)19、17.3米.【解析】分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度.详解:过点C 作CD PQ ⊥于D ,∵3060CAB CBD ∠=︒∠=︒,∴30,ACB ∠=︒∴20AB BC ==米,在Rt △CDB 中,∵90BDC ,∠=︒ sin ,CD CBD BC ∠= ∴sin60,CD BC︒=,20CD =∴CD =米,∴17.3CD ≈米.答:这条河的宽是17.3米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.20、(1)见解析;(2)()22260744843661555716913555t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪-+<≤⎪⎩ 【分析】(1)由题意可得出236BP t BQ t AB BC ===,继而可证明△BPQ ∽△BAC ,从而证明结论; (2)由题意得出QP`⊥AC ,分三种情况利用相似三角形的判定及性质讨论计算.【详解】解:(1)∵BP=t ,BQ=2t ,AB=3,BC=6 ∴236BP t BQ t AB BC === ∵∠B=∠B∴△BPQ ∽△BAC∴∠BPQ=∠A∴PQ ∥AC(2)∵BP=tBQ=2t∴P`Q=5t∵AB=3 BC=6 ∴AC=35∵PQ∥AC∴QP`⊥AC当0<t≤67时,S=t2当67<t≤1时:设QP`交AC于点M P`B`交AC于点N∴∠QMC=∠B=90°∴△QMC∽△ABC∴CQ QM AC AB=3 35QM=∴QM=52) 5t-∵5∴P`M= 6525756555555t t t -+=- 又∵∠P`=∠BPQ=∠A∴△P`NM ∽△ACB ∴'AB BC P M MN= ∴MN=2P`M∴S △P`MN =12P`M·MN=P`M 2=2756(5)55t - ∴QP`B`P`MN222S=S -S 498436t 555448436555t t t t =-+-=-+-当1<t≤3时设QB`交AC 于点H∵∠HQM=∠PQB∴△HMQ ∽△PBQ∴2MH MQ t t= ∴MH=12MQ∴()()222212141162t 4513624420169555S MH MQ MQ t t t t =⋅==⋅-=-+=-+ 综合上所述:22260744843661555716913555t t S t t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<≤⎪⎩()()() 【点睛】本题是一道关于相似的综合题目,难度较大,涉及的知识点有相似三角形的判定及性质、勾股定理、三角形面积公式、旋转的性质等,需要有数形结合的能力以及较强的计算能力.21、 (2)x 2=3,x 2=2;(2)x 2=﹣2,x 2=3【分析】(2)先变形为x 2-2x=-3,再把方程两边都加上9得 x 2-2x+9=-3+9,则 (x-3)2=4,然后用直接开平方法解方程即可.(2)先移项,然后提取公因式(x+2)进行因式分解;【详解】解:(2)x 2﹣2x =﹣3,x 2﹣2x +32=﹣3+32,(x ﹣3)2=4,x =3±2,所以x 2=3,x 2=2.(2)(x +2)2﹣2(x +2)=0,(x +2)(x +2﹣2)=0,x +2=0或x +2﹣2=0,所以x 2=﹣2,x 2=3.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22、CF≈6.8m .【分析】如图,作AG ⊥CF 于点G ,易得四边形AEFG 为矩形,则FG =AE =3.5m ,∠EAG =90°,再计算出∠GAC =28°,则在Rt △ACG 中利用正弦可计算出CG ,然后计算CG+GF 即可.【详解】如图,作AG ⊥CF 于点G ,∵∠AEF =∠EFG =∠FGA =90°,∴四边形AEFG 为矩形,∴FG =AE =3.5m ,∠EAG =90°,∴∠GAC =∠EAC ﹣∠EAG =112°﹣90°=22°,在Rt △ACG 中,sin ∠CAG =CG AC, ∴CG =AC•sin ∠CAG =9sin22°≈9×0.37=3.33m ,∴CF =CG+GF =3.33+3.5≈6.8m .【点睛】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.23、(1)x 1=﹣3,x 2=1;(2)123333x x +-==【分析】(1)移项,方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解.【详解】解:(1)移项得:x 2+2x ﹣3=1,分解因式得:(x +3)(x ﹣1)=1,可得x +3=1或x ﹣1=1,解得:x 1=﹣3,x 2=1; (2)方程变形得:x 2﹣3x =﹣32, 配方得:x 2﹣3x +94=﹣32+94,即(x ﹣32)2=34,解得:12x x == 【点睛】 此题考查了解一元二次方程-因式分解法及配方法,熟练掌握各种解法是解本题的关键.24、乙方案能使2020年氮肥的产量更高,高20吨【分析】设甲方案的平均增长率为x ,根据题意列出方程,求出x 的值,即可求出甲方案2020年产量,再根据题意求出乙方案2020年产量,比较即可得出结论.【详解】解:设甲方案的平均增长率为x ,依题意得()2400014840x +=.解得,10.1x =,2 2.1x =-(不合题意,舍去).甲方案2020年产量:()400010.14400⨯+=,乙方案2020年产量:()140004840400044202+⨯-=. 44004420<,4420440020-=(吨).答:乙方案能使2020年氮肥的产量更高,高20吨.【点睛】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.25、 (1)见解析;(2)EF =25b ﹣35a . 【解析】(1)由32AE EC = 得25EC AC =,由DE//BC 得25BD EC AB AC ==,再由DF//AC 即可得; (2)根据已知可得35CF a =- ,25EC b = ,从而即可得. 【详解】(1)∵32AE EC = , ∴25EC AC =, ∵DE//BC ,∴25BD EC AB AC ==, 又∵DF//AC ,∴25BF BD BC AB == ; (2)∵25BF BC =,∴35FC BC =, ∵BC a =,CF 与BC 方向相反 , ∴35CF a =- , 同理:25EC b = , 又∵EF EC CF =+,∴2355EF b a =-.26、(1)203π(2)503π+【解析】试题分析:(1)连结BC ,作O′D ⊥BC 于D ,根据旋转变换的性质求出∠CBA′的度数,根据弧长公式计算即可;(2)根据扇形面积公式、三角形面积公式,结合图形计算即可.试题解析:(1)连结BC,作OD⊥BC 于D,可求得∠BO′C=1200,O′D=5, BC 的长为203π(2)''503OBC O A C S S S π∆=+=+白扇形。
2020-2021北京第四中学九年级数学上期末模拟试题(含答案)

2020-2021北京第四中学九年级数学上期末模拟试题(含答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1 B .m >1 C .m≥1且m≠3 D .m >1且m≠3 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣13.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒4.一元二次方程的根是( )A .3x =B .1203x x ==-,C .1203x x =,D .1203x x ==,5.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <46.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .138.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④9.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .3B .3C .3D .810.以3942cx ±+=为根的一元二次方程可能是( ) A .230x x c --=B .230x x c +-=C .230-+=x x cD .230++=x x c11.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 212.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.15.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).16.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.20.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.三、解答题21.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?22.关于x 的一元二次方程230x x k -+=有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.23.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率. 24.已知关于x 的一元二次方程x 2+(m +3)x +m +2=0. (1)求证:无论m 取何值,原方程总有两个实数根; (2)若x 1,x 2是原方程的两根,且x 12+x 22=2,求m 的值.25.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题: (1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可. 【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根, ∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.A解析:A 【解析】 【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论. 【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1, ∴k=2, 故选A . 【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.A解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.4.D解析:D【解析】x2−3x=0,x(x−3)=0,∴x1=0,x2=3.故选:D.5.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.6.D解析:D【解析】【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.B解析:B 【解析】 【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得. 【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.8.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0,所以②错误;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;∵m>n>0,∴m﹣1>n﹣1>﹣1,由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,故④正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.9.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴33,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.10.A解析:A【解析】【分析】根据一元二次方程根与系数的关系求解即可.设x 1,x 2是一元二次方程的两个根,∵32x ±=∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A. 【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.11.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C12.A解析:A 【解析】 【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值. 【详解】解:∵P (-b ,2)与点Q (3,2a )关于原点对称点, ∴-b+3=0,2+2a=0, 解得a=-1,b=3, 故选A . 【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率【解析】 【分析】 【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.8【解析】【分析】首先求出AB 的坐标然后根据坐标求出ABCD 的长再根据三角形面积公式计算即可【详解】解:∵y =x2﹣2x ﹣3设y =0∴0=x2﹣2x ﹣3解得:x1=3x2=﹣1即A 点的坐标是(﹣10解析:8 【解析】 【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可. 【详解】解:∵y =x 2﹣2x ﹣3,设y =0, ∴0=x 2﹣2x ﹣3, 解得:x 1=3,x 2=﹣1,即A 点的坐标是(﹣1,0),B 点的坐标是(3,0), ∵y =x 2﹣2x ﹣3, =(x ﹣1)2﹣4,∴顶点C 的坐标是(1,﹣4), ∴△ABC 的面积=12×4×4=8, 故答案为8. 【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.15.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能 【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.16.(0﹣1)【解析】【分析】将x =0代入y =(x ﹣1)2﹣2计算即可求得抛物线与y 轴的交点坐标【详解】解:将x =0代入y =(x ﹣1)2﹣2得y =﹣1所以抛物线与y 轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.20.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长解析:10%【解析】【分析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.三、解答题21.(1)y =﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y 与x 的关系式;(2)利用x 可表示出p ,再利用二次函数的性质可求得p 的最大值.【详解】(1)设一次函数解析式为y =kx +b (k ≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得3040040300k b k b +=⎧⎨+=⎩, 解得:10700k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为y =﹣10x +700;(2)设利润为p 元,由(1)可知每天的销售量为y 千克,∴p =y (x ﹣20)=(﹣10x +700)(x ﹣20)=﹣10x 2+900x ﹣14000=﹣10(x ﹣45)2+6250.∵﹣10<0,∴p =﹣10(x ﹣45)2+6250是开口向下的抛物线,∴当x =45时,p 有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y 与x 的函数关系式是解答本题的关键,注意二次函数最值的求法.22.(1)94k ≤;(2)m 的值为32. 【解析】【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠.【详解】解:(1)根据题意得()2340k ∆=--≥, 解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根, ∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =,而10m -≠,∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.23.(1)25;(2)35. 【解析】【分析】 (1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25. 故答案为25; (2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)详见解析;(2)m=﹣3或m=﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m+3)2﹣4(m+2)=(m+1)2,∵无论m取何值,(m+1)2≥0,∴原方程总有两个实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1x2=m+2,∵x12+x22=2,∴(x1+x2)2﹣2x1x2=2,∴代入化简可得:m2+4m+3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.25.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.。
北京第四中学2020年数学九年级上册期末试卷及答案

北京第四中学2020年数学九年级上册期末试卷及答案一、选择题1.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .702.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=3.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.4.抛物线223y x x =++与y 轴的交点为( ) A .(0,2) B .(2,0) C .(0,3) D .(3,0) 5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰166.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .237.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐8.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .239.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .1110.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变11.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣2 12.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点 13.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .-2B .2C .-3D .314.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A.12B.14C.13D.1915.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252-B.25-C.251-D.52-二、填空题16.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.17.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.18.抛物线y=3(x+2)2+5的顶点坐标是_____.19.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=45,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;20.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.21.如图,D、E分别是△ABC的边AB,AC上的点,ADAB=AEAC,AE=2,EC=6,AB=12,则AD的长为_____.22.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.23.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.24.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.25.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .26.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.27.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.28.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .29.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)32.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调=-+. 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?33.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.34.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.35.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值,S的最大值是多少;(2)如图乙,连接PC ,将△PQC 沿QC 翻折,得到四边形P QP′C ,当四边形PQP′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形.四、压轴题36.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.37.