高中数学函数解题技巧方法总结(高考)-学生版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结

一、. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 二、. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是y x x x =

--432

lg

函数定义域求法:

● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ●

正切函数x y tan = ⎪⎭

⎝⎛∈+≠∈Z ππk k x R x ,2,且

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他

们的交集,就得到函数的定义域。 三、. 如何求复合函数的定义域?

[]的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦

⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

四、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x

1

的值域

2、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1

=

=++==≤

''

++=++++=+++-===+-≥-=+++

4、反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数y=6

54

3++x x 值域。

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 1

1cos y θθ

-=+的值域。

6、函数单调性法

通常和导数结合,是最近高考考的较多的一个内容 例求函数y=+-25

x log

3

1-x (2≤x ≤10)的值域

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。

8 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例:已知点P (x.y )在圆x 2+y 2=1上,

2

,(2),2

(,20, (1)

的取值范围 (2)y-2的取值范围 解:(1)令则是一条过(-2,0)的直线.

d 为圆心到直线的距离,R 为半径)

(2)令y-2即也是直线d d y

x x y

k y k x x R d x b y x b R +==+-≤=--=≤ 例求函数y=)

2(2

-x +

)

8(2

+x 的值域。

例求函数y=

1362

+-x x

+

542

++x x

的值域

9 、不等式法

利用基本不等式a+b ≥2ab ,a+b+c ≥3abc 3(a ,b ,c ∈R +

),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

例:

3

3

(

)13

()32x (3-2x)(0

x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)

a b c +⋅⋅≤=++≤ 10.倒数法

2(0)

113322x =x (应用公式a+b+c 者的乘积变成常数)

x x

x x +>+

+≥=≥

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况

例求函数y=

3

2

+

+

x

x

的值域

20

11

20

2

20

1

2

时,

时,=0

y

x

y

y

x y

y

=

+≠

==+≥⇒<≤

+=

∴≤≤

多种方法综合运用

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

五、. 如何用定义证明函数的单调性?

(取值、作差、判正负)

判断函数单调性的方法有三种:

(1)定义法:

根据定义,设任意得x

1

,x

2

,找出f(x

1

),f(x

2

)之间的大小关系

可以变形为求12

12

()()

f x f x

x x

-

-

的正负号或者1

2

()

()

f x

f x

与1的关系

(2)参照图象:

①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性;(特例:奇函数)

②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)

(3)利用单调函数的性质:

①函数f(x)与f(x)+c(c是常数)是同向变化的

②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。

③如果函数f

1

(x),f

2

(x)同向变化,则函数f

1

(x)+f

2

(x)和它们同向变化;(函数相加)

④如果正值函数f

1

(x),f

2

(x)同向变化,则函数f

1

(x)f

2

(x)和它们同向变化;如果负值函数f

1

(2)与f

2

(x)

同向变化,则函数f

1

(x)f

2

(x)和它们反向变化;(函数相乘)

⑤函数f(x)与1

()

f x

在f(x)的同号区间里反向变化。

⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u ∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。(同增异减)

相关文档
最新文档