北京市海淀区2021届新高考第一次适应性考试数学试题含解析

合集下载

2021年北京市海淀区高考数学二模试卷-含答案与解析

2021年北京市海淀区高考数学二模试卷-含答案与解析

2021年北京市海淀区高考数学二模试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(4分)在平面直角坐标系xOy中,角θ以Ox为始边,终边经过点(﹣3,4),则cosθ=()A.B.C.D.2.(4分)设a∈R.若(2+i)(a﹣i)=﹣1﹣3i,则a=()A.﹣1 B.﹣2 C.1 D.23.(4分)已知a=0.31.5,b=log1.50.3,c=1.50.3,则()A.a<b<c B.b<a<c C.a<c<b D.b<c<a4.(4分)已知F为抛物线y2=4x的焦点,P(x0,y0)是该抛物线上的一点.若|PF|>2,则()A.x0∈(0,1)B.x0∈(1,+∞)C.y0∈(2,+∞)D.y0∈(﹣∞,2)5.(4分)向量,,在边长为1的正方形网格中的位置如图所示,若为与同方向的单位向量,则=()A.1.5 B.2 C.﹣4.5 D.﹣36.(4分)已知实数x,y满足x2+y2+4x﹣6y+12=0,则x的最大值是()A.3 B.2 C.﹣1 D.﹣37.(4分)已知指数函数f(x)=a x,将函数f(x)的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数g(x)的图象,再将g(x)的图象向右平移2个单位长度,所得图象恰好与函数f(x)的图象重合,则a的值是()A.B.C.D.8.(4分)已知正方体ABCD﹣A1B1C1D1(如图1),点P在侧面CDD1C1内(包括边界).若三棱锥B1﹣ABP的俯视图为等腰直角三角形(如图2),则此三棱锥的左视图不可能是()A.B.C.D.9.(4分)已知实数α,β,“α+β=2kπ,k∈Z”是“sin(α+β)=sinα+sinβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.(4分)已知函数f(x)=,若对于任意正数k,关于x的方程f(x)=k都恰有两个不相等的实数根,则满足条件的实数a的个数为()A.0 B.1 C.2 D.无数二、填空题共5小题,每小题5分,共25分。

2021年北京市海淀区高考数学三模试卷【含答案】

2021年北京市海淀区高考数学三模试卷【含答案】

2021年北京市海淀区高考数学三模试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(4分)已知集合U={1,2,3,4,5,6},A={1,2,3},B={2,3,4,5},则∁U(A∪B)=()A.{6}B.{1,6}C.{2,3}D.{1,4,5,6}【分析】由并集运算求得A∪B,再由补集运算得答案.【解答】解:∵A={1,2,3},B={2,3,4,5},∴A∪B={1,2,3,4,5},又U={1,2,3,4,5,6},∴∁U(A∪B)={6}.故选:A.【点评】本题考查并集、补集及其运算,是基础题.2.(4分)若z为纯虚数,且满足(z+m)i=2﹣i(m∈R),则m=()A.2B.1C.﹣1D.﹣2【分析】利用复数的运算法则、纯虚数的定义即可得出m的值.【解答】解:∵(z+m)i=2﹣i(m∈R),∴z=﹣m=﹣1﹣m﹣2i,∵z为纯虚数,∴﹣1﹣m=0⇒m=﹣1,故选:C.【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.3.(4分)若b<a<0,则下列不等式正确的是()A.B.ab<a2C.|a|>|b|D.【分析】可举例,令b=﹣2、a=﹣1,可判断ABC;利用基本不等式可判断D.【解答】解:根据题意可令b=﹣2、a=﹣1,则<,ab>a2,|a|<|b|,∴ABC错;∵b<a<0,∴,>0且,∴+>2=2,∴D对.故选:D.【点评】本题考查不等式基本性质,考查数学运算能力及推理能力.4.(4分)若函数f(x)=lg(x+a)的图象经过抛物线y2=8x的焦点,则a=()A.1B.0C.﹣1D.﹣2【分析】求得抛物线的焦点坐标,代入函数f(x)=lg(x+a)即可.【解答】解:抛物线的焦点为(2,0),则f(2)=lg(2+a)=0,解得a=﹣1故选:C.【点评】本题考查了抛物线的性质,属于基础题.5.(4分)已知双曲线的焦距为10,则双曲线C的渐近线方程为()A.B.C.D.【分析】由已知求得a与c的值,再由隐含条件求得b,则双曲线的渐近线方程可求.【解答】解:由题意,2c=10,得c=5,又由双曲线方程可得a=4,则b=,∴双曲线C的渐近线方程为y=.故选:B.【点评】本题考查双曲线的几何性质,是基础题.6.(4分)已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是()A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m,n⊥m,则n⊥α【分析】根据空间线面位置关系的定义,性质和判定定理进行判断或举反例说明.【解答】解:不妨设α∩β=l,对于A,若m⊂α且m∥l,则m∥β,故A错误;对于B,若m,n与l相交且不垂直,交点分别为M,N,显然m与n不一定垂直,故B错误;对于C,若m⊥β,则m⊂α或m∥α,又m⊄α,故m∥α,故C正确;对于D,由面面垂直的性质可知当n⊂β时才有n⊥α,故D错误.故选:C.【点评】本题考查了空间线面位置关系的判断,属于中档题.7.(4分)已知圆C的方程为(x﹣1)2+(y﹣1)2=2,点P在直线y=x+3上,线段AB为圆C的直径,则的最小值为()A.B.C.D.3【分析】将转化为,再由圆心到直线的距离求解.【解答】解:∵线段AB为圆C的直径,∴C为AB的中点,则=,从而||=,||的最小值为圆心C到直线y=x+3的距离,等于.∴的最小值为2×.故选:B.【点评】本题考查直线与圆的位置关系,考查平面向量的应用,考查运算求解能力,是中档题.8.(4分)等差数列{a n}的前n项和为S n,若∀n∈N*,S n≤S7,则数列{a n}的通项公式可能是()A.a n=3n﹣15B.a n=17﹣3n C.a n=n﹣7D.a n=15﹣2n【分析】由题意得,然后结合选项即可判断.【解答】解:因为∀n∈N*,S n≤S7,所以,A:a n=3n﹣15,a8>0不符合题意;B:a n=17﹣3n,a7<0不符合题意;C:a n=n﹣7,a8>0不符合题意;D:a n=15﹣2n,a8<0,a7>0符合题意;故选:D.【点评】本题主要考查了等差数列的性质,属于基础题.9.(4分)“0<m≤1”是函数f(x)=满足:对任意的x1≠x2,都有f(x1)≠f(x2)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据分段函数的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:∵当0<m≤1时,g(x)=﹣1在(1,+∞)上递减,h(x)=﹣x+1在(﹣∞,1]递减,且g(1)≤h(1),∴f(x)在(﹣∞,+∞)上递减,∴任意x1≠x2,都有f(x1)≠f(x2)”∴充分性成立;若m<0,g(x)在(1,+∞)上递增,h(x)在(﹣∞,1]上递减,g(x)<0,h(x)≥0,∴任意x1≠x2,都有f(x1)≠f(x2)”,必要性不成立,∴0<m≤1”是函数f(x)=满足:对任意的x1≠x2,都有f(x1)≠f(x2)”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及分段函数的性质是解决本题的关键.10.(4分)已知函数f(x)=sin x+sin(πx),现给出如下结论:①f(x)是奇函数;②f(x)是周期函数;③f(x)在区间(0,π)上有三个零点;④f(x)的最大值为2.其中所有正确结论的编号为()A.①③B.②③C.②④D.①④【分析】根据题意,依次分析4个结论是否正确,即可得答案.【解答】解:根据题意,依次分析4个结论:对于①,因为f(﹣x)=sin(﹣x)+sin(﹣πx)=﹣sin x﹣sin(πx)=﹣f(x),所以f(x)是奇函数,①正确.对于②,假设存在周期T,则sin(x+T)+sin(π(x+T))=sin x+sinπx,sin(x+T)﹣sin x=﹣[sin(π(x+T))﹣sinπx],所以sin•cos=﹣sin•cos①,存在x0∈R,使得cos=0,而cos≠0,将x0∈R,﹣sin•cos=0,由于cos≠0,故﹣sin=0,所以sin=0,sin=0,=kπ,=mπ,k,m∈Z,所以kπ=m,矛盾,所以函数f(x)=sin x+sin(πx),没有周期,②错误.对于③,f(x)=sin x+sin(πx)=2sin cos,函数的零点为方程2sin cos=0,x=或x=x∈(0,π)x=,,,所以f(x)在区间(0,π)上有三个零点;故③正确.对于④,f(x)=sin x+sin(πx),若sin x=1,则x=2kπ+,k∈Z,若sin(πx)=1,则x=2k+,k∈Z,x=2kπ+,k∈Z和x=2k+,k∈Z两者不会同时成立,即y=sin x和y=sin(πx)不可能同时成立,故f(x)的最大值不是2,④错误;则四个命题中正确的为①③;故选:A.【点评】本题考查函数与方程的关系,涉及命题真假的判断,属于中档题.二、填空题共5小题,每小题5分,共30分。

北京市海淀区2021届新高考数学一模试卷含解析

北京市海淀区2021届新高考数学一模试卷含解析

北京市海淀区2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某公园新购进3盆锦紫苏、2盆虞美人、1盆郁金香,6盆盆栽,现将这6盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种 A .96 B .120 C .48 D .72【答案】B 【解析】 【分析】间接法求解,两盆锦紫苏不相邻,被另3盆隔开有3334A A ,扣除郁金香在两边有23232A A ,即可求出结论. 【详解】使用插空法,先排2盆虞美人、1盆郁金香有33A 种, 然后将3盆锦紫苏放入到4个位置中有34A 种, 根据分步乘法计数原理有3334A A ,扣除郁金香在两边, 排2盆虞美人、1盆郁金香有222A 种, 再将3盆锦紫苏放入到3个位置中有33A , 根据分步计数原理有23232A A ,所以共有332334232120A A A A -=种.故选:B. 【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题. 2.a 为正实数,i 为虚数单位,2a ii+=,则a=( )A .2 BCD .1【答案】B 【解析】 【分析】 【详解】||220,a ia a a i+==∴=>∴=Q B. 3.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的左支交于不同的两点A ,B ,若2AF FB =u u u r u u u r,则该双曲线的离心率为( ). A.3B.2C.3D【答案】A 【解析】 【分析】直线l 的方程为bx y c a=-,令1a =和双曲线方程联立,再由2AF FB =u u u r u u u r 得到两交点坐标纵坐标关系进行求解即可. 【详解】由题意可知直线l 的方程为bx y c a=-,不妨设1a =. 则x by c =-,且221b c =-将x by c =-代入双曲线方程2221y x b-=中,得到()4234120b y b cy b +--=设()()1122,,,A x y B x y则341212442,11b c b y y y y b b +=⋅=-- 由2AF FB =u u u r u u u r ,可得122y y =-,故32442242121b cy b by b ⎧-=⎪⎪-⎨⎪-=⎪-⎩则22481b c b =-,解得219=b则3c ==所以双曲线离心率3c e a ==故选:A 【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.4.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥,现从该三棱锥的4个表面中任选2个,则选取的2个表面互相垂直的概率为( )A .12B .14C .13D .23【答案】A 【解析】 【分析】根据线面垂直得面面垂直,已知SA ⊥平面ABC ,由AB BC ⊥,可得BC ⊥平面SAB ,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率. 【详解】由已知SA ⊥平面ABC ,AB BC ⊥,可得SB BC ⊥,从该三棱锥的4个面中任选2个面共有246C =种不同的选法,而选取的2个表面互相垂直的有3种情况,故所求事件的概率为12. 故选:A . 【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.5.已知椭圆()222210x y a b a b +=>>的右焦点为F ,左顶点为A ,点P 椭圆上,且PF AF ⊥,若1tan 2PAF ∠=,则椭圆的离心率e 为( ) A .14B .13C .12D .23【答案】C 【解析】 【分析】不妨设P 在第一象限,故2,b P c a ⎛⎫ ⎪⎝⎭,根据1tan 2PAF ∠=得到2120e e --=,解得答案.【详解】不妨设P 在第一象限,故2,b P c a ⎛⎫⎪⎝⎭,21tan 2b aPAF a c ∠==+,即2220a ac c --=, 即2120e e --=,解得12e =,1e =-(舍去).故选:C . 【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.6.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q I ð为( ) A .[0,2) B .(2,3]C .[2,3]D .(0,2]【答案】B 【解析】 【分析】先求出{}{}|2,|03P x x Q x x =≤=<≤,得到{|2}R P x x =>ð,再结合集合交集的运算,即可求解. 【详解】由题意,集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭, 所以{}{}|2,|03P x x Q x x =≤=<≤,则{|2}R P x x =>ð, 所以(){|23}(2,3]R P Q x x =<≤=I ð. 故选:B. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.7.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=u u u v u u u u v ,222AF F B =u u u u v u u u u v,则椭圆E 的离心率为( )A .23B .34C .3D .4【答案】C 【解析】 【分析】根据222AF F B =u u u u r u u u r表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出,a c 关系,求出离心率. 【详解】222AF F B =u u u u r u u u u r Q设2BF x =,则22AF x =由椭圆的定义,可以得到1122,2AF a x BF a x =-=-120AF AF ⋅=u u u r u u u u rQ ,12AF AF ∴⊥在1Rt AF B V 中,有()()()2222232a x x a x -+=-,解得3a x =2124,33a a AF AF ∴== 在12Rt AF F △中,有()22242233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭整理得225=9c a ,c e a ∴==故选C 项. 【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出,a c 关系,得到离心率.属于中档题.8.要得到函数2sin 2y x x =-的图像,只需把函数sin 22y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 【答案】A 【解析】 【分析】运用辅助角公式将两个函数公式进行变形得2sin 23y x π⎛⎫=--⎪⎝⎭以及2sin 23y x π⎛⎫=-⎪⎝⎭,按四个选项分别对2sin 23y x π⎛⎫=- ⎪⎝⎭变形,整理后与2sin 23y x π⎛⎫=-- ⎪⎝⎭对比,从而可选出正确答案.【详解】 解:1sin 22sin 22sin 22sin 2233y x x x x x x ππ⎫⎛⎫⎛⎫=-=-=-=--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 222sin 2cos 22sin 2223y x x x x x π⎛⎫⎛⎫ ⎪ ⎪- ⎪⎝⎭⎝⎭===-. 对于A :可得2sin 22sin 22sin 22333y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:A. 【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.9.在等腰直角三角形ABC 中,,2C CA π∠==,D 为AB 的中点,将它沿CD 翻折,使点A 与点B间的距离为ABCD 的外接球的表面积为( ).A .5πB .3C .12πD .20π【答案】D 【解析】 【分析】如图,将四面体ABCD 放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径. 【详解】ABC ∆中,易知4AB =,2CD AD BD ===翻折后AB =(222221cos 2222ADB +-∴∠==-⨯⨯ ,120ADB ∴∠=o ,设ADB ∆外接圆的半径为r ,24sin120r ∴==o,2r ∴= , 如图:易得CD ⊥平面ABD ,将四面体ABCD 放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为R ,222221215R r =+=+= ,∴ 四面体ABCD 的外接球的表面积为2420S R ππ==.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径 容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.10.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B I 的真子集的个数是( ) A .8 B .7C .4D .3【答案】D 【解析】 【分析】转化条件得{}0,1A B =I ,利用元素个数为n 的集合真子集个数为21n -个即可得解. 【详解】由题意得()(){}{}12012B x x x x x =+-<=-<<,∴{}0,1A B =I ,∴集合A B I 的真子集的个数为2213-=个.故选:D. 【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题. 11.已知集合U ={1,2,3,4,5,6},A ={2,4},B ={3,4},则()()U UA B I 痧=( )A .{3,5,6}B .{1,5,6}C .{2,3,4}D .{1,2,3,5,6}【答案】B 【解析】 【分析】按补集、交集定义,即可求解. 【详解】U A ð={1,3,5,6},U B ð={1,2,5,6},所以()()U UA B I 痧={1,5,6}.故选:B. 【点睛】本题考查集合间的运算,属于基础题.12.i 是虚数单位,复数1z i =-在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】 【分析】求出复数z 在复平面内对应的点的坐标,即可得出结论. 【详解】复数1z i =-在复平面上对应的点的坐标为()1,1-,该点位于第四象限. 故选:D. 【点睛】本题考查复数对应的点的位置的判断,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

北京市海淀区2021届新高考适应性测试卷数学试题(2)含解析

北京市海淀区2021届新高考适应性测试卷数学试题(2)含解析

北京市海淀区2021届新高考适应性测试卷数学试题(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a < D .b a >【答案】C 【解析】 【分析】令23a b t ==,则0t >,1t ≠,将指数式化成对数式得a 、b 后,然后取绝对值作差比较可得. 【详解】令23abt ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >. 故选:C. 【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.2.已知随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.若21211p p <<<,则( ) A .()()12E E ξξ<,()()12D D ξξ< B .()()12E E ξξ<,()()12D D ξξ> C .()()12E E ξξ>,()()12D D ξξ< D .()()12E E ξξ>,()()12D D ξξ>【答案】B 【解析】 【分析】根据二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,再根据21211p p <<<和二次函数的性质求解. 【详解】因为随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.所以i ξ服从二项分布,由二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,因为21211p p <<<, 所以()()12E E ξξ<,由二次函数的性质可得:()()1f x x x =-,在1,12⎡⎤⎢⎥⎣⎦上单调递减, 所以()()12D D ξξ>. 故选:B 【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题. 3.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( ) A .i - B .iC .1-D .1【答案】D 【解析】 【分析】由已知等式求出z ,再由共轭复数的概念求得z ,即可得z 的虚部. 【详解】由zi =1﹣i ,∴z =()()111·i i i i i i i ---==--- ,所以共轭复数z =-1+i ,虚部为1 故选D . 【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.4.已知集合A ={﹣2,﹣1,0,1,2},B ={x|x 2﹣4x ﹣5<0},则A∩B =( ) A .{﹣2,﹣1,0} B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}【答案】D 【解析】 【分析】解一元二次不等式化简集合B ,再由集合的交集运算可得选项. 【详解】因为集合{2,1,0,1,2},{|(5)(1)0}{|15}A B x x x x x =--=-+<=-<<{}{}{}2,1,0,1,2|150,1,2A B x x ∴⋂=--⋂-<<=,故选:D. 【点睛】本题考查集合的交集运算,属于基础题. 5.设(1)1i z i +⋅=-,则复数z 的模等于( )A B .2C .1D【答案】C 【解析】 【分析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可. 【详解】因为(1)1i z i +⋅=-,所以()()()211111i i z i i i i --===-++⋅-,由复数模的定义知,1z ==.故选:C 【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题. 6.下列函数中,既是偶函数又在区间()0,+?上单调递增的是( )A .y =B .()sin f x x x =C .()2f x x x =+ D .1y x =+【答案】C 【解析】 【分析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可. 【详解】A :y =B :()sin f x x x =在()0,∞+上不单调,不符合题意;C :2y xx =+为偶函数,且在()0,∞+上单调递增,符合题意;D :1y x =+为非奇非偶函数,不符合题意. 故选:C. 【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.7.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C 【解析】 【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【详解】∵()12112z ai a R z i =+∈=+,, ∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选C . 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.8.若复数12z i =+,2cos isin ()z ααα=+∈R ,其中i 是虚数单位,则12||z z -的最大值为( ) A1 BC1D【答案】C 【解析】 【分析】由复数的几何意义可得12z z -表示复数12z i =+,2cos sin z i αα=+对应的两点间的距离,由两点间距离公式即可求解. 【详解】由复数的几何意义可得,复数12z i =+对应的点为()2,1,复数2cos sin z i αα=+对应的点为() cos,sinαα,所以121z z-=,其中tanφ2=,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将12z z-转化为两复数所对应点的距离求值即可,属于基础题型.9.已知平面向量()4,2a→=,(),3b x→=,//a b→→,则实数x的值等于()A.6 B.1 C.32D.32-【答案】A【解析】【分析】根据向量平行的坐标表示即可求解.【详解】()4,2a→=Q,(),3b x→=,//a b→→,432x∴⨯=,即6x=,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.10.下列与函数y=定义域和单调性都相同的函数是()A.2log2xy=B.21log2xy⎛⎫= ⎪⎝⎭C.21logyx=D.14y x=【答案】C【解析】【分析】分析函数y=的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项. 【详解】函数y =的定义域为()0,∞+,在()0,∞+上为减函数. A 选项,2log 2x y =的定义域为()0,∞+,在()0,∞+上为增函数,不符合.B 选项,21log 2xy ⎛⎫= ⎪⎝⎭的定义域为R ,不符合. C 选项,21log y x=的定义域为()0,∞+,在()0,∞+上为减函数,符合. D 选项,14y x =的定义域为[)0,+∞,不符合. 故选:C 【点睛】本小题主要考查函数的定义域和单调性,属于基础题.11.已知集合{}{}2|1,|31xA x xB x ==<…,则()R A B U ð=( ) A .{|0}x x < B .{|01}x x 剟 C .{|10}x x -<… D .{|1}x x -…【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()R A B U ð 【详解】{|11},{|0}A x x B x x =-=<剟,所以 (){|1}R A B x x =-U …ð.故选:D 【点睛】此题考查的是集合的并集、补集运算,属于基础题. 12.在三角形ABC 中,1a =,sin sin sin sin b c a bA AB C++=+-,求sin b A =( ) A.2B.3C .12D.2【答案】A 【解析】 【分析】利用正弦定理边角互化思想结合余弦定理可求得角B 的值,再利用正弦定理可求得sin b A 的值. 【详解】sin sin sin sin b c a b A A B C ++=+-Q,由正弦定理得b c a ba ab c++=+-,整理得222a c b ac +-=,由余弦定理得2221cos 22a cb B ac +-==,0B Q π<<,3B π∴=.由正弦定理sin sin a b A B =得sin sin 1sin 3b A a B π==⨯=. 故选:A. 【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。

2021~2022学年北京市海淀区高三(第一次)模拟考试物理试卷+答案解析(附后)

2021~2022学年北京市海淀区高三(第一次)模拟考试物理试卷+答案解析(附后)

2021~2022学年北京市海淀区高三(第一次)模拟考试物理试卷1. 以下现象不属于衍射的是( )A. 白光经过狭窄的单缝得到彩色图样B. 白光照射肥皂膜呈现出彩色图样C. 光照射刀片的阴影轮廓模糊不清D. 光照射不透明圆盘的阴影中心出现亮斑2. 如图所示为氦离子+的能级图,根据玻尔原子理论,关于氦离子能级跃迁,下列说法正确的是( )A. 大量处于n能级的氦离子,最多可辐射2种不同频率的光子B. 从n向n能级跃迁,需吸收能量C. 处于n能级的氦离子,可以吸收的能量而发生电离D. 从n跃迁到n能级比从n跃迁到n能级辐射出的光子频率低3. 陆游在诗作《村居山喜》中写到“花气袭人知骤暖,鹊声穿树喜新晴”。