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.38.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值. 39.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.3.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y 轴的交点为(0,3). 【详解】解:令x=0,则y=3,∴抛物线与y 轴的交点为(0,3), 故选:C . 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.5.B解析:B 【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果. 因为面积比是9:16,则相似比是3︰4,故选B. 考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方6.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴EF CF BE AB ==,设EF ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+, ∴()()222232622EG DG DE x x ===+=+, ∴()()226262CG CD DG x x x =-=+-+=, ∴()62tan 312x EG ACD CGx +∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.7.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键8.C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52 xy=∴x=5k(k≠0),y=2k(k≠0)∴52322 x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.9.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.10.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.11.D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.12.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键. 13.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.A解析:A【解析】根据黄金比的定义得:51AP AB -= ,得514252AP -== .故选A. 二、填空题16.12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出2,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG =2可求出AF 、AG 的长度,由CG ∥AB 、AB =2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.【详解】 ∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠GDF ,∠BAF =∠DGF ,∴△ABF ∽△GDF ,∴AF AB GF GD==2,∴AF =2GF =4,∴AG =6. ∵CG ∥AB ,AB =2CG ,∴CG 为△EAB 的中位线,∴AE =2AG =12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.17.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴2213AQ BQ +=,CQ=AC-AQ=9,∴2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.18.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h ,k ),对称轴为x=h .19.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.20.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.21.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.22.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB =10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.23.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为30 00(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.24.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.25.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 26.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.27.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离28.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.29.1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.30.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF =DF ,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°=3, 故答案为:3. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.(1)75cm (2)63cm【解析】解:(1)在Rt △ACD 中,AC=45,CD=60,∴AD=22456075+=,∴车架档AD 的长为75cm .(2)过点E 作EF ⊥AB ,垂足为点F ,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63.∴车座点E 到车架档AB 的距离是63cm .(1)在Rt △ACD 中利用勾股定理求AD 即可.(2)过点E 作EF ⊥AB ,在Rt △EFA 中,利用三角函数求EF=AEsin75°,即可得到答案.32.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.33.(1)13;(2)13. 【解析】【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为13; (2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率=39=13. 【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法.34.(1)4;(2)y=2x +83π-3<34) 【解析】【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴⊙O 的半径是4;(2)解:过点O 作OH ⊥AB ,垂足为H则∠OHA =∠OHB =90°∵∠APB =30°∴∠AOB =2∠APB =60° ∵OA=OB ,OH ⊥AB ∴AH=BH=12AB=2 在Rt △AHO 中,∠AHO =90°,AO =4,AH =2∴OH 22AO AH 3∴y =16×16 π-123+12×4×x =2x +83π-3<34). 【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.35.(1)当t 为52秒时,S 最大值为185;(2)2013; (3)52或2513或4013. 【解析】【分析】(1)过点P 作PH ⊥AC 于H ,由△APH ∽△ABC ,得出=PH AP BC AB,从而求出AB ,再根据535PH t -,得出PH=3﹣35t ,则△AQP 的面积为:12AQ•PH=12t (3﹣35t ),最后进行整理即可得出答案;(2)连接PP′交QC 于E ,当四边形PQP′C 为菱形时,得出△APE ∽△ABC ,=AE AP AC AB ,求出AE=﹣45t+4,再根据QE=AE ﹣AQ ,QE=12QC 得出﹣95t+4=﹣12t+2,再求t 即可; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=﹣95t+4,从而求出△APQ 中,分三种情况讨论:①当AQ=AP ,即t=5﹣t ,②当PQ=AQ ,③当PQ=AP ﹣t ,再分别计算即可.【详解】 解:(1)如图甲,过点P 作PH ⊥AC 于H ,∵∠C=90°,∴AC ⊥BC ,∴PH ∥BC ,∴△APH ∽△ABC , ∴=PH AP BC AB, ∵AC=4cm ,BC=3cm ,∴AB=5cm , ∴5=35PH t -, ∴PH=3﹣35t , ∴△AQP 的面积为: S=12×AQ×PH=12×t×(3﹣35t )=﹣310(t ﹣52)2+185, ∴当t 为52秒时,S 最大值为185cm2. (2)如图乙,连接PP′,PP′交QC 于E ,当四边形PQP′C 为菱形时,PE 垂直平分QC ,即PE ⊥AC ,QE=EC ,∴△APE ∽△ABC , ∴=AE AP AC AB,∴AE=(5)4=5AP AC t AB ⋅-⨯=﹣45t+4 QE=AE ﹣AQ ═﹣45t+4﹣t=﹣95t+4, QE=12QC=12(4﹣t )=﹣12t+2, ∴﹣95t+4=﹣12t+2, 解得:t=2013, ∵0<2013<4, ∴当四边形PQP′C 为菱形时,t 的值是2013s ; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=AD ﹣AQ=﹣95t+4 ∴PQ=222239=3455PD QD t t ⎛⎫⎛⎫+-++-+ ⎪ ⎪⎝⎭⎝⎭=218t 18t 255-+, 在△APQ 中,①当AQ=AP ,即t=5﹣t 时,解得:t 1=52; ②当PQ=AQ ,即218t 18t 255-+=t 时,解得:t 2=2513,t 3=5; ③当PQ=AP ,即218t 18t 255-+=5﹣t 时,解得:t 4=0,t 5=4013; ∵0<t <4,∴t 3=5,t 4=0不合题意,舍去,∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.【点睛】本题考查相似形综合题.四、压轴题36.(1)()C 8,43;(2)t=18s ;(3)t 1513=±.【解析】【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .求出OH 的长即可解决问题.(3)设M (﹣5+t ,33),EF 12=AB =8,由∠EMF =90°,可得EM 2+MF 2=EF 2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH ⊥AB 于H .∵A (20,0),AB =16,∴OA =20,OB =4.在Rt △ABC 中,∵∠ACB =90°,AB =16,∠CAB =30°,∴BC 12=AB =8,CH =BC •sin60°3BH =BC •cos60°=4,∴OH =8,∴C (8,3(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .∵MN =MH 3MN ⊥BC ,MH ⊥BA ,∴∠MBH =∠MBN =30°,∴BH 3==9,∴点M 的运动路径的长为5+4+9=18,∴当点M 在∠ABC 的内部且⊙M 与直线BC 相切时,t 的值为18s .(3)∵C (8,3B (4,0),A (20,0).∵CE =EB ,CF =FA ,∴E (6,3),F (14,3),设M (﹣5+t ,3),EF 12=AB =8. ∵∠EMF =90°,∴EM 2+MF 2=EF 2,∴(6+5﹣t )2+32+(14+5﹣t )2+32=82,整理得:t 2﹣30t +212=0,解得:t =1513 【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题. 37.(1)2114y x =-;(2)点P 37(,)216-;(3)(222,222M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =-。
北京市九年级上册期末数学试卷及答案

北京市九年级上册期末数学试卷一、选择题(本题共 16 分,每小题 3 分第 1-8 题均有四个选项,符合题意的选项只有一个. 1.(3 分)抛物线 y =3(x ﹣1) +5 的顶点坐标是( )2 A .(3,5)2.(3 分)如果 4x =3y ,那么下列结论正确的是( A . =B . =C . = B .(1,5)C .(3,1)D .(﹣1,5)D .x =4,y =3)3.(3 分)如图,圆的两条弦AB ,CD 相交于点 E ,且 = ,∠A =40°,则∠CEB 的度数 为()A .50°B .80°C .70°D .90°4.(3 分)下列关于二次函数 y =2x 的说法正确的是( )2 A .它的图象经过点(﹣1,﹣2) B .它的图象的对称轴是直线 x =2 C .当 x <0 时,y 随 x 的增大而减小 D .当 x =0 时,y 有最大值为 05.(3 分)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点 D .若 BC =24,cos B = ,则 AD 的长为()A .12B .10C .6D .56.(3 分)如图,△ABC 的内切圆⊙O 与 AB ,BC ,CA 分别相切于点 D ,E ,F ,且 AD =2,BC =5,则△ABC 的周长为()A.16 B.14 C.12 D.10 7.(3分)下表是小红填写的实践活动报告的部分内容:题目测量铁塔顶端到地面的高度相关数据CD=10m,α=45°,β=50°设铁塔顶端到地面的高度FE为x m,根据以上条件,可以列出的方程为()A.x=(x﹣10)tan 50°C.x﹣10=x tan 50°B.x=(x﹣10)cos50°D.x=(x+10)sin 50°8.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①ac>0;②16a+4b+c=0;③若m>n>0,则x=1+m时的函数值大于x=1﹣n时的函数值;④点(﹣,0)一定在此抛物线上.其中正确结论的序号是()A.①②B.②③C.②④D.③④二、填空题(本题共16 分,每小题3 分)9.(3 分)如图所示的网格是正方形网格,点A ,O ,B 都在格点上, tan∠AOB 的值为 .10.(3 分)请写出一个开口向下,且与 y 轴的交点坐标为(0,2)的抛物线的表达式:11.(3 分)如图,在△ABC 中,点 D ,E 分别在 AB ,AC 上,且 DE ∥BC .若 AD =2,AB =3,DE =4,则 BC 的长为..12.(3 分)草坪上的自动喷水装置的旋转角为 200°,且它的喷灌区域是一个扇形.若它能 喷灌的扇形草坪面积为 5π平方米,则这个扇形的半径是米.13.(3 分)如图,抛物线y =ax +bx 与直线 y =mx +n 相交于点 A (﹣3,﹣6),B (1,﹣2), 2 则关于 x 的方程 ax +bx =mx +n 的解为.2 14.(3 分)如图,舞台地面上有一段以点O 为圆心的 ,某同学要站在 的中点 C 的位置 上.于是他想:只要从点 O 出发,沿着与弦 AB 垂直的方向走到 上,就能找到 的中 点 C .老师肯定了他的想法.(1)请按照这位同学的想法,在图中画出点C ; (2)这位同学确定点 C 所用方法的依据是.15.(3 分)如图,矩形纸片 ABCD 中,AB >AD ,E ,F 分别是 AB ,DC 的中点,将矩形 ABCD沿EF所在直线对折,若得到的两个小矩形都和矩形ABCD相似,则用等式表示AB与AD 的数量关系为.16.(3分)如图,⊙O的半径是5,点A在⊙O上.P是⊙O所在平面内一点,且AP=2,过点P作直线l,使l⊥PA.(1)点O到直线l距离的最大值为;(2)若M,N是直线l与⊙O的公共点,则当线段MN的长度最大时,OP的长为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:4sin30°﹣cos45°+tan260°.18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠ACB,点E,F分别在AB,BC上,且∠EFB=∠D.(1)求证:△EFB∽△CDA;(2)若AB=20,AD=5,BF=4,求EB的长.19.(5分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x y ……﹣3﹣2﹣3﹣1﹣401……﹣3(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.20.(5分)如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.21.(5分)一名同学推铅球,铅球出手后行进过程中离地面的高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=﹣x2+x+c,其图象如图所示.已知铅球落地时的水平距离为10m.(1)求铅球出手时离地面的高度;(2)在铅球行进过程中,当它离地面的高度为m时,求此时铅球的水平距离.22.(5分)如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.(1)求证:四边形OBCE是平行四边形;(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.23.(6分)如图,直线l:y=﹣2x+m与x轴交于点A(﹣2,0),抛物线C:y=x+4x+321与x轴的一个交点为B(点B在点A的左侧),过点B作BD垂直x轴交直线l于点D.(1)求m的值和点B的坐标;(2)将△ABD绕点A顺时针旋转90°,点B,D的对应点分别为点E,F.①点F的坐标为;②将抛物线C向右平移使它经过点F,此时得到的抛物线记为C,直接写出抛物线C的122表达式.24.(6分)如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=,求DE的长.25.(6分)小明利用函数与不等式的关系,对形如(x﹣x)(x﹣x)…(x﹣x)>012n (n为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式x﹣3>0,观察函数y=x﹣3的图象可以得到如表格:x的范围y的符号x>3+x<3﹣由表格可知不等式x﹣3>0的解集为x>3.②对于不等式(x﹣3)(x﹣1)>0,观察函数y=(x﹣3)(x﹣1)的图象可以得到如表表格:x的范围y的符号x>3+1<x<3﹣x<1+由表格可知不等式(x﹣3)(x﹣1)>0的解集为.③对于不等式(x﹣3)(x﹣1)(x+1)>0,请根据已描出的点画出函数y=(x﹣3)(x ﹣1)(x+1)的图象;观察函数y=(x﹣3)(x﹣1)(x+1)的图象补全下面的表格:x的范围y的符号x>3+1<x<3﹣﹣1<x<1.x<﹣1由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为……小明将上述探究过程总结如下:对于解形如(x﹣x)(x﹣x)……(x﹣x)>0(n为正12n整数)的不等式,先将x,x…,x按从大到小的顺序排列,再划分x的范围,然后通过12n列表格的办法,可以发现表格中y的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为.②不等式(x﹣9)(x﹣8)(x﹣7)>0的解集为.226.(6分)在平面直角坐标系xOy中,已知抛物线y=ax﹣4ax+3a.2(1)求抛物线的对称轴;(2)当a>0时,设抛物线与x轴交于A,B两点(点A在点B左侧),顶点为C,若△ABC 为等边三角形,求a的值;(3)过T(0,t)(其中﹣1≤t≤2)且垂直y轴的直线l与抛物线交于M,N两点.若对于满足条件的任意t值,线段MN的长都不小于1,结合函数图象,直接写出a的取值范围.27.(7分)如图,在△ABC中,AB=AC,△ADE∽△ABC,连接BD,CE.(1)判断BD与CE的数量关系,并证明你的结论;(2)若AB=2,AD=2,∠BAC=105°,∠CAD=30°.①BD的长为;②点P,Q分别为BC,DE的中点,连接PQ,写出求PQ长的思路.28.(7分)在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P独立于图形W.(1)如图1,已知点A(﹣2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于点B.在P(0,4),P(0,1),P(0,﹣3),P(4,0)这四个点中,独立于的点是;1234(2)如图2,已知点C(﹣3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD﹣DE,求点P的横坐标x的取值范围;p(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t >﹣3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x 轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.北京市九年级上册期末数学试卷答案一、选择题(本题共16分,每小题3分第1-8题均有四个选项,符合题意的选项只有一个.1.(3分)抛物线y=3(x﹣1)+5的顶点坐标是()2A.(3,5)B.(1,5)C.(3,1)D.(﹣1,5)【分析】根据顶点式的特点可直接写出顶点坐标.【解答】解:因为y=3(x﹣1)+5是抛物线的顶点式,2根据顶点式的坐标特点可知,顶点坐标为(1,5).故选:B.【点评】本题考查了二次函数的性质:顶点式y=a(x﹣h)+k,顶点坐标是(h,k),2对称轴是x=h,此题考查了学生的应用能力.2.(3分)如果4x=3y,那么下列结论正确的是()【分析】根据等式的性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.若=,等式两边同时乘以12得:4x=3y,A项正确,B.若=,等式两边同时乘以12得:3x=4y,B项错误,C.