电液比例控制技术B卷标准答案

电液比例控制技术B卷标准答案
电液比例控制技术B卷标准答案

试题

2012 年~ 2013 年第 2学期

课程名称:电液比例控制技术专业年级:机电2010级

考生学号:考生姓名:

试卷类型: A卷□ B卷□√考试方式: 开卷□闭卷□√

……………………………………………………………………………………………………………………

一、选择填空题(每题2分,共20分)(抄题目回答,不抄题目不给分)

1 比例电磁铁的类型不包括(D)。

A 力控制型比例电磁铁

B 行程控制型比例电磁铁

C 位置调节型比例电磁铁

D 速度调节型比例电磁铁

2 对于电液比例方向控制阀,与输入信号成比例的实质上是(D)。

A压力 B流量 C压力和流量 D阀芯位移

3比例调速阀是液压系统中控制流量的元件,它适用于(A)系统中。

A 执行元件负载变化大

B 执行元件负载变化小

C 执行元件负载恒定

D 以上三种

4 比例溢流阀采用①负反馈,比例减压阀采用②负反馈。(A)

A ①进口压力、②出口压力

B ①出口压力、②进口压力

C ①出口压力、②进出口压差

D ①进出口压差、②出口压力

5 当选用二级电液比例方向阀时,如果主阀进油口的压力不稳定,那么其先导阀的进油需要采用(B)。

A 内泄式

B 外控式

C 内控式

D 外泄式

6 恒压源的供油压力要保持恒定,下列哪种恒压源的功率损失小,效率高,适用于高压、大流量的大功率系统,

而且也可以向几套液压控制系统供油(C)

A 定量泵+比例溢流阀

B 恒压变量泵+安全阀

C 定量泵+蓄能器+卸荷溢流阀

D 恒压泵串联减压阀

7不带阀芯位移反馈闭环的比例方向阀的特点不包括(D)。

A 死区大

B 抗污染能力强

C 滞环大

D 滞环小

8 二通进口压力补偿器采用定差减压原理,本质上是一个定差减压阀与(B)工作。

A 恒流源串联

B 恒压源串联

C 恒流源并联

D 恒压源并联

9 比例流量控制泵不能称为(B)

A 功率适应泵

B 比例排量泵

C 功率匹配泵

D 负载敏感泵

10 复合控制变量泵具有(A)控制优先的特性。

A功率 B 流量 C 排量 D 压力

二、判断题(每题2分,共20分)(抄题目回答,不抄题目不给分)

1 比例电磁铁具有感性负载大、电阻大、电流大和驱动力大等特点。(×)

2 位置调节型比例电磁铁有很好的线性度,无需用颤振信号来减小滞环。(√)

3 比例方向阀与其输入成比例的是它的输出流量和压力。(×)

4 采用比例方向阀的控制回路本质上是一个串联式进、出油同时节流的调速回路。(√)

5 比例减压阀出口压力是由进口压力与减压阀芯阀口开度决定的。(×)

6 比例节流阀是通过改变阀口开度来改变通过流量的大小,其流量大小受负载影响不大。(×)

电液比例阀工作原理

电液比例阀工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术

电液控制技术及其应用

电液控制技术及其应用 作者:机械电子工程10级机自103班王名洲 [摘要] 20世纪70年代以来,随着人们对各类工艺过程的深入研究,电液比例控制技术作为连接现代微电子技术和大功率工程控制设备之间的桥梁,已经成为现代控制工程的基本技术构成之一。在实际生产中,电液比例控制技术涉及流量、压力、速度、转速、位移等,能随控制信号连续成比例地控制。电液比例控制技术起源于20世纪,并且经过了电液控制技术、电液比例控制技术以及电液伺服技术等发展阶段。电液比例技术覆盖很多工程机械,如起混凝土搅拌运输车液压系统,电液比例控制技术的广泛应用让工程简单化、高效化、信息化、安全化。[关键词] 电液控制技术控制工程机械混凝土搅拌运输车机电一体化0.前言 在当前的形式下,电液控制技术已经成为工业机械、工程建设机械及国防极端产品不可或缺的重要手段。以挖掘机、推土机、振动压路机等为代表的工程机械对国家基础设施建设起到了至关重要的作用,而火炮控制系统、导弹运输车中的电液控制技术则推动了我国国防实力的提升。电液控制技术在机床加工、交通运输、汽车工业等部门也有非常广阔的应用。他对我国国民经济的推动作用不可估量。 就所学机械电子工程专业来讲,电液控制技术与其密不可分。电液控制技术的调控精密度对于机械控制有着重要的意义。在电子计算机大行其道的今天,将电控、液压与机械紧密结合在一起,才是机械电子工程的发展新方向。 1.电液控制技术概述 1.1电液控制技术发展历程 液压技术早在公元前240年的古埃及就已经出现。在第一次工业革命时期,液压技术的到快速发展,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展, 其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、