从物理视角分析诗词中“花气袭人”的主要原因是( )A. 气体分子之间存在着空隙B. 气体分子在永不停息地做无规则运动C. 气体分子之间存在着相互作用力D. 气体分子组成的系统具有分子势能4. 如图所示,一定量的理想气体从状态a开始,经历两个状态变化过程,先后到达状态b和c。

下列说法正确的是( )A. 在a b过程中气体对外界做功B. 在b c过程中气体对外界做功C. 在a b过程中气体的内能逐渐变大D. 在b c过程中气体的内能逐渐变小5. 如图所示,质量为m的木块沿着斜面体匀速下滑、已知斜面体的倾角为、质量为M,始终静止在水平桌面上。

下列说法正确的是( )A. 木块受到的摩擦力大小是mgB. 木块对斜面体的压力大小是mgC. 桌面对斜面体的摩擦力大小是mgD. 桌面对斜面体的支持力大小是g6. 图甲为一列沿x轴正向传播的简谐横波在t时刻的图像,图甲中某质点的振动情况如图乙所示。

下列说法正确的是( )A. 图乙可能为质点L的振动图像B. 该简谐波的波速为C. 该时刻质点K与L的速度、加速度都相同D. 质点K再经1s将沿x轴正方向移动到x处7.如图所示,理想变压器原线圈接在m的交流电源上,副线圈接滑动变阻器R和两个阻值相同的定值电阻R0,电表均视为理想电表。

真题解析:2022年北京市海淀区中考数学模拟真题练习 卷(Ⅱ)(含详解)

真题解析:2022年北京市海淀区中考数学模拟真题练习 卷(Ⅱ)(含详解)

2022年北京市海淀区中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若x =1是关于x 的一元二次方程x 2+mx ﹣3=0的一个根,则m 的值是( ) A .﹣2 B .﹣1 C .1 D .2 2、已知关于x ,y 的方程组3424x y ax by -=⎧⎨-=-⎩和2593x y bx ay +=⎧⎨+=⎩的解相同,则()20213a b +的值为( ) A .1 B .﹣1 C .0 D .20213、下列方程中,属于二元一次方程的是( ) A .xy ﹣3=1 B .4x ﹣2y =3 C .x +2y =4 D .x 2﹣4y =14、如图,已知AD ∥BC ,欲用“边角边”证明△ABC ≌△CDA ,需补充条件( ) A .AB = CD B .∠B = ∠D C .AD = CB D .∠BAC = ∠DCA5、在平面直角坐标系xOy 中,点A (2,1)与点B (0,1)关于某条直线成轴对称,这条直线是( )·线○封○密○外A .x 轴B .y 轴C .直线1x =(直线上各点横坐标均为1)D .直线1y =(直线上各点纵坐标均为1)6、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A .(38﹣x )(160+3x ×120)=3640B .(38﹣x ﹣22)(160+120x )=3640C .(38﹣x ﹣22)(160+3x ×120)=3640D .(38﹣x ﹣22)(160+3x×120)=3640 7、已知抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()3,0A ,其部分图象如图所示,下列结论中:①0abc <;②240b ac ->;③抛物线与x 轴的另一个交点的坐标为()1,0-;④方程21ax bx c ++=有两个不相等的实数根.其中正确的个数为( )A .1个B .2个C .3个D .4个8、已知23m x y 和312n x y 是同类项,那么m n +的值是( ) A .3 B .4 C .5 D .69、某三棱柱的三种视图如图所示,已知俯视图中1tan 2B =,7ABC S =,下列结论中:①主视图中3m =;②左视图矩形的面积为18;③俯视图C ∠的正切值为23.其中正确的个数为( ) A .3个B .2个C .1个D .0个 10、下列四个实数中,无理数是( ) AB .0.131313…C .227 D.2 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、用13米长的篱笆围成一个面积为20平方米的长方形场地,其中一边靠墙,若设垂直于墙的一边为x ,则可列出的方程是 ___; 2、万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶,茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶:清明香,云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1,由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的12,此时清明香总数量达到三种茶叶总量的49,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元,380元,清明香的售价为每盒640元,活动中将清明香的18供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价等于另外两种茶叶销售单价之和的614,则滴翠剑茗单价为____元 3、小河的两条河岸线a ∥b ,在河岸线a 的同侧有A 、B 两个村庄,考虑到施工安全,供水部门计划在岸线b 上寻找一处点Q 建设一座水泵站,并铺设水管PQ ,并经由PA 、PB 跨河向两村供水,其中QP ⊥a 于点P .为了节约经费,聪明的建设者们已将水泵站Q 点定好了如图位置(仅为示意图),能使·线○封○密○外三条水管长PQ PA PB ++的和最小.已知 1.6km PA =, 3.2km PB =,0.1km PQ =,在A 村看点P 位置是南偏西30°,那么在A 村看B 村的位置是_________.4、已知射线OP ,在射线OP 上截取OC =10cm ,在射线CO 上截取CD =6cm ,如果点A 、点B 分别是线段OC 、CD 的中点,那么线段AB 的长等于_______cm .5、如图,在△ABC 中,∠ABC =120°,AB =12,点D 在边AC 上,点E 在边BC 上,sin∠ADE =45,ED =5,如果△ECD 的面积是6,那么BC 的长是_____.三、解答题(5小题,每小题10分,共计50分)1、解方程:3471168x x +=+.2()20120204cos 452⎛⎫---︒ ⎪⎝⎭3、一司机驾驶汽车从甲地到乙地,他以60km/h 的平均速度行驶4h 到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v 与行驶的时间t 有怎样的函数关系? (2)如果要在3h 返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s (km )与时间t (h )之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h 的速度回到甲地.求该司机返程所用的总时间.4、已知:如图,E ,F 是线段BC 上两点,AB ∥CD ,BE =CF ,∠A =∠D .求证:AF =DE . 5. -参考答案- 一、单选题1、D【分析】·线○·封○密○外把x =1代入方程x 2+mx -3=0,得出一个关于m 的方程,解方程即可.【详解】解:把x =1代入方程x 2+mx -3=0得:1+m -3=0,解得:m =2.故选:D .【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m 的方程.2、B【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,即可求出所求.【详解】解:联立得:342259x y x y -=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, 则有2423a b b a -=-⎧⎨+=⎩, 解得:12a b =-⎧⎨=⎩, ∴()()2021202113312a b +⨯-+=⎡⎤⎣=-⎦,故选:B .【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值. 3、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A 、xy -3=1,是二元二次方程,故本选项不合题意;B 、4x -2y =3,属于二元一次方程,故本选项符合题意;C 、x +2y =4,是分式方程,故本选项不合题意;D 、x 2-4y =1,是二元二次方程,故本选项不合题意; 故选:B . 【点睛】 此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程. 4、C 【分析】 由平行线的性质可知DAC BCA ∠=∠,再由AC 为公共边,即要想利用“边角边”证明△ABC ≌△CDA ,可添加AD =CB 即可. 【详解】 ∵AD ∥BC , ∴DAC BCA ∠=∠. ∵AC 为公共边, ·线○封○密○外∴只需AD =CB ,即可利用“边角边”证明△ABC ≌△CDA .故选:C .【点睛】本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.5、C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A 点和B 点的纵坐标相等,即可知它们的对称轴为20122A B x x x ++===. 故选:C .【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.6、D【分析】由这种工艺品的销售价每个降低x 元,可得出每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这种工艺品的销售价每个降低x 元,∴每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个.依题意得:(38-x -22)(160+3x×120)=3640.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、C【分析】根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①如图,开口向上,得0a >,12b x a =-=,得20b a =-<, 抛物线与y 轴交于负半轴,即0,0x y c ==<, 0abc ∴>, 故①错误; ②如图,抛物线与x 轴有两个交点,则240b ac ->; 故②正确; ③由对称轴是直线1x =,抛物线与x 轴的一个交点坐标为(3,0)A ,得到:抛物线与x 轴的另一个交点坐标为(1,0)-, 故③正确; ④如图所示,当1x =时,0y <, 21ax bx c ∴++=根的个数为1y =与2y ax bx c =++图象的交点个数, ·线○封○密·○外有两个交点,即21ax bx c++=有两个根,故④正确;综上所述,正确的结论有3个.故选:C.【点睛】主要考查抛物线与x轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.9、A【分析】过点A作AD⊥BC与D,根据BD=4,1tan2B=,可求AD=BD1tan422B=⨯=,根据7ABCS=△,得出BC =7,可得DC =BC -BD =7-4=3可判断①;根据左视图矩形的面积为3×6=18可判断②;根据tan C23AD CD ==可判断③. 【详解】 解:过点A 作AD ⊥BC 与D , ∵BD =4,1tan 2B =, ∴AD =BD 1tan 422B =⨯=, ∵7ABC S =△, ∴112722ABC S BC AD BC =⋅=⨯=△, ∴BC =7, ∴DC =BC -BD =7-4=3, ∴①主视图中3m =正确; ∴左视图矩形的面积为3×6=18, ∴②正确; ∴tan C 23AD CD ==, ∴③正确;·线○封○密○外其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.10、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.【详解】解:A3=-,是整数,属于有理数,故本选项不合题意;B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;C.227是分数,属于有理数,故本选项不合题意;D故选:D.【点睛】题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.二、填空题1、x(13-2x)=20【分析】若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,根据长方形场地的面积为20平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:若设垂直于墙的一边长为x 米,则平行于墙的一边长为(13-2x )米,依题意得:x (13-2x )=20.故答案为:x (13-2x )=20.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 2、480【分析】设滴翠剑茗单价为x 元,则云雾毛尖最高价位6(640)14x +⨯元,根据云雾毛尖的销售单价等于另外两种茶叶销售单价之和的614得出三种茶叶的单价,根据销售总额列出方程,解方程即可. 【详解】 解:第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1, 第二批采制后清明香增加的数量占总增加数量的12,此时清明香总数量达到三种茶叶总量的49,而云雾毛尖和滴翠剑茗的总数量恰好相等, 即云雾毛尖、滴翠剑茗的数量各占518, ∴增加后清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为455::8:5:591818=, 设总共有a 盒茶叶, ∴成本为4554000500420380918189a a a a ⨯+⨯+⨯=(元), 销售额应为40004640(116%)99a a ⨯+=(元), 清明香的销售额为412240640(1)989a a ⨯⨯-=(元), ·线○封○密○外另外两种茶的销售总额为46402240800993a a a -=(元), 设滴翠剑茗单价为x 元,则云雾毛尖单价为6(640)14x +⨯元, 因此可建立方程556800(640)1818143xa x a a +⨯+⨯=, 解得480x =,因此滴翠剑茗单价为480元,故答案为:480.【点睛】本题主要考查一元一次方程的知识,根据售价-成本=利润列出方程是解题的关键.3、北偏西60°【分析】根据题意作出图形,取BP 的中点D ,连接AD ,过点A 作AC a ⊥,过点B 作BE AC ⊥,交CA 的延长线于点E ,作A 关于a 的对称点A ',平移A P '至A Q ''处,则A Q PQ PB ''++最小,即三条水管长PQ PA PB ++的和最小,进而找到B 村的位置,根据方位角进行判断即可.【详解】解:如图,取BP 的中点D ,连接AD ,过点A 作AC a ⊥,过点B 作BE AC ⊥,交CA 的延长线于点E作A 关于a 的对称点A ',平移A P '至A Q ''处,则A Q PQ PB ''++最小,即三条水管长PQ PA PB ++的和最小,此时,,B P A '三点共线, ∴B 点在A P '的延长线上, 在A 村看点P 位置是南偏西30°, 30CAP ∴∠=︒ 60APC ∴∠=︒,2120APA APC '∠=∠=︒ 60APB ∴∠=︒ 1.6, 3.2AP PB == 1.6PD ∴= AP PD ∴= APD ∴是等边三角形 60DAP APC ∴∠=∠=︒, 1.6AD DP PA === DA a ∴∥ 1 1.62BD BP ∴== DA DB ∴= 60ADP ∠=︒ 120BDA ∴∠=︒ 30DAB DBA ∴∠=∠=︒ 9060EAB BAD ∴∠=︒-∠=︒ 即在A 村看B 村的位置是北偏西60° 故答案为:北偏西60° ·线○封○密·○外【点睛】本题考查了轴对称的性质,方位角的计算,等边三角形的性质与判定,等边对等角,根据题意作出图形是解题的关键.4、2【分析】根据OC 、CD 和中点A 、B 求出AC 和BC ,利用AB =AC -BC 即可.【详解】解:如图所示,10OC cm =,6CD cm =,点A 、点B 分别是线段OC 、CD 的中点,1=52AC OC ∴=,132BC CD ==, 2AB AC BC ∴=-=.故答案为:2.【点睛】本题考查线段的和差计算,以及线段的中点,能准确画出对应的图形是解题的关键.5、6##【分析】如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .解直角三角形求出BH ,CH 即可解决问题.【详解】解:如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=∵EF⊥DF,DE=5,∴sin∠ADE=EFDE=45,∴EF=4,∴DF3,∵S△CDE=6,∴12·CD·EF=6,∴CD=3,∴CF=CD+DF=6,∵tan C=EFCF=AHCH,∴46,∴CH=∴BC=CH﹣BH=6.·线○封○密○外故答案为:6【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.三、解答题1、6x =-【分析】先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.【详解】去分母得:32(47)16x x =++,去括号得:381416x x =++,移项得:381416x x -=+,合并同类项得:530x -=,系数化1得:6x =-.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2、34-【分析】根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可【详解】()20120204cos 452⎛⎫---︒ ⎪⎝⎭1144=--114=-34=-【点睛】本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.3、(1)240tv=(2)80km/h(3)3.5小时【分析】(1)根据题意求得总路程为240km,根据时间等于路程除以速度列出函数关系式即可;(2)根据速度等于路程除以时间即可求解;(3)根据函数图像可知前1.5小时行驶70km,剩余路程除以速度即可求得时间,进而求得总时间(1)解:∵一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,∴甲地到乙地的路程为604240km⨯=240tv∴=(2)2403÷=80km/h(3)·线○封○密○外24070170km-=170852h÷=∴总时间为:1.52 3.5h+=【点睛】本题考查了反比例函数的应用,一次函数的应用,从函数图象获取信息是解题的关键.4、见解析【分析】欲证明AF=DE,只要证明△ABF≌△DCE即可;【详解】证明:∵BE=CF,∴BF=CE,∵AB∥CD,∴∠B=∠C,在△ABF和△DCE,A DB C BF CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCE,∴AF=DE.【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.5、125【分析】直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案.【详解】解:,(433255=-⨯÷,423332555=⨯÷,4233325+-=,125=.【点睛】题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键.·线○封○密○外。

北京市海淀区2021届高考数学一模试卷(含答案解析)

北京市海淀区2021届高考数学一模试卷(含答案解析)