若=,等式两边同时乘以3y得:3x=4y,C项错误,D.若x=4,y=3,则3x=4y,D项错误,故选:A.【点评】本题考查等式的性质,正确掌握等式的性质是解题的关键.3.(3分)如图,圆的两条弦AB,CD相交于点E,且=,∠A=40°,则∠CEB的度数为()A.50°B.80°C.70°D.90°【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【解答】解:∵=,∴∠A=∠C=40°,∴∠CEB=∠A+∠C=80°,故选:B.【点评】本题考查了圆周角定理,熟记圆周角定理是解题的关键.4.(3分)下列关于二次函数y=2x的说法正确的是()2A.它的图象经过点(﹣1,﹣2)B.它的图象的对称轴是直线x=2C.当x<0时,y随x的增大而减小D.当x=0时,y有最大值为0【分析】根据二次函数的图象性质即可判断.【解答】解:A、当x=﹣1时,y=2×(﹣1)=2≠﹣2,故此选项错误;2B、它的图象的对称轴是直线x=0,故此选项错误;C、当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大,故此选项正确;D、当x=0时,y有最小值是0,故此选项错误;故选:C.【点评】此题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题关键.为()A.12B.10C.6D.5【分析】先根据等腰三角形的性质得出B D=BC=12,再解直角△ABD,求出AB,然后利用勾股定理求出AD.【解答】解:∵在△ABC中,AB=AC,AD⊥BC于点D,∴BD=BC=12.在直角△ABD中,∵cos B=∴AB=13,=,故选:D.【点评】本题考查了解直角三角形,等腰三角形的性质以及勾股定理,求出BD与AB的长是解题的关键.6.(3分)如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16B.14C.12D.10【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC 的周长=2+2+5+5=14,【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,C E=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.【点评】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.7.(3分)下表是小红填写的实践活动报告的部分内容:题目测量铁塔顶端到地面的高度相关数据CD=10m,α=45°,β=50°设铁塔顶端到地面的高度FE为x m,根据以上条件,可以列出的方程为()A.x=(x﹣10)tan 50°C.x﹣10=x tan 50°B.x=(x﹣10)cos50°D.x=(x+10)sin 50°【分析】过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x﹣10,得到CE=x﹣10,根据三角函数的定义列方程即可得到结论.【解答】解:过D作DH⊥EF于H,则四边形DCEH是矩形,∴HE=CD=10,CE=DH,∴FH=x﹣10,∵∠FDH=α=45°,∴DH=FH=x﹣10,∴CE=x﹣10,∴x=(x﹣10)tan 50°,故选:A.【点评】本题考查了解直角三角形的应用,由实际问题抽象出一元一次方程,正确的识别图形是解题的关键.8.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①ac>0;②16a+4b+c=0;③若m>n>0,则x=1+m时的函数值大于x=1﹣n时的函数值;④点(﹣,0)一定在此抛物线上.其中正确结论的序号是()A.①②B.②③C.②④D.③④【分析】利由抛物线的位置可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(4,0),代入解析式则可对②进行判断;由抛物线的对称性和二次函数的性质可对③进行判断;抛物线的对称性得出点(﹣2,0)的对称点是(4,0),由c=【解答】解:∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∴ac<0,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴16a+4b+c=0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若m>n>0,∴1+m>1+n,∴x=1+m时的函数值小于x=1﹣n时的函数值,故③错误;∵抛物线的对称轴为﹣=1,∴b=﹣2a,∴抛物线为y=ax﹣2ax+c,2∵抛物线y=ax+bx+c经过点(﹣2,0),2∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax+bx+c(a≠0),2二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b﹣4ac>0时,抛物线与x轴有2个交点;△=b﹣4ac=0时,抛物线22与x轴有1个交点;△=b﹣4ac<0时,抛物线与x轴没有交点.2二、填空题(本题共16分,每小题3分)9.(3分)如图所示的网格是正方形网格,点A,O,B都在格点上,tan∠AOB的值为【分析】连接AB,在直角△AOB中利用正切函数的定义即可求解.【解答】解:如图,连接AB.在直角△AOB中,∵∠OBA=90°,AB=2,OB=4,∴tan∠AOB===.故答案为.【点评】本题考查了解直角三角形,正切函数的定义.作辅助线构造直角三角形是解题的关键.10.(3分)请写出一个开口向下,且与y轴的交点坐标为(0,2)的抛物线的表达式:y=﹣x+2.2【分析】把(0,2)作为抛物线的顶点,令a=﹣1,然后利用顶点式写出满足条件的抛物线解析式.【解答】解:因为抛物线的开口向下,则可设a=﹣1,又因为抛物线与y轴的交点坐标为(0,2),则可设顶点为(0,2),所以此时抛物线的解析式为y=﹣x+2.2故答案为y=﹣x+2.2【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.11.(3分)如图,在△ABC中,点D,E分别在AB,AC上,且DE∥BC.若AD=2,AB=3,DE=4,则BC的长为6.【分析】由DE∥BC可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再=,代入AD=2,AB=3,DE=4即可求出BC的长.利用相似三角形的性质可得出【解答】解:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴=,即=,∴BC=6.故答案为:6.【点评】本题考查了相似三角形的判定与性质,牢记相似三角形对应边的比相等是解题的关键.12.(3分)草坪上的自动喷水装置的旋转角为200°,且它的喷灌区域是一个扇形.若它能喷灌的扇形草坪面积为5π平方米,则这个扇形的半径是3米.【分析】根据已知得出自动喷水装置它能喷灌的草坪是扇形,面积为5π平方米,圆心角为200°,利用扇形面积公式S=求出即可.扇形【解答】解:∵草坪上的自动喷水装置它能喷灌的草坪是扇形,面积为5π平方米,圆心角为200°,解得:R=3故答案为:3.【点评】此题主要考查了扇形面积求法,利用已知得出图形形状进而利用公式求出是解题关键.13.(3分)如图,抛物线y=ax+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),2则关于x的方程ax+bx=mx+n的解为x=﹣3,x=1.212【分析】关于x的方程ax+bx=mx+n的解为抛物线y=ax+bx与直线y=mx+n交点的横22坐标.【解答】解:∵抛物线y=ax+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),2∴关于x的方程ax+bx=mx+n的解为x=﹣3,x=1.212故答案为x=﹣3,x=1.12【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax+bx+c(a,b,c是常数,2a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.14.(3分)如图,舞台地面上有一段以点O为圆心的,某同学要站在的中点C的位置上.于是他想:只要从点O出发,沿着与弦AB垂直的方向走到上,就能找到的中点C.老师肯定了他的想法.(1)请按照这位同学的想法,在图中画出点C;(2)这位同学确定点C所用方法的依据是垂直于弦的直径平分弦,并且平分这条弦所对的两条弧.【分析】(1)连接AB,作弦AB的垂直平分线即可得;(2)根据垂径定理可得.【解答】解:(1)如图所示,点C即为所求.(2)这位同学确定点C所用方法的依据是:垂直于弦的直径平分弦,并且平分这条弦所对的两条弧,故答案为:垂直于弦的直径平分弦,并且平分这条弦所对的两条弧.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是熟练掌握垂径定理及线段中垂线的尺规作图.15.(3分)如图,矩形纸片ABCD中,AB>AD,E,F分别是AB,DC的中点,将矩形ABCD 沿EF所在直线对折,若得到的两个小矩形都和矩形ABCD相似,则用等式表示AB与AD 的数量关系为AB=AD.【分析】根据相似多边形的性质即可求出答案.【解答】解:由于AB>A D,E,F分别是A B,DC的中点,∴矩形AEFD≌矩形BEFC,∵两个小矩形都和矩形ABCD相似,∴矩形AEFD∽矩形ABCD,∴,∴AB=AD,故答案为:AB=AD.【点评】本题考查相似多边形,解题的关键是正确理解相似多边形的性质,本题属于基础题型.16.(3分)如图,⊙O的半径是5,点A在⊙O上.P是⊙O所在平面内一点,且AP=2,过点P作直线l,使l⊥PA.(1)点O到直线l距离的最大值为7;(2)若M,N是直线l与⊙O的公共点,则当线段MN的长度最大时,OP的长为.【分析】(1)如图1,当点P在圆外且O,A,P三点共线时,点O到直线l距离的最大,于是得到结论;(2)如图2,根据已知条件得到线段MN是⊙O的直径,根据勾股定理即可得到结论.【解答】解:(1)如图1,∵l⊥PA,∴当点P在圆外且O,A,P三点共线时,点O到直线l距离的最大,最大值为AO+AP=5+2=7;(2)如图2,∵M,N是直线l与⊙O的公共点,当线段MN的长度最大时,线段MN是⊙O的直径,∵l⊥PA,∴∠APO=90°,∵AP=2,OA=5,∴OP==.,故答案为:7,【点评】本题考查了直线与圆的位置关系,勾股定理,正确的作出图形是解题的关键.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:4sin30°﹣cos45°+tan60°.2【分析】原式利用特殊角的三角函数值计算即可求出值.【解答】解:原式=4×﹣×+()=2﹣1+3=4.2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠ACB,点E,F分别在AB,BC上,且∠EFB=∠D.(1)求证:△EFB∽△CDA;(2)若AB=20,AD=5,BF=4,求EB的长.【分析】(1)根据相似三角形的判定即可求出答案.(2)根据△EFB∽△CDA,利用相似三角形的性质即可求出EB的长度.【解答】解:(1)∵AB=AC,∴∠B=∠ACB,∵AD∥BC,∴∠DAC=∠ACB,∴∠B=∠DAC,∵∠D=∠EFB,∴△EFB∽△CDA;(2)∵△EFB∽△CDA,∵AB=AC=20,AD=5,B F=4,∴BE=16.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.19.(5分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:xy……﹣3﹣2﹣3﹣1﹣401……﹣3(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(﹣1,﹣4),则可设顶点式y=a(x+1)2﹣4,然后把点(0,﹣3)代入求出a即可;(2)利用描点法画二次函数图象;(3)根据x=﹣4、﹣2时的函数值即可写出y的取值范围.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)﹣4,2把点(0,﹣3)代入y=a(x+1)﹣4,得a=1,2故抛物线解析式为y=(x+1)﹣4,即y=x+2x﹣3;22(2)如图所示:(3)∵y=(x+1)﹣4,2∴当x=﹣4时,y=(﹣4+1)﹣4=5,2当x=﹣2时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<﹣2时,y的取值范围是﹣3<y<5.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的图象与性质.20.(5分)如图,四边形ABCD内接于⊙O,OC=4,AC=4(1)求点O到AC的距离;.(2)求∠ADC的度数.定理即可得到结论;(2)连接OA,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【解答】解:(1)作OM⊥AC于M,∵AC=4,∴AM=CM=2∵OC=4,,∴OM==2;(2)连接OA,∵OM=MC,∠OMC=90°,∴∠MOC=∠MCO=45°,∵OA=OC,∴∠OAM=45°,∴∠AOC=90°,∴∠B=45°,∵∠D+∠B=180°,∴∠D=135°.【点评】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.21.(5分)一名同学推铅球,铅球出手后行进过程中离地面的高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=﹣x2+x+c,其图象如图所示.已知铅球落地时的水平距离为10m.(1)求铅球出手时离地面的高度;【分析】(1)将(10,0)代入y=﹣x+x+c求得c的值即可;2(2)将y=代入﹣x+x+=求出x的值即可得.2【解答】解:(1)根据题意,将(10,0)代入y=﹣x+x+c,得:﹣×10+×22 10+c=0,解得c=,即铅球出手时离地面的高度m;(2)将y=代入﹣x+x+=,2整理,得:x﹣8x﹣9=0,2解得:x=9,x=﹣1(舍),12∴此时铅球的水平距离为9m.【点评】本题主要考查二次函数的应用,准确理解铅球出手时离地面的高度和高度为m 时铅球的水平距离在函数解析式中对应的变量是解题的关键.22.(5分)如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.(1)求证:四边形OBCE是平行四边形;(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.【分析】(1)根据矩形的性质得出OA=OB=OC=OD,再根据平行四边形的性质和菱形的判定得到四边形OCED为菱形,再根据菱形的性质和推平行四边形的判定出即可;(2)过F作FM⊥BC于M,过O作ON⊥BC于N,根据平行线的判定得到ON∥FM,再根据的直角三角形的性质可得BC=2 ,CM=,进一步得到BM=BC﹣CM=,根据勾股定理可得BF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵四边形OCED是平行四边形,∴四边形OCED为菱形,∴CE∥OB,CE=OB,∴四边形OBCE为平行四边形;(2)解:过F作FM⊥BC于M,过O作ON⊥BC于N,∵FM⊥BC,ON⊥BC,∴ON∥FM,∵AO=OC,∴ON=AB=1,∵OF=FC,∴FM=ON=,∵∠AOB=60°,OA=OB,∴∠OAB=60°,∠ACB=30°,在Rt△ABC中:∵AB=2,∠ACB=30°,∴BC=2 ,∵∠ACB=30°,FM=,∴CM=,∴BM=BC﹣CM=,∴BF==.【点评】本题考查了矩形的性质,平行四边形的判定与性质,菱形的判定与性质的应用,注意:矩形的对角线互相平分且相等,有一组邻边相等的平行四边形是菱形.23.(6分)如图,直线l:y=﹣2x+m与x轴交于点A(﹣2,0),抛物线C:y=x+4x+321与x轴的一个交点为B(点B在点A的左侧),过点B作BD垂直x轴交直线l于点D.(1)求m的值和点B的坐标;(2)将△ABD绕点A顺时针旋转90°,点B,D的对应点分别为点E,F.①点F的坐标为(0,1);②将抛物线C向右平移使它经过点F,此时得到的抛物线记为C,直接写出抛物线C的122表达式.【分析】(1)由点A的坐标,利用待定系数法即可求出m的值,再利用二次函数图象上点的坐标特征结合点B在点A的左侧,即可求出点B的坐标;(2)利用一次函数图象上点的坐标特征可得出点D的坐标,进而可得出BD,AB的值.①依照题意画出图形,由EF=BD=2,OF=AE=AB=1可得出点F在y轴正半轴上,进而可求出点F的坐标;②利用配方程法将抛物线C的表达式变形为顶点式,根据平移的性质可设抛物线C的表12达式为y=(x+m)﹣1,由点F的坐标,利用待定系数法即可求出抛物线C的表达式,22此题得解.【解答】解:(1)将A(﹣2,0)代入y=﹣2x+m,得:0=﹣2×(﹣2)+m,解得:m=﹣4.当y=0时,有x+4x+3=0,2解得:x=﹣3,x=﹣1,12又∵点B在点A的左侧,∴点B的坐标为(﹣3,0).(2)当x=﹣3时,y=﹣2x﹣4=2,∴点D的坐标为(﹣3,2),∴BD=2,AB=1.①依照题意画出图形,则EF=BD=2,OF=AE=AB=1,又∵点A的坐标为(﹣2,0),∴点F在y轴正半轴上,∴点F的坐标为(0,1).②∵y=x+4x+3=(x+2)﹣1,22∴设平移后得到的抛物线C的表达式为y=(x+m)﹣1.22将F(0,1)代入y=(x+m)﹣1,得:1=(0+m)﹣1,22∴抛物线C的表达式为y=(x﹣)﹣1或y=(x+)﹣1,即y=x﹣2x+1或y2222=x+2x+1.2【点评】本题考查了待定系数法一次函数解析式、二次函数图象上点的坐标特征、旋转的性质、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,解题的关键是:(1)利用待定系数法及二次函数图象上点的坐标特征,求出m的值和点B的坐标;(2)①利用旋转的性质找出点F的位置;②由点F的坐标,利用待定系数法求出抛物线C的2表达式.24.(6分)如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=6,求得DE=.【解答】解:(1)连接O D,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,在Rt△ABD中,BD=8,∴AD=6,∵∠DAC=∠DBC,∴sin∠DAE=sin∠DBC=,在Rt△ADE中,sin∠DAC=,∴DE=.【点评】本题考查了切线的判定和性质,角平分线的定义,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.25.(6分)小明利用函数与不等式的关系,对形如(x﹣x)(x﹣x)…(x﹣x)>0n12(n为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式x﹣3>0,观察函数y=x﹣3的图象可以得到如表格:x的范围y的符号x>3+x<3﹣由表格可知不等式x﹣3>0的解集为x>3.②对于不等式(x﹣3)(x﹣1)>0,观察函数y=(x﹣3)(x﹣1)的图象可以得到如表表格:x的范围y的符号x>3+1<x<3﹣x<1+由表格可知不等式(x﹣3)(x﹣1)>0的解集为x>3或x<1.③对于不等式(x﹣3)(x﹣1)(x+1)>0,请根据已描出的点画出函数y=(x﹣3)(x﹣1)(x+1)的图象;观察函数y=(x﹣3)(x﹣1)(x+1)的图象补全下面的表格:x的范围y的符号x>3+1<x<3﹣﹣1<x<1+x<﹣1﹣由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为x>3或﹣1<x<1.……小明将上述探究过程总结如下:对于解形如(x﹣x)(x﹣x)……(x﹣x)>0(n为正12n整数)的不等式,先将x,x…,x按从大到小的顺序排列,再划分x的范围,然后通过12n列表格的办法,可以发现表格中y的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为x>6或2<x<4或x<﹣2.②不等式(x﹣9)(x﹣8)(x﹣7)>0的解集为x>9或x<8且x≠7.2【分析】(1)②根据表格中的数据可以直接写出不等式的解集;③根据表格中的数据可以直接写出不等式的解集;(2)①根据小明的方法,可以直接写出该不等式的解集;②根据小明的方法,可以直接写出该不等式的解集.【解答】解:(1)②由表格可知不等式(x﹣3)(x﹣1)>0的解集为x>3或x<1,故答案为:x>3或x<1;③当﹣1<x<1时,(x﹣3)(x﹣1)(x+1)>0,当x<﹣1时,(x﹣3)(x﹣1)(x+1)<0,由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为x>3或﹣1<x<1,故答案为:+,﹣,x>3或﹣1<x<1;(2)①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为x>6或2<x<4或x<﹣2,故答案为:x>6或2<x<4或x<﹣2;②不等式(x﹣9)(x﹣8)(x﹣7)>0的解集为x>9或x<8且x≠7,2故答案为:x>9或x<8且x≠7【点评】本题考查二次函数的图象、一次函数的图象、一次函数与一元一次不等式,解答本题的关键是明确题意,写出相应的不等式的解集.26.(6分)在平面直角坐标系xOy中,已知抛物线y=ax﹣4ax+3a.2(1)求抛物线的对称轴;(2)当a>0时,设抛物线与x轴交于A,B两点(点A在点B左侧),顶点为C,若△ABC 为等边三角形,求a的值;(3)过T(0,t)(其中﹣1≤t≤2)且垂直y轴的直线l与抛物线交于M,N两点.若对于满足条件的任意t值,线段MN的长都不小于1,结合函数图象,直接写出a的取值范围.【分析】(1)利用配方法将二次函数解析式变形为顶点式,由此即可得出抛物线的对称轴;(2)利用二次函数图象上点的坐标特征可得出点A,B的坐标,由(1)可得出顶点C的坐标,再利用等边三角形的性质可得出关于a的一元一次方程,解之即可得出a值;(3)分a>0及a<0两种情况考虑:①当a>0时,利用二次函数图象上点的坐标特征可得出关于a的一元一次不等式,解之即可得出a的取值范围;②当a<0时,利用二次函数图象上点的坐标特征可得出关于a的一元一次不等式,解之即可得出a的取值范围.综上,此题得解.。
北京市九年级上册期末数学试卷及答案(7)