国内外主要电液比例插装阀产品现状分析

中国地质大学 研究生课程论文 课程名称电液伺服控制技术教师姓名 研究生姓名 研究生学号 研究生专业机械工程 所在院系机械与电子信息学院类别: 硕士日期:

评语 对课程论文的评语 注: 1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

国内外主要电液比例插装阀产品现状分析 摘要:电液比例插装阀是电液比例技术、插装阀技术、传感技术、测试技术、微电子技术、精密加工技术等高度融合的高科技产品。本文主要对电液比例插装阀的工作原理和分类进行了概述,并对国内外相关公司及产品进行介绍、对比分析,最后对对电液比例控制技术的未来的发展趋势进行了分析和展望。关键词:电液比例插装阀;分类;产品现状;电液比例控制技术;发展趋势 Major domestic and foreign electro-hydraulic proportional valves Cartridge Situation Analysis Abstract: Electro-hydraulic proportional cartridge valves are electro-hydraulic proportional technology, cartridge valve technology, sensor technology, test technology, microelectronics, precision machining technology, high degree of integration of high-tech products. This article mainly discusses the working principle of electrohydraulic proportional cartridge valve and classification were summarized, and the related companies and products both at home and abroad is introduced, and comparison analysis. Keyword: Electro-hydraulic proportional cartridge valves; classify; products present situation; electricity liquid proportion controlling technology; development tendency. 1 概述 电液比例插装阀是电液比例技术、插装阀技术、传感技术、测试技术、微电子技术、精密加工技术等高度融合的高科技产品,能方便地和微机控制系统相结合,连续、成比例地调节受控腔的压力、速度、流量等,有效地改善系统稳态控制精度和动态品质。比例控制和插装技术相结合符合模块化、集成化和可配阻等液压发展趋势。电液比例插装阀属于电液比例阀中的一大类,其阀内比例电磁铁根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。它是以传统的工业用液压控制阀为基础,采用电──机械转换装置,将电信号转换为位移信号,按输人电信号指令连续、成比例地控制液压系统的压力、流量或方向等参数。[1] 插装式比例阀就是根据机电装备发展需要而研发的新型液压元件,它将电的快速性、灵活性等优点与液压传动力量大的优点结合起来,因此其具备响应快、密封性好、小型化、耐高压和使用寿命长等优点,并减少了元件的使用量,并能防止压力或速度变换时的冲击现象。 比例阀与伺服控制系统中的伺服阀相比,在某些方而还有一定的性能差距,但它显著的优点是抗污染能力强,大大地减少了因污染所造成的工作故障,提高了液压系统的工作稳定性和可靠性。另一方面比例阀的成本比伺服阀低,结构也简单,己在许多场合获得广泛应用。 比例阀相对伺服阀和开关阀的主要性能比较如表1所示。[2] 表 1 三种阀类主要性能比较

液压控制系统课后题答案

1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 答:理想滑阀是指径向间隙为零,工作边锐利的滑阀。实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 3、什么叫阀的工作点?零位工作点的条件是什么? 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L , 阀位移x V 时,阀的负载流量为q L 的位置。零位工作点的条件是 q=p=x=0 L L V 。 4、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益 q q = x L V K ? ? ,为放大倍数,直接影响系统的开环增益。流量-压力系 数 c q =- p L L K ? ? ,直接影响阀控执行元件的阻尼比和速度刚度。压力增益 p p = x L V K ? ? ,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力,当各系 数增大时对系统的影响如下表所示。 稳定性响应特 性稳态误差 q K c K p K 5、什么是稳态液动力?什么是瞬态液动力? 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 6、什么叫液压动力元件?有哪些控制方式?有几种基本组成类型? 答:液压动力元件(或称为液压动力机构)是由液压放大元件(液压控制元件)和液压执行元件组成的。控制方式可以是液压控制阀,也可以是伺服变量泵。有四种基本形式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸和泵控液压马达。 7、何谓液压弹簧刚度?为什么要把液压弹簧刚度理解为动态刚度? 答:液压弹簧刚度 2 e p h t 4A K V β =,它是液压缸两腔完全封闭由于液体的压缩性所