北京市海淀区2021届高考数学一模试卷一、单选题(本大题共10小题,共40.0分)1.设函数f(x)=x2−9ln x在x∈[a−1,a+1]上单调递减,则实数a的取值范围是()A. (1,2]B. (−∞,2]C. [3,+∞)D. (0,3]2.复数|4+3i|3−4i(i为虚数单位)的共轭复数对应的点位于复平面内()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.设S n是等差数列{a n}的前n项和,若a3a6=115,则S5S11=()A. 115B. 1 C. 511D. (115)24.在(4x+63x)24的展开式中,x的指数为整数的项共有()A. 3项B. 4项C. 5项D. 6项5.已知函数f(x)=cos(ωx+π6)(ω>0)的最小正周期为π2,则ω的值为()A. 12B. 2 C. 14D. 46.已知定义在上的可导函数的导函数为,满足,且则不等式的解集为()A. B. C. D.7.已知向量a⃗=(−12,√32),b⃗ =(√32,−12),则下列关系正确的是()A. (a⃗+b⃗ )⊥b⃗B. (a⃗+b⃗ )⊥a⃗C. (a⃗+b⃗ )⊥(a⃗−b⃗ )D. (a⃗+b⃗ )//(a⃗−b⃗ )8.8.下列命题为真命题的是A. 已知,则“”是“”的充分不必要条件B. 已知数列为等比数列,则“”是“”的既不充分也不必要条件C. 已知两个平面,,若两条异面直线满足且//, //,则// D.,使成立9.对于数列{a n },a 1=4,a n+1=f(a n ),n =1,2,…,则a 2020等于( ) x1 2 3 4 5 f(x)54312A. 2B. 3C. 4D. 510. 函数f(x)=sinx e |x|的部分图象大致为( )A.B.C.D.二、单空题(本大题共5小题,共25.0分)11. 方程x 3−6x 2+9x −10=0的实根个数是______ . 12. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F 2,过F 2作其中一条渐近线的垂线,分别交y轴和该渐近线于M ,N 两点,且MN ⃗⃗⃗⃗⃗⃗⃗ =3NF 2⃗⃗⃗⃗⃗⃗⃗ ,则ab =______.13.已知单位向量m⃗⃗⃗ 和n⃗的夹角为π3,则(2n⃗−m⃗⃗⃗ )⋅m⃗⃗⃗ =______ .14.(1+tan40°)(1+tan5°)=______ .15.下列四个命题中,假命题是______ (填序号).①经过定点P(x0,y0)的直线不一定都可以用方程y−y0=k(x−x0)表示;②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y−y1)(x2−x1)=(x−x1)(y2−y1)来表示;③与两条坐标轴都相交的直线不一定可以用方程xa +yb=1表示;④经过点Q(0,b)的直线都可以表示为y=kx+b.三、解答题(本大题共6小题,共85.0分)16.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=a,∠ABC=β.(1)证明sina+cos2β=0;(2)若AC=√3DC,求β的值.17.矩形ABCD中,AB=1,AD=2,点E为AD中点,沿BE将△ABE折起至△PBE,如图所示,点P在面BCDE的射影O落在BE上.(1)求证:平面PCE⊥平面PBE;(2)求平面PCD与平面PBE所成锐二面角的余弦值.18.双“十一”结束之后,某网站针对购物情况进行了调查,参与调查的人主要集中在[20,50]岁之间,若规定:购物600(含600元)以下者,称为“理智购物”,购物超过600元者被网友形象的称为“剁手党”,得到如下统计表:若参与调查的“理智购物”总人数为7720人.(1)求a的值;(2)从年龄在[20,35)的“剁手党”中按照年龄区间分层抽样的方法抽取20人;①从这20人中随机抽取2人,求这2人恰好属于同一年龄区间的概率;②从这20人中随机抽取2人,用ζ表示年龄在[20,25)之间的人数,求ξ的分布列及期望值.19. 已知函数f(x)=ax+lnx,g(x)=e x.(1)当a≤0时,求f(x)的单调区间;(2)若不等式g(x)<x有解,求实数m的取值范围.20. 已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P′Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.21. 已知数列{a n}满足a1=12,且a n+1=a n−a n2(n∈N∗),求证:(1)12≤a n+1a n<1(n∈N∗);(2)C n1(2a n−1)+2C n2(2a n−1)2+⋯+kC n k(2a n−1)k+⋯+nC n n(2a n−1)n≤0.【答案与解析】1.答案:A解析:因为f(x)=x2−9lnx,所以f′(x)=x−(x>0),当x−≤0时,0<x≤3,即在(0,3]上f(x)是减函数,所以a−1>0且a+1≤3,解得1<a≤2.2.答案:D解析:解:复数|4+3i|3−4i =√42+32(3+4i)(3−4i)(3+4i)=3+4i5=35+4i5的共轭复数35−4i5对应的点(35,−45)位于复平面内的第四象限.故选:D.利用复数的运算法则、共轭复数的定义、几何意义即可得出.本题考查了复数的运算法则、几何意义、共轭复数的定义,考查了推理能力与计算能力,属于中档题.3.答案:B解析:解:由等差数列的性质可得:a1+a5=2a3,a1+a11=2a6.∴S5S11=5(a1+a5)211(a1+a11)2=511×2a32a6=511×115=1.故选:B.由等差数列的性质可得:a1+a5=2a3,a1+a11=2a6.再利用求和公式即可得出.本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.4.答案:A解析:解:Tr+1=C24r x24−r4⋅6r⋅x−r3=6r C24r x72−7r12,当r=0,12,24时,x的指数整数,故选:A.利用二项展开式的通项公式求出第r+1项,令x的指数为整数求出r,得到指数是整数的项数.本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.答案:D解析:解:函数f(x)=cos(ωx+π6)(ω>0)的最小正周期为π2,则:π2=2πω,解得:ω=4故选:D.直接利用余弦型函数的周期的运算公式求出结果.本题考查的知识要点:余弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.答案:B解析:试题分析:令,所以为增函数,由得,所以.考点:1、导数运算;2、函数的单调性.7.答案:C解析:解:a⃗+b⃗ =(√3−12,√3−12);∴(a⃗+b⃗ )⋅b⃗ =3−√34−√3−14=2−√32≠0;∴a⃗+b⃗ 不与b⃗ 垂直;∴A错误;(a⃗+b⃗ )⋅a⃗=−√3−14+3−√34=2−√32≠0;∴a⃗+b⃗ 不与a⃗垂直;∴B错误;又(a⃗+b⃗ )⋅(a⃗−b⃗ )=a⃗2−b⃗ 2=1−1=0;∴(a⃗+b⃗ )⊥(a⃗−b⃗ );∴C正确.故选:C.可求出a⃗+b⃗ 的坐标,进而可求出(a⃗+b⃗ )⋅a⃗≠0,(a⃗+b⃗ )⋅b⃗ ≠0,即得出a⃗+b⃗ 与a⃗和b⃗ 都不垂直,从而判断出A,B都错误;容易求出(a⃗+b⃗ )⋅(a⃗−b⃗ )=a⃗2−b⃗ 2=0,从而判断出(a⃗+b⃗ )⊥(a⃗−b⃗ ),即得出C正确.考查向量坐标的加法和数量积运算,以及向量数量积的运算,向量垂直的充要条件.8.答案:C解析:故答案为C.9.答案:A解析:解:数列{a n},a1=4,a n+1=f(a n),n=1,2…,其中f(x)如表所示x12345f(x)54312则a2=f(4)=1,a3=f(1)=5,a4=f(5)=2,a5=f(2)=4,…,数列是周期数列,周期为4,∴a2020=a504×4+4=a4=2.故选:A.利用已知条件求出a2,a3,a4,a5,…,得到数列的周期,然后求解a2020的值.本题考查数列的函数的特征,数列的递推关系式的应用,求出数列的周期是解题的关键.10.答案:A解析:解:f(−x)=−sinxe|−x|=−sinxe|x|=−f(x),则函数f(x)是奇函数,图象关于原点对称,排除C,D.当0<x <π时,f(x)=sinx e x,则f′(x)=cosx−sinxe x,则当x =π4时,函数取得极大值, 故选:A .判断函数的奇偶性和对称性,求函数的导数研究函数的极值和单调性进行判断即可.本题主要考查函数图象的识别和判断,利用是奇偶性和对称性的关系以及函数的极值去判断是解决本题的关键.11.答案:1解析:解:设f(x)=x 3−6x 2+9x −10,则f′(x)=3x 2−12x +9, 令f′(x)=0,得x =1或x =3,∴x ≤1时,f(x)单调递增,最大值为−6; 当1<x ≤3时,f(x)单调递减,最小值为−10; 当x >3时,f(x)单调递增,最小值为−10,由上分析知y =f(x)的图象如图,与x 轴只有一个公共点, 所以方程x 3−6x 2+9x −10=0只有一个实根. 故答案为:1.应用导数的几何意义易判断函数的增减性,然后根据极值判断实根的个数. 本题考查导数知识的运用,考查数形结合的数学思想,属于中档题.12.答案:√3解析:解:设渐近线的方程为y =ba x ,过N 作x 轴的垂线,垂足为P ,由MN ⃗⃗⃗⃗⃗⃗⃗ =3NF 2⃗⃗⃗⃗⃗⃗⃗ ,得|F 2P||OF 2|=|F 2N||F 2M|=14,得N 的坐标为(3c 4,3bc4a),∵NF 2⊥ON , ∴3bc 4a÷(3c 4−c)=−ab,化简得b 2a 2=13, 则ab =√3, 故答案为:√3设渐近线的方程为y=bax,过N作x轴的垂线,垂足为P,根据向量关系建立长度关系进行求解即可.本题主要考查双曲线向量的计算,根据条件结合向量共线的条件进行转化是解决本题的关键.13.答案:0解析:解:根据已知条件:(2n⃗−m⃗⃗⃗ )⋅m⃗⃗⃗ =2n⃗⋅m⃗⃗⃗ −m⃗⃗⃗ 2=2×12−1=0;故答案为:0.根据已知条件以及数量积的计算公式即可求出答案.考查单位向量,向量数量积的计算公式.14.答案:2解析:解:(1+tan40°)(1+tan5°)=1+(tan40°+tan5°)+tan40°tan5°=1+tan45°(1−tan40°tan5°)+tan40°tan5°=2,故答案为2.把要求的式子展开为1+(tan40°+tan5°)+tan40°tan5°,再根据tan40°+tan5°=1−tan40°tan5°,计算求得结果.本题主要考查两角和的正切公式的应用,属于中档题.15.答案:④解析:解:对于①,经过定点P(x0,y0)斜率不存在的直线不可以用方程y−y0=k(x−x0)表示,故①正确;对于②,经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线有两种情况:当x1≠x2时,即斜率存在可以用方程(y−y1)(x2−x1)=(x−x1)(y2−y1)来表示,当x1=x2时,直线方程为x=x1,可以用方程(y−y1)(x2−x1)=(x−x1)(y2−y1)来表示,故②正确;对于③,当直线过原点时,直线不可以用方程xa +yb=1表示,故③正确;对于④,经过点Q(0,b)的直线,当斜率不存在时,不可以表示为y=kx+b,故④错误.故答案为:④.①,经过定点P(x0,y0)斜率不存在的直线不可以用方程y−y0=k(x−x0)表示;②,当x1≠x2时,即斜率存在可以用方程(y−y1)(x2−x1)=(x−x1)(y2−y1)来表示,当x1=x2时,直线方程为x=x1,可以用方程(y−y1)(x2−x1)=(x−x1)(y2−y1)来表示;③,当直线过原点时,直线不可以用方程xa +yb=1表示;④,经过点Q(0,b)的直线,当斜率不存在时,不可以表示为y =kx +b . 本题考查了命题真假的判定,涉及到了直线方程的表达式,属于中档题.16.答案:解:(1)∵α=π2−∠BAD =π2−(π−2β)=2β−π2∴sinα=sin(2β−π2)=−cos2β, 即sinα+cos2β=0(2)△ADC 中由正弦定理DCsinα=ACsin(π−β)即DCsinα=ACsinβ 则sinβ=√3sinα由(1)得sinβ=−√3cos2β=−√3(1−2sin 2β) 即2√3sin 2β−sinβ−√3=0 解得sinβ=√32或sinβ=−√33∵0<β<π2∴sinβ=√32∴β=π3解析:(1)利用诱导公式可求得α=2β−π2,进而利用诱导公式求得sinα=−cos2β,整理得sinα+cos2β=0.原式得证.(2)根据正弦定理可求得sinβ=√3sinα进而利用(1)中的结论求得sinβ−√3(1−2sin 2β)代入sinβ=√3sinα即可求得sinβ, 进而求得β的值.本题主要考查了诱导公式化简求值,正弦定理.考查了学生综合分析问题和基本的运算能力.17.答案:(1)证明:在四棱锥P −BCDE 中,BE =CE =√2,BC =2,所以BE 2+CE 2=BC 2,从而有CE ⊥BE .∵PO ⊥平面BCDE ,而CE ⊂平面BCDE ,∴CE ⊥PO .而PO ,BE ⊂平面PBE ,且PO ∩BE =O ,可得CE ⊥平面PBE , 又CE ⊂平面PCE , ∴平面PCE ⊥平面PBE ;(2)解:由题意PO ⊥平面BCDE ,由(1)知,EC ⊥平面PBE ,以E 为坐标原点,分别以EB ,EC 所在直线为x ,y 轴,过点E 作OP 的平行线为z 轴,建立空间直角坐标系.则P(√22,0,√22),C(0,√2,0),D(−√22,√22,0),CP ⃗⃗⃗⃗⃗ =(√22,−√2,√22),DC ⃗⃗⃗⃗⃗ =(√22,√22,0),设平面PCD 的一个法向量为m⃗⃗⃗ =(x,y,z), 由{m ⃗⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =√22x −√2y +√22z =0m⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =√22x +√22y =0,取y =−1,得m⃗⃗⃗ =(1,−1,−3); 平面PBE 的一个法向量为n ⃗ =(0,1,0). 则cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√11=−√1111. ∴平面PCD 与平面PBE 所成锐二面角的余弦值为√1111.解析:本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解面面角,是中档题.(1)在四棱锥P −BCDE 中,由已知求解三角形可得CE ⊥BE.又PO ⊥平面BCDE ,得CE ⊥PO.利用线面垂直的判定可得CE ⊥平面PBE ,从而得到平面PCE ⊥平面PBE ;(2)由PO ⊥平面BCDE ,由(1)知,EC ⊥平面PBE ,以E 为坐标原点,分别以EB ,EC 所在直线为x ,y 轴,过点E 作OP 的平行线为z 轴,建立空间直角坐标系.分别求出平面PCD 与平面PBE 的一个法向量,由两法向量所成角的余弦值可得平面PCD 与平面PBE 所成锐二面角的余弦值.18.答案:解:(1)由“理智购物”者总人数为7720人,可得:1000+1800×1−0.60.6+1200+a ×1−0.40.4+300×1−0.20.2+200×1−0.10.1=7720,解得a =880.…(4分)(2)①年龄在[20,35)的“剁手党”共有1000+1800+1200=4000人,则年龄在区间[20,25)的应该抽取5人,年龄在区间[25,30)的应该抽取9人,年龄在区间[30,35)的应该抽取6人.…(6分)从这20人中随机抽取2人,这2人属于同一年龄区间的概率为:P=C52+C92+C62C202=61190.…(8分)②由题意可知ξ的取值可能为0,1,2.P(ξ=0)=C152C202=2138,P(ξ=1)=C51C151C202=1538,P(ξ=2)=C52C202=119,故ξ的分布列为:E(ξ)=0×2138+1×1538+2×119=12.…(12分)解析:(1)由“理智购物”者总人数为7720人,结合题意列出方程,由此能求出a的值.(2)①年龄在[20,35)的“剁手党”有4000人,则年龄在区间[20,25)的应该抽取5人,年龄在区间[25,30)的应该抽取9人,年龄在区间[30,35)的应该抽取6人,由此能求出从这20人中随机抽取2人,这2人属于同一年龄区间的概率.②由题意可知ξ的取值可能为0,1,2.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).本题考查实数值的求法,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.答案:解:(1)∵f(x)=ax+lnx,的定义域是(0,+∞),且f′(x)=a+1x(x>0),①当a=0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增;②当a<0时,由f′(x)=0,解得x=−1a,则当x∈(0,−1a)时,f′(x)>0,f(x)单调递增,当x∈(−1a,+∞)时,f′(x)<0,f(x)单调递减,综上所述:当a=0时,f(x)在(0,+∞)上单调递增;当a<0时,f(x)在(0,−1a )上单调递增,在(−1a,+∞)上单调递减.(2)由题意:e x <√x有解,即e x √x <x −m 有解,因此只需m <x −e x √x ,x ∈(0,+∞)有解即可,设ℎ(x)=x −e x√x ,ℎ′(x)=1−e x√x x2√x =1−e x (√x 2√x ),因为√x 2√x ≥2√12=√2>1,且x ∈(0,+∞)时e x >1,所以1−e x (√x +2√x )<0,即ℎ′(x)<0. 故ℎ(x)在(0,+∞)上单调递减, ∴ℎ(x)<ℎ(0)=0,故m <0.解析:(1)求出f′(x)=a +1x ,分当a ≥0时,和a <0时,讨论导函数在不同区间上的符号,进而可得f(x)的单调区间; (2)若e x <√x有解,即e x √x <x −m 有解,只需m <x −e x √x ,x ∈(0,+∞)有解即可,构造函数ℎ(x)=x −e x √x ,利用导数法求出函数的最值,可得答案.本题考查的知识点是利用导数研究函数的单调性,存在性问题,利用导数函数的最值,是导数的综合应用,难度中档.20.答案:解:(Ⅰ)∵椭圆C :x 26+y 22=1,∴c 2=a 2−b 2=4,解得c =2, ∴焦点F(2,0),离心率e =√63.(Ⅱ)直线l :y =kx +m(k ≠0)过点F , ∴m =−2k , ∴l :y =k(x −2). 由{x 2+3y 2=6y =k(x −2), 得(3k 2+1)x 2−12k 2x +12k 2−6=0,(依题意△>0). 设 P(x 1,y 1),Q(x 2,y 2), 则x 1+x 2=12k 23k 2+1,x 1.x 2=12k 2−63k 2+1.∵点P 关于x 轴的对称点为P′,则P′(x 1,−y 1).∴直线P′Q 的方程可以设为y +y 1=y 2+y1x 2−x 1(x −x 1),令y =0,x =x 2y 1−x 1y 1y 1+y 2+x 1=x 2y 1+x 1y 2y 1+y 2=kx 2(x 1−2)+kx 1(x 2−2)k(x 1+x 2−4)=2x 1x 2−2(x 1+x 2)(x 1+x 2−4)=2×12k 2−63k 2+1−2×12k 23k 2+1(12k 23k 2+1−4)=3.∴直线P′Q 过x 轴上定点(3,0).解析:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为△>0及其根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于中档题. (I)由椭圆的标准方程即可得出;(II)直线l :y =kx +m(k ≠0)过点F ,可得l :y =k(x −2),代入椭圆的标准方程可得:(3k 2+1)x 2−12k 2x +12k 2−6=0,(依题意△>0).设P(x 1,y 1),Q(x 2,y 2),可得根与系数的关系,点P 关于x 轴的对称点为P′,则P′(x 1,−y 1),可得直线P′Q 的方程可以为y +y 1=y 2+y1x 2−x 1(x −x 1),令y =0,x =x 2y 1−x 1y 1y 1+y 2+x 1=x 2y 1+x 1y 2y 1+y 2,把根与系数的关系代入化简即可得出.21.答案:证明:(1)因为a n+1=a n −a n2(n ∈N ∗),所以a n+1a n=1−a n ,要证明12≤a n+1a n<1(n ∈N ∗),只需证明0<a n ≤12,用数学归纳法证明如下: 当n =1时,a 1=12,命题成立; 假设n =k 时,命题成立,即0<a k ≤12,当n =k +1时,由a k+1=a k −a k2=−(a k −12)2+14, 由于0<a k ≤12,所以0<a k+1≤14≤12, 故n =k +1时,命题成立,所以对于任意的n ∈N ∗,都有0<a n ≤12成立,即12≤a n+1a n<1(n ∈N ∗)成立;(2)由kC n k =kA n k k!=nC n−1k−1, 故kC n k (2a n −1)k =(2a n −1)nC n−1k−1(2a n −1)k−1,故C n 1(2a n −1)+2C n 2(2a n −1)2+⋯+kC n k (2a n −1)k +⋯+nC n n (2a n −1)n=[(2a n −1)n][1+C n−11(2a n−1−1)1+⋯C n−1k−1(2a n −1)k−1+C n−1n−1(2a n −1)n−1]=n(2a n−1)(1+2a n−1)n−1n−1 =n(2a n−1)(2a n)n−1,由(1)有0<a n≤12,故n(2a n−1)(2a n)n−1≤0,所以原命题成立.解析:(1)因为a n+1=a n−a n2(n∈N∗),所以a n+1a n =1−a n,要证明12≤a n+1a n<1(n∈N∗),只需证明0<a n≤12,用数学归纳法证明即可;(2)由kC n k=k A n kk!=nC n−1k−1,故kCnk(2a n−1)k=(2a n−1)nCn−1k−1(2an−1)k−1,代入化简,结合二项式定理和(1)的结论,证明即可.考查了数学归纳法证明不等式,二项式定理的应用,排列和组合的计算,中档题.。

北京市海淀区2021届新高考一诊数学试题含解析

北京市海淀区2021届新高考一诊数学试题含解析

北京市海淀区2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( )AB . 3CD .【答案】B【解析】由于直线的斜率k 3=,所以一条渐近线的斜率为13k '=-,即13b a =,所以e ==,选B. 2.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( ) A .z 的虚部为i -B .2z =C .z 的共轭复数为1i --D .2z 为纯虚数 【答案】D【解析】【分析】将复数z 整理为1i -的形式,分别判断四个选项即可得到结果.【详解】()()()2121111i z i i i i -===-++-z 的虚部为1-,A 错误;z ,B 错误;1z i =+,C 错误; ()2212z i i =-=-,为纯虚数,D 正确本题正确选项:D【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.3.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( )A .12E E ξξ<,12D D ξξ<B .12E E ξξ=,12D D ξξ>C .12E E ξξ=,12D D ξξ<D .12E E ξξ>,12D D ξξ>【答案】B【解析】【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯, 故223E ξ=,2221242013399D ξ=⨯+⨯-=, 故12E E ξξ=,12D D ξξ>.故选B.【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.4.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( )A .[1,2]-B .[2]C .2⎡⎤-⎢⎥⎣⎦D .[2] 【答案】D【解析】【分析】 由题意利用函数sin()y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后, 可得32sin 38y x πϕ⎛⎫=-+ ⎪⎝⎭的图象; 再根据得到函数的图象关于直线3x π=对称,33382k πππϕπ∴⨯-+=+,k Z ∈,78πϕ∴=,函数7()2sin 38f x x π⎛⎫=+ ⎪⎝⎭.在,88ππ⎡⎤-⎢⎥⎣⎦上,753,824x πππ⎡⎤+∈⎢⎥⎣⎦,sin 38x π⎡⎤⎛⎫∴-∈⎢⎥ ⎪⎝⎭⎣⎦,故()2sin 3[8f x x π⎛⎫=-∈ ⎪⎝⎭,即()f x 的值域是[2], 故选:D.【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.5.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l P ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线1:240l ax y ++=,()2:120l x a y +-+=,12l l P 的充要条件是()1221a a a a -=⇒==-或,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“1a =-”是“12l l P ”的充分必要条件. 故答案为C.【点睛】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.6.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( ) A .35B .36C .45D .54【答案】C【解析】【分析】由等差数列{}n a 通项公式得2375150a a a +-+=,求出5a ,再利用等差数列前n 项和公式能求出9S .【详解】Q 正项等差数列{}n a 的前n 项和n S ,2375150a a a +-+=,2552150a a ∴--=,解得55a =或53a =-(舍),()91959995452S a a a ∴=+==⨯=,故选C. 【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.7.双曲线C :2215x y m-=(0m >),左焦点到渐近线的距离为2,则双曲线C 的渐近线方程为( ) A .250x y ±=B.20x ±= C20y ±= D0y ±= 【答案】B【解析】【分析】0-=,再利用左焦点到渐近线的距离为2,列方程即可求出m ,进而求出渐近线的方程.【详解】设左焦点为(),0c -0-=,由左焦点到渐近线的距离为2,可得2==,所以渐近线方程为y =20x =, 故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.8.已知P 为圆C :22(5)36x y -+=上任意一点,(5,0)A -,若线段PA 的垂直平分线交直线PC 于点Q ,则Q 点的轨迹方程为( )A .221916x y += B .221916x y -=C .221916x y -=(0x <)D .221916x y -=(0x >) 【答案】B【解析】【分析】 如图所示:连接QA ,根据垂直平分线知QA QP =,610QC QA -=<,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接QA ,根据垂直平分线知QA QP =,故610QC QA QC QP PC -=-==<,故轨迹为双曲线,26a =,3a =,5c =,故4b =,故轨迹方程为221916x y -=. 故选:B .【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.9.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】【分析】根据f (x )为偶函数便可求出m =0,从而f (x )=2x ﹣1,根据此函数的奇偶性与单调性即可作出判断. 【详解】解:∵f (x )为偶函数;∴f (﹣x )=f (x );∴2x m --﹣1=2x m -﹣1;∴|﹣x ﹣m|=|x ﹣m|;(﹣x ﹣m )2=(x ﹣m )2;∴mx =0;∴m =0;∴f (x )=2x ﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|0.5log 3|)=f (2log 3),b =f (2log 5),c =f (2);∵0<2log 3<2<2log 5;∴a<c<b .故选B .【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.10.双曲线﹣y 2=1的渐近线方程是( ) A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=0【答案】A【解析】试题分析:渐近线方程是﹣y 2=1,整理后就得到双曲线的渐近线. 解:双曲线其渐近线方程是﹣y 2=1 整理得x±2y=1. 故选A .点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.11.已知函数3()1f x x ax =--,以下结论正确的个数为( )①当0a =时,函数()f x 的图象的对称中心为(0,1)-;②当3a ≥时,函数()f x 在(–1,1)上为单调递减函数;③若函数()f x 在(–1,1)上不单调,则0<<3a ;④当12a =时,()f x 在[–4,5]上的最大值为1.A .1B .2C .3D .4 【答案】C【解析】【分析】逐一分析选项,①根据函数3y x =的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间()1,1-;④利用导数求函数在给定区间的最值.【详解】①3y x =为奇函数,其图象的对称中心为原点,根据平移知识,函数()f x 的图象的对称中心为(0,1)-,正确.②由题意知2()3f x x a '=-.因为当–11x <<时,233x <,又3a ≥,所以()0f x '<在(1,1)-上恒成立,所以函数()f x 在(1,1)-上为单调递减函数,正确. ③由题意知2()3f x x a '=-,当0a ≤时,()0f x '≥,此时()f x 在(–),∞+∞上为增函数,不合题意,故0a >.令()0f x '=,解得x =.因为()f x 在(1,1)-上不单调,所以()0f x '=在(1,1)-上有解,需013<<,解得0<<3a ,正确. ④令2()3120f x x '=-=,得2x =±.根据函数的单调性,()f x 在[–4,5]上的最大值只可能为(2)f -或(5)f .因为(2)15f -=,(5)64f =,所以最大值为64,结论错误.故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型. 12.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥【答案】A【解析】【分析】 作'DD AB ⊥于'D ,DE AC ⊥于E ,分析可得'DED α=?,'DAD β=∠,再根据正弦的大小关系判断分析得αβ≥,再根据线面角的最小性判定βγ≥即可.【详解】作'DD AB ⊥于'D ,DE AC ⊥于E .因为平面DAB ⊥平面ABC ,'DD ⊥平面ABC .故,'AC DE AC DD ⊥⊥,故AC ⊥平面'DED .故二面角D AC B --为'DED α=?.又直线DA 与平面ABC 所成角为'DAD β=∠,因为DA DE ≥, 故''sin 'sin 'DD DD DED DAD DE DA ???.故αβ≥,当且仅当,A E 重合时取等号.又直线AB 与平面ADC 所成角为γ,且'DAD β=∠为直线AB 与平面ADC 内的直线AD 所成角,故βγ≥,当且仅当BD ⊥平面ADC 时取等号.故αβγ≥≥.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

2021届海淀区高三期中数学试卷及答案

2021届海淀区高三期中数学试卷及答案

2014届海淀区高三期中数学试卷及答案数 学(理科) 2013.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D. {2}2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 25.若a ∈R ,则“2a a >”是“1a >”的( B )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最小值是( B ) A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:① π是()f x 的一个周期;② ()f x 的图象关于直线x 4π=对称; ③ ()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。

2021年普通高等学校招生全国统一考试数学试题新高考Ⅰ卷含解析

2021年普通高等学校招生全国统一考试数学试题新高考Ⅰ卷含解析

进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.
8. 有 6 个相同的球,分别标有数字 1,2,3,4,5,6,从中有放回的随机取两次,每次取 1 个球,甲表示
事件“第一次取出的球的数字是 1”,乙表示事件“第二次取出的球的数字是 2”,丙表示事件“两次取出
坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【 详 解 】 A : OP1 (cos ,sin ) , OP2 (cos , sin ) , 所 以 | OP1 | cos2 sin2 1 ,
| OP2 | (cos )2 ( sin )2 1,故 | OP1 || OP2 | ,正确;
sin2 cos2
1 tan2 1 4 5
故选:C.
【点睛】易错点睛:本题如果利用 tan 2 ,求出 sin , cos 的值,可能还需要分象限讨论其正负,通
过齐次化处理,可以避开了这一讨论.
7. 若过点 a, b 可以作曲线 y ex 的两条切线,则( )
A. eb a
B. ea b
对的得 5 分,部分选对的得 2 分,有选错的得 0 分.
9. 有一组样本数据 x1 , x2 ,…, xn ,由这组数据得到新样本数据 y1 , y2 ,…, yn ,其中 yi xi c ( i 1, 2,, n), c 为非零常数,则( )
A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同 C. 两组样本数据的样本标准差相同 D. 两组样数据的样本极差相同 【答案】CD 【解析】
OP2 OP3 cos cos( ) ( sin ) sin( )
cos
β
α
β