北京市九年级上册期末数学试卷(7)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)抛物线y=2(x﹣1)2+1的顶点坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)2.(4分)已知相交两圆的半径分別为4和7,则它们的圆心距可能是()A.2 B.3 C.6 D.113.(4分)在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为()A.B.C.D.24.(4分)如图,在⊙O中,直径AB⊥弦CD于E,连接BD,若∠D=30°,BD=2,则AE的长为()A.2 B.3 C.4 D.55.(4分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个6.(4分)抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为()A.B.C.D.7.(4分)如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根8.(4分)如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2 B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)如图,⊙O是△ABC的外接圆,∠OBC=20°,则∠A= °.10.(4分)将抛物线y=x2先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是.11.(4分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4.以斜边AB的中点D为旋转中心,把△ABC按逆时针方向旋转α角(0°<α<120°),当点A的对应点与点C重合时,B,C两点的对应点分别记为E,F,EF与AB的交点为G,此时α等于°,△DEG的面积为.12.(4分)已知二次函数,(1)它的最大值为;(2)若存在实数m,n使得当自变量x的取值范围是m≤x≤n时,函数值y的取值范围恰好是3m≤y≤3n,则m= ,n= .三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)如图,网格中每个小正方形的边长均为1,且点A,B,C,P均为格点.(1)在网格中作图:以点P为位似中心,将△ABC的各边长放大为原来的两倍,A,B,C 的对应点分别为A1,B1,C1;(2)若点A的坐标为(1,1),点B的坐标为(3,2),则(1)中点C1的坐标为.15.(5分)已知抛物线y=x2+4x﹣5.(1)直接写出它与x轴、y轴的交点的坐标;(2)用配方法将y=x2+4x﹣5化成y=a(x﹣h)2+k的形式.16.(5分)如图,三角形纸片ABC中,∠BCA=90°,∠A=30°,AB=6,在AC上取一点 E,沿BE 将该纸片折叠,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求DE 的长.17.(5分)学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD 的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使花圃的面积最大,AB边的长应为多少米?18.(5分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线与BC,AB的交点分别为D,E.(1)若AD=10,,求AC的长和tanB的值;(2)若AD=1,∠ADC=α,参考(1)的计算过程直接写出的值(用sinα和cosα的值表示).四、解答题(本题共20分,每小题5分)19.(5分)如图所示,在平面直角坐标系xOy中,正方形PABC的边长为1,将其沿x轴的正方向连续滚动,即先以顶点A为旋转中心将正方形PABC顺时针旋转90°得到第二个正方形,再以顶点D为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n个正方形.设滚动过程中的点P的坐标为(x,y).(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P的坐标;(2)画出点P(x,y)运动的曲线(0≤x≤4),并直接写出该曲线与x轴所围成区域的面积.20.(5分)已知函数y=x2+bx+c(x≥0),满足当x=1时,y=﹣1,且当x=0与x=4时的函数值相等.(1)求函数y=x2+bx+c(x≥0)的解析式并画出它的图象(不要求列表);(2)若f(x)表示自变量x相对应的函数值,且又已知关于x 的方程f(x)=x+k有三个不相等的实数根,请利用图象直接写出实数k的取值范围.21.(5分)已知:如图,AB是⊙O的直径,AC是弦,∠BAC的平分线与⊙O的交点为D,DE ⊥AC,与AC的延长线交于点E.(1)求证:直线DE是⊙O的切线;(2)若OE与AD交于点F,,求的值.22.(5分)阅读下列材料:题目:已知实数a,x满足a>2且x>2,试判断ax与a+x的大小关系,并加以说明.思路:可用“求差法”比较两个数的大小,先列出ax与a+x的差y=ax﹣(a+x),再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y的代数式整理成y=(a﹣1)x﹣a,要判断y的符号可借助函数y=(a﹣1)x ﹣a的图象和性质解决.参考以上解题思路解决以下问题:已知a,b,c都是非负数,a<5,且 a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0.(1)分别用含a的代数式表示4b,4c;(2)说明a,b,c之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知抛物线y=kx2+(k﹣2)x﹣2(其中k>0).(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;(3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).24.(7分)已知:⊙O是△ABC的外接圆,点M为⊙O上一点.(1)如图,若△ABC为等边三角形,BM=1,CM=2,求AM的长;(2)若△ABC为等腰直角三角形,∠BAC=90°,BM=a,CM=b(其中b>a),直接写出AM的长(用含有a,b的代数式表示).25.(8分)已知:在如图1所示的平面直角坐标系xOy中,A,C两点的坐标分别为A(2,3),C(n,﹣3)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O﹣A﹣B﹣C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.(1)结合以上信息及图2填空:图2中的m= ;(2)求B,C两点的坐标及图2中OF的长;(3)在图1中,当动点P恰为经过O,B两点的抛物线W的顶点时,①求此抛物线W的解析式;②若点Q在直线y=﹣1上方的抛物线W上,坐标平面内另有一点R,满足以B,P,Q,R四点为顶点的四边形是菱形,求点Q的坐标.北京市九年级上册期末数学试卷答案(7)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)抛物线y=2(x﹣1)2+1的顶点坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【分析】直接根据抛物线的顶点式:y=a(x﹣h)2+k,(a≠0)写出顶点坐标即可.【解答】解:∵抛物线y=2(x﹣1)2+1,∴抛物线的顶点坐标为(1,1).故选:A.【点评】本题考查了抛物线的顶点式:y=a(x﹣h)2+k,(a≠0),则抛物线的顶点坐标为(h,k).2.(4分)已知相交两圆的半径分別为4和7,则它们的圆心距可能是()A.2 B.3 C.6 D.11【分析】根据两圆半径;再根据两圆位置关系与数量关系间的联系即可求解.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径),得出符合要求的答案即可.【解答】解:根据题意,得R=7,r=4,∴R+r=11,R﹣r=3,∴相交两圆的圆心距为:R﹣r<d<R+r,即3<d<11,∴它们的圆心距可能是6.故选:C.【点评】此题主要考查了圆与圆的位置关系,圆与圆的位置关系与数量关系间的联系是中考热点,需重点掌握.3.(4分)在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为()A.B.C.D.2【分析】首先根据勾股定理求得直角边AC的长度;然后由锐角三角函数的定义求得tanA 的值.【解答】解:∵Rt△ABC中,∠C=90°,若BC=1,AB=,∴AC==2;∴tanA==;故选:C.【点评】本题综合考查了解直角三角形、锐角三角函数的定义、勾股定理.掌握相应的锐角三角函数值的求法是解决本题的关键.4.(4分)如图,在⊙O中,直径AB⊥弦CD于E,连接BD,若∠D=30°,BD=2,则AE的长为()A.2 B.3 C.4 D.5【分析】先根据直角三角形的性质求出BE及DE的长,再连接OD,设OD=r,则OE=r﹣BE,在Rt△ODE中利用勾股定理求出r的值,进而可得出AE的长.【解答】解:∵AB⊥CD,∠D=30°,BD=2,∴△BDE是直角三角形,∴BE=BD=×2=1,∴DE===,连接OD,设OD=r,则OE=r﹣BE=r﹣1,在Rt△ODE中,OD2=OE2+DE2,即r2=(r﹣1)2+()2,解得r=2,∴AE=OA+OE=2+(2﹣1)=3.故选:B.【点评】本题考查的是圆周角定理及勾股定理、直角三角形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.(4分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.【点评】本题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合.6.(4分)抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为()A.B.C.D.【分析】因为抛一枚质地均匀的正方体骰子,有6种结果,每种结果等可能出现,而出现大于3点有3种,即可求其概率.【解答】解:抛掷一枚质地均匀的正方体骰子,有6种结果,每种结果等可能出现,而出现大于3点有3种,故所求概率为=故选:A.【点评】本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.属基础题.7.(4分)如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根【分析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c 是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【解答】解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(﹣1,0),对称轴是x=1,设另一交点为(x,0),﹣1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选:D.【点评】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x 轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.8.(4分)如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2 B.C.D.【分析】由于OA的长为定值,若△ABE的面积最小,则BE的长最短,此时AD与⊙相切;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,根据相似三角形的面积比等于相似比的平方,可求出△AOE的面积,进而可得出△AOB和△AOE的面积差,由此得解.【解答】解:若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;Rt△ACD中,CD=1,AC=OC+OA=3;由勾股定理,得:AD=2;∴S△ACD=AD•CD=;易证得△AOE∽△ADC,∴=()2=()2=,即S△AOE=S△ADC=;∴S△ABE=S△AOB﹣S△AOE=×2×2﹣=2﹣;故选:D.【点评】此题主要考查了切线的性质、相似三角形的性质、三角形面积的求法等知识;能够正确的判断出△BE面积最小时AD与⊙C的位置关系是解答此题的关键.二、填空题(本题共16分,每小题4分)9.(4分)如图,⊙O是△ABC的外接圆,∠OBC=20°,则∠A= 70 °.【分析】首先根据等腰三角形的性质得出∠OCB=∠OBC=20°,再根据圆周角定理,在同圆与等圆中同弧或等弧所对圆周角是圆心角的一半,即可得出答案.【解答】解:∵⊙O是△ABC的外接圆,∠OBC=20°,OB=CO,∴∠OCB=∠OBC=20°,∴∠BOC=180°﹣20°﹣20°=140°,∴∠A=70°.故答案为:70°.【点评】此题主要考查了圆周角定理的性质以及等腰三角形的性质与三角形内角和定理等知识,熟练地应用圆周角定理是解决问题的关键.10.(4分)将抛物线y=x2先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是y=(x﹣1)2﹣1 .【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向下平移1个单位长度所得的抛物线的解析式为:y=x2﹣1;由“左加右减”的原则可知,再向右平移1个单位长度所得抛物线的解析式为:y=(x﹣1)2﹣1,即y=(x﹣1)2﹣1.故答案为:y=(x﹣1)2﹣1.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.11.(4分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4.以斜边AB的中点D为旋转中心,把△ABC按逆时针方向旋转α角(0°<α<120°),当点A的对应点与点C重合时,B,C两点的对应点分别记为E,F,EF与AB的交点为G,此时α等于60 °,△DEG的面积为.【分析】根据直角三角形性质求出AC,∠A,根据旋转性质求出DA=DC,得出等边三角形ADC,求出∠EDG=60°和DC,求出ED长,求出∠DGE=90°,求出DG和EG,根据三角形的面积公式求出即可.【解答】解:∵∠ACB=90°,∠B=30°,∴∠A=60°,AC=AB=2,∵以斜边AB的中点D为旋转中心,点A的对应点与点C重合,∴DA=DC,∴∠A=∠ACD=60°,∴△ADC是等边三角形,AC=AD=DC=2,∠ADC=60°=∠EDG,∴DE=CE﹣CD=4﹣2=2,∠DGE=90°,∵∠E=30°,∴DG=DE=1,由勾股定理得:GE=,∴S△DEG=DG×GE=×1×=.故答案为:60,.【点评】本题考查了等边三角形的性质和判定,勾股定理,旋转的性质,含30度角的直角三角形性质,三角形的面积等知识点的运用,关键是求出DG和EG的长,主要考查学生分析问题和解决问题的能力,题目综合性比较强,难度适中.12.(4分)已知二次函数,(1)它的最大值为;(2)若存在实数m,n使得当自变量x的取值范围是m≤x≤n时,函数值y的取值范围恰好是3m≤y≤3n,则m= ﹣4 ,n= 0 .【分析】(1)利用配方法求出二次函数的顶点坐标即可,进而得出最值;(2)利用已知可得图象过(a,3a)点,进而得出a的值,即可得出m,n的值.【解答】解:(1),=﹣(x2﹣2x),=﹣(x2﹣2x+1)+,=﹣(x﹣1)2+,∴即当x=1时y取得其最大值.(2)由已知可得图象过(a,3a)点,∴3a=﹣a2+a,∴6a=﹣a2+2a,a2+4a=a(a+4)=0,于是得a=﹣4或a=0;于是可取m=﹣4,n=0;当m=﹣4时y=﹣×16﹣4=﹣12,即有(m,3m)=(﹣4,﹣12);当n=0时,y=0,即有(n,3n)=(0,3×0)=(0,0).∴m=﹣4,n=0,故答案为:﹣4,0.【点评】此题主要考查了二次函数的最值求法以及二次函数的性质,根据已知得出二次函数过点(a,3a),求出a的值是解题关键.三、解答题(本题共30分,每小题5分)13.(5分)计算:.【分析】将cos30°=,tan60°=,sin45°=代入原式,即可得出答案.【解答】解:∵cos30°=,tan60°=,sin45°=,∴原式=+×﹣2×=+3﹣1=2+.【点评】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是掌握一些特殊角:30°、45°、60°、90°的三角函数值,难度一般.14.(5分)如图,网格中每个小正方形的边长均为1,且点A,B,C,P均为格点.(1)在网格中作图:以点P为位似中心,将△ABC的各边长放大为原来的两倍,A,B,C 的对应点分别为A1,B1,C1;(2)若点A的坐标为(1,1),点B的坐标为(3,2),则(1)中点C1的坐标为(2,8).【分析】(1)连接AP、BP、CP并延长到2AP、2BP、2CP长度找到各点的对应点,然后顺次连接即可;(2)建立平面坐标系,使点A的坐标为(1,1),点B的坐标为(3,2),从坐标系中读出点C1的坐标.【解答】解:(1)所画图形如下所示,其中△A1B1C1即为所求;(2)建立直角坐标系如下所示,点C1的坐标为(2,8).故答案为:(2,8).【点评】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.15.(5分)已知抛物线y=x2+4x﹣5.(1)直接写出它与x轴、y轴的交点的坐标;(2)用配方法将y=x2+4x﹣5化成y=a(x﹣h)2+k的形式.【分析】(1)设y=0,则函数对应的一元二次方程x2+4x﹣5=0的解即为和x轴的交点横坐标;设x=0则y=﹣5是抛物线和y轴交点的纵坐标;(2)加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【解答】解:(1)抛物线与x轴的交点的坐标为(﹣5,0)和(1,0);抛物线与y轴的交点的坐标为(0,﹣5);(2)y=x2+4x﹣5,=(x2+4x+4)﹣9,=(x+2)2﹣9.【点评】本题考查了抛物线和坐标轴的交点以及用配方法将一般式转化为一般式.16.(5分)如图,三角形纸片ABC中,∠BCA=90°,∠A=30°,AB=6,在AC上取一点 E,沿BE 将该纸片折叠,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求DE 的长.【分析】由∠ACB=90°,AB=6,∠A=30°,可知BC=3,∠CBA=60°,再根据折叠的性质∠CBE=∠D=30°.在△BCE和△DCE中运用三角函数求解.【解答】解:∵∠ACB=90°,AB=6,∠A=30°,∴BC=3,∠CBA=60°,根据折叠的性质知,∠CBE=∠EBA=∠CBA=30°,∴CE=BCtan30°=,∴DE=2CE=2.【点评】本题考查了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、直角三角形的性质,锐角三角函数的概念求解.17.(5分)学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD 的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使花圃的面积最大,AB边的长应为多少米?【分析】(1)因为AB=x米,所以BC为(36﹣2x)米,由长方形的面积列式即可;(2)将(1)中的二次函数进行配方即可化为顶点式.y=a(x﹣h)2+k,因为a=﹣2<0抛物线开口向下,函数有最大值,即当x=h时,取得最大值.【解答】解:(1)∵四边形ABCD是矩形,AB的长为x米,∴CD=AB=x(米).∵矩形除AD边外的三边总长为36米,∴BC=36﹣2x(米).…(1分)∴S=x(36﹣2x)=﹣2x2+36x.…(3分)自变量x的取值范围是0<x<12.…(4分)(说明:由0<x<36﹣2x可得0<x<12.)(2)∵S=﹣2x2+36x=﹣2(x﹣9)2+162,且x=9在0<x<12的范围内,∴当x=9时,S取最大值.即AB边的长为9米时,花圃的面积最大.…(5分)【点评】本题考查了二次函数的应用中求最值的问题.当a>0时函数有最小值;当a<0时函数有最大值.求最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比用公式法简便.18.(5分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线与BC,AB的交点分别为D,E.(1)若AD=10,,求AC的长和tanB的值;(2)若AD=1,∠ADC=α,参考(1)的计算过程直接写出的值(用sinα和cosα的值表示).【分析】(1)在直角三角形ADC中利用锐角三角函数的定义求得AC=4,根据勾股定理求得CD=6;然后利用DE是线段AB的垂直平分线的性质推知AD=BD;最后在直角三角形ABC 中,由锐角三角函数的定义来求tanB的值即可;(2)根据(1)的解答过程直接写出结果=.【解答】解:(1)∵,AD=10,∴=;又∵AD=10,∴AC=8;∴在Rt△ADC中,CD=6;∵AB的垂直平分线是DE,∴AD=BD,∴tanB====,即tanB=;(2)在Rt△ADC中,AC=AD•sin∠ADC,∵AD=1,∠ADC=α,∴AC=sinα,CD=cosα;又∵DE是线段AB的垂直平分线,∴BD=AD=1,∴∠DAB=∠B(等边对等角);而∠ADC=∠DAB+∠B(外角定理),∴∠B=,∴tan∠B==,即=.【点评】本题考查了解直角三角形、勾股定理以及锐角三角函数的定义.求BC的长度时,利用“线段的垂直平分线上的点到线段的两个端点的距离相等”求得BD的长度是解答(1)的关键所在.四、解答题(本题共20分,每小题5分)19.(5分)如图所示,在平面直角坐标系xOy中,正方形PABC的边长为1,将其沿x轴的正方向连续滚动,即先以顶点A为旋转中心将正方形PABC顺时针旋转90°得到第二个正方形,再以顶点D为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n个正方形.设滚动过程中的点P的坐标为(x,y).(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P的坐标;(2)画出点P(x,y)运动的曲线(0≤x≤4),并直接写出该曲线与x轴所围成区域的面积.【分析】(1)有意义直接画图,再有画的图形可直接写出点P的坐标;(2)有点P运动的轨迹可知为弧线,只要找到所在的圆心和半径即可,利用扇形的面积公式即可求出该曲线与x轴所围成区域的面积.【解答】解:(1)第三个和第四个正方形的位置如图所示:第三个正方形中的点P的坐标为:(3,1);(2)点P(x,y)运动的曲线(0≤x≤4)如图所示:由图形可知它与x轴所围成区域的面积=++1+=π+1.【点评】本题考查了图形旋转的性质:旋转前后图形全等和扇形的面积公式:,题目难度不大,不过很新颖.20.(5分)已知函数y=x2+bx+c(x≥0),满足当x=1时,y=﹣1,且当x=0与x=4时的函数值相等.(1)求函数y=x2+bx+c(x≥0)的解析式并画出它的图象(不要求列表);(2)若f(x)表示自变量x相对应的函数值,且又已知关于x 的方程f(x)=x+k有三个不相等的实数根,请利用图象直接写出实数k的取值范围.【分析】(1)根据抛物线的对称性求对称轴,再根据对称轴公式求b的值,把x=1,y=﹣1代入函数式求c的值,根据自变量取值范围画出函数图象;(2)关于x的方程f(x)=x+k有三个不相等的实数根,说明直线y=x+k与f(x)有三个交点,结合函数f(x)的图象可求实数k的取值范围.【解答】解:(1)由x=0与x=4时的函数值相等,根据抛物线的对称性可知,抛物线对称轴为x==2,即﹣=2,解得b=﹣4,将x=1,y=﹣1代入y=x2﹣4x+c中,得1﹣4+c=﹣1,解得c=2,∴y=x2﹣4x+2(x≥0);(2)方程f(x)=x+k的根,实质上是函数f(x)与直线y=x+k的图象交点,由图象可知﹣2<k≤2.