电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法 电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节 电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。 液压伺服系统的基本设计步骤 ○1分析整理所需的设计参数,明确设计要求;○2拟定控制方案,构成控制系统原理图;○3确定动力元件参数(如供油压力、执行元件规格、伺服阀容量)和其他组成元件;○4分析计算系统的静、动态特性,确定回路放大系数和设计校正措施等。○5根据技术要求设计出系统以后,需要检查所设计的系统是否满足全部性能指标,如不满足,可通过调整参数或改变系统结构(即校正)等方法重复设计过程,直至满足要求为止。因为设计是试探性的,所以设计方法具有很大的灵活性,在设计中结合MATLAB的SIMULINK软件进行仿真,对系统的参数进行调整和可靠性作进一步验证,最终可以得出比较可靠的电液伺服系统。 (一)组成控制系统原理图 由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1

(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器 1.绘制负载轨迹图 负载力由切削力c F ,摩擦力f F 和惯性力a F 三部分组成。摩擦力具有“下降”特性,为了简化,可认为与速度无关,是定值,取最大值f F = 1500N 惯性力按最大加速度考虑 a max F 800t m a N == 假定系统是在最恶劣的负载条件下工作(即所有负载力都在存在,且速度最大)下工作,则总负载力为 max f F F F F =l c a =++400+1500+800=2700N 2.选取供油压力 5s P 6310Pa =? 3.求取液压马达排量 设齿轮减速比'm i=/2m θθ=,丝杠导程2 1.210/t m r -=?,则所需液压马达力矩为 2 2700 1.210 2.58222 L L F t T N m i ππ-??===?? 取L s 2P =P 3,则液压马达弧度排量为-63L 5s 3T 3 2.58D ==0.610m /2P 26310 m rad ?=??? 液压马达每转排量为-63-632D 20.610m / 3.710m /m m Q r r ππ==??=? 计算出的液压马达排量需标准化。按选取的标准化值再计算负载压力L P 值。本例液压马达排量计算符合标准化。 4.确定伺服阀规格 液压马达的最大转速为2max max 2 2810800/min 13.3/1.210iv n r r s t --??====? 所以负载流量为-6-6max q 3.71013.3/49.2110l m Q n r s ==??=? 此时伺服阀的压降为 55L s Lmax s -6T 2.58P P P 631020.010D 0.610 v m P Pa Pa =-=-=?-=?? 考虑到泄漏等影响,将q l 增大15%,取q l = 3.4L/min 。根据q l 和v P ,查得额定流量为

电液控制习题答案

流量增益: )/(4.1870 10 7010814.362.025 3s m p W C K s d q =?????==-ρ 流量——压力系数: ( ) )/(1008.7107.83210814.310514.3323 123 32 62s pa m W r K c c ??=???????==----μπ )(107.8101087036s pa ??=??==--ρυμ 压力增益: )/(1097.1107.84.1113 m pa K K K c q p ?=?==- P39 习题2 )/(67.1601005.01052 3 30s m U q K c q =???==-- )/(1095.5107060210523 122 30s pa m p q K s c c ??=????==--- )/(108.210 95.567.111 12 000m pa K K K c q p ?=?==- P65 习题1 ??? ? ??++= 1222 s s s D K X h h h m q V m ωζωθ