2024-2025学年北京市海淀区高三上学期10月月考数学试题及答案

2024-2025学年北京市海淀区高三上学期10月月考数学试题及答案

数学试题2024.10.06本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分)1. 设集合{}21,3M m m =--,若3M -∈,则实数m =( )A. 0B. 1- C. 0或1- D. 0或12. 记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A. 25n a n =- B. 310n a n =- C. 228n S n n=- D. 2122n S n n =-3. 已知 1.50.31.50.3,log 0.3, 1.5a b c ===,则( )A. a b c << B. b a c <<C. a c b<< D. b c a<<4. 设()()1i 21i z -=+,则z =( )A.B. 1C.D. 25. 下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是( )A. y =B. 21y x =C. lg y x =D. 332x xy --=6. 已知向量()3,4a = ,()1,0b = ,c a tb =+ ,若,,a c b c = 则实数t =( )A. 6- B. 5- C. 5D. 67. 函数()()()cos sin f x x a x b =+++,则( )A. 若0a b +=,则()f x 为奇函数 B. 若π2a b +=,则()f x 为偶函数C. 若π2b a -=,则()f x 偶函数 D. 若πa b -=,则()f x 为奇函数8. 已知函数()0x f x x <=≥⎪⎩,若对任意的1x ≤有()()20f x m f x ++>恒成立,则实数m 的取值为范围是( )A. (),1∞-- B. (],1-∞- C. (),2-∞- D. (],2-∞-9. 已知a 、b 、e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b满足2430b e b -⋅+=,则a b - 的最小值是A1-B.1+ C. 2D. 2-10.已知函数()f x k =+,若存在区间[,]a b ,使得函数()f x 在区间[,]a b 上的值域为[1,1]a b ++则实数k 的取值范围为( )A. (1,)-+∞ B. (1,0]- C. 1,4⎛⎫-+∞ ⎪⎝⎭D. 1,04⎛⎤- ⎥⎝⎦第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 已知角α的终边与单位圆交于点1,2⎛⎫⎪⎝⎭y P ,则πsin 2α⎛⎫+= ⎪⎝⎭__________.12. 记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.13. 若命题“对任意2R,20x ax x a ∈++≥为假命题的a 的取值范围是______14. 若函数()()cos sin 0f x A x x A =->最大值为2,则A =________,()f x 的一个对称中心为_______15. 对于函数()y f x =,若在其定义域内存在0x ,使得()001x f x =成立,则称函数()f x 具有性质P .(1)下列函数中具有性质P 的有___________.①()2f x x =-+②()[]()sin 0,2πf x x x =∈③()1f x x x=+,(x ∈(0,+∞))④()()ln 1f x x =+(2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是___________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC V中,sin A B =,b =.再从条件①,条件②、条件③这三个条件中选择一个作.的为已知,使ABC V 存在且唯一确定,并解决下面的问题:(1)求角B 的大小;(2)求ABC V 的面积.条件①:4c =;条件②:222b a c -=;条件③:cos sin a B b A =.17. 已知n S 是等差数列{a n }的前n 项和,51120S a ==,数列{b n }是公比大于1的等比数列,且236b b =,4212b b -=.(1)求数列{a n }和{b n }的通项公式;(2)设nn nS c b =,求使n c 取得最大值时n 的值.18. 已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.19. 1.已知函数()21exax x f x +-=,0a ≥.(1)讨论函数()f x 的单调性;(2)当0a >时,求证:函数()f x 在区间()0,1上有且仅有一个零点.20. 已知函数()e sin 2xf x x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在区间[1,1]-上的最大值;(3)设实数a 使得()e xf x x a +>对R x ∈恒成立,写出a 最大整数值,并说明理由.21. 已知数列{a n }记集合()(){}*1,,,1,,i i j T S i j S i j a a a i j i j +==+++≤<∈N (1)对于数列{a n }:1,2,3,列出集合T 的所有元素;(2)若2n a n =是否存在*,i j ∈N ,使得(),1024S i j =?若存在,求出一组符合条件,i j ;若不存在,说明理由;(3)若22n a n =-把集合T 中的元素从小到大排列,得到的新数列为12:,,,,.m B b b b 若的的b m ≤0202,求m 的最大值数学试题2024.10.06本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分)1. 设集合{}21,3M m m =--,若3M -∈,则实数m =( )A. 0B. 1- C. 0或1- D. 0或1【答案】C 【解析】【分析】根据元素与集合的关系,分别讨论213-=-m 和33m -=-两种情况,求解m 并检验集合的互异性,可得到答案.【详解】设集合{}21,3M m m =--,若3M -∈,3M -∈ ,213m ∴-=-或33m -=-,当213-=-m 时,1m =-,此时{}3,4M =--;当33m -=-时,0m =,此时{}3,1M =--;所以1m =-或0.故选:C2. 记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A. 25n a n =- B. 310n a n =- C. 228n S n n=- D. 2122n S n n =-【答案】A 【解析】【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.3. 已知 1.50.31.50.3,log 0.3, 1.5a b c ===,则( )A. a b c << B. b a c <<C. a c b << D. b c a<<【答案】B 【解析】【分析】根据指对数的性质,分别求三个数的范围,再比较大小.【详解】由条件可知,()1.50.30,1a =∈, 1.5log 0.30b =<,0.31.51>,所以b a c <<.故选:B4. 设()()1i 21i z -=+,则z =( )A.B. 1C.D. 2【答案】D 【解析】【分析】利用复数除法法则计算出()21i 2i 1iz +==-,求出模长.【详解】()()22221i 21i 12i i 2i 1i 1iz ++===++=--,故2z =.故选:D5. 下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是( )A. y =B. 21y x =C lg y x= D. 332x xy --=【答案】C 【解析】【分析】根据幂函数和指对函数的奇偶性和单调性,逐一检验选项,得出答案.【详解】选项A,y =(0,)+∞上的增函数,错误;.选项B ,21y x =是偶函数,是区间(0,)+∞上的减函数,错误;选项C ,lg y x =是偶函数,是区间(0,)+∞上的增函数,正确;选项D ,332x xy --=是奇函数,是区间(0,)+∞上的增函数,错误;故选:C6. 已知向量()3,4a = ,()1,0b = ,c a tb =+ ,若,,a c b c = 则实数t =( )A. 6-B. 5- C. 5D. 6【答案】C 【解析】【分析】由向量坐标的运算求出向量c的坐标,再根据,,a c b c = ,利用向量夹角余弦公式列方程,求出实数t 的值.【详解】由()3,4a = ,()1,0b = ,则()3,4c a tb t =+=+,又,,a c b c = ,则cos ,cos ,a c b c =,则a c b c a c b c ⋅⋅=⋅⋅ ,即a b a bc c⋅⋅=,31t+=,解得5t =,故选:C.7. 函数()()()cos sin f x x a x b =+++,则( )A. 若0a b +=,则()f x 为奇函数 B. 若π2a b +=,则()f x 为偶函数C. 若π2b a -=,则()f x 为偶函数 D. 若πa b -=,则()f x 为奇函数【答案】B 【解析】【分析】根据选项中,a b 的关系,代入()f x 的解析式,对AD 用特值说明()f x 不是奇函数,对BC 用奇偶性的定义验证即可.【详解】()f x 的定义域为R ,对A :若0a b +=,()()()cos sin f x x a x a =++-,若()f x 为奇函数,则()00f =,而()0cos sin 0f a a =-=不恒成立,故()f x 不是奇函数;对B :若π2a b +=,()()()()πcos sin cos cos 2f x x a x a x a x a ⎛⎫=+++-=++- ⎪⎝⎭,()()()()()cos cos cos cos ()f x x a x a x a x a f x -=-++--=-++=,故()f x 偶函数,B 正确;对C :若π2b a -=,()()()πcos sin 2cos 2f x x a x a x a ⎛⎫=++++=+ ⎪⎝⎭,()()2cos ()f x x a f x -=-+≠,故()f x 不是偶函数,故C 错误;对D :若πa b -=,()()()()()cos πsin cos sin f x x b x b x b x b =++++=-+++,若()f x 为奇函数,则()00f =,而()0cos sin 0f b b =-+=不恒成立,故()f x 不是奇函数;故选:B8. 已知函数()0x f x x <=≥⎪⎩,若对任意的1x ≤有()()20f x m f x ++>恒成立,则实数m 的取值范围是( )A. (),1∞-- B. (],1-∞- C. (),2-∞- D. (],2-∞-【答案】A 【解析】【分析】根据奇函数的定义证明()f x 为奇函数,再判断函数的单调性,利用函数的性质化简不等式可得m 的取值范围.【详解】当0x <时,0x ->,()f x =()()f x f x -==-,当0x >时,0x -<,()f x =()()f x f x -==-,当0x =时,()00f =,所以对任意的R x ∈,()()f x f x -=-,函数()f x 为奇函数,又当0x >时,()f x =为单调递减函数,所以函数()f x 在(),-∞+∞上为单调递减函数,所以不等式()()20f x m f x ++>可化为()()2f x m f x +>-,为所以2x m x +<-,所以x m <-,由已知对任意的1x ≤有x m <-恒成立,所以1m <-,即1m <-,故m 的取值范围是(),1∞--.故选:A.9. 已知a 、b 、e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b满足2430b e b -⋅+= ,则a b - 的最小值是A.1B.1+ C. 2D. 2-【答案】A 【解析】【分析】先确定向量a、b所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【详解】设()()(),,1,0,,a x y e b m n ===r r r,则由π,3a e =r r得πcos ,3a e e x y a ⋅=⋅=∴=r r r r ,由2430b e b -⋅+=r r r 得()2222430,21,m n m m n +-+=-+=因此,a b -r r 的最小值为圆心()2,0到直线y =11.选A.【点睛】以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知函数()f x k =+,若存在区间[,]a b ,使得函数()f x 在区间[,]a b 上的值域为[1,1]a b ++则实数k 的取值范围为( )A. (1,)-+∞ B. (1,0]- C. 1,4⎛⎫-+∞ ⎪⎝⎭D. 1,04⎛⎤- ⎥⎝⎦【答案】D 【解析】【分析】根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即得1010a kb k ⎧+--=⎪⎨+--=⎪⎩方程20x x k --=的两个不同非负实根,由根与系数的关系即可求出.【详解】根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即可得到1010a kb k ⎧+--=⎪⎨+-=⎪⎩,20x x k --=两个不同非负实根,所以1400k k ∆=+>⎧⎪=-≥,解得104k -<≤.故选:D .【点睛】关键点睛:利用函数的单调性以及一元二次方程的根与系数的关系是解决本题的关键.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 已知角α的终边与单位圆交于点1,2⎛⎫⎪⎝⎭y P ,则πsin 2α⎛⎫+= ⎪⎝⎭__________.【答案】12##0.5【解析】【分析】由三角函数定义得到1cos 2α=,再由诱导公式求出答案.【详解】由三角函数定义得1cos 2α=,由诱导公式得1cos 2πsin 2αα⎛⎫= ⎪⎭=+⎝.故答案为:1212. 记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.【答案】63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和的公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.13. 若命题“对任意2R,20x ax x a ∈++≥为假命题的a 的取值范围是______【答案】1a <【解析】【分析】写出全称量词命题的否定,2R,20x ax x a ∃∈++<为真命题,分0a =,0a <和0a >三种情况,得到不等式,求出答案.【详解】由题意得2R,20x ax x a ∃∈++<为真命题,当0a =时,不等式为20x <,有解,满足要求,当0a ≠时,若0a <,此时220ax x a ++<必有解,满足要求,若0a >,则2440a ∆=->,解得01a <<,综上,a 的取值范围为1a <.故答案为:1a <14. 若函数()()cos sin 0f x A x x A =->的最大值为2,则A =________,()f x 的一个对称中心为_______【答案】 ①. ②. π,03⎛⎫⎪⎝⎭(答案不唯一)【解析】【分析】根据辅助角公式对函数()f x 进行化简,再根据最大值求出A ,最后利用余弦型函数求出对称中心.【详解】由()cos sin f x A x x x ϕ=-=+(),其中1tan A ϕ=,又函数()f x 的最大值为22=,又0A >,则A =,tan ϕ=,不妨取π6ϕ=,故()π2cos 6f x x ⎛⎫=+ ⎪⎝⎭,则()f x 的对称中心满足πππ62x k +=+,k ∈Z ,解得ππ3x k =+,k ∈Z ,即()f x 的对称中心为ππ,03k ⎛⎫+ ⎪⎝⎭,k ∈Z ,则()f x 的一个对称中心可为:π,03⎛⎫⎪⎝⎭,π,03⎛⎫ ⎪⎝⎭(答案不唯一)15. 对于函数()y f x =,若在其定义域内存在0x ,使得()001x f x =成立,则称函数()f x 具有性质P .(1)下列函数中具有性质P 的有___________.①()2f x x =-+②()[]()sin 0,2πf x x x =∈③()1f x x x=+,(x ∈(0,+∞))④()()ln 1f x x =+(2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是___________.【答案】①. ①②④ ②. 0a >或a e ≤-.【解析】【分析】(1)令12x x -=,由0∆=,可判断;由sin x =1x 有解,可判断是否具有性质P ;令1+x x=1x ,此方程无解,由此可判断;由()1ln 1,x x y y =+=两图象在()1,-+∞有交点可判断;(2)问题转化为方程1ln x x a =有根,令()ln g x x x =,求导函数,分析导函数的符号,得所令函数的单调性及最值,由此可求得实数a 的取值范围.【详解】解:(1)在0x ≠时, ()1f x x =有解,即函数具有性质P ,令12x x-= ,即2210x -+-=,∵880∆=-=,故方程有一个非0实根,故()2f x x =-+ 具有性质P ;()()sin ]02[f x x x π=∈,的图象与1y x=有交点,故sin x =1x有解,故()()sin ]02[f x x x π=∈,具有性质P ;令1+x x =1x ,此方程无解,故()1f x x x=+,(x ∈(0,+∞))不具有性质P ;令()1ln 1x x +=,则由()1ln 1,x x y y =+=两图象在()1,-+∞有交点,所以()1ln 1x x +=有根,所以()()ln 1f x x =+具有性质P ;综上所述,具有性质P 的函数有:①②④;(2)()ln f x a x =具有性质P ,显然0a ≠,方程1ln x x a =有根,令()ln g x x x =,则()'ln +1g x x =,令()'ln +10g x x ==,解得1=x e ,当11x e -<<时,()'0g x <,所以()g x 在11e ⎛⎫- ⎪⎝⎭,上单调递减,当1>x e 时,()'>0g x ,所以()g x 在1e ⎛⎫+∞ ⎪⎝⎭,上单调递增,所以()1111ln g x g e e e e⎛⎫≥==- ⎪⎝⎭,所以()ln g x x x =的值域[1e -,+∞),∴11a e ≥-,解之可得:0a >或a e ≤-.故答案为:①②④;0a >或a e ≤-.【点睛】方法点评:解决本题的关键是审清题意,把方程的解转化为两个图象有交点,本题考查的是方程的根,新定义,函数的值域,是方程和函数的综合应用,难度比较大.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC V 中,sin A B =,b =.再从条件①,条件②、条件③这三个条件中选择一个作为已知,使ABC V 存在且唯一确定,并解决下面的问题:(1)求角B 的大小;(2)求ABC V 的面积.条件①:4c =;条件②:222b a c -=;条件③:cos sin a B b A =.【答案】(1)选②或③,4B π=; (2)ABC V 的面积为1.【解析】【分析】(1)选①,利用三边关系可判断ABC V 不存在;选②:利用余弦定理可求得角B 的值;选③:利用正弦定理可求得tan B 的值,结合角B 的取值范围可求得角B 的值;(2)利用余弦定理可求得c 的值,再利用三角形的面积公式可求得ABC V 的面积.【小问1详解】解:因为sin A B =,b =,则2a ==.选①:因为4c =,则a b c +<,则ABC V 不存在;选②:因为222b a c -=,则222a c b +-=,由余弦定理可得222cos 2a c b B ac +-==,()0,B π∈ ,则4B π=;选③:cos sin a B b A = ,则sin cos sin sin A B A B =,A 、()0,B π∈,则sin 0A >,sin cos 0B B =>,故tan 1B =,从而4B π=.【小问2详解】解:因为4B π=,2a =,b =,由余弦定理可得2222cos b a c ac B =+-,即220c -+=,解得c =,因此,11sin 2122ABC S ac B ==⨯=△.17. 已知n S 是等差数列{a n }的前n 项和,51120S a ==,数列{b n }是公比大于1的等比数列,且236b b =,4212b b -=.(1)求数列{a n }和{b n }的通项公式;(2)设n n nS c b =,求使n c 取得最大值时n 的值.【答案】(1)22n a n =-,2n n b =(2)3或4【解析】【分析】(1)根据等差数列的通项及前n 项和公式求出首项与公差,即可求出数列{a n }的通项公式,再求出数列{b n }的首项与公比,即可得{b n }的通项公式;(2)先求出{}n c 的通项,再利用作差法判断数列的单调性,根据单调性即可得出答案.【小问1详解】设等差数列{a n }的公差为d ,则511115452021020S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩,解得10,2a d ==,所以22n a n =-,设等比数列{b n }的公比为()1q q >,则()2251131112b q b q b q b q ⎧=⎪⎨-=⎪⎩,解得122b q =⎧⎨=⎩,所以2n n b =;【小问2详解】由(1)得()()2212n n n S n n -==-,则()12n n nn n n S c b -==,()()2111113222n n n n n n n n n n n c c ++++---=-=,当1,2n =时,11230,n n c c c c c +-><<,当3n =时,1340,n n c c c c +-==,当4n ≥时,1450,n n n c c c c c +->> ,所以当3n =或4时,n c 取得最大值.18. 已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.【答案】(1)π,()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)[]0,3【解析】【分析】(1)化简函数()π3sin 26f x x ⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)根据题意转化为方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,以π26x -为整体,结合正弦函数图象运算求解.【小问1详解】对于函数π313()6cos sin 6cos cos 6222f x x x x x x ⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭()231cos 231π3sin cos 3cos 2332cos 23sin 222226x f x x x x x x x x ⎫+⎛⎫=-+-⨯+=-=-⎪ ⎪⎪⎝⎭⎭,所以函数()f x 的最小正周期为2ππ2T ==,令πππ2π22π,Z 262k x k k -+£-£+Î,则ππππ,Z 63k x k k -+££+Î,∴函数()f x 单调递增区间为()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】令()0y f x a =-=,即π3sin 206x a ⎛⎫--= ⎪⎝⎭,则πsin 263a x ⎛⎫-= ⎪⎝⎭,∵()y f x a =-在π5π,1212x ⎡⎤∈⎢⎥⎣⎦存在零点,则方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,若π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,则π2π20,63x ⎡⎤-∈⎢⎥⎣⎦,可得πsin 2[0,1]6x ⎛⎫-∈ ⎪⎝⎭,∴013a ≤≤,得03a ≤≤故实数a 的取值范围是[]0,3.的19. 1.已知函数()21ex ax x f x +-=,0a ≥.(1)讨论函数()f x 的单调性;(2)当0a >时,求证:函数()f x 在区间()0,1上有且仅有一个零点.【答案】(1)当0a =时,()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-;当0a >时,()f x 的单调递减区间为1,a ⎛⎫-∞-⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭. (2)证明过程见解析【解析】【分析】(1)求出导数,然后通过对a 分情况讨论,研究导数的符号研究函数的单调性;(2)结合第一问的结果,判断出函数在()0,1上的单调性,然后结合端点处的函数值的符合证明【小问1详解】()()()12e x ax xf x -+-'==,当0a =时,()()2e x x f x --'=,由()0f x '>得:2x <,由()0f x '<,得:2x >,故此时()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-当0a >时,令()()()120g x ax x =-+-=得:x =−1a <0或2x =由()0g x >得:12x a-<<,此时()0f x '>由()0g x <得:1x a <-或2x >,此时()0f x '<故此时()f x 的单调递减区间为1,a ⎛⎫-∞- ⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭综上:当0a =时,()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-;当0a >时,()f x 的单调递减区间为1,a ⎛⎫-∞-⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭.【小问2详解】由(1)可知,当0a >时,()f x 的单调递增区间为1,2a ⎛⎫- ⎪⎝⎭,而()1,20,1a ⎛-⊂⎫ ⎪⎝⎭,所以()f x 在()0,1上单调递增,又()010f =-<,()10ea f =>所以()()010f f ⋅<,由零点存在性定理可得::函数()f x 在区间()0,1上有且仅有一个零点20. 已知函数()e sin 2xf x x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在区间[1,1]-上的最大值;(3)设实数a 使得()e xf x x a +>对R x ∈恒成立,写出a 的最大整数值,并说明理由.【答案】(1)y x =-(2)()max sin12ef x =- (3)2-,理由见解析【解析】【分析】(1)求出函数在0x =处的导数,即切线斜率,求出(0)f ,即可得出切线方程;(2)求出函数在区间[1,1]-上的单调性,求出最值即可;(3)将不等式等价转化为sin e x x a x <-在R x ∈上恒成立.构造函数()sin e xx x x ϕ=-,利用导数求出函数的单调性和最小值,进而得证.【小问1详解】因为()e sin 2x f x x x =-,所以()()e sin cos 2x f x x x =+-',则(0)1f '=-,又(0)0f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.【小问2详解】令()()()esin cos 2x g x f x x x +'==-,则()2e cos x g x x '=,当[1,1]x ∈-时,()0g x '>,()g x 在[1,1]-上单调递增.因为(0)10g =-<,()()1e sin1cos120g =+->,所以0(0,1)x ∃∈,使得0()0g x =.所以当0(1,)x x ∈-时,()0f x '<,()f x 单调递减;当0(,1)x x ∈时,()0f x '>,()f x 单调递增,又()1esin12e 21f =-<-<,()sin1121e f -=->,所以()()max sin112ef x f =-=-.【小问3详解】满足条件的a 的最大整数值为2-.理由如下:不等式()e x f x x a +>恒成立等价于sin e xx a x <-恒成立.令()sin e x x x x ϕ=-,当0x ≤时,0e xx -≥,所以()1x ϕ>-恒成立.当0x >时,令()e x x h x =-,()0h x <,()1ex x h x '-=,()h x '与()h x 的情况如下:所以()()min 11eh x h ==-,当x 趋近正无穷大时,()0h x <,且()h x 无限趋近于0,所以()h x 的值域为1,0e ⎡⎫-⎪⎢⎣⎭,因为sin [1,1]x ∈-,所以()ϕx 的最小值小于1-且大于2-.所以a 的最大整数值为2-.21. 已知数列{a n }记集合()(){}*1,,,1,,i i j T S i j S i j a a a i j i j +==+++≤<∈N(1)对于数列{a n }:1,2,3,列出集合T 的所有元素;(2)若2n a n =是否存在*,i j ∈N ,使得(),1024S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若22n a n =-把集合T 中的元素从小到大排列,得到的新数列为12:,,,,.m B b b b 若2020m b ≤,求m 的最大值.【答案】(1){}3,5,6T =;(2)不存在,理由见解析;(3)1001.【解析】【分析】(1)根据题目给出的集合T 的定义求解即可;(2)假设存在*,i j ∈N ,使得(),1024S i j =,则有()()()1102422121i i j a a a i i j j i i j +=+++=++++=-++ ,则i j +与j i -奇偶性相同,所以i j +与1j i -+奇偶性不同,进行分析即可得解;(3)由22n a n =-,根据题意给出的集合T 新定义可对()()()()22221212j i j i j i j i -+--+=+--+进行计算分析,讨论元素的奇偶情况,即可得出答案.【小问1详解】由题意可得123a a +=,1236a a a ++=,235a a +=,所以{}3,5,6T =.【小问2详解】假设存在*,i j ∈N ,使得(),1024S i j =,则有()()()1102422121i i j a a a i i j j i i j +=+++=++++=-++ ,由于i j +与j i -奇偶性相同,所以i j +与1j i -+奇偶性不同,又因为3,12i j j i +≥-+≥,所以1024必有大于等于3的奇数因子,这与1024无1以外的奇数因子矛盾.故不存在*,i j ∈N ,使得(),1024S i j =成立.小问3详解】由题意得()()()()22221212j i j i j i j i -+--+=+--+,当2j =,1i =时,12b =,除2j =,1i =外22j i +-≥,12j i -+≥,【其中2j i +-与1j i -+一奇一偶,则n b 能拆成奇数与偶数之乘积,在正偶数中,只有2n 无法拆成一个大于2的奇数与一个不小于2的偶数之乘积,又T 中的元素均为偶数,故{}**2,2,k T n n n k =∈≠∈N N ,故2至2024偶数中除去4,8,16,32,64,128,256,512,1024,2020910012m ∴=-=,故m 的最大值为1001.【点睛】关键点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及运算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。