【点评】本题考查了二次函数的综合运用.关键是根据已知条件,利用待定系数法求二次函数解析式,根据自变量取值范围画函数图象,根据图象求k的取值范围.21.(5分)已知:如图,AB是⊙O的直径,AC是弦,∠BAC的平分线与⊙O的交点为D,DE ⊥AC,与AC的延长线交于点E.(1)求证:直线DE是⊙O的切线;(2)若OE与AD交于点F,,求的值.【分析】(1)连接OD,根据角平分线定义和等腰三角形性质推行∠CAD=∠ODA,推出OD∥AC,根据平行线性质和切线的判定推出即可;(2)连接BC,推出矩形ECGD,设AC=4a,AB=5a,求出OD、求出OG的长,推出CE=DG,求出CE长,求出AE,证△AEF和△OFD相似,得出比例式,代入求出即可.【解答】解:(1)证明:连接OD,∵AD平分∠CAB,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ODA,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴直线DE是⊙O的切线.(2)连接BC交OD于G,∵AB是直径,∴∠ACB=90°,∴cos∠BAC==,设AC=4a,AB=5a,由勾股定理得:BC=3a,∴OA=OD=OB=2.5a,∵∠ECG=90°=∠DEC=∠EDG,∴四边形ECGD是矩形,∵OG为△ABC中位线,∴G为BC中点∴DE=CG=1.5a,∵OD∥AE,OA=OB,∴CG=BG,∴OG=AC=2a,∴DG=EC=2.5a﹣2a=0.5a,∴AE=AC+CE=4a+0.5a=4.5a,∵OD∥AC,∴△AEF∽△DOF,∴==.【点评】本题综合考查了等腰三角形的性质,平行线的性质,切线的性质和判定,相似三角形的性质和判定,锐角三角函数,勾股定理,角平分线定义等知识点的运用,题目较好,综合性强,有一定的难度,主要培养学生综合运用所学知识进行推理的能力.22.(5分)阅读下列材料:题目:已知实数a,x满足a>2且x>2,试判断ax与a+x的大小关系,并加以说明.思路:可用“求差法”比较两个数的大小,先列出ax与a+x的差y=ax﹣(a+x),再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y的代数式整理成y=(a﹣1)x﹣a,要判断y的符号可借助函数y=(a﹣1)x ﹣a的图象和性质解决.参考以上解题思路解决以下问题:已知a,b,c都是非负数,a<5,且 a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0.(1)分别用含a的代数式表示4b,4c;(2)说明a,b,c之间的大小关系.【分析】(1)根据a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0,整理得出4b=a2﹣2a﹣3.(2)利用4(b﹣a)=a2﹣6a﹣3=(a﹣3)2﹣12,得出二次函数的图象即可,再利用4(c ﹣a)=a2﹣4a+3=(a﹣1)(a﹣3),得出图象,进而得出a,b,c大小关系.【解答】解:(1)∵a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0,∴,消去b并整理,得 4c=a2+3.消去c并整理,得4b=a2﹣2a﹣3.(2)∵4b=a2﹣2a﹣3=(a﹣3)(a+1)=(a﹣1)2﹣4,将4b看成a的函数,由函数4b=(a﹣1)2﹣4的性质结合它的图象(如图1所示),以及a,b均为非负数得a≥3.又∵a<5,∴3≤a<5.∵4(b﹣a)=a2﹣6a﹣3=(a﹣3)2﹣12,将4(b﹣a)看成a的函数,由函数4(b﹣a)=(a﹣3)2﹣12的性质结合它的图象(如图2所示)可知,当3≤a<5时,4(b﹣a)<0.∴b<a.∵4(c﹣a)=a2﹣4a+3=(a﹣1)(a﹣3),a≥3,∴4(c﹣a)≥0.∴c≥a.∴b<a≤c.【点评】此题主要考查了二次函数的性质以及利用二次函数图象得出a,b,c大小关系,利用数形结合是这部分考查的重点.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知抛物线y=kx2+(k﹣2)x﹣2(其中k>0).(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;(3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).【分析】(1)令y=0,解方程kx2+(k﹣2)x﹣2=0即可得到抛物线与x轴的交点,根据抛物线的顶点坐标公式(﹣,)代入进行计算即可求解;(2)根据(1)的结果,然后利用绝对值的性质,再根据恒不等式列式进行解答;(3)根据左加右减,上加下减,写出平移后的抛物线顶点坐标,然后消掉字母k即可得解.【解答】解:(1)当y=0时,kx2+(k﹣2)x﹣2=0,即(kx﹣2)(x+1)=0,解得x1=,x2=﹣1,∴抛物线与x轴的交点坐标是(,0)与(﹣1,0),﹣=﹣=﹣,==﹣,∴抛物线的顶点坐标是(﹣,﹣);(2)根据(1),|n|=|﹣|===++1≥2+1=1+1=2,当且仅当=,即k=2时取等号,∴当k=2时,|n|的最小值是2;(3)﹣+=,﹣+===﹣k﹣1,设平移后的抛物线的顶点坐标为(x,y),则,消掉字母k得,y=﹣﹣1,∴新函数的解析式为y=﹣﹣1.【点评】本题考查了抛物线与x轴的交点问题,顶点坐标以及二次函数的性质,二次函数的图象与几何变换,综合性较强,难度较大,需仔细分析求解.24.(7分)已知:⊙O是△ABC的外接圆,点M为⊙O上一点.(1)如图,若△ABC为等边三角形,BM=1,CM=2,求AM的长;(2)若△ABC为等腰直角三角形,∠BAC=90°,BM=a,CM=b(其中b>a),直接写出AM的长(用含有a,b的代数式表示).【分析】(1)延长MB至点E,使BE=MC,连AE,根据等边三角形性质求出AC=AB,根据圆内接四边形的性质推出∠ABE=∠ACM,证△ABE≌△ACM,推出AM=AE,证等边三角形AEM,推出AE=AM=ME,即可推出答案;(2)分为两种情况,画出图形,延长MB至点E,使BE=MC,连AE,根据等腰直角三角形性质推出AB=AC,根据SAS证△ABE≌△ACM,推出AM=AE,∠E=∠AMC=45°,∠AMB=45°,求出△EAM是等腰直角三角形,根据勾股定理求出即可.【解答】(1)解:延长MB至点E,使BE=MC,连接AE,∵△ABC是等边三角形,∴AB=AC,∵四边形ABMC是⊙O的内接四边形,∴∠ABE=∠ACM,在△AEB和△AMC中,∴△AEB≌△AMC,∴∠AEB=∠AMC,∵∠AMC=∠ABC(在同圆中,同弧所对的圆周角相等),∴∠AEB=∠ABC,∵∠AME=∠ACB(在同圆中,同弧所对的圆周角相等),又∵∠ABC=∠ACB=60°,∴∠AEB=∠AME=60°,∴△AEM是等边三角形,∴AM=ME=MB+BE,∵BE=MC,∴MB+MC=MA=1+2=3.即AM的长是3.(2)解:分为两种情况:①如图,AM==(a+b),理由是:延长MB至点E,使BE=MC,连AE,由(1)知:∠ABE=∠ACM,在△ABE和△ACM中,∴△ABE≌△ACM,∴AM=AE,∠E=∠AMC,∵∠AMC=∠ABC=45°,∠AMB=∠ACB=45°,∴∠E=∠AMB=45°,∴∠EAM=90°,在△EAM中,ME=MB+BE=MB+CM=a+b,AE=AM,由勾股定理得:AM==(a+b),即AM==(a+b).。
2010-2011学年北京四中九年级(上)期末数学试卷_0

2010-2011学年北京四中九年级(上)期末数学试卷一、选择题(本题共32分,每小题4分)1.(4分)正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B.C.D.22.(4分)如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2)B.(4,4)C.(4,5)D.(5,4)3.(4分)抛物线y=(x+1)(x﹣3)的顶点坐标是()A.(﹣1,0)B.(1,﹣4)C.(﹣1,2)D.(1,2)4.(4分)两圆的圆心距为3,两圆的半径分别是方程x2﹣4x+3=0的两个根,则两圆的位置关系是()A.相交B.外离C.内含D.外切5.(4分)在半径为3cm的圆中,长为2πcm的弧所对的圆心角的度数为()A.30°B.60°C.90°D.120°6.(4分)如图,AB是圆O的直径,弦AD,BC相交于点P,∠DPB=60°,D是的中点,则的值是()A.B.2C.D.7.(4分)如图,在正方形网格上有6个三角形①△ABC,②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是()A.②③④B.③④⑤C.④⑤⑥D.②③⑥8.(4分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2B.﹣1C.1D.2二、填空题(本题共24分,每题4分)9.(4分)在▱ABCD中,E为BC延长线上一点,AE交CD于点F,若AB=7,CF=3,则=.10.(4分)正多边形的边长为2,中心到边的距离为,则这个正多边形的边数为.11.(4分)如图,锐角△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则BC 的长为.12.(4分)已知:如图,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D.使构成的△ABD恰好有两种,则线段BD的取值范围是.13.(4分)如图,在△ABC中,AB=AC=5cm,cosB=.如果⊙O的半径为cm,且经过点B,C,那么线段AO=cm.14.(4分)如图,在平面直角坐标系中,二次函数的图象经过正方形ABOC的三个顶点A、B、C,则m的值为.三、解答题(本题共64分;第15-21题各6分,第22题8分,第23题6分,第24题8分)15.(6分)计算:2sin45°+sin60°﹣cos30°+tan260°.16.(6分)如图,梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=70°,点E,F 分别在线段AD,DC上,且∠BEF=110°,若AE=3,求DF长.17.(6分)已知:如图,△OBC内接于圆,圆与直角坐标系的x、y轴交于B、A 两点,若∠BOC=45°,∠OBC=75°,A点坐标为(0,2).求:(1)B点的坐标;(2)BC的长.18.(6分)已知:AD为△ABC的中线,AE是△ABD的中线,AB=BD.(1)判断△ABE与△CBA是否相似并说明理由;(2)求证:AC=2AE.19.(6分)如图,AB是⊙O的直径,BC=8,E为的中点,OE交BC于D,连接AD,DE=2.(1)求⊙O的半径;(2)求线段AD的长.20.(6分)已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点A(A为楼底)、D、E,她在D处测得广告牌顶端C的仰角为60°,在E两处测得商场大楼楼顶B 的仰角为45°,DE=5米.已知,广告牌的高度BC=2.35米,求这座商场大楼的高度AB(取1.73,取1.41,小红的身高不计,结果保留整数).21.(6分)已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径等于4,tan∠ACB=,求CD的长.22.(8分)如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(﹣2,0),连接AB.(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明);(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.23.(6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D 顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.24.(8分)如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α﹣β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.四、附加题(本题6分).25.如图,已知抛物线y=(3﹣m)x2+2(m﹣3)x+4m﹣m2的顶点A在双曲线y=上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)确定直线AB的解析式;(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标.2010-2011学年北京四中九年级(上)期末数学试卷参考答案一、选择题(本题共32分,每小题4分)1.A;2.B;3.B;4.A;5.D;6.A;7.B;8.C;二、填空题(本题共24分,每题4分)9.;10.6;11.6;12.m•sinα<BD<m;13.5;14.﹣1;三、解答题(本题共64分;第15-21题各6分,第22题8分,第23题6分,第24题8分)15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;四、附加题(本题6分).25.;。
2024年北京初三九年级上学期数学期末考《几何综合》

2024年1月九上期末——几何综合1.【东城】27.在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,连接DA,将线段DA绕点D顺时针旋转60°得到线段DE.(1)如图1,当点D与点B重合时,连接AE,交BC于点H,求证:AE⊥BC;(2)当BD≠CD时(图2中BD<CD,图3中BD>CD),F为线段AC的中点,连接EF.在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE的大小,并证明.2.【西城】27.在ABC △中,90ACB ∠=︒,AC BC =,CM AB ⊥于点M .点P 在射线CM 上,连接AP ,作CD AP ⊥于点D .连接MD ,作CE MD ⊥于点E ,作//DF AB 交直线CE 于点F ,连接MF .图1图2备用图(1)当点P 在线段CM 上时,在图1中补全图形,并直接写出ADM ∠的度数;(2)当点P 在线段CM 的延长线上时,利用图2探究线段DF 与AM 之间的数量关系,并证明;(3)取线段MF 的中点K ,连接BK ,若8AC =,直接写出线段BK 的长的最小值.3.【海淀】27.如图,在ABC △中,AB AC =,点D ,E 分别在边AC ,BC 上,连接DE ,EDC B ∠∠=.(1)求证:ED EC =;(2)连接BD ,点F 为BD 的中点,连接AF ,EF .①依题意补全图形;②若AF EF ⊥,求BAC ∠的大小.4.【朝阳】27.已知线段AB 和点C ,将线段AC 绕点A 逆时针旋转α(0°<α<90°),得到线段AD ,将线段BC 绕点B 顺时针旋转180°-α,得到线段BE ,连接DE ,F 为DE 的中点,连接AF ,BF .(1)如图1,点C 在线段AB 上,依题意补全图1,直接写出∠AFB 的度数;(2)如图2,点C 在线段AB 的上方,写出一个α的度数,使得3AF =成立,并证明.图1图25.【石景山】27.如图,在Rt ACB △中,90ACB ∠=°,60BAC ∠=°.D 是边BA 上一点(不与点B 重合且12BD BA <),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE .(1)求CAE ∠的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ∠=∠,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.6.【丰台】27.已知在△ABC中,AB=AC,0°<∠BAC<90°,将线段AC绕点A逆时针旋转α得到线段AD,连接BD,CD.(1)如图1,当∠BAC=α时,∠ABD=(用含有α的式子表示);(2)如图2,当α=90°时,连接BD,作∠BAD的角平分线交BC的延长线于点F,交BD于点E,连接DF.①依题意在图2中补全图形,并求∠DBC的度数;②用等式表示线段AF,CF,DF之间的数量关系,并证明.7.【昌平】27.在△ABC中,AB=AC,∠BAC=90°,点M为BC的中点,连接AM,点D为线段CM上一动点,过点D作DE⊥BC,且DE=DM,(点E在BC的上方),连接AE,过点E作AE的垂线交BC边于点F.(1)如图1,当点D为CM的中点时,①依题意补全图形;②直接写出BF和DE的数量关系为______________;(2)当点D在图2的位置时,用等式表示线段BF与DE之间的数量关系,并证明.图1图227题图127题图28.【通州】27.如图,ABC △中,90ACB ∠=︒,AC BC =,点D 在AB 的延长线上,取AD 的中点F ,连结CD 、CF ,将线段CD 绕点C 顺时针旋转90︒得到线段CE ,连结AE 、BE .(1)依题意,请补全图形;(2)判断BE 、CF 的数量关系及它们所在直线的位置关系,并证明.9.【房山】27.如图,在等边三角形ABC 中,E ,F 分别是BC ,AC 上的点,且BE CF =,AE ,BF 交于点G .(1)AGF ∠=°;(2)过点A 作AD ∥BC (点D 在AE 的右侧),且AD BC =,连接DG .①依题意补全图形;②用等式表示线段AG ,BG 与DG 的数量关系,并证明.10.【大兴】27.在△ABC中,∠BAC=90°,AB=AC,点P为BA的延长线上一点,连接PC,以点P为中心,将线段PC顺时针旋转90°得到线段PD,连接BD.(1)依题意补全图形;(2)求证:∠ACP=∠DPB;(3)用等式表示线段BC,BP,BD之间的数量关系,并证明.11.【门头沟】27.如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CP,且∠ACP=α,点A关于CP的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CP于点M,N.(1)依题意补全图形;(2)当α=30°时,直接写出∠CNB的度数;(3)当0°<α<45°时,用等式表示线段BN,CM之间的数量关系,并证明.12.【燕山】27.如图,△ABC为等边三角形,点M为AB边上一点(不与点A,B重合),连接CM,过点A作AD⊥CM于点D,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.(1)依题意补全图形,直接写出∠AEB的大小,并证明;(2)连接ED并延长交BC于点F,用等式表示BF与FC的数量关系,并证明.13.【顺义】27.在菱形ABCD中,∠B=60°,点P是对角线AC上一点(不与点A重合),点E,F分别是边AB,AD上的点,且∠EPF=60°,射线PE,PF分别与DA,BA的延长线交于点M,N.(1)如图1,若点P与C重合,且PA平分∠EPF,求证:AM=AN;(2)连接BP,若∠ABP=45°,BP=3,且PA不平分∠EPF.①依题意补全图2;②用等式表示线段AM,AN的数量关系,并证明.14.【密云】27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠A C E+∠B C D的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段A E与CF之间的数量关系,并证明.15.【平谷】27.如图,△ABC中,AC=BC,∠ACB=90°,D为AB边中点,E为△ABC外部射线CD上一点,连接AE,过C作CF⊥AE于F.(1)依题意补全图形,(2)找出图中与∠EAD相等的角,并证明;(3)连接DF,猜想∠CFD的度数,并证明.。
2024年北京初三九年级上学期数学期末考《代数综合》

2024年1月九上期末——代数综合1.【东城】26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.2.【西城】26.在平面直角坐标系xOy 中,()1,A t y ,()1,B t y+,()23,C t y +三点都在抛物线224y ax ax =-+(0a >)上.(1)这个抛物线的对称轴为直线________.(2)若132y y y >≥,求t 的取值范围;(3)若无论t 取任何实数,点A ,B ,C 中都至少有两个点在x 轴的上方,直接写出a 的取值范围.3.【海淀】26.在平面直角坐标系xOy 中,点()1,A m -,点()3,B n 在抛物线2(0)y ax bx c a =++>上.设抛物线的对称轴为直线x t =.(1)当2t =时,①直接写出b 与a 满足的等量关系;②比较m ,n 的大小,并说明理由;(2)已知点()0,C x p 在该抛物线上,若对于034x <<,都有m p n >>,求t 的取值范围.4.【朝阳】26.在平面直角坐标系xOy 中,点(x 1,m ),(x 2,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t .(1)若对于x 1=1,x 2=3,有m =n ,求t 的值;(2)若对于t -1<x 1<t ,2<x 2<3,存在m >n ,求t 的取值范围.5.【石景山】26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++>经过点(33)A a c +,.(1)求该抛物线的对称轴;(2)点1(12)M a y -,,2(2)N a y +,在抛物线上.若12c y y <<,求a 的取值范围.6.【丰台】26.在平面直角坐标系xOy 中,点(m +2,1y ),(6,2y )为抛物线22y x mx n =-+上两个不同的点.(1)求抛物线的对称轴(用含m 的式子表示);(2)若12y n y <<,求m 的取值范围.7.【昌平】26.在平面直角坐标系xOy 中,点(0,3),(6,1y )在抛物线()02≠++=a c bx ax y 上.(1)当31=y 时,求抛物线的对称轴;(2)若抛物线()02≠++=a c bx ax y 经过点(-1,-1),当自变量x 的值满足-1≤x ≤2时,y 随x 的增大而增大,求a 的取值范围;(3)当0>a 时,点(m -4,2y ),(m ,2y )在抛物线c bx ax y ++=2上.若2y <1y <c ,请直接写出m 的取值范围.8.【通州】26.在平面直角坐标系xOy 中,()11,P x y ,()22,Q x y 是抛物线2221y x mx m =-+-上任意两点.(1)求抛物线的顶点坐标(用含m 的式子表示);(2)若12x m =-,25x m =+,则1y ______2y ;(用“<”,“=”,或“>”填空)(3)若对于114x -≤<,24x =,都有12y y ≤,求m 的取值范围.9.【房山】26.在平面直角坐标系xOy 中,点(1)m ,,(3)n ,在抛物线24(0)y ax bx a =++>上,设抛物线的对称轴为x t =.(1)当m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点00()(3)x n x ≠,在抛物线上,若4m n <<,求t 的取值范围及0x 的取值范围.10.【大兴】26.在平面直角坐标系xOy 中,点(2,m )在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x=t .(1)当m =c 时,求t 的值;(2)点(-1,y 1),(3,y 2)在抛物线上,若c <m ,比较y 1,y 2的大小,并说明理由.11.【门头沟】26.在平面直角坐标系xOy 中,点M (1x ,1y ),N (2x ,2y )为抛物线2y ax bx c=++(a >0)上任意两点,其中12x x <.(1)若抛物线的对称轴为x =2,当12x x 、为何值时,12y y c ==;(2)设抛物线的对称轴为x =t ,若对于124x x +>,都有12y y <,求t 的取值范围.12.【燕山】26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.13.【顺义】26.在平面直角坐标系xOy 中,抛物线y =x 2﹣2ax +a 2﹣4与x 轴交于A ,B 两点(点A 在点B 左侧).(1)若a =1,求抛物线的对称轴及A ,B 两点的坐标;(2)已知点(3﹣a ,y 1),(a +1,y 2),(﹣a ,y 3)在该抛物线上,若y 1,y 2,y 3中有且仅有一个大于0,求a 的取值范围.14.【密云】26.在平面直角坐标系xOy 中,点(2,m )和(5,n )在抛物线y =x 2+2bx 上,设抛物线的对称轴为x=t .(1)若m=0,求b 的值;(2)若mn <0,求该抛物线的对称轴t 的取值范围.15.【平谷】26.在平面直角坐标系xOy 中,二次函数mx x y 22-=的图象上两个点A ),(11y x ,B ),(22y x ,点A 、B 之间的部分(包含点A 、点B )记作图象G ,图象G 上y 的最大值与最小值的差记作y G .(1)求这个二次函数的对称轴(用含m 的代数式表示);(2)当m=1,x 1=0,x 2=3时,求y G 的值;(3)当121-=m x ,122+=m x 时,恒有y G >21y y -,求m 的取值范围.。