)/(107.610 645 6 s m rad D K m q ??=?=- ( ) )/(98.402 .010310 6107444 2 68 2 s rad J V D t t m e h =??????==--βω t t e m ce h V J D K βζ= tm c ce C K K += ( ) s m q q n t /10327.61066.695.0%95344--?=??== ()( ) s m q q q q n t n /1034.0%95327.6667.634-?=-=-=? () pa s m p q C n tm ??=??=?=--/1043.210 1401034.03 125 4 () pa s m K ce ??=?+?=---/1043.21043.2105.13121216 28.01032.010********.24 8612=?????== ---t t e m ce h V J D K βζ ? ?? ? ??++?=14156 .01618107.625 s s s X V m θ P66 习题4 t X x m p ωsin = t X x m p ωωcos =? t X x m p ωωsin 2-=? ? t m X f t m ωωsin 2-=

电液比例与伺服控制期末考试大题

1、已知Ps=5MPa,负载力F=1000N,移动速度为v=s,活塞直径D=70mm,活塞杆直径d=50mm,流量系数Cd=,采用零开口滑阀,矩形全周开口,阀芯台肩直径dv=2mm,阀芯最大位移Xvm=1mm,油液密度为883kg/m3,试确定此阀控对称缸系统能否正常工作? 2、控制双出杆油缸的零开口四通滑阀,全周开口,阀芯直径d=12mm,供油压力Ps=4Mpa,动力粘度μ=×2-,径向间隙r=5×106-m,流量系数Cd=,油液密度ρ=900kg/m3。(1)计算阀的三个零位阀系数(其中压力增益K0p和压力流量系 数K0c按经验公式计算);(2)如果负载压力P L=,负载流量Q L=16L/min,计算三个阀系数。 3、阀控液压缸系统,液压缸面积Ap=150×104-m2,活塞行程L=,阀至液压缸的连接管道长度l=2m,管道截面积a=×104-m2,负载质量mt=2000kg,阀的流量—压力系数K c=×1012-m3/。试求液压固有频率ωh和液压阻尼比ζh。计算时取βe=700MPa,ρ=870kg/m3。 4、有一阀控液压马达系统,已知:液压马达的排量D m =6×106-m3/rad,马达容 积效率为95%,额定流量为q n =×104-m3/s,额定压力为p n =140×105Pa,高 低压腔总容积Vt=3×104-m3。拖动纯惯性负载,负载转动惯量J t =2,阀的流量增益Kq=4m2/s,流量―压力系数Kc=×1016-m3/,液压等效容积弹性模量βe=7×108Pa。试求出以阀芯位移为输入,液压马达转角为输出的传递函数。 5、有一四边阀控制的双作用缸,直接拖动负载做简谐运动。已知:供油压力 Ps=210×105Pa,负载质量m t =400Kg,负载位移规律为Xp=Xmsinωt,负载移动的最大振幅Xm=6×102-m,角频率ω=35rad/s,试根据最佳负载匹配求液压缸面积和四边阀的最大开口面积WXvm。计算时,取Cd=,ρ=870Kg/m3。6、阀控对称缸液压位置控制系统,运动部件最大质量m=35000Kg,行程H=,

液压控制系统大作业

液压控制系统大作业(指导书) 流体控制及自动化 2013年5月

《液压控制系统》大作业 题目1: 某机械的回转部分采用液压伺服控制系统,其动力元件为电液伺服阀控制对称液压缸形式。已知回转部分的转动惯量J=600 2 m Kg?,液压缸直线运动转换为旋转运动的传动比N=0.5(m)。液压缸行程为200mm。选取工作压力为14MPa。 (1)油缸作正弦运动:Y=0.05Sin(10t)m;画做出负载轨迹; (2)选取满足最佳匹配要求的电液伺服阀额定空载流量Qo和液压缸活塞有效面积A。 (3)选取电液伺服阀,写出电液伺服阀的传递函数。 (4)取 β=700*106 Pa,计算液压固有频率; e 伺服阀样本给出: 型号额定压力额定流量额定电流 FF106-63 21MPa 63L/min 15mA 40Hz FF106-100 21MPa 100L/min 40mA 40Hz 选阀并写出伺服阀传递函数(阀线圈并联连接)。 题目2: 某俯仰控制机构采用电液伺服阀控制对称液压缸形式的位置控制系统,已知俯仰机构的转动惯量J=700 2 m Kg?,液压缸直线运动转换为旋转运动的传动比N=0.25m。要求液压缸的最大行程为L=±100 mm。选工作压力为12MPa,要求给出: (1)油缸作正弦运动:Y=0.02Sin(10t)(m/s),做出负载轨迹; (2)选取满足最佳匹配要求的电液伺服阀额定空载流量Qo和液压缸活塞有效面积A。 (3)选取电液伺服阀,写出电液伺服阀的传递函数。 (4)取 β=700*106 Pa,计算液压固有频率; e 题目3: 某电液位置控制系统,采用电液伺服阀控制对称液压缸,系统的供油压力为