2021-2022学年北京市海淀区高三上学期期末考试数学试卷(含答案解析)

2021-2022学年北京市海淀区高三上学期期末考试数学试卷(含答案解析)

2021-2022学年北京市海淀区高三上学期期末考试数学试卷1.已知集合A={−1,0,1,2},B={x|x(x−2)<0},则A∩B=( )A. ⌀B. {0}C. {1}D. {0,1}2.抛物线x2=2y的准线方程为( )A. x=−1B. y=−1C. x=−12D. y=−123.复数52+i的虚部为( )A. −2B. 2C. −1D. 14.在(x−1x2)4的展开式中,x的系数为( )A. −4B. 4C. −6D. 65.已知角α的终边在第三象限,且tanα=2,则sinα−cosα=( )A. −1B. 1C. −√55D. √556.已知{a n}是等差数列,S n是其前n项和,则“a4>a3”是“对于任意n∈N∗且n≠3,S n> S3”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.若函数y=sin(πx−π6)在[0,m]上单调递增,则m的最大值为( )A. 13B. 12C. 23D. 18.已知圆C过点A(−1,2),B(1,0),则圆心C到原点距离的最小值为( )A. 12B. √22C. 1D. √29.如图,A,B是两个形状相同的杯子,且B杯高度是A杯高度的34,则B杯容积与A杯容积之比最接近的是( )A. 1:3B. 2:5C. 3:5D. 3:410.已知函数f(x)=2x,g(x)=log a x,若对于f(x)图象上的任意一点P,在g(x)的图象上总存在一点Q,满足OP⊥OQ,且|OP|=|OQ|,则实数a=( )A. 14B. 12C. 2D. 411.双曲线x2−y 24=1的渐近线方程是__________.12. 已知甲盒中有3个白球,2个黑球;乙盒中有1个白球,2个黑球.现从这8个球中随机选取一球,该球是白球的概率是__________,若选出的球是白球,则该球选自甲盒的概率是__________.13. 已知函数f(x)的值域为[−3,3],f(x)的图象向右平移1个单位后所得的函数图象与f(x)的图象重合,写出符合上述条件的一个函数f(x)的解析式:__________.14. 若AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=4,且|AP ⃗⃗⃗⃗⃗ |=1,则|AB ⃗⃗⃗⃗⃗ |=__________,CP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值为__________.15. 如图,在正方体ABCD −A 1B 1C 1D 1中,E 为棱B 1C 1的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列三个结论: ①存在点P ,使得PA 1=PE ; ②△PA 1E 的面积越来越小; ③四面体A 1PB 1E 的体积不变. 所有正确的结论的序号是__________.16. 在△ABC 中,b 2+c 2−a 2+bc =0. (Ⅰ)求∠A 的大小:(Ⅰ)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在,求△ABC 的面积.条件①:cosB =13; 条件②:sinC =√22;条件③:a =√3.17. 如图,已知长方体ABCD −A 1B 1C 1D 1中,AB =AD =2,AA 1=1.E 为A 1D 1的中点,平面CB 1E 交棱DD 1于点F. (Ⅰ)求证:B 1C//EF ;(Ⅰ)求二面角C −B 1E −C 的余弦值,并求点A 到平面CB 1E 的距离.18. 某班组织冬奥知识竞赛活动.规定首轮比赛需要从6道备选题中随机抽取3道题目进行作答.假设在6道备选题中,甲正确完成每道题的概率都是23且每道题正确完成与否互不影响.乙能正确完成其中4道题且另外2道题不能完成. (Ⅰ)求甲至少正确完成其中2道题的概率;(Ⅰ)设随机变量X 表示乙正确完成题目的个数,求X 的分布列及数学期望EX ;(Ⅰ)现规定至少正确完成其中2道题才能进入下一轮比赛,请你根据所学概率知识进行预测,谁进入下一轮比赛的可能性较大,并说明理由.19. 已知点A(0,−1)在椭圆C :x 23+y 2b2=1上.(Ⅰ)求椭圆C 的方程和离心率;(Ⅰ)设直线l :y =k(x −1)(其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N.当△AMN 的面积为3√3时,求k 的值. 20. 函数f(x)=ae x −sinx +2x.(Ⅰ)求曲线y =f(x)在点(0,f(0))处的切线方程; (Ⅰ)当a ≥0时,求函数f(x)在[0,1]上的最小值; (Ⅰ)直接写出a 的一个值,使f(x)≤a 恒成立,并证明. 21. 已知n 行n 列(n ≥2)的数表A =(a 1a 12⋯a 1n a 21a 22⋯a 2n⋮⋮⋱⋮a n1a n2⋯a nn)中,对任意的i ∈[1,2,…,n},j ∈[1,2,…,n},都有a ij ∈{0,1}.若当a ij =0时,总有∑a ij n i=1+∑a ij n j=1≥n ,则称数表A 为典型表,此时记S n =∑∑a ij nj=1n i=1.(Ⅰ)若数表B =(001100110),C =(110011000111011),请直接写出B ,C 是否是典型表; (Ⅰ)当n =6时,是否存在典型表A 使得S 6=17,若存在,请写出一个A ;若不存在,请说明理由;(Ⅰ)求S n 的最小值.答案和解析1.【答案】C【解析】【分析】解不等式求出集合B,根据交集的定义计算即可.本题考查了集合的化简与运算问题,属于基础题.【解答】解:集合A={−1,0,1,2},B={x|x(x−2)<0}={x|0<x<2},则A∩B={1}.故选:C.2.【答案】D【解析】【分析】利用抛物线方程求解p,然后推出准线方程即可.本题考查抛物线的简单性质的应用,直线方程的求法,是基础题.【解答】解:抛物线x2=2y,可得p=1,所以抛物线的准线方程为:y=−12.故选:D.3.【答案】C【解析】【分析】先化简复数,然后根据虚部的定义即可求解.本题考查了复数的运算性质以及虚部的定义,属于基础题.【解答】解:因为复数52+i =5(2−i)(2+i)(2−i)=2−i,则复数的虚部为−1,故选:C.4.【答案】A【解析】【分析】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.由题意利用二项展开式的通项公式,求得展开式中x的系数.【解答】解:(x−1x2)4的展开式的通项公式为T r+1=C4r⋅x4−r⋅(−1x2)r=C4r⋅(−1)r⋅x4−3r,令4−3r=1,求得r=1,可得展开式中x的系数为−C41=−4,故选:A.5.【答案】C【解析】【分析】本题主要考查了同角三角函数基本关系式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.由已知利用同角三角函数基本关系式即可求解.【解答】解:因为角α的终边在第三象限,且tanα=2,所以cosα=−√11+tan2α=−√11+22=−√55,可得sinα=−√1−cos2α=−2√55,所以sinα−cosα=−2√55−(−√55)=−√55.故选:C.6.【答案】B【解析】【分析】本题考查了充分必要条件的判断,涉及等差数列的性质,属于中档题.根据充分必要条件的定义进行判断.【解答】解:因为{a n}是等差数列,设公差为d,若a4>a3,即a4−a3>0,也即d>0,如果{a n}是正项等差数列,当n=1时,S1>S3显然不成立,故由“a4>a3”不能推出“对于任意n∈N∗且n≠3,S n>S3”;反之,“对于任意n ∈N ∗且n ≠3,S n >S 3”可以推出“a 4>a 3”,即“对于任意n ∈N ∗且n ≠3,S n >S 3”⇒d >0,理由如下:用反证法说明:如果d <0,则数列{a n }为递减数列,n →+∞时,S n 越来越小,故不能满足对于任意n ∈N ∗且n ≠3,S n >S 3”;如果d =0,则数列{a n }为常数数列,假设a n =1,显然S n >S 3在n ≤3且n ∈N ∗时不成立; 故假设不成立,如果d >0,“对于任意n ∈N ∗且n ≠3,S n >S 3”可以推出“a 4>a 3”, 所以“a 4>a 3”是“对于任意n ∈N ∗且n ≠3,S n >S 3”的必要不充分条件, 故选:B.7.【答案】C【解析】 【分析】由函数直接可得单调递增区间,进而可得参数取值范围. 本题主要考查正弦函数的单调性,考查了函数思想,属于基础题. 【解答】解:由y =sin(πx −π6),可得当−π2+2kπ≤πx −π6≤π2+2kπ,k ∈Z 时函数单调递增, 即x ∈[−13+2k,23+2k],k ∈Z , 当k =0时,x ∈[−13,23], 又函数在[0,m]上单调递增, 所以0<m ≤23,即m 的最大值为23. 故选:C.8.【答案】B【解析】 【分析】根据题意,设圆心C 的坐标为(x,y),求出圆心C 的轨迹为直线x −y +1=0,由点到直线的距离公式分析可得答案.本题考查直线与圆的位置关系,涉及点到直线的距离,属于基础题. 【解答】解:根据题意,设圆心C 的坐标为(x,y),圆C 过点A(−1,2),B(1,0),则有(x +1)2+(y −2)2=(x −1)2+(y −0)2,变形可得:x −y +1=0,即圆心C 在直线x −y +1=0上, 圆心C 的轨迹为直线x −y +1=0,则圆心C 到原点距离的最小值即原点到直线x −y +1=0的距离,则其最小值d =√1+1=√22,故选:B.9.【答案】B【解析】 【分析】根据两个杯子形状相同可得底面积之比为高之比的平方,因此容积之比为高之比的立方即可求解. 本题主要考查体积的计算,立体几何的实际应用等知识,属于基础题. 【解答】解:因为A ,B 是两个形状相同的杯子,且B 杯高度是A 杯高度的34, 将两个杯子看成是圆柱体, 所以底面半径比也是34,所以两个杯子的底面积之比为S B :S A =(34)2,所以B 杯容积与A 杯容积之比S B ℎB S A ℎA =(34)2×34=2764≈0.4=2:5,故选:B.10.【答案】B【解析】 【分析】本题考查了指数函数和对数函数的图象及性质和分类讨论思想,难点在于找出x ,y 之间的关系,属于难题.设点P(x,2x ),点Q(b,y),分类讨论x =0和x ≠0两种情况,结合已知条件可以得到x ,y 的关系式,分析化简知y =−x ,代入化简即可得解. 【解答】解:设点P(x,2x ),点Q(b,y),当x =0时,点P(0,1),根据指数函数与对数函数的性质知,此时Q(1,0),显然满足条件; 当x ≠0,y ≠0,由OP ⊥OQ , 知k OP ⋅k OQ =−1,即2x x ⋅yb=−1,即b =−yx ⋅2x (∗),又|OP|=|OQ|,知√(2x )2+x 2=√b 2+y 2,即x 2+22x =y 2+b 2,将(∗)式代入,得x 2+22x =y 2+(−y x⋅2x )2=y 2+y 2x 2⋅22x =y 2x 2(x 2+22x ),由于x 2≥0,22x >0,有x 2+22x >0, 因此有y 2x 2=1,即y 2=x 2,即y =±x ,由于b >0,2x >0,所以(∗)式可知y =x 不满足条件,则有y =−x ,代入(∗)式得2xx=−b y =−a −x −x=a −x x=(1a )xx ,所以1a =2,故a =12. 故选:B.11.【答案】y =±2x【解析】 【分析】渐近线方程是x 2−y 24=0,整理后就得到双曲线的渐近线方程.本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题. 【解答】解:∵双曲线标准方程为x 2−y 24=1, 其渐近线方程是x 2−y 24=0,整理得y =±2x. 故答案为y =±2x.12.【答案】1234【解析】 【分析】本题考查了古典概型的概率计算公式的应用,考查了学生的运算能力,属于基础题.空1,总事件数为8,摸出白球事件数为4,可求解;空2总事件数为8,选出的球是白球,则该球选自甲盒的事件数为3,可求解. 【解答】解:从这8个球中随机选取一球,该球是白球的概率是:48=12, 若选出的球是白球,则该球选自甲盒的概率是P =3812=34.13.【答案】f(x)=3sin(2πx)(x ∈R)(答案不唯一)【解析】 【分析】本题考查函数的值域,以及函数的周期性,考查函数思想和推理能力,属于基础题. 考虑三角函数的值域和周期,可得满足条件的一个函数. 【解答】解:考虑f(x)=3sin(2πx)(x ∈R),可得f(x)的值域为[−3,3],且f(x)的最小正周期为1,f(x)的图象向右平移1个单位后所得的函数图象与f(x)的图象重合. 故答案为:f(x)=3sin(2πx)(x ∈R)(答案不唯一).14.【答案】2−2【解析】 【分析】本题考查了平面向量数量积的性质及其运算,属于中档题.根据向量数量积定义及其运算性质计算,再根据余弦函数最值性求解. 【解答】解:因为AB ⃗⃗⃗⃗⃗ 2=4,即|AB ⃗⃗⃗⃗⃗ |2=4,所以|AB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2,因为CP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(AP ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗=AP⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −4=|AP ⃗⃗⃗⃗⃗ |⋅|AB ⃗⃗⃗⃗⃗ |⋅cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >−4 =1⋅2⋅cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >−4 =2cos <AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >−4≤−2,当<AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=0时,等号成立,所以CP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值是−2, 故答案为:2;−2.15.【答案】①②③【解析】 【分析】本题主要考查立体几何中的探索性问题,锥体体积的计算等知识,属于中等题.建立空间直角坐标系,表达出各点坐标,设出P(0,m,0)(0≤m ≤2),选项①,列出方程,求出m 的值;选项②,利用点到直线距离的向量公式表达出P 到直线A 1E 距离,表达出△PA 1E 的面积,进而得到答案;③把△A 1B 1E 作为底,高为点P 到上底面的距离h ,可以判断四面体A 1PB 1E 的体积不变. 【解答】解:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为2,则A 1(2,0,2),E(1,2,2),设P(0,m,0)(0≤m ≤2), 则PA 1=√4+m 2+4=√m 2+8,PE =√1+(m −2)2+4=√m 2−4m +9, 令m 2+8=m 2−4m +9,解得:m =14, 存在点P ,使得PA 1=PE ,①正确;PE ⃗⃗⃗⃗⃗ =(1,2−m,2),A 1E ⃗⃗⃗⃗⃗⃗⃗ =(−1,2,0),|A 1E ⃗⃗⃗⃗⃗⃗⃗ |=√1+4=√5,cos⟨PE ⃗⃗⃗⃗⃗ ,A 1E ⃗⃗⃗⃗⃗⃗⃗ ⟩=√5⋅√m 2−4m+9=√5⋅√m 2−4m+9,设点P 到直线A 1E 距离为d ,则d =|PE ⃗⃗⃗⃗⃗ |sin⟨PE ⃗⃗⃗⃗⃗ ,A 1E ⃗⃗⃗⃗⃗⃗⃗ ⟩=√m 2−4m +9⋅√1−(3−2m√5⋅√m 2−4m+9)2=√m 2−8m+36√5,所以S △PA 1E =12|A 1E ⃗⃗⃗⃗⃗⃗⃗ |⋅d =12√m 2−8m +36=12√(m −4)2+20,因为0≤m ≤2,动点P 沿着棱DC 从点D 向点C 移动,即m 从0逐渐变到2,随着m 的变大,(m −4)2+20变小,△PA 1E 的面积越来越小,②正确; 以△A 1B 1E 为底,高为点P 到上底面的距离h ,因为DC//底面A 1B 1C 1D 1,所以h 不变,所以四面体A 1PB 1E 的体积不变,③正确. 故答案为:①②③.16.【答案】解:(Ⅰ)因为b 2+c 2−a 2+bc =0,所以b 2+c 2−a 2=−bc ,由余弦定理知,cosA =b 2+c 2−a 22bc =−bc 2bc =−12,因为A ∈(0,π),所以A =2π3. (Ⅰ)选择条件①②:cosB =13,sinC =√22,因为A =2π3,所以C ∈(0,π2),所以cosC =√22,所以cosB =−cos(A +C)=−cosAcosC +sinAsinC =−(−12)×√22+√32×√22=√2+√64≠13,故△ABC 不存在.选择条件①③:cosB =13,a =√3,因为A =2π3,所以B ∈(0,π2),所以sinB =2√23, 由正弦定理知,a sinA =b sinB ,即√3√32=2√23,所以b =4√23>a ,故△ABC 不存在. 选择条件②③:sinC =√22,a =√3,由正弦定理知,asinA =csinC ,即√3√32=√22,所以c =√2,所以sinB =sin(A +C)=sinAcosC +cosAsinC =√32×√22+(−12)×√22=√6−√24,所以△ABC 的面积为S =12acsinB =12×√3×√2×√6−√24=3−√34. 【解析】本题考查解三角形与三角函数的综合,熟练掌握正弦定理、余弦定理、两角和差公式等是解题的关键,考查逻辑推理能力和运算能力,属于中档题. (Ⅰ)利用余弦定理,即可得解; (Ⅰ)选择条件①②:易知cosC =√22,再由cosB =−cos(A +C),计算可得cosB =√2+√64≠13,故△ABC不存在;选择条件①③:利用正弦定理可得b =4√23>a ,与“大边对大角”不符合,故△ABC 不存在; 选择条件②③:先利用正弦定理求得c =√2,再由sinB =sin(A +C),计算sinB 的值,最后根据S =12acsinB ,得解.17.【答案】(I)证明:由长方体的性质知:面BCC 1B 1//面ADD 1A 1,又B 1C ⊂面BCC 1B 1,∴B 1C//面ADD 1A 1,又面CB 1E ∩面ADD 1A 1=EF ,且B 1C ⊂面CB 1E ,∴B 1C//EF.(II)解:由题设,构建如下空间直角坐标系,则A(0,0,0),B 1(2,0,1), E(0,1,1),C(2,2,0),C 1(2,2,1),∴EB ⃗⃗⃗⃗⃗ 1=(2,−1,0),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,−2,1), 若面CB 1E 的一个法向量为m ⃗⃗⃗ =(x,y,z),则{m ⃗⃗⃗ ⋅EB⃗⃗⃗⃗⃗ 1=2x −y =0m ⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ 1=−2y +z =0,令y =2,则m ⃗⃗⃗ =(1,2,4),而面C 1B 1E 的一个法向量为n ⃗ =(0,0,1), ∴cos⟨m ⃗⃗⃗ ,n ⃗ ⟩=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ ||n ⃗ |=4√1+4+16=4√2121,即为所求二面角余弦值.∴A 到平面CB 1E 的距离为|AC ⃗⃗⃗⃗⃗ |cos <m ⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=2√2×√4214=2√217. 【解析】本题考查利用向量解决空间角,及距离的问题,考查学生的运算能力,属于中档题. (I)由面面平行的性质可得B 1C//面ADD 1A 1,再由线面平行的性质即可证结论.(II)构建空间直角坐标系,确定相关点坐标,再求面CB 1E 、面C 1B 1E 的法向量及直线AC 的方向向量,应用空间向量夹角的坐标表示求面面角余弦值及线线角余弦值,进而求A 到平面CB 1E 的距离.18.【答案】解:(I)设随机变量Y 表示甲正确完成题目的个数,P(Y =2)=C 32(23)2(13)=49,P(Y =3)=C 33(23)3=827,故甲至少正确完成其中2道题的概率P =P(Y =2)+P(Y =3)=49+827=2027. (II)由题意可知,X 所有可能取值为1,2,3, P(X =1)=C 41C 22C 63=15,P(X =2)=C 42C 21C 63=35,P(X =3)=C 43C 2C 63=15,故X 的分布列为: X 1 2 3P153515E(X)=1×15+2×35+3×15=2. (III)由(I)(II)可知,P(Y ≥2)=2027,P(X ≥2)=45, ∵45>2027,∴乙进入下一轮比赛的可能性较大.【解析】本题主要考查了离散型随机变量及其分布列,需要学生熟练掌握期望公式,属中档题题. (I)设随机变量Y 表示甲正确完成题目的个数,分别求出P(Y =2),P(Y =3),并求和,即可求解. (II)由题意可知,X 所有可能取值为1,2,3,分别求出对应的概率,即可得X 的分布列,并结合期望公式,即可求解. (III)由(I)(II)可知,P(Y ≥2)=2027,P(X ≥2)=45,通过比较大小,即可求解.19.【答案】解:(Ⅰ)将点A(0,−1)代入方程x 23+y 2b2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1,又c 2=a 2−b 2=3−1=2, 所以离心率e =√c 2a 2=√23=√63;(Ⅰ)联立{y =k(x −1)x 23+y 2=1,整理得(1+3k 2)x 2−6k 2x +3k 2−3=0, Δ>0恒成立,设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2), 由韦达定理得x 1+x 2=6k21+3k2,x 1x 2=3k 2−31+3k2,直线AE 的方程为y +1=y 1+1x 1x , 令x =3,得y =3y 1+3x 1−1,即M(3,3y 1+3x 1−1), 直线AF 的方程为y +1=y 2+1x 2x , 令x =3,得y =3y 2+3x 2−1,即N(3,3y 2+3x 2−1), |MN|=|3y 2+3x2−1−(3y 1+3x1−1)|=3×|x 1y 2−x 2y 1+x 1−x 2x 1x 2|=3×|k −1||x 1−x2x 1x 2|=3×|k −1|√(x 1+x 2)2−4x 1x 2(x 1x 2)2=3×|k−1|×√3×√2k 2+1|k 2−1|=2√3×√2k 2+1|k+1|, 所以△AMN 的面积S =12×|MN|×3=32×|MN|=3√3×√2k 2+1|k+1|=3√3,即√2k 2+1|k+1|=1⇒√2k 2+1=|k +1|, 解得k =0或k =2, 所以k 的值为0或2.【解析】(Ⅰ)将点A(0,−1)代入即可求解椭圆的方程,再利用离心率公式即可求解;(Ⅰ)联立{y=k(x−1)x23+y2=1,整理得(1+3k2)x2−6k2x+3k2−3=0,结合韦达定理,求出点M,N的坐标,可知S=12×|MN|×3=32×|MN|代入即可求解.本题考查了椭圆的方程及离心率,直线与椭圆的综合,属于中档题.20.【答案】解:(Ⅰ)因为f(x)=ae x−sinx+2x,所以f(0)=a且f′(x)=ae x−cosx+2,所以f′(0)=a−1+2=a+1,所以曲线y=f(x)在点(0,f(0))处的切线方程y−a=(a+1)(x−0),即y=(a+1)x+a.(Ⅰ)当a≥0,x∈[0,1]时,因为f′(x)=ae x−cosx+2≥0+2−cosx>0,所以f(x)在[0,1]上单调递增,所以f(x)在[0,1]上的最小值为f(0)=a.(Ⅰ)取a=−1,以下证明f(x)=−e x−sinx+2x≤−1恒成立,令g(x)=e x+sinx−2x−1,即证g(x)≥0恒成立,(1)当x∈(−∞,0]时,有e x≤1,cosx∈[−1,1],所以g′(x)=e x+cosx−2≤0,所以g(x)在(−∞,0]上单调递减,所以g(x)≥g(0)=0在(−∞,0]上恒成立;(2)当x∈(0,+∞)时,令G(x)=g′(x)=e x+cosx−2,因为e x>1,sinx∈[−1,1],所以G′(x)=e x−sinx>0,所以G(x)=g′(x)=e x+cosx−2在(0,+∞)上单调递增,所以g′(x)>g′(0)=0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,所以g(x)>g(0)=0在(0,+∞)上恒成立.综上,g(x)≥0恒成立,所以f(x)≤a恒成立.【解析】本题主要考查利用导数研究函数的单调性与最值,考查不等式恒成立的证明,考查运算求解能力与逻辑推理能力,属于中档题(Ⅰ)求出f(0)及f(x)的导函数,从而可得f′(0),利用点斜式方程求解即可;(Ⅰ)利用导数求出f(x)的单调性,即可求解最小值;(Ⅰ)取a=−1,证明f(x)=−e x−sinx+2x≤−1恒成立,令g(x)=e x+sinx−2x−1,利用导数分别证得当x ∈(0,+∞)和x ∈(0,+∞)时,g(x)≥0即可.21.【答案】解:(I)对于数表B 有a 12=0,而∑a i2n i=1+∑a 1j nj=1=2≥3不成立,故数表B 不是典型表;对于数表C ,当a st =0时总有∑a it n i=1+∑a sj n j=1≥4成立,故数表 C 是典型表.(II)由题设知:当n =6要存在典型表A 使得S 6=17,则需(S 6)min ≤17.∵要使S 6最小,即典型表A 中的“1“最少,又a st =0时总有∑a it n i=1+∑a sj n j=1≥n ,∴让尽量多的横列和∑a it n i=1+∑a sj n j=1=6,故将表分成4个3×3数表,对角的两个数表数值相同,但上下、左右对称的数表数值不同,此时可保证S 6最小. ∴如典型表A =(1110001110001110000001110001110111),有(S 6)min =18. ∴不存在典型表 A 使得S 6=17.(Ⅰ)要使S n 最小,需让尽量多的横列和∑a it n i=1+∑a sj nj=1=n 或典型表中“1“尽量少,当n 为偶数时,由(2)知:(S n )min =2×(n2)2=n 22; 当n 为奇数时,在偶数n −1的数表中间加一行一列,并在新增行列中添加n 个“1,即可满足典型数列,此时(S n )min =2×(n−12)2+n =(n−1)22+n =n 2+12; 【解析】(I)由题设典型表的定义,结合给定的数表判断即可.(II)根据题设分析知:数值分配时有(S 6)min ≤17即可,结合典型表的定义及数表的对称性确定S 6最小时(0,1)在数表上的分布情况,即可判断是否存在. (III)结合(II)的分析,讨论n 为偶数、奇数情况下S n 的最小值. 本题考查归纳推理,考查学生的运算能力,属于中档题.。

