高一数学充分条件与必要条件练习题及答案详解
充分条件与必要条件练习(含详解)
充分条件与必要条件练习一、选择题(本大题共30小题,共150.0分)1.已知若命题p:|x−1|≤1,命题q:1x≥1,则非p是非q的()A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件2.“f(a)⋅f(b)<0”是“定义在区间[a,b]上的函数y=f(x)有零点”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件3.已知命题p:(x−2)(x−3a+1)<0,命题q:a<x<a2+2,若¬p是¬q的必要条件,则实数a的取值范围()A. [12,1)⋃(1,2] B. [12,2] C. [12,1] D. [1,2]4.使得a>b>0成立的一个充分不必要条件是A. 1b >1aB. e a>e bC. a b>b aD. lna>lnb>05.方程表示椭圆的必要不充分条件是()A. B.C. D.6.已知平面α,β,则α//β的一个充分条件是A. 平面α内有无数条直线与β平行B. 平面α内有两条相交的直线与β平行C. 平面α,β平行于同一条直线D. 平面α,β垂直于同一平面7.已知p:x+y≠−2,q:x,y不都是−1,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知直线l1:ax+(a+1)y+1=0,l2:x+ay+2=0,则“a=−2”是“l1⊥l2”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分不必要条件9.若x,y∈R,则x<y的一个充分不必要条件是A. |x|<|y|B. x2<y2C. √x<√yD. x13<y1310.已知直线l,m,平面α,且m⊂α,则()A. “l⊥α”是“l⊥m”的必要条件B. “l⊥m”是“l⊥α”的必要条件C. 若l//m,则l//αD. 若l//α,则l//m≥1,q:|x−a|<2,若p是q的充分不必要条件,则a的范围为()11.已知p:1x−2A. (−∞,4]B. (1,4]C. [1,4]D. (1,4)12.“方程mx2+ny2=1表示焦点在x轴上的椭圆”的一个充分不必要条件是A. n>m>0B. m>n>0C. m>n>1D. n>m>1<0},B={x|(x−a)(x−b)<0},若“a=−2”是“A⋂B≠⌀”的充分条件,则b 13.集合A={x|x−2x+1的取值范围是()A. b<−1B. b>−1C. b≥−1D. −1<b<214.下列选项中说法正确的是()A. 命题“p∨q为真”是命题“p∧q为真”的必要条件.B. 若向量a⃗,b⃗ 满足a⃗⋅b⃗ >0,则a⃗与b⃗ 的夹角为锐角.C. 若am2≤bm2,则a≤b.D. “∃x0∈R,x02−x0≤0”的否定是“∀x∈R,x2−x≥0”15.如图,随机事件A,B(两个圆)将全事件Ω(长方形)分成了个两两互斥的4个事件,这4个事件发生的概率已在韦恩图中标识.则事件A与B独立的一个充分条件是()A. p1=p2p3B. p2=(p1+p2)⋅(p2+p4)C. p4=p2p3D. p3=(p1+p3)⋅(p1+p4)16.“x2−4x>0”是“x>4”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17.在下列结论中,正确的有()①x 2>4是x 3<−8的必要不充分条件;②在△ABC 中,AB 2+AC 2=BC 2是△ABC 为直角三角形的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件.A. ①②B. ②③C. ①③D. ①②③18. 设p :2x 2−3x +1≤0,q :x 2−(2a +1)x +a(a +1)≤0,若q 是p 的必要不充分条件,则实数a的取值范围是( )A. [0,12]B. (0,12)C. (−∞,0]∪[12,+∞)D. (−∞,0)∪(12,+∞) 19. “mn >0”是“x 2m −y 2n=1”表示双曲线的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件20. 命题p :∃x ∈[−2,1],x 2+x −m ≤0成立的充要条件是( )A. m ≥0B. m ≥−14C. −14≤m ≤2D. m ≥221. 在ΔABC 中,“A >B ”是“sinA >sinB ”成立的 ( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件22. 