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。

电液控制操作指南

pm32型 电液控制系统 操作指南 MARCO系统分析和开发有限公司 目录 前言 1. 安全规程 2. pm32电液控制系统原理 3. pm32电液控制系统元件 4. pm32电液控制系统功能 5. pm32控制器操作指南 6. XALZ 界面操作指南 7. 综采工作面自动化 8. pm32电液控制系统维护指南

前言 随着上世纪80年代电子技术,现场控制技术和信息技术的快速发展,煤矿井工 开采迫切需要利用先进的控制技术,改变其落后的生产工艺和控制水平。煤矿井工 生产的核心是综采工作面,如何大幅度提升综采工作面现代化和自动化控制水平成为当时煤矿现代化的首要任务。 在综采工作面装备中,液压支架占据着核心的位置,一方面液压支架要保障对工作面的有效支护,另外一方面又要作为推进动力,保障工作面推进效率。如何提高液压支架对工作面的支护质量,如何提高采煤工作面的推进速度,成为煤矿现代化控制的重要要求。 在电液控制系统应用之前,液压支架采用手动操纵阀的控制方式,经历了本架手动控制,邻架手动控制,邻架液压先导控制的发展过程,手动控制方式的改进主要集中在控制的安全保障上,没有涉及到控制质量和控制效率的提高。 在上个世纪70年代末,英国人第一次提出了液压支架电液控制的概念,采用控制器,传感器和液压主阀替代手动操作阀,控制液压支架动作,保障对工作面顶板和煤壁的支护质量,提高工作面的推进速度。 随着电液控制系统在煤矿生产上的不断发展,支架电液控制系统已经超出了起初的控制范畴,从单纯控制液压支架,逐渐延伸到三机控制,泵站控制,采煤机等设备控制。从本世纪初开始,网络技术逐步引进到煤矿生产中来,在融合电液控制系统后,实现了综采工作面自动化,实现了综采工作面设备高效管理,实现综采工作面生产过程优化控制。 在1996年,液压支架电液控制系统随着德国DBT公司成套综采设备进入到中国,应用在当时的神府矿区。经过5年的使用和适应,电液控制系统高效性,高可靠性的优势逐渐显现出来,为国内各大煤矿所接受。随着marco公司pm3型电液控制系统进入中国,通过和国内支架厂配套,解决了成套设备进口价格昂贵的劣势,尤其在2003年之后,以marco公司pm3系统为代表的液压支架电液控制系统在国内逐渐推广开来,电液控制系统应用也逐渐从简单的地质结构扩展到复杂的地质结构,从高端客户逐渐扩展到了绝大多数的煤矿用户,从支架控制扩展到综采工作面自动化。 液压支架电液控制系统在控制层面上由三部分组成, 1. 单个液压支架层面上的机电一体化控制, 2. 工作面层面上的现场总线控制 3. 顺槽层面上的SCADA控制(生产过程控制).