北京市海淀区2021届高三高考数学一模试题Word版含解析

北京市海淀区2021届高三高考数学一模试题Word版含解析

北京市海淀区2021届高三高考数学一模试题一、选择题(共10小题)1.在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|0<x<3},A∩B={1},则集合B可以是()A.{1,2} B.{1,3} C.{0,1,2} D.{1,2,3}3.已知双曲线x21(b>0)的离心率为,则b的值为()A.1 B.2 C.3 D.44.已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.b﹣a<c+a B.c2<ab C.D.|b|c<|a|c5.在(2x)6的展开式中,常数项为()A.﹣120 B.120 C.﹣160 D.1606.如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M'时,圆M'与直线l相切于点B,点A运动到点A',线段AB的长度为,则点M'到直线BA'的距离为()A.1 B.C.D.7.已知函数f(x)=|x﹣m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1] C.[﹣2,+∞)D.(﹣∞,﹣2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A.B.2C.2D.9.若数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.形如1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A.9 B.10 C.11 D.12二、填空题共5小题,每小题5分,共25分.11.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为.13.已知非零向量,满足||=||,则()•.14.在△ABC中,AB=4,∠B,点D在边BC上,∠ADC,CD=2,则AD=;△ACD的面积为.15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x)在[,]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.20.已知椭圆C:1(a>b>0)的离心率为,A1(﹣a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N*,使得a2n﹣1+a2n=ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.北京市海淀区2021届高三高考数学一模试题参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.2.已知集合A={x|0<x<3},A∩B={1},则集合B可以是()A.{1,2} B.{1,3} C.{0,1,2} D.{1,2,3}【分析】根据A={x|0<x<3},A∩B={1},即可得出集合B可能的情况.解:∵A={x|0<x<3},A∩B={1},∴集合B可以是{1,3}.故选:B.【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.3.已知双曲线x21(b>0)的离心率为,则b的值为()A.1 B.2 C.3 D.4【分析】利用双曲线的离心率公式,列出方程,求解b即可.解:双曲线x21(b>0)的离心率为,可得,解得b=2,故选:B.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.4.已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.b﹣a<c+a B.c2<ab C.D.|b|c<|a|c【分析】法1:根据数轴得到c<b<a<0且|c|>|b|>|a|,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.解:(法1)根据数轴可得c<b<a<0且|c|>|b|>|a|,对于A:因为c<b,a<0,所以c+a<c,b﹣a>b,则c+a<c<b﹣a,即c+a<b﹣a,故A错误;对于B:因为c<b<a<0,|c|>|b|>|a|,所以c2>b2>a2,且b2>ab,所以c2>b2>ab,则c2>ab,故B错误;对于C:因为b<a<0,所以,则,故C错误;对于D:因为|b|>|a|,且c<0,所以|b|c<|a|c,故D正确,(法2)不妨令c=﹣5,b=﹣4,a=﹣1,则c+a=﹣6<b﹣a=﹣3,故A错误;c2=25>ab=4,故B错误;5,故C错误;故选:D.【点评】本题考查不等式的相关应用,考查合情推理,属于中档题.5.在(2x)6的展开式中,常数项为()A.﹣120 B.120 C.﹣160 D.160【分析】先求出通项,然后令x的指数为零即可.解:由题意得:x2k﹣6,令2k﹣6=0得k=3,故常数项为160.故选:C.【点评】本题考查二项式展开式通项的应用和学生的运算能力,属于基础题.6.如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M'时,圆M'与直线l相切于点B,点A运动到点A',线段AB的长度为,则点M'到直线BA'的距离为()A.1 B.C.D.【分析】根据条件可得圆旋转了个圆,作图可得到△A'M'B是等腰直角三角形,进而可求得M'到A'M 的距离.解:根据条件可知圆周长=2π,因为BA2π,故可得A’位置如图:∠A'M'B=90°,则△A'M'B是等腰直角三角形,则M'到A'M的距离d r,故选:C.【点评】本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.已知函数f(x)=|x﹣m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1] C.[﹣2,+∞)D.(﹣∞,﹣2]【分析】根据题意,分析可得f(x)在区间(﹣2,﹣1)上递增,将f(x)写成分段函数的形式,分析可得f(x)在区间(m,+∞)上为增函数,据此可得m的取值范围.解:根据题意,函数f(x)=|x﹣m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则f(x)在区间(﹣2,﹣1)上递增,而f(x)=|x﹣m|,在区间(m,+∞)上为增函数,则有m≤﹣2,即m的取值范围为(﹣∞,﹣2];故选:D.【点评】本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A.B.2C.2D.【分析】首先把三视图转换为直观图,进一步求出最大棱长.解:根据几何体的三视图可得直观图为:该几何体为四棱锥体,如图所示:所以最长的棱长AB.故选:C.【点评】本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.若数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用等比数列的定义通项公式即可判断出结论.解:“∀p,r∈N*,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列.反之不成立.{a n}为等比数列,则a p+r=2×q p+r﹣1,a p a r=22•q p+r﹣2,只有q=2时才能成立.∴数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件..故选:A.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.10.形如1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A.9 B.10 C.11 D.12【分析】根据所给定义表示出F5=109.632×109,进而即可判断出其位数.解:根据题意,F51=232+1≈2321032lg2≈1032×0.3010=109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.【点评】本题考查指对数运算,考查学生阅读理解能力,属于中档题.二、填空题共5小题,每小题5分,共25分.11.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为x=﹣1 .【分析】把点P的坐标代入抛物线的方程可求得p,而准线方程为,从而得解.解:把点P(1,2)代入抛物线方程有,4=2p,∴p=2,∴抛物线的准线方程为.故答案为:x=﹣1.【点评】本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为24 .【分析】利用等差数列的通项公式求和公式即可得出.解:设等差数列{a n}的公差为d,∵a1=3,a2+a5=16,∴2×3+5d=16,解得d=2.则数列{a n}的前4项的和=4×32=24.故答案为:24.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.已知非零向量,满足||=||,则()•0 .【分析】把所给条件平方整理得到•;代入数量积即可求解结论.解:因为非零向量,满足||=||,∴2•⇒•;则()•0.故答案为:0.【点评】本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.在△ABC中,AB=4,∠B,点D在边BC上,∠ADC,CD=2,则AD=4;△ACD的面积为2.【分析】先根据正弦定理求得AD,进而求得三角形的面积.解:如图;因为在△ABC中,AB=4,∠B,点D在边BC上,∠ADC,CD=2,所以:⇒AD4;S△ACD•AD•CD•sin∠ADC42×sin2;故答案为:4,2.【点评】本题主要考查正弦定理以及三角形的面积,属于基础题目.15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是①②.【分析】写出函数解析式并作出图象,数形结合进行逐一分析解:由题可得函数f(x),作出图象如图:则当点P与△ABC顶点重合时,即x=0,6,12,18时,f(x)取得最大值12,故①正确;又f(x)=f(18﹣x),所以函数f(x)的对称轴为x=9,故②正确;由图象可得,函数f(x)图象与y=kx+3的交点个数为6个,故方程有6个实根,故③错误.故答案为:①②.【点评】本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.【分析】(Ⅰ)证明AB⊥C1B.CB⊥C1B.利用直线与平面垂直的判断定理证明C1B⊥平面ABC.(Ⅱ)以B为原点建立空间直角坐标系B﹣xyz.求出平面BCE的法向量,平面ABC的法向量,利用空间向量的数量积求解二面角的大大小即可,【解答】(Ⅰ)证明:因为AB⊥平面BB1C1C,C1B⊂平面BB1C1C所以AB⊥C1B.在△BCC1中,BC=1,,CC1=2,所以.所以CB⊥C1B.因为AB∩BC=B,AB,BC⊂平面ABC,所以C1B⊥平面ABC.(Ⅱ)解:由(Ⅰ)知,AB⊥C1B,BC⊥C1B,AB⊥BC,如图,以B为原点建立空间直角坐标系B﹣xyz.则B(0,0,0),,C(1,0,0).,.设平面BCE的法向量为(x,y,z),则,即令则x=0,z=﹣3,所以.又因为平面ABC的法向量为(0,1,0),所以.由题知二面角A﹣BC﹣E为锐角,所以其大小为.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x)在[,]上的最小值,并直接写出函数f(x)的一个周期.【分析】(Ⅰ)由函数f(x)的解析式求出f(0)的值;(Ⅱ)选择条件①时f(x)的一个周期为π,利用三角恒等变换化简f(x),再求f(x)在的最小值.选择条件②时f(x)的一个周期为2π,化简f(x),利用三角函数的性质求出f(x)在的最小值.解:(Ⅰ)由函数f(x)=2cos2ω1x+sinω2x,则f(0)=2cos20+sin0=2;(Ⅱ)选择条件①,则f(x)的一个周期为π;由f(x)=2cos2x+sin2x=(cos2x+1)+sin2x;因为,所以;所以,所以;当,即时,f(x)在取得最小值为.选择条件②,则f(x)的一个周期为2π;由f(x)=2cos2x+sin x=2(1﹣sin2x)+sin x;因为,所以;所以当sin x=﹣1,即时,f(x)在取得最小值为﹣1.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.【分析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可.解:(Ⅰ)设事件A为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年,所以.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X的所有可能取值为0,1,2.且;;.所以X的分布列为:X012P故X的期望.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【点评】本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.【分析】(Ⅰ)①将a=﹣1带入,求导,求出切线斜率及切点,利用点斜式方程即得解;②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x+ax+lnx﹣1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.解:(Ⅰ)①当a=﹣1时,f(x)=e x﹣x,则f'(x)=e x﹣1.所以f'(0)=0.又f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1;②令f'(x)=0,得x=0,此时f'(x),f(x)随x的变化如下:x(﹣∞,0)0(0,+∞)f'(x)﹣0+f(x)↘极小值↗可知f(x)min=f(0)=1,函数f(x)的最小值为1.(Ⅱ)证明:由题意可知,x∈(0,+∞),令g(x)=e x+ax+lnx﹣1,则,由(Ⅰ)中可知e x﹣x≥1,故e x≥1+x,因为a∈(﹣2,0),则,所以函数g(x)在区间(0,+∞)上单调递增,因为,又因为g(e)=e e+ae>e2﹣2e>0,所以g(x)有唯一的一个零点.即函数y=f(x)与y=1﹣lnx有且只有一个交点.【点评】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题.20.已知椭圆C:1(a>b>0)的离心率为,A1(﹣a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.【分析】(Ⅰ)由题,求出a,b,即可得到椭圆方程.(II)解法1,设直线A2M方程为,直线A1B方程为,通过联立直线与椭圆方程组,求出M坐标,Q坐标,推出|BP|=|BQ|,即可证明△BPQ为等腰三角形.解法2,设M(x0,y0)(x0≠±2,y0≠±1)则.直线A2M方程为,直线A1B方程为.通过联立直线与椭圆方程组,求出P,Q坐标,转化推出|BP|=|BQ|,得到△BPQ为等腰三角形.解:(Ⅰ)由题解得所以椭圆方程为.(II)解法1证明:设直线A2M方程为,直线A1B方程为由解得点.由得(4k+1)x2﹣16k2x+16k2﹣4=0,则.所以,.即..于是直线A1M的方程为,直线A2B的方程为.由解得点.于是x P=x Q,所以PQ⊥x轴.设PQ中点为N,则N点的纵坐标为.故PQ中点在定直线y=1上.从上边可以看出点B在PQ的垂直平分线上,所以|BP|=|BQ|,所以△BPQ为等腰三角形.解法2证明:设M(x0,y0)(x0≠±2,y0≠±1)则.直线A2M方程为,直线A1B方程为.由解得点.直线A1M方程为,直线A2B方程为.由解得点..于是x P=x Q,所以PQ⊥x 轴..故PQ中点在定直线y=1上.从上边可以看出点B在PQ的垂直平分线上,所以|BP|=|BQ|,所以△BPQ为等腰三角形.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈一、选择题*,使得a2n﹣1+a2n=ka n对任意的n ∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.【分析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,根据a n+1≥a n,可得0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n﹣1+a2n=2a1=2a n,即可证明.(Ⅲ)首先证明:a n+1﹣a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n﹣1+a2n=4a n.当n=1时,有a2=3a 1=3.由,且a2n>a2n﹣1,可得a2n≥2a n+1,a2n﹣1≤2a n﹣1,进而有2a n+1≤a2n ≤a2n+1﹣1≤2a n+1﹣2,可得2(a n+1﹣a n)≥3,可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a 2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为,可得a k+1﹣a k≥3,依此类推可得:a2﹣a1≥3,矛盾.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=…=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n﹣1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1﹣a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.又因为,且a 2n>a2n﹣1,所以有a2n≥2a n+1,a2n﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,所以2(a n+1﹣a n)≥3,结合可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k﹣1)=(a2k+2﹣a2k)+(a2k+1﹣a2k﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为,所以a k+1﹣a k≥3依此类推可得:a2﹣a1≥3,矛盾,所以有a n+1﹣a n≤2.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,经验证,该通项公式满足a2n﹣1+a2n=4a n,所以:a n=2n﹣1.【点评】本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。

【数学】北京市海淀区2021-2022学年高一上学期期末考试试题(解析版)

【数学】北京市海淀区2021-2022学年高一上学期期末考试试题(解析版)