在三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则“a =b ”是“cos A =cos B ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件23. 设p :log 2x 2>2,q :x >2,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件24. 设命题p :∀x ∈R ,x 2−4x +2m ≥0(其中m 为常数),则“m ≥1”是“命题p 为真命题”的什么条件( )A. 充分不必要B. 充分且必要C. 必要不充分D. 既不充分也不必要25. 下列各结论中正确的是( )A. “xy ≥0”是“x y ≥0”的充要条件B. “√x 2+9+√x 2+9”的最小值为2C. 命题“∀x >1,x 2−x >0”的否定是“∃x 0≤1,x 02−x 0≤0”D. “函数y =ax 2+bx +c 的图象过点(1,0)”是“a +b +c =0”的充要条件26. 在斜ΔABC 中,“tanAtanB <1”是“ΔABC 为钝角三角形”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件27. 对任意x ∈R ,函数f(x)=ax 3+ax 2+7x 不存在极值点的充要条件是( )A. 0≤a ≤21B. 0<a <21C. a ≤0或a ≥21D. a <0或a > 21 28. 已知数列的前n 项和S n =p ×2n +1,则为等比数列的充要条件是( ) A. 0<p <1 B. p =−1 C. p =−2 D. p >129. 定义在R 上的函数y =f(x),恒有f(x)=f(2−x)成立,且f′(x)⋅(x −1)>0,对任意的x 1<x 2,则f (x 1)<f (x 2)成立的充要条件是( ).A. x 2>x 1≥1B. x 1+x 2>2C. x 1+x 2≤2D. x 2>x 1≥12 30. 已知直线x −2y +a =0与圆O:x 2+y 2=2相交于A 、B 两点(O 为坐标原点),则“a =√5”是“OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件答案和解析1.C 解:p:|x −1|≤1,−1≤x −1≤1,0≤x ≤2,q:1x ≥1,0<x ≤1,∵q 是p 的充分不必要条件,根据一个命题和它的逆否命题真假性相同,∴¬p 是¬q 的充分而不必要条件. 2.D 解:由“f(a)⋅f(b)<0”不能推出“定义在区间[a,b]上的函数y =f(x)有零点”,函数f(x)必须连续,由“定义在区间[a,b]上的函数y =f(x)有零点”也不能推出“f(a)⋅f(b)<0”,f(a)和f(b)可能同号,所以“f(a)⋅f(b)<0”是“定义在区间[a,b]上的函数y =f(x)有零点”的既不充分也不必要条件, 3.B 解:当a =1时,符合题意;当a >1时,P :2<x <3a −1,则¬p :x ≤2或x ≥3a −1,¬q :x ≤a 或x ≥a 2+2,因为¬p 是¬q 的必要条件,所以1<a ≤2,当a <1时,P :3a −1<x <2,则¬p :x ≤3a −1或x ≥2,¬q :x ≤a 或x ≥a 2+2,因为¬p 是¬q 的必要条件,所以12≤a <1;综上a 的取值范围为[12,2]. 4.D 解:对于A ,1b >1a ⇒1b −1a >0⇒a−b ab >0,不一定有a >b >0,故错误.对于B ,e a >e b ⇒a >b ,不一定有a >b >0,故错误.对于C ,当a =−1,b =2,满足a b >b a ,不满足a >b >0,故错误.对于D ,由lna >lnb >0⇒a >b >1,满足a >b >0,满足充分条件,反之不成立,所以lna >lnb >0是a >b >0的充分不必要条件.5.B 解:由方程x 24+m +y 22−m =1表示椭圆, 则{4+m >02−m >04+m ≠2−m,解得m ∈(−4,−1)∪(−1,2),由(−4,−1)∪(−1,2)⫋(−4,2),所以m ∈(−4,2)是m ∈(−4,−1)∪(−1,2)的必要不充分条件,6.B 解:对于A ,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A 不正确;对于B ,根据两平面平行的判定定理定理知,B 正确;对于C ,平行于同一条直线的两个平面可能相交,也可能平行,所以C 不正确;对于D ,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D 不正确.7.A 解:¬p :x +y =−2,¬q:x ,y 都是−1,则当x ,y 都是−1时,满足x +y =−2,反之当x =1,y =−3时,满足x +y =−2,但x ,y 都是−1不成立,即¬q 是¬p 充分不必要条件,则根据逆否命题的等价性知p 是q 的充分不必要条件,8.A 解:因为直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0, 当“a =−2”时,直线l 1:−2x −y +1=0,l 2:x −2y +2=0,满足k 1⋅k 2=−1,∴“l 1⊥l 2”.如果l 1⊥l 2,则a +(a +1)a =0,解得a =−2或a =0,不一定推得a =−2,∴“a =−2”是“l 1⊥l 2”充分不必要条件.9.C 解:由|x|<|y|,x 2<y 2未必能推出x <y ,故排除A ,B ;由√x <√y 可推出x <y ,反之,未必成立,故C 正确;由x 13<y 13是x <y 的充要条件,故排除D . 10.B 解:∴“”是“”的必要条件,故A 错误,B 正确;当l//m,m ⊂α时,l ⊂α或l//α,故C 错误;若l//α,m ⊂α,则l//m 或l 与m 异面,故D 错误,11.B 解:由1x−2≥1,得{x −3⩽0x −2>0,即2<x ≤3,由|x −a|<2得a −2<x <a +2, 若p 是q 的充分不必要条件,则{a −2⩽2a +2>3,即1<a ≤4, 12.D 解:方程mx 2+ny 2=1表示焦点在x 轴上的椭圆,所以n >m >0 ,所以n >m >1是“方程mx 2+ny 2=1表示焦点在x 轴上的椭圆”的一个充分不必要条件. 13.B 解:A ={x|−1<x <2},当a =−2时方程(x −a)(x −b)=0的两个跟分别为−2和b ,因为−2<−1,所以若a =−2是A ∩B ≠⌀的充分条件,则b >−1.14.A 解:A.命题“p ∨q 为真”可知或q 为真,命题“p ∧q 为真”则p 和q 都是真命题,因此命题“p ∨q 为真”是命题“p ∧q 为真”的必要不充分条件的必要不充分条件,故A 正确;B .若向量a ⃗ ,b ⃗ 满足a ⃗ ·b ⃗ >0,则a ⃗ 与b ⃗ 的夹角为锐角或0,因此B 不正确;C .当m =0时,满足am 2≤bm 2,但是a ≤b 不一定成立,因此不正确;D .根据命题的否定可得“∃x 0∈R ,x 02−x 0≤0”的否定是“∀x ∈R ,x 2−x >0”,因此D 不正确.15.B 解:若A ,B 独立,则P(AB)=P(A)P(B),即p 1=(p 1+p 2)(p 1+p 3)=(p 1+p 2)(1−p 2−p 4),化简得p 2=(p 1+p 2)(p 2+p 4),16.B 解:解一元二次不等式x 2−4x >0得:x <0或x >4,又“x <0或x >4”是“x >4”的必要不充分条件,即“x 2−4x >0”是“x >4”的必要不充分条件,17.C 解:对于结论①,由x 3<−8⇒x <−2⇒x 2>4,但是x 2>4⇒x >2或x <−2⇒x 3>8或x 3<−8,不一定有x 3<−8,故①正确;对于结论②,当B =90∘或C =90∘时不能推出AB 2+AC 2=BC 2,故②错;对于结论③,由a 2+b 2≠0⇒a ,b 不全为0,反之,由a ,b 不全为0⇒a 2+b 2≠0,故③正确.18.A 解:p :2x 2−3x +1≤0,解得:12≤x ≤1,q :x 2−(2a +1)x +a(a +1)≤0,解得:a ≤x ≤a +1.若q 是p 的必要不充分条件,则{a ≤121≤a +1,解得:0≤a ≤12. 19.C 解:若方程x 2m −y 2n =1表示双曲线 ,则 mn >0.故“mn <0”是“方程x 2m −y 2n =1表示双曲线”的充要条件,20.B 解:∵∃x ∈[−2,1],x 2+x −m ⩽0成立是真命题,∴等价于m ⩾(x 2+x )min ,x ∈[−2,1]恒成立, ∵函数y =x 2+x =(x +12)2−14,当x =−12∈[−2,1]时,函数y 有最小值−14,∴m ≥−14,故选B . 