电气控制习题

《电气控制与PLC》课程习题 第1章习题 1-1 试述单相交流电磁铁短路环的作用。 1-2 低压电器常用的灭弧方法有那些? 1-3 试比较刀开关与负荷(铁壳)开关的差异及各自的用途。 1-4 选择接触器时,主要考虑交流接触器的那些主要额定参数? 1-5 两个110V的交流接触器同时动作时,能否将其两个线圈串联接到220V电路上?为什么? 1-6 中间继电器与交流接触器有什么差异?在什么条件下中间继电器也可以用来启动电动机?1-7画出断电延时时间继电器电磁线圈和各种延时触点的图形和文字符号。 1-8 热继电器主要由哪几部分电气符号?用途与熔断器是否相同?直流电机的保护电路能否使用热继电器? 1-9 空气式时间继电器的延时时间如何调节?JS7-A型时间继电器触头有哪几类? 1-10试比较交流接触器线圈通电瞬间和稳定导通电流的大小,并分析其原因。 1-11 组合开关与万能转化开关的结构有何异同?各有什么用途? 1-12 叙述熔断器的额定电流和熔体额定电流的不同之处。 1-13 过流继电器能否用于绕线式交流异步电动机的过载和短路保护?鼠笼式交流异步电机的过载和短路保护使用过流继电器吗?为什么? 1-14 两台电动机不同时起动,一台电动机额定电流为14.8A,另一台电动机额定电流为6.47A,试选择同时对两台交流电机进行短路保护的熔断器额定电流及熔体的额定电流。 1-15 在电动机主回路装有DZ20系列断路器,电动机主回路是否可以不装熔断器?分析断路器与刀开关控制、保护方式的不同特点。 1-16 电动机的起动电流很大,在电动机起动时,能否按电动机的额定电流整定热继电器的动作电流?为什么? 1-17 说明熔断器和热继电器保护功能的不同之处。 1-18 一台长期工作的三相交流异步电动机的额定功率13Kw,额定电压380V,额定电流25.5A,试按电动机额定工作状态选择热继电器型号、规格,并说明热继电器整定电流的数值。 第2章习题 2-1 叙述“自锁”、“互锁”电路的定义。 2-2 什么是保护接地?什么是保护接零? 2-3 在电气控制线路中采用低压断路器作电源引入开关,电源电路是否还要用熔断器作短路保护?控制电路是否还要用熔断器作短路保护? 2-4 分别写出电机正、反转控制电路中两个接触器线圈通电的逻辑表达式。 2-5 在接触器正反转控制电路中,若正、反向控制的接触器同时通电,会发生什么现象? 2-6 利用断电延时型时间继电器设计三相交流异步电动机的Y-Δ起动控制线路。 2-7 用控制流图分析图2.3.4所示自耦补偿起动控制电路的工作原理。 2-8 分别叙述多地控制和多条件控制电路的特点和不同之处,并分别叙述其用途。

电液伺服控制系统的应用研究

电液伺服控制系统的应用研究 【摘要】电液伺服控制是液压技术领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,电液伺服控制系统的研究工作也取得很大进展。 【关键词】电液伺服控制应用 1、电液控制系统的特点、构成及分类 电液控制系统是一门比较年轻的技术,它的发展和普遍应用还不到50年,然而,凭借它的优点却形成了流体传动与控制的一个重要分支,并成为现代控制工程的基本技术构成之一。 1.1电液控制系统的特点 1) 液压执行元件的功率--重量比和转矩--惯性矩比(或力--质量比)大,具有很大的功率传递密度,可以构成体积小、重量轻、响应速度快的大功率控制单元。 2) 液压系统的负载刚度大,精度高。由于液压杠、执行元件的泄漏很少,液体介质的体积弹性模量又很大,故具有较大的速度--负载刚性,即速度--力或转速--力矩曲线斜率的倒数很大,因此有可能用于开环系统。用于闭环系统时则表现为位置刚度大,其定位精度受负载变化的影响小。 3) 液压控制系统可以安全,可靠并迅速地实现频繁的带负载启动和制动,进行正反向直线或回转运动和动力控制,而且具有很大的调速范围。 电气或电子技术和液压传动及控制相结合的产物--电液控制系统兼备了电气和液压的双重优势,形成了具有竞争力和自身技术特点。 当然,在某些场合下,指令和反馈元件也可全部采用机械、气动或液压元件,此时,即称为机械--液压控制系统和气动--液压控制系统。 1.2 电液控制系统的构成 工程实际中系统的指令及放大单元多采用电子设备。电机械转换器往往是动圈式或动铁式电磁元件和伺服电机、步进电机等。液压转换及放大器件可以是各类开关式,伺服式和比例式器件实际上是一功率放大单元。液压执行元件通常是液压缸和液压马达,其输出参数只能是位移、速度、加速度和力或者转角、角速