北京市海淀区2021-2022学年高一上学期期末考试数学试题一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={0,1,2,3,4},B={x|﹣3<x<2},则A∩B=()A.{0,1}B.(0,1)C.(0,2)D.{0,1,2}2.命题“∀x∈R,都有x2﹣x+3>0”的否定为()A.∃x∈R,使得x2﹣x+3≤0B.∃x∈R,使得x2﹣x+3>0C.∀x∈R,都有x2﹣x+3≤0D.∃x∉R,使得x2﹣x+3≤03.已知a<b<0,则()A.a2<b2B.<C.2a>2b D.ln(1﹣a)>ln(1﹣b)4.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.4×100米接力赛是田径运动中的集体项目,一根小小的木棒,要四个人共同打造一个信念,一起拼搏,每次交接都是信任的传递.甲、乙、丙、丁四位同学将代表高一年级参加校运会4×100米接力赛,教练组根据训练情况,安排了四人的交接棒组合.已知该组合三次交接棒失误的概率分别是p1,p2,p3,假设三次交接棒相互独立,则此次比赛中该组合交接棒没有失误的概率是()A.p1p2p3B.1﹣p1p2p3C.(1﹣p1)(1﹣p2)(1﹣p3)D.1﹣(1﹣p1)(1﹣p2)(1﹣p3)6.下列函数中,在R上为增函数的是()A.y=2﹣x B.y=x2C.y=D.y=lg x7.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=Q2+3000,设该产品年产量为Q时的平均成本为f(Q)(单位:元/件),则f(Q)的最小值是()A.30B.60C.900D.18008.逻辑斯蒂函数f(x)=二分类的特性在机器学习系统,可获得一个线性分类器,实现对数据的分类,下列关于函数f(x)的说法错误的是()A.函数f(x)的图象关于点(0,f(0))对称B.函数f(x)的值域为(0,1)C.不等式f(x)>的解集是(0,+∞)D.存在实数a,使得关于x的方程f(x)﹣a=0有两个不相等的实数根9.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数D.甲得分的标准差小于乙得分的标准差10.已知函数f(x)=2x2+bx+c(b,c为实数),f(﹣10)=f(12).若方程f(x)=0有两个正实数根x1,x2,则+的最小值是()A.4B.2C.1D.二、填空题:共5小题,每小题4分,共20分.11.函数f(x)=log0.5(x﹣1)的定义域是.12.已知f(x)是定义域为R的奇函数,且当x>0时,f(x)=ln x,则f(﹣)的值是.13.定义域为R,值域为(﹣∞,1)的一个减函数是.14.已知函数f(x)=|log5x|,若f(x)<f(2﹣x),则x的取值范围是.15.已知函数f(x)=(a>0且a≠1),给出下列四个结论:①存在实数a,使得f(x)有最小值;②对任意实数a(a>0且a≠1),f(x)都不是R上的减函数;③存在实数a,使得f(x)的值域为R;④若a>3,则存在x0∈(0,+∞),使得f(x0)=f(﹣x0).其中所有正确结论的序号是.三、解答题:共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.(9分)已知集合A={x|x2﹣2x﹣3>0},B={x|x﹣4a≤0}.(Ⅰ)当a=1时,求A∩B;(Ⅱ)若A∪B=R,求实数a的取值范围.17.(10分)已知函数f(x)=a x+b•a﹣x(a>0且a≠1),再从条件①、条件②这两个条件中选择一个作为已知.(Ⅰ)判断函数f(x)的奇偶性,说明理由;(Ⅱ)判断函数f(x)在(0,+∞)上的单调性,并用单调性定义证明;(Ⅲ)若f(|m|﹣3)不大于b•f(2),直接写出实数m的取值范围.条件①:a>1,b=1;条件②:0<a<1,b=﹣1.18.(10分)某工厂有甲、乙两条相互独立的产品生产线,单位时间内甲、乙两条生产线的产量之比为4:1,现采用分层抽样的方法从甲、乙两条生产线得到一个容量为100的样本,其部分统计数据如下表所示(单位:件).一等品二等品甲生产线76b乙生产线a2(Ⅰ)写出a,b的值;(Ⅱ)从上述样本的所有二等品中任取2件,求至少有1件为甲生产线产品的概率;(Ⅲ)以抽样结果的频率估计概率,现分别从甲、乙两条产品生产线随机抽取10件产品,记P1表示从甲生产线随机抽取的10件产品中恰好有5件一等品的概率,P2表示从乙生产线随机抽取的10件产品中恰好有5件一等品的概率,试比较P1和P2的大小.(只需写出结论)19.(11分)已知定义域为D的函数f(x),若存在实数a,使得∀x1∈D,都存在x2∈D满足=a,则称函数f(x)具有性质P(a).(Ⅰ)判断下列函数是否具有性质P(0),说明理由;①f(x)=2x;②f(x)=log2x,x∈(0,1).(Ⅱ)若函数f(x)的定义域为D,且具有性质P(l),则“f(x)存在零点”是“2∈D”的条件,说明理由;(横线上填“充分而不必要”“必要而不充分”、“充分必要”、“既不充分也不必要”)(Ⅲ)若存在唯一的实数a,使得函数f(x)=tx2+x+4,x∈[0,2]具有性质P(a),求实数t的值.选做题:20.2015年10月5日,我国女药学家屠呦呦获得2015年诺贝尔医学奖.屠呦呦和她的团队研制的抗疟药青蒿素,是科学技术领域的重大突破,开创了疟疾治疗新方法,挽救了全球特别是发展中国家数百万人的生命,对促进人类健康、减少病痛发挥了难以估量的作用.当年青蒿素研制的过程中,有一个小插曲:虽然青蒿素化学成分本身是有效的,但是由于实验初期制成的青蒿素药片在胃液中的溶解速度过慢,导致药片没有被人体完全吸收,血液中青蒿素的浓度(以下简称为“血药浓度”)的峰值(最大值)太低,导致药物无效.后来经过改进药片制备工艺,使得青蒿素药片的溶解速度加快,血药浓度能够达到要求,青蒿素才得以发挥作用.已知青蒿素药片在体内发挥作用的过程可分为两个阶段,第一个阶段为药片溶解和进入血液,即药品进入人体后会逐渐溶解,然后进入血液使得血药浓度上升到一个峰值;第二个阶段为吸收和代谢,即进入血液的药物被人体逐渐吸收从而发挥作用或者排出体外,这使得血药浓度从峰值不断下降,最后下降到一个不会影响人体机能的非负浓度值.人体内的血药浓度是一个连续变化的过程,不会发生骤变,现用t表示时间(单位:h),在t=0时人体服用青蒿素药片;用C表示青蒿素的血药浓度(单位:μg/ml),根据青蒿素在人体发挥作用的过程可知,C是t的函数.已知青蒿素一般会在1.5小时达到需要血药浓度的峰值.请根据以上描述完成下列问题:(Ⅰ)下列几个函数中,能够描述青蒿素血药浓度变化过程的函数的序号是;①C(t)=②C(t)=③C(t)=④C(t)=(Ⅱ)对于青蒿素药片而言,若血药浓度的峰值大于等于0.1μg/mL,则称青蒿素药片是合格的.基于(Ⅰ)中你选择的函数(若选择多个,则任选其中一个),可判断此青蒿素药片;(填“合格”、“不合格”)(Ⅲ)记血药浓度的峰值为C max,当C≥C max时,我们称青蒿素在血液中达到“有效浓度”,基于(Ⅰ)中你选择的函数(若选择多个,则任选其中一个),计算青蒿素在血液中达到“有效浓度”的持续时间是.【参考答案】一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.A【解析】集合A={0,1,2,3,4},B={x|﹣3<x<2},∴A∩B={0,1}.故选:A.2.A【解析】根据题意,命题“∀x∈R,都有x2﹣x+3>0”是全称命题,其否定为:∃x∈R,使得x2﹣x+3≤0.故选:A.3.D【解析】∵a<b<0,∴,ln(1﹣a)>ln(1﹣b).故选:D.4.C【解析】函数f(x)=﹣log2x,是减函数,又f(2)=﹣log22=>0,f(3)=1﹣log23<0,可得f(2)f(3)<0,由零点判定定理可知:函数f(x)=﹣log2x,包含零点的区间是:(2,3).故选:C.5.C【解析】∵该组合三次交接棒失误的概率分别是p1,p2,p3,∴三次交接棒不失误的概率分别为1﹣p1,1﹣p2,1﹣p3,∴假设三次交接棒相互独立,则此次比赛中该组合交接棒没有失误的概率是(1﹣p1)(1﹣p2)(1﹣p3).故选:C.6.C【解析】根据题意,依次分析选项:对于A,y=2﹣x是指数函数,在R上为减函数,不符合题意,对于B,y=x2,是二次函数,在(﹣∞,0)上为减函数,不符合题意,对于C,y=,在R上为增函数,符合题意,对于D,y=lg x,是对数函数,定义域为(0,+∞),不符合题意,故选:C.7.B【解析】由题意可得该产品年产量为Q时的平均成本为f(Q)=,则f(Q)==60,当且仅当,即Q=100时取等号,此时f(Q)的最小值为60,故选:B.8.D【解析】对于A:f(x)==,f(﹣x)=,f(x)+f(﹣x)=1,所以函数f(x)的图象关于点(0,)对称,又f(0)=,所以函数f(x)的图象关于点(0,f(0))对称,故A正确;对于B:f(x)=,易知e﹣x>0,所以1+e﹣x>1,则(0,1),即函数f(x)的值域为(0,1),故B正确;对于C:由f(x)=容易判断,函数f(x)在R上单调递增,且f(0)=,所以不等式f(x)>的解集是(0,+∞),故C正确;对于D:因为函数f(x)在R上单调递增,所以方程f(x)﹣a=0不可能有两个不相等的实数根,故D错误.故选:D.9.B【解析】对于A,乙组数据最大值为29,最小值为5,极差为24,甲组数据最大值小于29,最小值大于5,故A错误;对于B,甲得分的75%分位数是=22.5,乙得分的75%分位数是17,故B正确;对于C,甲组具体数据不易看出,不能判断甲得分的平均数与乙得分的平均数的大小关系,故C错误;对于D,乙组数据更集中,标准差更小,故D错误.故选:B.10.B【解析】根据题意,函数f(x)=2x2+bx+c为二次函数,若f(﹣10)=f(12),则f(x)的对称轴为x=1,若方程f(x)=0有两个正实数根x1,x2,则有x1+x2=2,则+=(+)(x1+x2)=(2++)≥(2+2)=2,当且仅当x1=x2=1时等号成立,即+的最小值是2,故选:B.二、填空题:共5小题,每小题4分,共20分.11.(1,+∞)【解析】要使函数有意义,则x﹣1>0,即x>1,即函数的定义域为(1,+∞),故答案为:(1,+∞).12.1【解析】∵当x>0时,f(x)=ln x,且f(x)是奇函数,∴f(﹣)=﹣f()=﹣ln=1,故答案为:1.13.y=1﹣2x(答案不唯一)【解析】根据题意,要求函数可以为指数函数变换形式,如y=1﹣2x;故答案为:y=1﹣2x(答案不唯一).14.(1,2)【解析】∵函数f(x)=|log5x|的定义域为(0,+∞),∴,∴0<x<2,①当x=1时,f(x)=f(2﹣x),不符合题意,②当0<x<1时,2﹣x>1,则f(x)<f(2﹣x)等价于|log5x|<|log5(2﹣x)|,∴﹣log5x<log5(2﹣x),∴log5(2﹣x)+log5x>0,即log5[x(2﹣x)]>0,∴x(2﹣x)>1,∴x2﹣2x+1<0,此方程无解,③当1<x<2时,0<2﹣x<1,则f(x)<f(2﹣x)等价于|log5x|<|log5(2﹣x)|,∴log5x<﹣log5(2﹣x),∴log5(2﹣x)+log5x<0,即log5[x(2﹣x)]<0,∴x(2﹣x)<1,∴x2﹣2x+1>0,即x≠1,则1<x<2符合题意,综上所述,x的取值范围是(1,2).15.①②④【解析】对于①,当a=3时,函数f(x)=,函数有最小值﹣1,故①正确;对于②,若f(x)是R上的减函数,则,解得a∈∅,∴对任意实数a(a>0且a≠1),f(x)都不是R上的减函数,故②正确;对于③,若f(x)的值域为R,需,得a∈∅,故③错误;对于④,若a>3,函数f(x)=的图象如图所示:直线y=(a﹣2)x与曲线y=a x﹣1一定有交点,即存在x0∈(0,+∞),使得f(x0)=f(﹣x0),故④正确.∴正确结论的序号是①②④.故答案为:①②④.三、解答题:共4小题,共40分.解答应写出文字说明、演算步骤或证明过程. 16.解:(Ⅰ)集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|x﹣4a≤0}.当a=1时,B={x|x≤4},∴A∩B={x|x<﹣1或3<x≤4};(Ⅱ)∵集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|x﹣4a≤0},A∪B=R,∴4a>3,解得a>,∴实数a的取值范围是(,+∞).17.解:选择条件①:(Ⅰ)a>1,b=1,函数f(x)是偶函数,理由如下:f(x)的定义域为R,对任意x∈R,则﹣x∈R,∵f(﹣x)=a﹣x+a x=f(x),∴函数f(x)是偶函数.(Ⅱ)f(x)在(0,+∞)上是增函数.证明如下:任取x1,x2∈(0,+∞),且x1<x2,则x1+x2>0,∵a>1,∴,,∴f(x1)﹣f(x2)=﹣()=()(1﹣)=()•<0,∴f(x1)<f(x2),∴函数f(x)在(0,+∞)上是单调增函数.(Ⅲ)实数m的取值范围是[﹣5,﹣1]∪[1,5].选择条件②:0<a<1,b=﹣1,(Ⅰ)函数f(x)是奇函数,理由如下:f(x)的定义域为R,对任意x∈R,则﹣x∈R,∴f(﹣x)=a﹣x﹣a x=﹣f(x),∴函数f(x)是奇函数.(Ⅱ)f(x)在(0,+∞)上是减函数.证明如下:任取x1,x2∈(0,+∞),且x1<x2,∵0<a<1,∴>0,,∴f(x1)﹣f(x2)=﹣()=()(1+)=()•>0,∴f(x1)>f(x2),∴函数f(x)在(0,+∞)上是单调减函数.(Ⅲ)实数m的取值范围是(﹣∞,﹣1]∪[1,+∞).18.解:(Ⅰ)由题意知,解得a=4,b=18.(Ⅱ)记样本中甲生产线的4件二等品为A1,A2,A3,A4,乙生产线的2件二等品为B1,B2,从6件二等品中任取2件,所有可能的结果有15个,分别为:(A1,A2),(A1,A3),(A1,A4),(A2,A3),(A2,A4),(A3,A4)(A1,B1),(A2,B1),(A3,B1),(A4,B1),(A1,B2),(A2,B2),(A3,B2),(A4,B2),(B1,B2),记C为“至少有1件为甲生产线产品”这一事件,则中的结果只有一个,是(B1,B2),∴至少有1件为甲生产线产品的概率为P=1﹣P()=1﹣=.(Ⅲ)p1<p2.19.解:(Ⅰ)①函数f(x)=2x不具有性质P(0).理由如下:对于a=0,x1=1,∵,x2∈R,∴不存在x2∈R满足=0,∴函数f(x)=2x不具有性质P(0).②函数f(x)=log2x,x∈(0,1)具有性质P(0).理由如下:对于∀x1∈(0,1),取x2=,则x2∈(0,1),∵==0,∴函数f(x)=log2x,x∈(0,1)具有性质P(0).(Ⅱ)“f(x)存在零点”是“2∈D”的充分而不必要条件.理由如下:(i)若f(x)存在零点,令f(x)=3x﹣1,x∈[0,1],则f()=0,∵∀x1∈[0,1],取x2=1﹣,则x2∈[],且==1,∴f(x)具有性质P(1),但2∉[0,1].(ii)若2∈D,∵f(x)具有性质P(1),取x1=2,则存在x2∈D,使得==1,∴f(x2)=0,∴f(x)存在零点x2,综上,“f(x)存在零点”是“2∈D”的充分而不必要条件.故答案为:充分而不必要.(Ⅲ)记函数f(x)=tx2+x+4,x∈[0,2]的值域为F,函数g(x)=2a﹣x,x∈[0,2]的值域为A=[2a﹣2,2a],∵存在唯一的实数a,使得函数f(x2)=2a﹣x1成立,∴F=A.(i)当t=0时,f9x)=x+4,x∈[0,2],其值域F=[4,6],由F=A,得a=3.(ii)当﹣≤t,且t≠0时,f(x)=tx2+x+4,x∈[0,2]是增函数,∴其值域F=[4,4t+6],由F=A,得t=0,舍去.(iii)当﹣时,f(x)=tx2+x+4,x∈[0,2]的最大值为f(﹣)=4﹣,最小值为4,∴f(x)的值域为F=[4,4﹣].由F=A,得t=﹣,舍去.当t<﹣时,f(x)=tx2+x+4,x∈[0,2]的最大值为f(﹣)=4﹣,最小值为f(2)=4t+6,∴f(x)的值域为F=[4t+6,4﹣],由F=A,得t=(舍去t=).选做题:20.解:(Ⅰ)根据题意,得函数C(t)同时满足以下条件:A.函数C(t)在[0,1.5)上单调递增,在(1.5,+∞)上单调递减;B.当t=1.5时,函数C(t)取得最大值;函数C(t)的最小值非负;C.函数C(t)是一个连续变化的函数,不会发生骤变.选择①:,因为C(3)=0.75﹣0.3×3=﹣0.15不满足条件B,所以①不能描述青蒿素血药浓度变化过程;选择②:C(t)=当0≤t<15时,,当t=1时,函数C(t)取得最大值,不满足条件B,所以②不能描述青蒿素血药浓度变化过程;选择③:因为,,所以不满足条件C,所以③不能描述青蒿素血药浓度变化过程;选择④:因为,且当t≥1.5时,C(t)>0,所以C(t)同时满足三个条件,即④能描述青蒿素血药浓度变化过程;综上所述,能够描述青蒿素血药浓度变化过程的函数的序号是④.(Ⅱ)由(Ⅰ)得:函数④:,因为,即血药浓度的峰值大于0.1μg/ml,所以此青蒿素药片合格,即答案为:合格;(Ⅲ)当0≤t<1.5时,令0.2ln(t+1)≥0.ln2.5,所以ln(t+1)2≥ln2.5,即,即2t2+4t﹣3≥0,解得或,即当t≥1.5时,令,则,解得t≤3,即1.5≤t≤3;综上所述,青蒿素在血液中达到“有效浓度”的持续时间为.。

北京市海淀区2021届新高考第一次大联考数学试卷含解析

北京市海淀区2021届新高考第一次大联考数学试卷含解析

北京市海淀区2021届新高考第一次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.用电脑每次可以从区间(0,3)内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于1的概率为( ) A .427B .13C .127D .19【答案】C 【解析】 【分析】由几何概型的概率计算,知每次生成一个实数小于1的概率为13,结合独立事件发生的概率计算即可. 【详解】∵每次生成一个实数小于1的概率为13.∴这3个实数都小于1的概率为311327⎛⎫= ⎪⎝⎭. 故选:C. 【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.2.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 【答案】D 【解析】 【分析】利用对数函数的单调性可得235log 5log 5log 3>>,再根据()f x 的单调性和奇偶性可得正确的选项. 【详解】因为33log 5log 31>=,5550log 1log 3log 51=<<=, 故35log 5log 30>>.又2233log 5log 42log 9log 50>==>>,故235log 5log 5log 3>>.因为当[)0,x ∈+∞时,函数()f x 是单调递减函数, 所以()()()235log 5log 5log 3f f f <<. 因为()f x 为偶函数,故()()3331log log 5log 55f f f ⎛⎫== ⎪⎝⎭-, 所以()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭<. 故选:D. 【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.3.某市政府决定派遣8名干部(5男3女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少3人,且女干部不能单独成组,则不同的派遣方案共有( )种 A .240 B .320C .180D .120【答案】C 【解析】 【分析】在所有两组至少都是3人的分组中减去3名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果. 【详解】两组至少都是3人,则分组中两组的人数分别为3、5或4、4,又因为3名女干部不能单独成一组,则不同的派遣方案种数为432882221180C C A A ⎛⎫+-= ⎪⎝⎭.故选:C. 【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题. 4.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--【答案】C 【解析】 【分析】对k 分奇数、偶数进行讨论,利用诱导公式化简可得.k为偶数时,sin cos2 sin cosAαααα=+=;k为奇数时,sin cos2sin cosAαααα=--=-,则A的值构成的集合为{}2,2-.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.5.如图,设P为ABC∆内一点,且1134AP AB AC=+u u u v u u u v u u u v,则ABP∆与ABC∆的面积之比为A.14B.13C.23D.16【答案】A【解析】【分析】作//PD AC交AB于点D,根据向量比例,利用三角形面积公式,得出ADPS∆与ABCS∆的比例,再由ADPS∆与APBS∆的比例,可得到结果.【详解】如图,作//PD AC交AB于点D,则AP AD DP=+u u u r u u u r u u u r,由题意,13AD AB=u u u r u u u r,14DP AC=u u u r u u u r,且180ADP CAB∠+∠=o,所以11111||||sin||||sin223412ADP ABCS AD DP ADP AB AC CAB S∆∆=∠=⨯⨯∠=又13AD AB=u u u r u u u r,所以,134APB ADP ABCS S S∆∆∆==,即14APBABCSS∆∆=,所以本题答案为A.本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键. 6.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥, 故34a b +≥(当且仅当a b =时取等号). 又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.7.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于,A B两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S =V V ( )A .1B .2C .3D .4【答案】C 【解析】画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。