北京四中学2024-2025学年数学九上开学统考试题【含答案】

北京四中学2024-2025学年数学九上开学统考试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是()A .10B .16C .18D .202、(4分)如图,在△ABC 中,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若∠BAD =45°,则∠B 的度数为()A .75°B .65°C .55°D .45°3、(4分)对于代数式2ax bx c ++(0,,,a a b c ≠为常数),下列说法正确的是()①若240b ac -=,则20ax bx c ++=有两个相等的实数根②存在三个实数m n s ≠≠,使得222am bm c an bn c as bs c++=++=++③若220ax bx c +++=与方程()()230+-=x x 的解相同,则422a b c -+=-A .①②B .①③C .②③D .①②③4、(4分)若方程1322x a x x -+=--有增根,则a 的值为()A .1B .2C .3D .05、(4分)如图,直线y x m =-+与3y x =+的交点的横坐标为-2,则关于x 的不等式30x m x -+>+>的取值范围()A .x>-2B .x<-2C .-3<x<-2D .-3<x<-16、(4分)一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,b ,1,2的中位数为()A .-1B .1C .2D .37、(4分)已知,则下列不等式一定成立的是()A .B .C .D .8、(4分)下列各点中,在第四象限的点是()A .(2,3)B .(﹣2,﹣3)C .(2,﹣3)D .(﹣2,3)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.10、(4分)某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.11、(4分)我市在旧城改造中,计划在市内一块如下图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要______元.12、(4分)定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为________.13、(4分)已知点A (﹣12,a ),B (3,b )在函数y =﹣3x +4的象上,则a 与b 的大小关系是_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数5y kx b =++与一次函数3y kx b =-++的图象的交点坐标为(3,0)A ,求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.15、(8分)据大数据统计显示,某省2016年公民出境旅游人数约100万人次,2017年与2018年两年公民出境旅游总人数约264万人次,若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2019年仍保持相同的年平均增长率,请你预测2019年该省公民出境旅游人数约多少万人次?16、(8分)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3:1,ND =1.①求MC 的长.②求MN 的长.17、(10分)已知:线段a ,c .求作:△ABC ,使BC =a ,AB =c ,∠C =90°18、(10分)如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,∠B =90°,DC=5cm .点P 从点A 向点D 以lcm /s 的速度运动,到D 点停止,点Q 从点C 向B 点以2cm /s 的速度运动,到B 点停止,点P,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP =;BQ =.(2)当t 为何值时,四边形PDCQ 是平行四边形?(3)当t 为何值时,△QCD 是直角三角形?B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一张矩形纸片ABCD ,已知6AB =,4BC =.小明按所给图步骤折叠纸片,则线段DG 长为______.20、(4分)小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.21、(4分)若0234a b c ==≠,则a b 的值为__________,a b c a b c +--+的值为________.22、(4分)已知一次函数y ax b =+,反比例函数k y x =(a ,b ,k 是常数,且0ak ≠),若其中-部分x ,y 的对应值如表,则不等式8k x ax b -<+<的解集是_________.x 4-2-1-124y ax b =+6-4-3-1-02k y x =2-4-8-84223、(4分)若因式分解:3x x -=__________.二、解答题(本大题共3个小题,共30分)24、(8分)先化简,再求值:22121124a a a a ++⎛⎫-÷ ⎪+-⎝⎭,其中a=325、(10分)已知:如图,平行四边形ABCD 中,AC ,BD 交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F .求证:OE =OF .26、(12分)某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为______,中位数为_______;(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C 点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=12AB×BC=12×4×5=10故选A.本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC 和CD的长,再用矩形面积公式求出矩形的面积.2、A【解析】由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【详解】解:由作法得MN垂直平分AC,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAC=∠BAD+∠DAC=45°+30°=75°,∵∠B+∠C+∠BAC=180°,∴∠B=180°-75°-30°=75°.故选:A.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3、B 【解析】根据根的判别式判断①;根据一元二次方程2ax bx c k ++=(k 为常数)最多有两个解判断②;将方程()()230+-=x x 的解代入220ax bx c +++=即可判断③.【详解】解:①240b ac ∆=-=∴方程20ax bc c ++=有两个相等的实数根.∴①正确:②一元二次方程2ax bx c k ++=(k 为常数)最多有两个解,∴②错误;③方程()()230+-=x x 的解为122,3x x =-=,将x =-2代人220ax bx c +++=得()()22220a b c -+⋅-++=,422a b c ∴-+=-,∴③正确.故选:B .本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.4、A 【解析】先去分母,根据方程有增根,可求得x=2,再求出a.【详解】1322x ax x -+=--可化为x-1-a=3(x-2),因为方程有增根,所以,x=2,所以,2-1-a=0,解得a=1.故选A 本题考核知识点:分式方程的增根.解题关键点:理解增根的意义.5、C 【解析】解:∵直线y x m =-+与3y x =+的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .本题考查一次函数与一元一次不等式.6、B 【解析】试题解析:∵一组数据1,2,a 的平均数为2,∴1+2+a =3×2解得a =3∴数据-1,a ,1,2,b 的唯一众数为-1,∴b =-1,∴数据-1,3,1,2,b 的中位数为1.故选B.点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.7、C 【解析】根据不等式的性质对选项进行逐一判断即可得到答案.【详解】解:A 、因为,不知道是正负数或者是0,不能得到,则A 选项的不等式不成立;B 、因为,则,所以B 选项的不等式不成立;C、因为,则,所以C选项的不等式成立;D、因为,则,所以D选项的不等式不成立.故选C.本题考查了不等式的性质,解题的关键是知道不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.8、C【解析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:纵观各选项,第四象限的点是(2,﹣3).故选:C.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】解:应分(70-42)÷4=7,∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.故答案为:1.10、59【解析】由题意得,300.29 600500a-=-,解得a=59.故答案为59.11、150a 【解析】作BA 边的高CD ,设与BA 的延长线交于点D ,则∠DAC =30°,由AC =30m ,即可求出CD =15m ,然后根据三角形的面积公式即可推出△ABC 的面积为150m 2,最后根据每平方米的售价即可推出结果.【详解】解:如图,作BA 边的高CD ,设与BA 的延长线交于点D ,∵∠BAC =150°,∴∠DAC =30°,∵CD ⊥BD ,AC =30m ,∴CD =15m ,∵AB =20m ,∴S △ABC =12AB ×CD =12×20×15=150m 2,∵每平方米售价a 元,∴购买这种草皮的价格为150a 元.故答案为:150a 元.本题主要考查三角形的面积公式,含30度角的直角三角形的性质,关键在于做出AB 边上的高,根据相关的性质推出高CD 的长度,正确的计算出△ABC 的面积.12、x >﹣1【解析】解:3⊕x <13,3(3-x )+1<13,解得:x >-1.故答案为:x >﹣1本题考查一元一次不等式的应用,正确理解题意进行计算是本题的解题关键.13、a >b【解析】根据k<0,y 随x 增大而减小解答【详解】解:∵k =﹣3<0,∴y 随x 的增大而减小,∵﹣12<3,∴a >b .故答案为:a >b .此题主要考查了一次函数的图像上点的坐标特征,利用一次函数的增减性求解更简便三、解答题(本大题共5个小题,共48分)14、113y x =-+和113y x =-;两条直线与y 轴围成的三角形面积为1.【解析】(1)将点A 坐标代入两个函数解析式中求出k 和b 的值即可;(2)分别求出两个一次函数与y 轴的交点坐标,代入三角形面积公式即可.【详解】解:将点(3,0)A 分别代入两个一次函数解析式,得035,03 3.k b k b =++⎧⎨=-++⎩解得1,34.k b ⎧=-⎪⎨⎪=-⎩所以两个一次函数的解析式分别为113y x =-+和113y x =-.(2)把0x =代入113y x =-+,得1y =;把0x =代入113y x =-,得1y =-.所以两个一次函数与y 轴的交点坐标分别为(0,1)和(0,1)-.所以两条直线与y 轴围成的三角形面积为:()111332⨯+-⨯=.本题考查了两条直线相交或平行问题以及待定系数法求一次函数的解析式,难度不大.15、(1)这两年公民出境旅游总人数的年平均增长率为20%;(2)约172.8万人次.【解析】(1)根据题意可以列出相应的一元二次方程,从而可以解答本题;(2)根据(1)中的增长率即可解答本题.【详解】(1)设这两年该省公民出境旅游人数的年平均增长率为x ,100(1+x)+100(1+x)2=264,解得,x 1=0.2,x 2=−3.2(不合题意,舍去),答:这两年公民出境旅游总人数的年平均增长率为20%;(2)如果2019年仍保持相同的年平均增长率,则2019年该省公民出境旅游人数为:100(1+x)3=100×(1+20%)3=172.8(万人次),答:预测2019年该省公民出境旅游总人数约172.8万人次.本题考查一元二次方程的应用,(1)解决此类问题要先找等量关系,2017年出境旅游人数+2018年出境旅游人数=264,可根据2016年的人数,运用增长率公式表示出2017年、2018年的人数,从而列出方程,由此可解;(2)可根据(1)中计算出来的增长率,运用公式直接求解(增长率计算公式:B =A (1+a )n 这里A 为基数,B 为增长之后的数量,a 为增长率,n 为期数).16、(1)证明见解析;(2)①MC =3;②【解析】(1)根据折叠可得∠AMN=∠CMN ,再根据平行可得∠ANM=∠CMN ,可证CM=CN (2)①根据等高的两个三角形的面积比等于边的比,可求MC 的长.②作NF ⊥MC ,可得矩形NFCD ,根据勾股定理可求CD ,则可得NF ,MF ,再根据勾股定理可求MN 的长.【详解】解:(1)∵折叠∴CM =AM ,CN =AN ,∠AMN =∠CMN∵ABCD 是矩形∴AD ∥BC∴∠ANM =∠CMN∴∠ANM =∠AMN ∴CM =CN (2)①∵AD ∥BC ∴△CMN 和△CDN 是等高的两个三角形∴S △CMN :S △CDN =3:1=CM :DN 且DN =1∴MC =3②∵CM =CN ∴CN =3且DN =1∴根据勾股定理CD =如图作NF ⊥MC ∵NF ⊥MC ,∠D =∠DCB =90°∴NFCD 是矩形∴NF =CD =,FC =DN =1∴MF =2在Rt △MNF 中,MN =此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,掌握数形结合思想与方程思想的应用.17、详见解析【解析】过直线m 上点C 作直线n ⊥m ,再在m 上截取CB =a ,然后以B 点为圆心,c 为半径画弧交直线n 于A ,则△ABC 满足条件.【详解】解:如图,△ABC 为所作.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18、(1)tcm,(15﹣2t)cm;(2)t=3秒;(3)当t为32秒或256秒时,△QCD是直角三角形.【解析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,BQ的长(2)当AP=CQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当∠CDQ=90°或∠CQD=90°△QCD是直角三角形,分情况讨论t的一元一次方程方程,解方程求出符合题意的t值即可;【详解】(1)由运动知,AP=t,CQ=2t,∴BQ=BC﹣CQ=15﹣2t,故答案为tcm,(15﹣2t)cm;(2)由运动知,AP=t,CQ=2t,∴DP=AD﹣AP=12﹣t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12﹣t=2t,∴t=3秒;(3)∵△QCD是直角三角形,∴∠CDQ=90°或∠CQD=90°,①当∠CQD =90°时,BQ =AD =12,∴15﹣2t =12,∴t =32秒,②当∠CDQ =90°时,如图,过点D 作DE ⊥BC 于E ,∴四边形ABED 是矩形,∴BE =AD =12,∴CE =BC ﹣BE =3,∵∠CED =∠CDQ =90°,∠C =∠C ,∴△CDE ∽△CQD ,∴CD CE CQ CD =,∴5325t =,∴t =256秒,即:当t 为32秒或256秒时,△QCD 是直角三角形.此题考查平行四边形的判定和直角三角形的判定,解题关键是掌握性质并且灵活运用求解一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】首先证明△DEA′是等腰直角三角形,求出DE ,再说明DG =GE 即可解决问题.【详解】解:由翻折可知:DA′=A′E =4,∵∠DA′E =90°,∴DE =,∵A′C′=2=DC′,C′G ∥A′E ,∴DG =GE =故答案为:.本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20、901【解析】解:平均数=9189889092905++++=,方差=22222(9190)(8990)(8890)(9090)(9290)25-+-+-+-+-=故答案为:90;1.21、23,13【解析】令=234a b c k ==,用含k 的式子分别表示出,,a b c ,代入求值即可.【详解】解:令=234a b c k ==,则2,3,4a k b k c k ===,所以2233a k b k ==,234123433a b c k k k k a b c k k k k +-+-===-+-+.故答案为:(1).23,(2).13本题考查了分式的比值问题,将,,a b c 用含同一字母的式子表示是解题的关键.22、62x -<<-或04x <<【解析】根据表可求出反比例函数与一次函数的交点,然后根据交点及表格中对应的函数值即可求出等式8kx ax b -<+<的解集.【详解】根据表格可知,当x=-2和x=4时,两个函数值相等,∴y ax b =+与ky x =的交点为(-2,-4),(4,2),根据图表可知,要使8k x ax b -<+<,则62x -<<-或04x <<.故答案为:62x -<<-或04x <<.本题考查了反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解答本题的关键.23、()()11x x x +-【解析】应用提取公因式法,公因式x ,再运用平方差公式,即可得解.【详解】解:()()()32111x x x x x x x -=-=+-此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.二、解答题(本大题共3个小题,共30分)24、14【解析】根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.【详解】原式=221(2)(2)22(1)1a a a a a a a +-+--⨯=+++当3a =时,原式=321314-=+本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.25、见解析【解析】欲证明OE=OF ,只要证明△AOE ≌△COF (AAS )即可.【详解】证明:∵四边形ABCD 是平行四边形,∴OA=OC ,∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴∠AEO=∠CFO=90°,在△AOE 和△COF 中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (AAS ),∴OE=OF .本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26、(1)见解析(2)1.5、1.5(3)216【解析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【详解】(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100−(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5、1.5;(3)1200×18%=216,答:估算该校学生参加义务劳动2小时的有216人此题考查扇形统计图,条形统计图,中位数,众数,解题关键在于看懂图中数据。
2011-2012学年北京四中九年级(上)期末数学试卷_0