电液比例技术复习题

液压课程复习 1. 比例阀、伺服比例阀、伺服阀的性能及应用特点;P2,P228 1. 比例阀:其主要缺陷,由于比例阀不可避免的存在死区,因此它不能很好的用于位置、 力控制闭环。但是能进行电控,能满足70%工业用户要求的动态响应特性,因此能得到 广泛的使用。因此,比例阀一般多用于开环控制,其控制较伺服阀要灵活,控制精度要 低,频响较低,最高才几十赫兹。 2伺服阀:伺服阀要求加工精度高,油液需要精过滤,因此价格比较昂贵,但是它的动 态性能是所有液压阀中最高的,其阀口多为零遮盖的,且无零位死区,控制精度较高, 频响较高。因此,伺服阀一般用于闭环系统,且工作在零位附近。 3伺服比例阀:伺服比例阀的性能介于伺服阀和比例阀之间,其最重要的特征之一是, 阀口为零遮盖,无零位死区,解决了位置、压力等要求无零位死区的闭环控制系统中的 应用。采用比例电磁铁作为电机械转换器,可用于各类闭环系统,频响较一般比例阀为高,可靠性比伺服阀高。 2. 比例放大器的颔振、零位(死区)跳跃、缓冲功能及作用;P50 ,P45,P44 1.颤振:颤振信号是指叠加在直流控制信号中的高频(50— 100HZ)小振幅交流信号, 用于减小摩擦力及磁滞所造成的滞环,并有利于消除卡涩现象。 2.零位(死区)跳跃:零位跳跃信号是由阶跃函数发生器发出的,该信号发出后经放大,可以给 比例电磁铁一个阶跃电流,使比例阀阀芯迅速越过零位死区,即削弱或排除比例阀阀芯正遮盖的影响,适应零区控制特性的要求。 死区补偿:输入电压大于+-0.1V时用补偿环节加大放大器输出(如1.3V)将(+-20% 总位移)正遮盖(零位死区)的影响减少到最低程度。 3.缓冲:缓冲信号以一个设定值阶跃作为输入信号,斜坡信号发生器产生一个缓慢上升或者下降 的输出信号,输出信号的变化速率可以通过电位器调节,以实现被控系统或运动速度等无冲击过渡,满足系统控制的缓冲要求。 将设定值的阶跃输入转化成精确可控的斜坡输出,使压力变化或者加减速过程平缓, 减少冲击。 3. 比例放大器PWM的功率放大原理; P53,原理简图+文字说明 4. 比例调速阀的组成及工作原理;P167 ,P178 比例调速阀由定压式减压阀和电液比例节流阀组成。 工作原理:由定差减压阀对节流阀口前后的压力变化进行补偿,使节流阀口压差近似保 持为定值,从而实现输入信号对流量的单调控制。 比例调速阀的工作原理与一般的调速阀相似,调速阀进口压力p1由溢流阀调整,基本上保持恒定。调速阀的出口压力由活塞上的负载决定。所以当负载增大时,作用在减压 阀芯左端的液压力增大,阀芯右移,减压口加大,压降减小,从而使节流阀的压差保持不变,反之亦然。这样就使通过调速阀的流量恒定不变,活塞运动的速度稳定,不受负载变化的影响。而比例电磁铁和放大器则可以调节流量,从而根据需要调节速度大小。 5. 先导液压桥路(液压半桥)分析;P111,P101 先导液压半桥多用于液压控制期间的先导控制油路,它是由液阻构成的无源网络,因此 需要外部压力源供油。就半桥本身构成而言,可归纳为以下几点:

哈工大机电液系统测试技术大作业 电液伺服阀性能测试

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机电液系统实验测试技术 大作业(二) 设计方案:电液伺服阀性能测试系统 学院:机电工程学院 专业:机械设计制造及其自动化 班级: 学号: 姓名: 指导老师: 时间:

哈尔滨工业大学 目录 前言 (2) 系统组成及功能 (2) 电液伺服阀测试系统原理 (2) 电液伺服阀特性测试 (3) 静态测试 (3) 动态测试 (9) 传感器选型 (10) 体会与心得 (10) 参考文献 (11)