北京市海淀区2023-2024学年高一上学期12月月考数学试题含解析

北京市海淀区2023-2024学年高一上学期12月月考数学试题含解析

北京2023-2024学年第一学期12月练习高一数学2023.12(答案在最后)说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.)1.已知命题:0p x ∀>,25410x x -+≥,则命题p 的否定为()A.0x ∀>,25410x x -+< B.0x ∀<,25410x x -+<C.0x ∃>,25410x x -+< D.0x ∃<,25410x x -+<【答案】C【解析】【分析】根据全称量词命题的否定为存在量词命题易求.【详解】根据全称量词命题的否定为存在量词命题知:命题:0p x ∀>,25410x x -+≥的否定为:0x ∃>,25410x x -+<.故选:C2.设集合{}33x A x =>,{}230B x x x =-<,则A B = ()A.()1,3 B.[)1,3C.()0,3 D.[)0,3【答案】A【解析】【分析】先化简集合A ,B ,再根据集合的运算得解.【详解】由33x >,即133x >,因为3x y =是R 上的单调递增函数,所以1x >,{}1A x x ∴=>;又230x x -<,解得03x <<,{}03B x x ∴=<<;()1,3A B ∴⋂=.故选:A.3.以下函数既是偶函数又在(0,)+∞上单调递减的是()A.4()f x x =B.()f x =C.1()2x f x ⎛⎫= ⎪⎝⎭D.12()log f x x =【答案】D【解析】【分析】利用奇偶性的定义和指数函数、对数函数、幂函数的性质,对选项逐一判断即可.【详解】选项A 中,4()f x x =,满足()44()()f x x x f x -=-==,()f x 是偶函数,但由幂函数性质知4()f x x =在(0,)+∞上单调递增,故不符合题意;选项B 中,由幂函数性质知,()f x =在定义域[)0,∞+内单调递增,0x <无意义,故不具有奇偶性,不符合题意;选项C 中,由指数函数性质可知,1()2x f x ⎛⎫= ⎪⎝⎭在R 上单调递减,但1()()22x x f x f x -⎛⎫-= ⎪⎝⎭=≠,故不是偶函数,不符合题意;选项D 中,12()log f x x =定义域()(),00,-∞⋃+∞,满足1122()log log ()f x x x f x -=-==,故()f x 是偶函数,当0x >时,12()log f x x =,由对数函数性质可知,12()log f x x =在(0,)+∞上单调递减,故12()log f x x =符合题意.故选:D.4.已知x y <,则下列不等式一定成立的是()A.33x y < B.11x y >C.22x y--< D.()()22lg 1lg 1x y +<+【答案】A【解析】【分析】根据不等式的性质,幂函数,指数函数和对数函数的性质判断.【详解】对A ,根据幂函数3y x =在R 上单调递增得x y <时,33x y <,故A 正确;对B ,当0x y <<时,11x y<,B 错;对C ,x y <,则x y ->-,根据指数函数2x y =在R 上单调递增得22x y -->,故C 错误;对D ,x y <时,例如,2,1x y =-=,则2211x y +>+,根据对数函数lg y x =在()0,∞+上单调递增,则()()22lg 1>lg 1x y ++,因此D 错;故选:A .5.函数()lg 1y x =-的图象是()A. B. C.D.【答案】C【解析】【分析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.【点睛】结论点睛:两种常见的图象翻折变换:()()x x x f x f x −−−−−−−−−−−−→保留轴上方,将轴下方的图象沿轴对称,()()y y y f x f x −−−−−−−−−−−−−→保留轴右方图像,将轴右方图象沿着轴对称.6.已知()f x 是定义域为R 的奇函数,当0x >时,()f x 单调递增,且()40f =,则满足不等式()10x f x ⋅-<的x 的取值范围是()A.()3,1-B.()1,5C.()()3,01,5-D.()(),31,5-∞- 【答案】C【解析】【分析】由奇函数的定义和单调性的性质,即可求解不等式.【详解】因为()f x 是定义在R 上的奇函数,0x >时,()f x 单调递增,且()40f =,所以当()(),40,4x ∈-∞-⋃时,()0f x <,当()()4,04,x ∈-⋃+∞时,()0f x >,不等式()10x f x ⋅-<,则当0x <时,有()10f x ->,即410x -<-<或14x ->,解得31x -<<或5x >,又0x <,30x ∴-<<;当0x >时,有()10f x -<,即14x -<-或014x <-<,又0x >,解得15x <<;综上,不等式()10x f x ⋅-<的解集为()()3,01,5- .故选:C.7.已知函数2,1(),1x a x f x x a x ⎧-≤=⎨-+>⎩,则“函数()f x 有两个零点”成立的充分不必要条件是a ∈A.(0,2]B.(1,2]C.(1,2)D.(0,1]【答案】C【解析】【分析】根据()f x 单调性,结合已知条件,求得()f x 有两个零点的充要条件,再结合选项进行选择即可.【详解】2,1(),1x a x f x x a x ⎧-≤=⎨-+>⎩ ()f x ∴在,1∞(-)上单调递增,在1+∞(,)上单调递减.故“函数()f x 有两个零点”(1)20,0,(1)10f a a f a ⇔=-≥-<>-+>,解得12a <≤,“函数()f x 有两个零点”成立的充分不必要条件必须为(1,2]的子集,只有C 符合,故选:C .【点睛】本题考查充分不必要条件的判断,涉及由函数零点个数求参数范围问题,属综合基础题.8.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足1m n -≤,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.14 B.38 C.12 D.58【答案】D【解析】【分析】根据古典概型的计算公式,结合绝对值不等式进行求解即可.【详解】根据题意,m ,n 的情况如下:()()()()()()()()6,6,6,7,6,8,6,9,7,6,7,7,7,8,7,9,()()()()()()()()8,6,8,7,8,8,8,9,9,6,9,7,9,8,9,9,共16种情况,其中m ,n 满足1m n -≤的情况如下:()()()()()()()()()()6,6,6,7,7,6,7,7,7,8,8,7,8,8,8,9,9,8,9,9,共10种情况,所以两人“心领神会”的概率是105168=,故选:D9.函数()213log 3y x ax =-+在[1,2]上恒为正数,则实数a 的取值范围是()A.a <<B.72a <<C.732a <<D.3a <<【答案】D【解析】【分析】根据底数是13,213()log (3)y f x x ax ==-+在[1,2]上恒为正数,故2031x ax <-+<在[1,2]上恒成立,进而解不等式就可以了.【详解】解:由于底数是13,从而213()log (3)y f x x ax ==-+在[1,2]上恒为正数,故2031x ax <-+<在[1,2]上恒成立,即23x a x x x+<<+由于[1,2]x ∈,3x x +≥=当且仅当3x x =即x =由对勾函数的性质可知,函数()2g x x x =+在⎡⎣上单调递减,在2⎤⎦上单调递增,且()()123g g ==所以3a <<故选:D .【点睛】本题主要考查对数型函数,一元二次函数值域问题,属于中档题.10.形如221n +(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是()(参考数据:lg 2≈0.3010)A.9B.10C.11D.12【答案】B【解析】【分析】32521F =+,设322m =,两边取常用对数估算m 的位数即可.【详解】32521F =+ ,设322m =,则两边取常用对数得32lg lg 232lg 2320.30109.632m ===´=.9.63291010m =»,故5F 的位数是10,故选:B .【点睛】解决对数运算问题的常用方法:(1)将真数化为底数的指数幂的形式进行化简.(2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg 51+=简化计算.二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.函数()2lg 54y x x =-+的定义域为__________.【答案】()()4,,1+∞⋃-∞【解析】【分析】利用对数函数真数大于零,解不等式即可求得结果.【详解】由对数函数定义可得2540x x -+>,解得>4x 或1x <,所以函数定义域为()()4,,1+∞⋃-∞.故答案为:()()4,,1+∞⋃-∞12.某高中学校进行问卷调查,用比例分配的分层随机抽样方法从该校三个年级中抽取36人进行问卷调查,其中高一年级抽取了15人,高二年级抽取了12人,且高三年级共有学生900人,则该高中的学生总数为__________人.【答案】3600【解析】【分析】根据分层抽样的抽样比即可求解.【详解】由题意可知:高三年级抽取了3615129--=人,由于高三共有900人,所以抽样比为1100,所以高中学生总数为361003600⨯=,故答案为:360013.令0.76a =,60.7b =,0.7log 6c =,则三个数a ,b ,c 的大小顺序是______.(用“<”连接)【答案】c b a<<【解析】【分析】根据指数函数和对数函数单调性,结合临界值0,1即可确定大小关系.【详解】0.7000.60.70.76610.70.70log 1log 6>==>>=> ,c b a ∴<<.故答案为:c b a <<.14.为了解本书居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为______.(用“<”连接)【答案】231s s s <<【解析】【分析】根据平均数公式及方差公式分别计算21s 、22s 、23s ,即可判断;【详解】由图甲:平均值为()150012500.000617500.000422500.000227500.000232500.0006x =⨯+⨯+⨯+⨯+⨯2200=,22221(12502200)(175021200)(22502200)0.30.20.s =-+⨯+⨯⨯--22)0.10.3(27502200)(32502200+-⨯⨯-+672500=,212500.117500.222500.427500.232500.1x =⨯+⨯+⨯+⨯+⨯2250=,22222(12502250)(175024250)(22502250)0.10.20.s =-+⨯+⨯⨯--22)0.20.1(27502250)(32502250+-⨯⨯-+300000=,312500.217500.222500.327500.232500.1x =⨯+⨯+⨯+⨯+⨯2150=,22223(12502150)(175023150)(22502150)0.20.20.s =-+⨯+⨯⨯--22)0.20.1(27502150)(32502150+-⨯⨯-+390000=,则标准差231s s s <<,故答案为:231s s s <<.15.如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9;③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.【答案】①②【解析】【分析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解.【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤,P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤,P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根故正确的是①②.故答案为:①②【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.已知集合213A x x ⎧⎫=>⎨⎬-⎩⎭,{}221,B x m x m m =-≤≤+∈R .(1)当6m =时,求集合A B ⋃;(2)若A B B = ,求实数m 的取值范围.【答案】(1){313}A B xx =<≤ ∣(2)(),3-∞-【解析】【分析】(1)直接代入计算,再根据并集含义计算即可;(2)分集合B 是否为空集讨论即可.【小问1详解】由()()222311005303333x x x x x x x ->⇒->⇒->⇒--<----解得{35}A xx =<<∣.当6m =时,{}413B x x =≤≤∣,则{313}A B xx =<≤ ∣【小问2详解】由A B B = ,得B A ⊆.当B =∅时,有221m m ->+,解得3m <-.当B ≠∅时,有323215m m m ≥-⎧⎪->⎨⎪+<⎩,无解.综上,(),3m ∈-∞-.17.已知函数()22f x x =+.(1)求函数()f x 的定义域和值域;(2)求函数()f x 在区间[](),1t t t +∈R 上的最小值.【答案】17.定义域为R ,值域为[)2,+∞18.答案见解析【解析】【分析】(1)根据二次函数的性质可得答案;(2)讨论对称轴与区间的关系,结合二次函数性质可得答案.【小问1详解】由题意定义域为R ,因为20x ≥,所以222x ≥+,即值域为[)2,+∞.【小问2详解】()f x 图象的对称轴为0x=,当10t +≤时,即1t ≤-时,()f x 在区间[],1t t +上单调递减,则()f x 在区间[],1t t +上的最小值为()2(1)12f t t +=++;当01t t <<+时,即10t -<<时,()f x 在[),0t 上单调递减,在(]0,1t +上单调递增,则()f x 在区间[],1t t +上的最小值为(0)2f =;当0t ≥时,()f x 在区间[],1t t +上单调递增,()f x 在区间[],1t t +上的最小值为2()2f t t =+;综上可得1t ≤-时,最小值为()212t ++;10t -<<时,最小值为2;0t ≥时,最小值为22t +.18.在新高考背景下,北京高中学生需从思想政治、历史、地理、物理、化学、生物这6个科目中选择3个科目学习并参加相应的等级性考试.为提前了解学生的选科意愿,某校在期中考试之后,组织该校高一学生进行了模拟选科.为了解物理和其他科目组合的人数分布情况,某教师整理了该校高一(1)班和高一(2)班的相关数据,如下表:物理+化学物理+生物物理+思想政治物理+历史物理+地理高一(1)班106217高一(2)班.159316其中高一(1)班共有40名学生,高一(2)班共有38名学生.假设所有学生的选择互不影响.(1)从该校高一(1)班和高一(2)班所有学生中随机选取1人,求此人在模拟选科中选择了“物理+化学”的概率;(2)从表中选择“物理+思想政治”的学生中随机选取2人参加座谈会,求这2人均来自高一(2)班的概率;(3)该校在本学期期末考试之后组织高一学生进行了第二次选科,现从高一(1)班和高一(2)班各随机选取1人进行访谈,发现他们在第二次选科中都选择了“物理+历史”.根据这一结果,能否认为在第二次选科中选择“物理+历史”的人数发生了变化?说明理由.【答案】(1)2578(2)310(3)答案见解析【解析】【分析】(1)(2)根据古典概型的概率公式即可求解,(3)根据小概率事件即可求解.【小问1详解】依题意得高一(1)班和高一(2)班学生共有403878+=人,即该随机试验的样本空间有78个样本点.设事件A =“此人在模拟选科中选择了“物理+化学”,则事件A 包含101525+=个样本点,所以()2578P A =.【小问2详解】依题意得高一(1)班选择“物理+思想政治”的学生有2人,分别记为12,A A ;高一(2)班选择“物理+思想政治”的学生有3人,分别记为123,,B B B .该随机试验的样本空间可以表示为:Ω={12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B }即()Ω10n =.设事件B =“这2人均来自高一(2)班”,则{}121323,,B B B B B B B =,所以()3n B =,故()()()3Ω10n B P B n ==.【小问3详解】设事件C =“从高一(1)随机选取1人,此人在第二次选科中选择了“物理+历史”,事件D =“从高一(2)班随机选取1人,此人在第二次选科中选择了“物理+历史”,事件E =“这两人在第二次选科中都选择了“物理+历史”.假设第二次选科中选择“物理+历史”的人数没有发生变化,则由模拟选科数据可知,()()11,4038P C P D ==.所以()()()()11140381520P E P CD P C P D ===⨯=.答案示例1:可以认为第二次选科中选择“物理+历史”的人数发生变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为第二次选科中选择“物理+历史”的人数发生了变化.答案示例2:无法确定第二次选科中选择“物理+历史”的人数是否发生变化.理由如下:事件E 是随机事件,()P E 虽然比较小,一般不容易发生,但还是有可能发生,所以无法确定第二次选科中选择“物理+历史”的人数是否有变化.19.已知函数()2log 2ax f x x -=+(0a >且1a ≠).(1)求()f x 的定义域;(2)若当2a =时,函数()()g x f x b =-在()2,+∞有且只有一个零点,求实数b 的范围;(3)是否存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,若存在,求出实数a 的范围;若不存在,请说明理由.【答案】(1)()(),22,∞∞--⋃+(2)(),0∞-(3)存在;3220,2a ⎛⎫-∈ ⎪⎝⎭【解析】【分析】(1)由202x x ->+可得()f x 的定义域;(2)注意到()24122x t x x x -==-++在()2,∞+上单调递增,则()f x 在()2,∞+,即b 的范围是就是()f x 在()2,∞+上的值域;(3)由题可得01a <<,则问题转化为22x ax x -=+在()2,∞+上有两个互异实根,即可得答案.【小问1详解】由202x x ->+,得<2x -或2x >.∴()f x 的定义域为()(),22,∞∞--⋃+;【小问2详解】令()24122x t x x x -==-++,因函数42=+y x 在()2,∞+上单调递减,则()t x 在()2,∞+上为增函数,故()t x 的值域为()0,1.又2a =,∴()f x 在()2,∞+上为增函数;函数()()g x f x b =-在()2,∞+有且只有一个零点,即()f x b =在()2,∞+有且只有一个解,∵函数()f x 在()2,∞+的值域为(),0∞-,∴b 的范围是(),0∞-.【小问3详解】假设存在这样的实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,由m n <且1log a n +1log a m <+,可得01a <<.又由(2)()412t x x =-+在()2,∞+上为增函数,log a y x =在()2,∞+上为减函数.则()f x 在()2,∞+上为减函数,得()()()()2log 1log log 22log 1log log 2a a a aa a m f m m am m n f n n an n -⎧==+=⎪⎪+⎨-⎪==+=⎪+⎩.即22x ax x -=+在()2,∞+上有两个互异实根,因()2221202x ax ax a x x -=⇒+-+=+即()()2212g x ax a x =+-+,有两个大于2的相异零点.设()g x 零点为12,x x ,则()()()()212122180Δ02144220221240a a a x x a x x a aa ⎧⎪-->⎧>⎪-⎪⎪+>⇒->⎨⎨⎪⎪-->⎩⎪-++>⎪⎩.解得302a -<<.又∵01a <<,故存在这样的实数30,2a ⎛⎫-∈ ⎪ ⎪⎝⎭符合题意.20.对于函数()f x ,若在定义域内存在实数0x ,且00x ≠,满足()()00f x f x -=,则称()f x 为“弱偶函数”.若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“弱奇函数”.(1)判断函数()31,0,0x f x x x x ⎧>⎪=⎨⎪<⎩是否为“弱奇函数”或“弱偶函数”;(直接写出结论)(2)已知函数()()21g x x x =-+,试判断()g x 为其定义域上的“弱奇函数”,若是,求出所有满足()()00g x g x -=-的0x 的值,若不是,请说明理由;(3)若()43,4x h x x x ≥=+<⎪⎩为其定义域上的“弱奇函数”.求实数m 取值范围.【答案】(1)弱奇函数(2)()g x 不是其定义域上的“弱奇函数”.(3)15,44⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据所给定义判断即可;(2)对x 分类讨论即可;(3)首先由20x mx -≥在[)4,+∞上恒成立,求出m 的取值范围,依题意存在实数0x 使得()()00h x h x -=-,分04x ≥、044x -<<、04x ≤-三种情况讨论,分别结合方程有解求出m 的取值范围,即可得解.【小问1详解】当0x <时,则0x ->,若31x x=-,无实数解,舍去;若31x x=--,解得=1x -(正舍),当0x >时,则0x -<,若31x x-=,无实数解,舍去;若31x x-=-,解得1x =(负舍),则存在实数01x =±,满足()()00f x f x -=-,则()f x 是“弱奇函数”,【小问2详解】假设()()21g x x x =-+为其定义域上的“弱奇函数”,则()()2121x x x x -+=+-,若1x >,则()()()()2121x x x x -+=+-,则0x =,舍去;若11x -≤≤,则()()()()2121x x x x -+=+-,则x =若1x ≤-,则()()()()2121x x x x -+=+-,则0x =,舍去;从而()()00g x g x -=-无解,所以()g x 不是其定义域上的“弱奇函数”.【小问3详解】由20x mx -≥在[)4,+∞上恒成立,转化为m x ≤在[)4,+∞上恒成立,即4m ≤.因为()43,4x h x x x ≥=+<⎪⎩为其定义域上的“弱奇函数”,所以存在实数0x 使得()()00h x h x -=-,当04x ≥时,则04x -≤-,所以03x -+=,即03x -=,所以()220003x x mx -=-,0069x mx -+=-,即096m x =-在[)4,+∞有解可保证()f x 是“弱奇函数",所以15,64m ⎡⎫∈⎪⎢⎣⎭,又因为4m ≤,所以15,44m ⎡⎤∈⎢⎥⎣⎦;当044x -<<时,044x -<-<,此时()00330x x -+--=,不成立;当04x ≤-时,则04x -≥()03x =-+,则22000069x mx x x +=++,即()069m x -=,即096m x =+在(],4-∞-有解可保证()f x 是“弱奇函数”,所以15,64m ⎡⎫∈⎪⎢⎣⎭,由4m ≤可知15,44m ⎡⎤∈⎢⎥⎣⎦;综上所述,实数m 的取值范围为15,44m ⎡⎤∈⎢⎥⎣⎦.【点睛】关键点睛:本题属于新定义问题,对于新定义问题,关键是理解所给定义,将问题转化为方程有解,分段函数注意分类讨论.。

2024北京海淀区高三一模数学试题及答案

2024北京海淀区高三一模数学试题及答案

2024北京海淀高三一模数 学本试卷共9页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合 题目要求的一项。

1. 已知全集{}22U x x =−≤≤,集合{}12A x x =−≤<,则U C A =A.(2,1)−−B.[2,1]−−C.{}(2,1)2−−D.{}[2,1)2−−2. 若复数z 满足i 1i z ⋅=+,则z 的共轭复数z =A.1i +B.1i −C.1i −+D.1i −−3. 已知{}n a 为等差数列,n S 为其前n 项和. 若122a a =,公差0d ≠,0m S =,则m 的值为A.4B.5C.6D.74. 已知向量,a b 满足||2=a ,(2,0)=b ,且||2+=a b ,则,<>=a bA.π6B.π3 C .2π3D.5π65. 若双曲线2222 1 (0,0)x y a b a b−=>>上的一点到焦点(的距离比到焦点的距离大b ,则该双曲线的方程为A.2214x y −=B.2212x y −= C.2212y x −= D.2214y x −= 6. 设,αβ是两个不同的平面,,l m 是两条直线,且m α⊂,l α⊥. 则“l β⊥”是“//m β”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. 已知3, 0()lg(1),0x x f x x x ⎧≤=⎨+>⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为A.1,1B.1,2C.2,1D.2,28. 在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限. 则 A.sin cos tan ααα−≤ B.sin cos tan ααα−≥C.sin cos tan ααα⋅<D.sin cos tan ααα⋅>9. 函数()f x 是定义在(4,4)−上的偶函数,其图象如图所示,(3)0f =. 设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是A.[0,2]B.[3,0][3,4)−C.(5,0][2,4)−D.(4,0][2,3)−10. 某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1 . 通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半. 于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,11211122111,2A A A A OA ==.若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r *(,cm)r ∈N 单位:至少为A.6B.7C.8D.9第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区2021届新高考第一次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( ) A .若m αP ,m βP ,n α∥,n β∥,则αβP B .若m n ∥,m α⊥,n β⊥,则αβP C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m n ⊥,m αP ,n β⊥,则αβ⊥ 【答案】B 【解析】 【分析】根据空间中线线、线面位置关系,逐项判断即可得出结果. 【详解】A 选项,若m αP ,m βP ,n α∥,n β∥,则αβP 或α与β相交;故A 错;B 选项,若m n ∥,m α⊥,则n α⊥,又n β⊥,,αβ是两个不重合的平面,则αβP ,故B 正确;C 选项,若m n ⊥,m α⊂,则n α⊂或n α∥或n 与α相交,又n β⊂,,αβ是两个不重合的平面,则αβP 或α与β相交;故C 错;D 选项,若m n ⊥,m αP ,则n α⊂或n α∥或n 与α相交,又n β⊥,,αβ是两个不重合的平面,则αβP 或α与β相交;故D 错;故选B 【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.2.8x⎛- ⎝的二项展开式中,2x 的系数是( )A .70B .-70C .28D .-28【答案】A 【解析】试题分析:由题意得,二项展开式的通项为3882188((1)r r rr r rr T C xC x --+==-,令38242r r -=⇒=,考点:二项式定理的应用.3.执行如图所示的程序框图,如果输入2[2]t e ∈-,,则输出S 属于( )A .[32]-, B .[42]-, C .[0]2, D .2[3]e -,【答案】B 【解析】 【分析】由题意,框图的作用是求分段函数[]222321ln 1t t t S t t t e ⎧+-∈-⎪=⎨⎡⎤∈⎪⎣⎦⎩,,(),,的值域,求解即得解. 【详解】 由题意可知,框图的作用是求分段函数[]222321ln 1t t t S t t t e ⎧+-∈-⎪=⎨⎡⎤∈⎪⎣⎦⎩,,(),,的值域, 当[2,1),[4,0)t S ∈-∈-; 当2[1,],[0,2]t e S ∈∈综上:[]42S ∈-,. 故选:B 【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题. 4.某市政府决定派遣8名干部(5男3女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少3人,且女干部不能单独成组,则不同的派遣方案共有( )种 A .240 B .320C .180D .120【答案】C在所有两组至少都是3人的分组中减去3名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果. 【详解】两组至少都是3人,则分组中两组的人数分别为3、5或4、4,又因为3名女干部不能单独成一组,则不同的派遣方案种数为432882221180C C A A ⎛⎫+-= ⎪⎝⎭.故选:C. 【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.5.为计算23991223242...100(2)S =-⨯+⨯-⨯++⨯-, 设计了如图所示的程序框图,则空白框中应填入( )A .100i <B .100i >C .100i ≤D .100i ≥【答案】A 【解析】 【分析】根据程序框图输出的S 的值即可得到空白框中应填入的内容. 【详解】由程序框图的运行,可得:S =0,i =0满足判断框内的条件,执行循环体,a =1,S =1,i =1满足判断框内的条件,执行循环体,a =2×(﹣2),S =1+2×(﹣2),i =2满足判断框内的条件,执行循环体,a =3×(﹣2)2,S =1+2×(﹣2)+3×(﹣2)2,i =3 …观察规律可知:满足判断框内的条件,执行循环体,a =99×(﹣2)99,S =1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i =1,此时,应该不满足判断框内的条件,退出循环,输出S 的值,所以判断框中的条件应是【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.6.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b ab aa b a b >>>B .1log log a bb ab a b a >>>C .1log log b ab aa ab b >>> D .1log log a bb aa b a b >>> 【答案】D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 7.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B 【解析】 【分析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案. 【详解】由三视图可得,该几何体的直观图如图所示, 延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =, 所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题8.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有一点(3,4)P -,则sin 2α=( ). A .1225-B .2425-C .165D .85【答案】B 【解析】 【分析】根据角终边上的点坐标,求得sin ,cos αα,代入二倍角公式即可求得sin 2α的值. 【详解】因为终边上有一点(3,4)P -,所以43sin ,cos 55αα==-, 4324sin 22sin cos 25525ααα⎛⎫∴==⨯⨯-=- ⎪⎝⎭故选:B 【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.9.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .169【答案】D 【解析】 【分析】分别求出球和圆柱的体积,然后可得比值. 【详解】设圆柱的底面圆半径为r ,则22213r -,所以圆柱的体积21326V =π⋅⨯=π.又球的体积34322V =π⨯=π,所以球的体积与圆柱的体积的比23216V π,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( )A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦U C .179,42⎡⎤⎢⎥⎣⎦D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【答案】C 【解析】 【分析】将函数()f x 解析式化简,并求得()f x ',根据当[]11,3x ∈时()0f x >′可得()1f x 的值域;由函数()2g x x m =-++在[]21,3x ∈上单调递减可得()2g x 的值域,结合存在性成立问题满足的集合关系,即可求得m 的取值范围. 【详解】依题意()()222113311x x x x x f x x x ++++++==++ 121x x =+++, 则()()2111f x x '=-+,当[]1,3x ∈时,()0f x >′,故函数()f x 在[]1,3上单调递增, 当[]11,3x ∈时,()1721,24f x ⎡⎤∈⎢⎥⎣⎦; 而函数()2g x x m =-++在[]1,3上单调递减, 故()[]21,1g x m m ∈-+, 则只需[]721,1,124m m ⎡⎤⊆-+⎢⎥⎣⎦, 71m ⎧-≤⎪⎪179故实数m 的取值范围为179,42⎡⎤⎢⎥⎣⎦. 故选:C. 【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题. 11.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i + B .1i -+C .12i -D .12i +【答案】A 【解析】分析:题设中复数满足的等式可以化为512z i i=++,利用复数的四则运算可以求出z . 详解:由题设有512112z i i i i i=+=-+=-+,故1z i =+,故选A. 点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.12.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B .63C .33D .23【答案】A 【解析】 【分析】首先找出PC 与面PAB 所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值. 【详解】由题知ABC V 是等腰直角三角形且90ACB ∠=︒,ABP △是等边三角形,设AB 中点为O ,连接PO ,CO ,可知62PO =,2CO =同时易知AB PO ⊥,AB CO ⊥,所以AB ⊥面POC ,故POC ∠即为PC 与面PAB 所成角,有22222cos 23PO CO PC POC PO CO +-∠==⋅, 故1sin 1cos 3POC POC ∠=-∠=. 故选:A. 【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

13.已知函数()1x f x e ax =+-,若0,()0x f x 厖恒成立,则a 的取值范围是___________. 【答案】[1,)-+∞ 【解析】 【分析】求导得到()xf x e a '=+,讨论10a +…和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =„,不符合,排除,得到答案。

相关文档
最新文档