2011-2012学年北京四中九年级(上)期末数学试卷一、选择题(每小题4分,共32分.下列各题均有四个选项,其中只有一个是符合题意的.)1.(4分)下列事件是必然事件的是()A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片2.(4分)抛物线y=(x﹣1)2+2可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位3.(4分)已知一顶圆锥形纸帽底面圆的半径为10cm,母线长为50cm,则圆锥形纸帽的侧面积为()A.250πcm2B.500πcm2C.750πcm2D.1000πcm2 4.(4分)两圆半径分别为2和3,圆心坐标分别为(1,0)和(﹣4,0),则两圆的位置关系是()A.外离B.外切C.相交D.内切5.(4分)同时投掷两枚硬币,出现两枚都是正面的概率为()A.B.C.D.6.(4分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)7.(4分)抛物线y=x2+kx+1与y=x2﹣x﹣k相交,有一个交点在x轴上,则k的值为()A.0B.2C.﹣1D.8.(4分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,动点P、Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为t(s),△BPQ的面积为y(cm2).下图中能正确表示整个运动中y关于t的函数关系的大致图象是()A.B.C.D.二、填空题(每小题4分,本题共16分)9.(4分)正六边形边长为3,则其边心距是cm.10.(4分)函数y=x2+2x﹣3(﹣2≤x≤2)的最小值为,最大值为.11.(4分)如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是(结果保留π).12.(4分)已知二次函数y=ax2+bx+c满足:(1)a<b<c;(2)a+b+c=0;(3)图象与x轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有.①a<0 ②a﹣b+c<0 ③c>0 ④a﹣2b>0 ⑤.三、解答题(每小题5分,本题共30分)13.(5分)计算:.14.(5分)用配方法解方程:.15.(5分)已知,当m为何值时,是二次函数?16.(5分)如图,在半径为6 cm的⊙O中,圆心O到弦AB的距离OC为3 cm.试求:(1)弦AB的长;(2)的长.17.(5分)已知二次函数y=ax2+bx+c的图象的顶点位于x轴下方,它到x轴的距离为4,下表是x与y的对应值表:(1)求出二次函数的解析式;(2)将表中的空白处填写完整;(3)在右边的坐标系中画出y=ax2+bx+c的图象;(4)根据图象回答:当x为何值时,函数y=ax2+bx+c的值大于0.18.(5分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.四、应用题(19题6分,20题5分,21题4分)19.(6分)小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.20.(5分)某体育品商店在销售中发现:某种体育器材平均每天可售出20件,每件可获利40元;若售价每减少1元,平均每天就可多售出2件;若想平均每天销售这种器材盈利1200元,那么每件器材应降价多少元?若想获利最大,应降价多少?21.(4分)用尺规作图找出该残片所在圆的圆心O的位置.(保留作图痕迹,不写作法)五、解答题(本题5分)22.(5分)已知如图,正方形AEDG的两个顶点A、D都在⊙O上,AB为⊙O直径,射线ED与⊙O的另一个交点为C,试判断线段AC与线段BC的关系.六、综合运用(23、25题7分,24题8分)23.(7分)已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2﹣bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;(2)求代数式的值;(3)求证:关于x的一元二次方程ax2﹣bx+c=0 ②必有两个不相等的实数根.24.(8分)如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C 的圆的切线交x轴于点D.(1)求B,C两点的坐标;(2)求直线CD的函数解析式;(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.25.(7分)抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3),(1)求二次函数y=ax2+bx+c的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.2011-2012学年北京四中九年级(上)期末数学试卷参考答案一、选择题(每小题4分,共32分.下列各题均有四个选项,其中只有一个是符合题意的.)1.C;2.C;3.B;4.B;5.A;6.D;7.B;8.B;二、填空题(每小题4分,本题共16分)9.;10.﹣4;5;11.4;12.①②③⑤;三、解答题(每小题5分,本题共30分)13.;14.;15.;16.;17.﹣1;1;3;18.;四、应用题(19题6分,20题5分,21题4分)19.;20.;21.;五、解答题(本题5分)22.;六、综合运用(23、25题7分,24题8分)23.;24.;25.;。
2022-2023学年北京四中学九年级数学上册期末检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1B .3C .4D .62.一元二次方程x 2-x =0的根是( ) A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-13.在平面直角坐标系中,正方形1111D C B A ,1122D E E B ,2222A B C D ,2343D E E B ,3333,A B C D ,按如图所示的方式放置,其中点1B 在y 轴上,点1C ,1E ,2E ,2C ,3E ,4E ,3C …在x 轴上,已知正方形1111D C B A 的边长为1,1130OB C ∠=︒,112233////B C B C B C ,…,则正方形n n n n A B C D 的边长是( )A .1()2nB .11()2n -C .3()3n D .13()3n - 4.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )A .B .C .D .5.已知一块圆心角为300︒的扇形纸板,用它做一个圆锥形的圣诞帽(接缝忽略不计)圆锥的底面圆的直径是30cm ,则这块扇形纸板的半径是( ) A .16cmB .18cmC .20cmD .12cm6.在ABC ∆中,90C ∠=︒,4sin 5A =,则cos B 的值为( ) A .43B .34 C .35D .457.已知ABC DEF ∽△△,若:4:9AC DF =,则它们的周长之比是( ) A .4:9 B .16:81 C .9:4D .2:38.为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为( ) A .1.7118×102 B .0.17118×107 C .1.7118×106D .171.18×109.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( ) A .9B .10C .11D .1210.如图所示的图案是按一定规律排列的,照此规律,在第1至第2018个图案中“♣”共有( ) 个.A .504B .505C .506D .507二、填空题(每小题3分,共24分)11.由4m =7n ,可得比例式mn=____________. 12.抛物线y=x 2+3与y 轴的交点坐标为__________.13.若方程x 2+2x -11=0的两根分别为m 、n ,则mn (m +n )=______.14.若二次函数的图象与x 轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T 1,T 2,T 3……是标准抛物线,且顶点都在直线y =33x 上,T 1与x 轴交于点A 1(2,0),A 2(A 2在A 1右侧),T 2与x 轴交于点A 2,A 3,T 3与x 轴交于点A 3,A 4,……,则抛物线T n 的函数表达式为_____.15.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2016a b -+的值是_________. 16.已知反比例函数y =kx的图象经过点(3,﹣4),则k =_____. 17.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.18.如图,直线AB 与CD 相交于点O ,OA =4cm ,∠AOC =30°,且点A 也在半径为1cm 的⊙P 上,点P 在直线AB 上,⊙P 以1cm /s 的速度从点A 出发向点B 的方向运动_________s 时与直线CD 相切.三、解答题(共66分)19.(10分)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A ,B 两点(点A 位于点B 的左侧),与y 轴交于点C .已知ABC ∆的面积是6.(1)求a 的值;(2)在ABC ∆内是否存在一点M ,使得点M 到点A 、点B 和点C 的距离相等,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图②,P 是抛物线上一点,Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.20.(6分)某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?21.(6分)已知AD 为⊙O 的直径,BC 为⊙O 的切线,切点为M ,分别过A ,D 两点作BC 的垂线,垂足分别为B ,C ,AD 的延长线与BC 相交于点E . (1)求证:△ABM ∽△MCD ; (2)若AD=8,AB=5,求ME 的长.22.(8分)如图,在矩形ABCD 中,AB=6cm ,BC=8cm.点P 从点B 出发沿边BC 向点C 以2cm/s 的速度移动,点Q 从C 点出发沿CD 边向点B 以1cm/s 的速度移动.如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为五边形ABPQD面积的111?23.(8分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,AE ⊥BC 交CB 延长线于E ,CF ∥AE 交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)连接OE ,若AE=4,AD =5,求OE 的长.24.(8分)如图,在ABC ∆中,AB AC = ,以AB 为直径作O 交于BC 于,D DE AC ⊥于E .()1求证:D 是BC 中点; ()2求证:DE 是O 的切线25.(10分)如图,在钝角ABC 中,点P 为BC 上的一个动点,连接PA ,将射线PA 绕点P 逆时针旋转60︒,交线段AB 于点D . 已知∠C=30°,CA=23 cm,BC=7cm,设B ,P 两点间的距离为xcm,A,D 两点间的距离ycm.小牧根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:(1)根据图形.可以判断此函数自变量X 的取值范围是 ; (2)通过取点、画图、测量,得到了x 与y 的几组值,如下表:x /cm0.51 1.02 1.91 3.47 3 4.16 4.47 y /cm3.973.222.421.66a2.022.50通过测量。
2020-2021学年北京市第四中学九年级第一学期期末数学综合测试卷(十一)

轴的两个交点,若点 P 的坐标为(4,0),则点 Q 的坐标为
.
C
A
B
O
y x=1
O
Px
13.若一个扇形的圆心角为 60°,面积为 6π,则这个扇形的半径为
.
14.如图,AB 是⊙O 的直径,PA,PC 分别与⊙O 相切于点 A,点 C,若∠P 60°,PA
3 ,则 AB 的长为
.
初三年级(数学) 第 2 页(共 6 页)
17.计算: 2sin 30 °2 cos 45 ° 8 .
A
18.如图,在△ABC 中,∠B 为锐角, AB 3 2 ,AC 5, sin C 3 ,求 BC 5
的长.
B
C
初三年级(数学) 第 3 页(共 6 页)
19.已知:如图,ABCD 是一块边长为 2 米的正方形铁板, 在边 AB 上选取一点 M,分别以 AM 和 MB 为边 截取两块相邻的正方形板料. 当 AM 的长为何值时, 截取两块相邻的正方形板料的总面积最小?
BC 的延长线上,则 B 的大小为
A.30°
B.40°
A E
C.50°
D.60°
B
C
D
5.如图,△OAB∽△OCD,OA:OC 3:2,∠A α,∠C β,△OAB 与△OCD 的面积分别是 S1 和 S2 ,△OAB
与△OCD 的周长分别是 C1 和 C2 ,则下列等式一定成立的是
A. OB 3
A
线如图 1 所示,其中 AC DB.两人同时开始运动,直到都停止运动时游戏
C
结束,其间他们与点 C 的距离 y 与时间 x(单位:秒)的对应关系如图 2 所
O
D
示.则下列说法正确的是
北京市第四中学2022年数学九年级第一学期期末综合测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .6B .8C .10D .122.抛物线y =-x 2+3x -5与坐标轴的交点的个数是( )A .0个B .1个C .2个D .3个3.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是( )A .B .C .D .4.已知3是方程x 2﹣23x+c =0的一个根,则c 的值是( )A .﹣3B .3C .3D .235.如果点()2,P m -在双曲线10y x =-上,那么m 的值是( ) A .5 B .5- C .10 D .10-6.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )A .25°B .30°C .35°D .40°7.已知a 是方程22430x x --=的一个根,则代数式224a a -的值等于( )A .3B .2C .0D .18.下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有( )A .1个B .2个C .3个D .4个9.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x ,根据题意列方程为( )A .()212000115000x +=B .()120001215000x +=C .()215000112000x -=D .()212000115000x += 10.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .二、填空题(每小题3分,共24分)11.如图,OAB ∆中,90∠=︒ABO ,点A 位于第一象限,点O 为坐标原点,点B 在x 轴正半轴上,若双曲线k y x=()0x >与OAB ∆的边AO 、AB 分别交于点C 、D ,点C 为AO 的中点,连接OD 、CD .若3OBD S ∆=,则OCD S ∆为_______________.12.如图,A 、B 两点在双曲线y =4x上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2=_____.13.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.14.边长为1的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF AE ⊥,交CD 边于点F ,若CF 的长为316,则CE 的长为__________.15.已知正六边形的边长为4cm ,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为 cm .(结果保留π)16.计算:20202019122⎛⎫⨯= ⎪⎝⎭_______.1723x +x 这样的方程,可以通过方程两边平方把它转化为2x +2=x 2,解得x 1=2,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=292满足题意;当x 2=﹣11=﹣1不符合题意;所以原方程的解是x =2.运用以上经验,则方程x 5x +=1的解为_____.18.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.三、解答题(共66分)19.(10分)解方程:(1) 233x x -=;(2)()2220x x --+=.20.(6分)如图所示,已知二次函数y=-x 2+bx+c 的图像与x 轴的交点为点A(3,0)和点B ,与y 轴交于点C(0,3),连接AC .(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.21.(6分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).22.(8分)如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.(1)求证:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中点,求DE的长.23.(8分)如图,梯形ABCD中,AB CD∥,点F在BC上,连DF与AB的延长线交于点G.(1)求证:CDF BGF ∽;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.24.(8分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .(1)求证:CD 是⊙O 的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.25.(10分)如图,四边形OBCD 中的三个顶点在⊙O 上,A 是优弧BD 上的一个动点(不与点B 、D 重合). (1)当圆心O 在BAD ∠内部,∠ABO +∠ADO=70°时,求∠BOD 的度数;(2)当点A 在优弧BD 上运动,四边形OBCD 为平行四边形时,探究ABO ∠与ADO ∠的数量关系.26.(10分)已知在平面直角坐标系中,抛物线212y x bx c =-++与x 轴相交于点A ,B ,与y 轴相交于点C ,直线y=x+4经过A ,C 两点,(1)求抛物线的表达式;(2)如果点P ,Q 在抛物线上(P 点在对称轴左边),且PQ ∥AO ,PQ=2AO ,求P ,Q 的坐标;(3)动点M 在直线y=x+4上,且△ABC 与△COM 相似,求点M 的坐标.参考答案一、选择题(每小题3分,共30分)1、A【分析】连接OD ,由直径AB 与弦CD 垂直,根据垂径定理得到E 为CD 的中点,由CD 的长求出DE 的长,又由直径的长求出半径OD 的长,在直角三角形ODE 中,由DE 及OD 的长,利用勾股定理即可求出OE 的长.【详解】解:如图所示,连接OD .∵弦CD ⊥AB ,AB 为圆O 的直径,∴E 为CD 的中点,又∵CD=16,∴CE=DE=12CD=8, 又∵OD=12AB=10, ∵CD ⊥AB ,∴∠OED=90°,在Rt △ODE 中,DE=8,OD=10,根据勾股定理得:OE=22OD DE =6,则OE 的长度为6,故选:A .【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.2、B【分析】根据△=b 2-4ac 与0的大小关系即可判断出二次函数y =-x 2+3x -5的图象与x 轴交点的个数再加上和y 轴的一个交点即可【详解】解:对于抛物线y=-x 2+3x -5,∵△=9-20=-11<0,∴抛物线与x 轴没有交点,与y 轴有一个交点,∴抛物线y=-x 2+3x -5与坐标轴交点个数为1个,故选:B .【点睛】本题考查抛物线与x 轴的交点,解题的关键是记住:△=b 2-4ac 决定抛物线与x 轴的交点个数.△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 3、C【分析】根据相似多边形的性质逐一进行判断即可得答案.【详解】由题意得,A.菱形四条边均相等,所以对应边成比例,对应边平行,所以角也相等,所以两个菱形相似,B.等边三角形对应角相等,对应边成比例,所以两个等边三角形相似;C.矩形四个角相等,但对应边不一定成比例,所以B 中矩形不是相似多边形D.正方形四条边均相等,所以对应边成比例,四个角也相等,所以两个正方形相似;故选C .【点睛】本题考查相似多边形的判定,其对应角相等,对应边成比例.两个条件缺一不可.4、B【分析】把x c 的方程,然后解方程即可.【详解】解:把x x 2﹣=0,得2﹣=0,所以c =6﹣1=1.故选:B .【点睛】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.5、A【分析】将点()2,P m -代入解析式中,即可求出m 的值.【详解】将点()2,P m -代入10y x =-中,得:1052m =-=- 故选A.此题考查的是根据点所在的图象求点的纵坐标,解决此题的关键是将点的坐标代入解析式即可.6、C【详解】解:连接AD,∵AB 是⊙O 的直径,∴∠ADB =90°.∵∠ABD =55°,∴∠BAD =90°﹣55°=35°,∴∠BCD =∠BAD =35°.故选C .【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.7、A【分析】根据题意,将a 代入方程得22430--=a a ,移项即可得结果.【详解】∵a 是方程22430x x --=的一个根,∴22430--=a a ,∴224=3-a a ,故选A.【点睛】本题考查一元二次方程的解,已知方程的根,只需将根代入方程即可.8、A【分析】根据圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,依次分析可得出正确的命题,即可得出答案.【详解】①不共线的三点确定一个圆,错误,假命题;②任何三角形有且只有一个内切圆,正确,真命题;③在同一个圆中,圆心角相等所对的弧也相等,错误,假命题;④正五边形、正三角形都不是中心对称图形,错误,假命题;故答案为A.本题考查了圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,解题时记牢性质和判定方法是关键.9、D【分析】根据“每年的人均收入=上一年的人均收入⨯(1+年增长率)”即可得.【详解】由题意得:2018年的人均收入为12000(1)x +元2019年的人均收入为212000(1)(1)12000(1)x x x ++=+元则212000(1)15000x +=故选:D .【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.10、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B 既是轴对称图形,又是中心对称图形;C 只是轴对称图形;D 既不是轴对称图形也不是中心对称图形,只有A 符合.故选A.二、填空题(每小题3分,共24分)11、92【分析】根据反比例函数关系式与面积的关系得S △COE =S △BOD =3,由C 是OA 的中点得S △ACD =S △COD ,由CE ∥AB ,可知△COE ∽△AOB ,由面积比是相似比的平方得14COE AOB S S=,求出△ABC 的面积,从而求出△AOD 的面积,得出结论.【详解】过C 作CE ⊥OB 于E , ∵点C 、D 在双曲线k y x=(x >0)上, ∴S △COE =S △BOD ,∵S △OBD =3,∴S △COE =3,∵CE∥AB,∴△COE∽△AOB,∴22COEAOBS OCS OA=,∵C是OA的中点,∴OA=2OC,∴14COEAOBSS=,∴S△AOB=4×3=12,∴S△AOD=S△AOB−S△BOD=12−3=9,∵C是OA的中点,∴S△ACD=S△COD,∴S△COD=92,故答案为92.