1.前言 电液控制伺服阀简称伺服阀,相对于普通液压系统中的常规阀来说,伺服阀是一种高级的、精密的液压元件。伺服阀既是信号转换元件,又是功率放大元件。在电液伺服控制系统中,伺服阀将系统的电气部分与液压部分连接起来,实现电液信号的转换与放大,对液压执行元件进行控制,具有控制精度高、响应速度快、信号处理灵活、输出功率大和结构紧凑等优点。为了更好地利用电液伺服阀,必须对它进行充分的实验。 2.系统组成及功能 电液伺服阀测试系统主要由泵站系统、测试台、计算机测控系统等组成。小泵额定压力为21 MPa,流量10 L/min;大泵额定压力为7 MPa,流量90 L/min。测试台设计成两个工位,即电液伺服阀静态测试工位和动态测试工位。测控系统主要包括:电源开关电路、信号调理器、Avant测试分析仪、控制软件(液压CAT控制测试软件)和计算机系统。测控系统实施对液压能源、液压测试台的控制,实现对电液伺服阀某项或多项液压参数测试的油路转换,同时采集各项所需的液压参数,经软件处理获得符合电液伺服阀试验规范要求的曲线、数据、报表等。实现了对电液伺服阀的动、静态特性的实时显示及描绘,并自动进行相关数据分析和处理。 3.电液伺服阀测试系统原理

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

液压技术习题

液压技术习题 第一章绪论 1.液压传动系统是由;;; 和五部分组成的。 第二章流体传动基础 一、名词解释 1、理想液体: 2、层流流动: 3、紊流流动: 4、粘性: 5、定常流动: 6、流线: 7、迹线: 8、流管: 二填空 1.流体动力学的三大方程是:1 ;2 ; 3. 。 2.方程F = ρq(β2v2-β1v1)为方程,F为,β2、β1为系数,在状态下β= 1,v2、v1为液体流经出口和进口的。 3.沿程压力损失的计算公式为;在层流状态下,沿程阻尼系数为 ,Re叫做,它是用来判别的。 4.定常流动时,流体内的各个参量均为。 5.液压油的粘度表示方法有μυ和E,它们分别叫做粘度,粘度和粘度,20号机械油的运动粘度在温度为500 C时为~ cst 6.续性方程的数学表达方式为,它表示液体流动过程中的守恒。- 7.体在光滑的金属圆管中流动,管道直径为 d 流动速度为v 它可能有地种流动 状态,即和,通常用数来判别,该数为Re = . 四、计算题 1 某液压泵流量为q = 16 l/min,且安装在油面以下,如图所示。已知油的密度为ρ=900kg/m3,运动粘度υ=11×10-6m2/s,油管直径d=18mm,若油箱油面位置高度不变,油面压力为1个标准大气压(1个标准大气压=1.03×105pa),从油箱底部到油泵吸油口处的管子总长L=2.2m,油箱油面到油泵吸油口中心高度h=0.9m,若仅计管中沿程损失,求油泵吸油口处的绝对压力。(重力加速度为g = 10 m/s2)。

2 .如图所示:液压泵从油箱内吸油,油面压力为1个标准大气压,已知吸油管直径为d = 6 cm ,流量q = 150 l/min ,油泵吸油口处的真空度为0.2 × 105 N/m 2,油的运动粘度为υ= 30×10-5 m 2 /s,ρ= 900kg/m 3,弯头处的局部阻尼系数ζ1= 0.2,管子入口处的局部阻尼系数ζ2 = 0.5,管道长度等于H ,试求泵的安装高度H 。 3.如图所示:已知:D=150mm ,d=100 mm ,活塞与缸体之间是间隙配合且保持密封,油缸内充满液体,若F = 5000N 时,不计液体自重产生的压力,求缸中液体的压力。 第三章 动力元件 1.如下图所示基本回路是由 泵和 马达组成的 回路。 当泵的转速N b 排量为V b 效率为1。 2.液压泵的作用是把电动机输入的 能转换成 能,它是液压系统中 的 机构。 3.液压泵完成吸油压油所必备的条件有: a ;b ;c 。 4.. 某液压泵的排量为10ml/r,工作压力为10Mpa,转速为1500r/min,泄露系数λB =2.×10-6ml/pa.s,泄漏量△q=λB p 工机械效率为0.9,试求: 1).泵的实际输出流量.2).泵的容积效率和总效率.3).输入和输出功率,4)理论和实际输入转矩。

相关文档
最新文档