【点睛】本题考查了反比例函数系数k的几何意义,即在反比例函数kyx=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,所成的三角形的面积是定值12|k|,且保持不变.12、1.【分析】根据题意,想要求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所构成的矩形的面积即可,而矩形的面积为双曲线y=4x的系数k,由此即可求解.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 2=4+4﹣1×2=1.故答案为1.【点睛】本题主要考查反比例函数系数k 的几何意义,解题的关键是熟练掌握根据反比例函数系数k 的几何意义求出矩形的面积.13、1米【分析】设建筑物的高度为x ,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x 米,由题意得,4366x =,解得x=1. 故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.14、14或 34【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE ∽△ECF ,得出AB BE CE CF=,代入数值得到关于CE 的一元二次方程,求解即可. 【详解】解:∵正方形ABCD ,∴∠B=∠C ,∠BAE+∠BEA=90°,∵EF ⊥AE ,∴∠BEA+∠CEF=90°,∴∠BAE=∠CEF ,∴△ABE ∽△ECF ,AB BE CE CF ∴=. 21,1131661630,CE CE CE CE -∴=∴-+= 解得,CE=14或34.故答案为:14或34. 【点睛】 考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.15、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°, 所得到的三条弧的长度之和=3×=8π(cm ); 方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm . 故答案为8π.考点:弧长的计算;正多边形和圆.16、12【分析】原式把202012⎛⎫ ⎪⎝⎭变形为20191122⎛⎫ ⎪⨯⎝⎭,然后逆运用积的乘方进行运算即可得到答案. 【详解】解:20202019122⎛⎫⨯ ⎪⎝⎭=20192⨯20191122⎛⎫ ⎪⨯⎝⎭=201911222⎛⎫⨯ ⎪⎝⎭⨯ =2019112⨯ =112⨯=12.故答案为:12. 【点睛】 此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.17、x =﹣1【分析】根据等式的性质将x 移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x =1﹣x ,两边平方,得x +5=1﹣2x +x 2,解得x 1=4,x 2=﹣1,检验:x =4时,5,左边≠右边,∴x =4不是原方程的解,当x =﹣1时,﹣1+2=1,左边=右边,∴x =﹣1是原方程的解,∴原方程的解是x =﹣1,故答案为:x =﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.18、1【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x 米,根据题意得:7530x =,解得:x =1. 故答案为:1.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.三、解答题(共66分)19、(1)12x x ==(2)122,3x x == 【分析】(1)化为一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【详解】(1)原方程可化为2330x x --=,3,1,3a b c ==-=-()()2241433136370b ac -=--⨯⨯-=+=>∴,x ∴=得12x x == (2)()()230x x --=,所以122,3x x ==.【点睛】本题考查的是一元二次方程的解法,能根据方程的特点灵活的选择解方程的方法是关键.20、(1)y=-x 2+2x+1;(2)抛物线上存在点D ,使得△ACD 的面积最大,此时点D 的坐标为(32 , 154 )且△ACD 面积的最大值 278;(1)在抛物线上存在点E ,使得△ACE 是以AC 为直角边的直角三角形 点E 的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x 2+bx+c 上,可代入确定b 、c 的值;(2)过点D 作DH ⊥x 轴,设D(t ,-t 2+2t+1),先利用图象上点的特征表示出S △ACD =S 梯形OCDH +S △AHD -S △AOC=23327228t ⎛⎫--+ ⎪⎝⎭,再利用顶点坐标求最值即可; (1)分两种情况讨论:①过点A 作AE 1⊥AC ,交抛物线于点E 1,交y 轴于点F ,连接E 1C ,求出点F 的坐标,再求直线AE 的解析式为y =x−1,再与二次函数的解析式联立方程组求解即可;②过点C 作CE ⊥CA ,交抛物线于点E 2、交x 轴于点M ,连接AE 2,求出直线CM 的解析式为y =x +1,再与二次函数的解析式联立方程组求解即可.【详解】(1)解:∵二次函数y=-x 2+bx+c 与x 轴的交点为点A(1,0)与y 轴交于点C(0,1)∴930{3b c c -++== 解之得 2{3b c == ∴这个二次函数的解析式为y=-x 2+2x+1(2)解:如图,设D(t ,-t 2+2t+1),过点D 作DH ⊥x 轴,垂足为H ,则S △ACD =S 梯形OCDH +S △AHD -S △AOC = 12 (-t 2+2t+1+1)+ 12 (1-t)(-t 2+2t+1)- 12 ×1×1= 23922t t -+= 23327228t ⎛⎫--+ ⎪⎝⎭∵ 32-<0∴当t= 32 时,△ACD 的面积有最大值 278此时-t 2+2t+1= 154∴抛物线上存在点D ,使得△ACD 的面积最大,此时点D 的坐标为( 32 ,154 )且△ACD 面积的最大值 278 (1)在抛物线上存在点E ,使得△ACE 是以AC 为直角边的直角三角形点E 的坐标是(1,4)或(-2,-5).理由如下:有两种情况:①如图,过点A 作AE 1⊥AC ,交抛物线于点E 1、交y 轴于点F ,连接E 1C .∵CO =AO =1,∴∠CAO =45°,∴∠FAO =45°,AO =OF =1.∴点F 的坐标为(0,−1).设直线AE 的解析式为y =kx +b ,将(0,−1),(1,0)代入y =kx +b 得:3{30b k b =-+=解得1{3k b ==-∴直线AE 的解析式为y =x −1,由23{23y x y x x =-=-++ 解得2{5x y =-=-或3{0x y ==∴点E 1的坐标为(−2,−5).②如图,过点C 作CE ⊥CA ,交抛物线于点E 2、交x 轴于点M ,连接AE 2 .∵∠CAO =45°,∴∠CMA =45°,OM =OC =1.∴点M 的坐标为(−1,0),设直线CM 的解析式为y =kx +b ,将(0,1),(-1,0)代入y =kx +b 得:3{30b k b =-+=解得1{3k b ==∴直线CM 的解析式为y =x +1.由23{23y x y x x =+=-++ 解得:0{3x y ==或1{4x y ==∴点E 2的坐标为(1,4).综上,在抛物线上存在点E 1(−2,−5)、E 2(1,4),使△ACE 1、△ACE 2是以AC 为直角边的直角三角形.【点睛】本题考查了用待定系数法求二次函数解析式、二次函数的最值问题,二次函数中的直角三角形问题.观察图象、求出特殊点坐标是解题的关键.21、(1)斜坡CD 的高度DE 是5米;(2)大楼AB 的高度是34米.【解析】试题分析:(1)根据在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125,高为DE ,可以求得DE 的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB 的高度.试题解析:(1)∵在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125, ∴1512125DE EC ==,设DE=5x 米,则EC=12x 米,∴(5x )2+(12x )2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD 的高度DE 是5米;(2)过点D 作AB 的垂线,垂足为H ,设DH 的长为x ,由题意可知∠BDH=45°, ∴BH=DH=x ,DE=5,在直角三角形CDE 中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB AC,∴2=AB AC, 解得,x=29,AB=x+5=34,即大楼AB 的高度是34米.22、(1)证明见解析;(2)DE=65. 【分析】(1)由DE ⊥AC ,∠B =90°可得出∠CDE =∠B ,再结合公共角相等,即可证出△CDE ∽△CBA ;(2)在Rt △ABC 中,利用勾股定理可求出BC 的长,结合点E 为线段BC 的中点可求出CE 的长,再利用相似三角形的性质,即可求出DE 的长.【详解】(1)∵DE ⊥AC ,∠B =90°,∴∠CDE =90°=∠B .又∵∠C =∠C ,∴△CDE ∽△CBA .(2)在Rt △ABC 中,∠B =90°,AB =3,AC =5,∴BC ==1.∵E 是BC 中点,∴CE =12BC =2. ∵△CDE ∽△CBA , ∴DE BA =CE CA ,即3DE =25, ∴DE =235⨯=65. 【点睛】本题考查了相似三角形的判定与性质以及勾股定理,解题的关键是:(1)利用“两角对应相等两三角形相似”证出两三角形相似;(2)利用相似三角形的性质求出DE 的长.23、(1)证明见解析;(2)2cm【分析】(1)根据梯形的性质,利用平行线的性质得到CDF FGB DCF GBF ∠=∠∠=∠,,然后由相似三角形的判定得到结论;(2)根据点F 是BC 的中点,可得△CDF≌△BGF,进而根据全等三角形的性质得到CD=BG ,然后由中位线的性质求解即可.【详解】(1)证明:∵梯形ABCD ,AB CD ,∴CDF FGB DCF GBF ∠=∠∠=∠,,∴CDF BGF ∽.(2) 由(1)CDF BGF ∽,又F 是BC 的中点,BF FC =∴CDF BGF ≌,∴DF FG CD BG ==,又∵EF CD ,AB CD ,∴EF AG ,得2EF BG AB BG ==+.∴22462BG EF AB =-=⨯-=,∴2cm CD BG ==.【点睛】此题主要考查了相似三角形的性质与判定,全等三角形的性质与判定及中位线的性质,比较复杂,关键是灵活利用平行线的性质解题.24、(1)证明见解析;(2)阴影部分面积为43π-【解析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线; (2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【详解】(1)如图,连接OC ,∵OA=OC ,∴∠BAC=∠OCA ,∵∠BCD=∠BAC ,∴∠BCD=∠OCA ,∵AB 是直径,∴∠ACB=90°, ∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC 是半径,∴CD 是⊙O 的切线(2)设⊙O 的半径为r ,∴AB=2r ,∵∠D=30°,∠OCD=90°, ∴OD=2r ,∠COB=60°∴r+2=2r ,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23, 易求S △AOC =12×23×1=3 S 扇形OAC =120443603ππ⨯=, ∴阴影部分面积为433π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.25、(1)140°;(2)当点A 在优弧BD 上运动,四边形OBCD 为平行四边形时,点O 在∠BAD 内部时,ABO ∠+ADO ∠=60°;点O 在∠BAD 外部时,|ABO ∠-ADO ∠|=60°. 【解析】(1)连接OA ,如图1,根据等腰三角形的性质得∠OAB=∠ABO ,∠OAD=∠ADO ,则∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根据圆周角定理易得∠BOD=2∠BAD=140°;(2)分点O 在∠BAD 内部和外部两种情形分类讨论:①当点O 在∠BAD 内部时,首先根据四边形OBCD 为平行四边形,可得∠BOD=∠BCD ,∠OBC=∠ODC ;然后根据∠BAD+∠BCD=180°,∠BAD =12∠BOD ,求出∠BOD 的度数,进而求出∠BAD 的度数;最后根据平行四边形的性质,求出∠OBC 、∠ODC 的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA 等于多少即可.②当点O 在∠BAD 外部时:Ⅰ、首先根据四边形OBCD 为平行四边形,可得∠BOD=∠BCD ,∠OBC=∠ODC ;然后根据∠BAD+∠BCD=180°,∠BAD =12∠BOD ,求出∠BOD 的度数,进而求出∠BAD 的度数;最后根据OA=OD ,OA=OB ,判断出∠OAD=∠ODA ,∠OAB=∠OBA ,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD 为平行四边形,可得∠BOD=∠BCD ,∠OBC=∠ODC ;然后根据∠BAD+∠BCD=180°,∠BAD=12∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.【详解】(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如图4,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD-∠BAD=∠OAD-60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA ,∠OAB=∠OBA ,∴∠OBA=∠ODA-60°,即∠ODA-∠OBA=60°.所以,当点A 在优弧BD 上运动,四边形OBCD 为平行四边形时,点O 在∠BAD 内部时,ABO ∠+ADO ∠=60°;点O 在∠BAD 外部时,|ABO ∠-ADO ∠|=60°.【点睛】(1)此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2)此题还考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(3)此题还考查了平行四边形的性质和应用,要熟练掌握,解答此题的关键是要明确平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(4)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补. ②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26、(1)2142y x x =-+(2)P 点坐标(﹣5,﹣72),Q 点坐标(3,﹣72)(3)M 点的坐标为(﹣83,43),(﹣3,1)【解析】试题分析:(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据待定系数法,可得函数解析式; (2)根据平行于x 轴的直线与抛物线的交点关于对称轴对称,可得P 、Q 关于直线x=﹣1对称,根据PQ 的长,可得P 点的横坐标,Q 点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM 的长,根据等腰直角三角形的性质,可得MH 的长,再根据自变量与函数值的对应关系,可得答案.试题解析:(1)当x=0时,y=4,即C (0,4),当y=0时,x+4=0,解得x=﹣4,即A (﹣4,0),将A 、C 点坐标代入函数解析式,得 ()214440{24b c ⨯--+==,解得1{4b c =-=, 抛物线的表达式为2142y x x =-+; (2)PQ=2AO=8,又PQ ∥AO ,即P 、Q 关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=12×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣72);﹣1+4=3,即Q(3,﹣72);P点坐标(﹣5,﹣72),Q点坐标(3,﹣72);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,OC CMBA AM=,即4642CM=,CM=823.如图1,过M作MH⊥y轴于H,MH=CH=22CM=83,当x=﹣83时,y=﹣83+4=43,∴M(﹣83,43);当△OCM∽△CAB时,OC CMCA AB=,即4642CM=,解得CM=32,如图2,过M作MH⊥y轴于H,CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣83,43),(﹣3,1).考点:二次函数综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B.
C. D.
4.如图,已知 的内接正方形边长为2,则 的半径是()
A.1B.2C. D.
5.下列说法中,不正确的是( )
A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴
C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
32.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?
在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.
25.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.
26.方程 的根是________.
27.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.
28.一元二次方程x2﹣3x+2=0
18. 的半径为4,圆心 到直线 的距离为2,则直线 与 的位置关系是______.
19.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.
20.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.
21.如图,用一张半径为10 cm的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm,那么这张扇形纸板的弧长是________cm.
22.在△ABC中,∠C=90°,cosA= ,则tanA等于.
23.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.
24.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.
33.如图,已知抛物线y1=﹣ x2+ x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.
(1)△ABC是三角形;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)结合图象,写出满足y1>y2时,x的取值范围.
34.计算
(1)
(2)
35.数学概念
若点 在 的内部,且 、 和 中有两个角相等,则称 是 的“等角点”,特别地,若这三个角都相等,则称 是 的“强等角点”.
理解概念
(1)若点 是 的等角点,且 ,则 的度数是 .
A.向左平移 个单位,再向下平移 个单位
B.向左平移 个单位,再向上平移 个单位
C.向右平移 个单位,再向上平移 个单位
D.向右平移 个单位,再向下平移 个单位
11.一组数据0、-1、3、2、1的极差是()
A.4B.3C.2D.1
12.如图,已知一组平行线 ,被直线 、 所截,交点分别为 、 、 和 、 、 ,且 , , ,则 ()
A.4.4B.4C.3.4D.2.4
13.如图,△AOB为等腰三角形,顶点A的坐标(2, ),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A.( , )B.( , )C.( , )D.( ,4 )
14.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()
6.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()
A.8B.9C.10D.11
7.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()
A.5 B.10 C.20 D.40
8.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()
(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)
(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.
A.开口向上B.对称轴是y轴
C.有最低点D.在对称轴右侧的部分从左往右是下降的
15.2的相反数是()
A. B. C. D.
二、填空题
16.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.
17.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.
A. B. C.4D.6
9.二次函数 ( , , 为常数,且 )中的 与 的部分对应值如下表:
以下结论:
①二次函数 有最小值为 ;
②当 时, 随 的增大而增大;
③二次函数 的图象与 轴只有一个交点;
④当 时, .
其中正确的结论有()个
A. B. C. D.
10.把函数 的图象,经过怎样的平移变换以后,可以得到函数 的图象( )
北京市北京四中九年级上册期末数学试题(含答案)
一、选择题
1.在平面直角坐标系中, 的直径为10,若圆心 为坐标原点,则点 与 的位置关系是()
A.点 在 上B.点 在 外C.点 在 内D.无法确定
2.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()
A.m=-2B.m>-2C.m≥-2D.m≤-2
29.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.
30.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式 ,则火箭升空的最大高度是___m
三、解答题
31.如图, ,以 为直径作 , 交 于点 ,过点 作 于点 ,交 的延长线于点 .