21.A 解:1°由题意,在△ABC 中,“A >B ”,由于A +B <π,必有B <π−A若A ,B 都是锐角,显然有“sinA >sinB ”成立,若A ,B 之一为锐角,必是B 为锐角,此时有π−A 不是钝角,由于A +B <π,必有B <π−A ≤π2,此时有sin(π−A)=sinA >sinB综上,△ABC 中,“A >B ”是“sinA >sinB ”成立的充分条件2°研究sinA >sinB ,若A 不是锐角,显然可得出A >B ,若A 是锐角,亦可得出A >B , 综上在△ABC 中,“A >B ”是“sinA >sinB ”成立的必要条件综合1°,2°知,在△ABC 中,“A >B ”是“sinA >sinB ”成立的充要条件, 22.C 解:若a =b ,则A =B ,∴cos A =cos B ,即充分性成立,若cos A =cos B ,结合余弦函数在(0,π)上的单调性有A =B ,从而a =b ,即必要性成立, 综上可得:“a =b ”是“cos A =cos B ”的充要条件.23.B 解:由log 2x 2>2得x 2>4,即x >2或x <−2,即p 是q 成立的必要不充分条件, 24.C 解:命题p :∀x ∈R ,x 2−4x +2m ≥0(其中m 为常数),由△=16−8m ≤0,解得m ≥2. 因为{m|m ≥2}⫋{m|m ≥1},则“m≥1”是“命题p为真命题”的必要不充分条件.25.D解:对于A,xy≥0可知,y=0时,则不等式两边不能同时除以y2,所以不是是充分条件,A错误;对于B,由均值不等式可知,√x2+9+√x2+9≥2,当且仅当√x2+9=√x2+9,解得x2=−8,无解,所以等号不成立,所以取不到最小值,B错误;对于C,因为全称命题的否定是特称命题,所以命题“∀x>1,x2−x>0”的否定是“∃x0>1,使得x02−x0⩽0”,所以C错误.对于D,对于二次函数而言,将(1,0)代入,得a+b+c=0,充分性得证;反之,a+b+c=0说明x=1是方程ax2+bx+c=0的根,即(1,0)是二次函数y=ax2+bx+c经过的点,必要性得证,故D正确.26.C解:解法一:(1)若C为钝角,则A,B为锐角,∴tanC=−tan(A+B)=−tanA+tanB1−tanAtanB<0,解得tanAtanB<1.若A或B为钝角,则tanAtanB<1成立.(2)若tanAtanB<1成立,假设A或B为钝角,则△ABC为钝角三角形.假设A,都B为锐角,tanC=−tan(A+B)=−tanA+tanB1−tanAtanB<0,解得C为钝角,则△ABC为钝角三角形.综上可得:在△ABC中,“tanAtanB<1”是“△ABC为钝角三角形”的充要条件.解法二:tanAtanB<1⇔1−sinAsinBcosAcosB >0⇔cos(A+B)cosAcosB>0⇔cosAcosBcosC<0⇔△ABC为钝角三角形.∴在△ABC中,“tanAtanB<1”是“△ABC为钝角三角形”的充要条件.27.A解:∵函数f(x)=ax3+ax2+7x(x∈R),∴f′(x)=3ax2+2ax+7,∵函数f(x)=ax3+ax2+7x(x∈R)不存在极值点,∴①a=0时,f′(x)=7>0恒成立;②a≠0时,Δ=4a2−84a≤0,解得:0<a≤21,∴函数f(x)=ax3+ax2+7x(x∈R)不存在极值点的充要条件是0≤a≤21,28.B解:∵S n=p×2n+1,∴当n=1时,a1=S1=2p+1,当n≥2时,a n=S n−S n−1=p×2n+1−p×2n−1−1=p×2n−1.∵{a n}为等比数列,∴2p+1=p×20,∴p=−1,反过来,当p=−1,S n=−2n+1,a1=S1=−1,当n≥2时,a n=S n−S n−1=(−1)×2n+1−(−1)×2n−1−1=(−1)×2n−1,又a1符合a n的表达式,∴a n=(−1)×2n−1,∴{a n}是首项为−1,公比为2的等比数列,故{a n}为等比数列的充要条件为p=−1.29.B解:由f(x)=f(2−x),得函数f(x)关于x=1对称,由f′(x)⋅(x −1)>0得,当x >1时,f′(x)>0,此时函数f(x)为增函数,当x <1时,f′(x)<0,此时函数f(x)为减函数,因为x 1<x 2,若x 1≥1时,函数f(x)在x >1上为增函数,满足对任意的x 1<x 2,f (x 1)<f (x 2),此时x 1+x 2>2; 若x 1<1,∵函数f(x)关于x =1对称,则f (x 1)=f (2−x 1),则2−x 1>1,由f (x 1)<f (x 2)得f (x 1)=f (2−x 1)<f (x 2),此时2−x 1<x 2,即x 1+x 2>2; 即对任意的x 1<x 2,f (x 1)<f (x 2)得x 1+x 2>2;反之也成立,所以对任意的x 1<x 2,则f (x 1)<f (x 2)成立的充要条件为“x 1+x 2>2”.30.A 解:设A(x 1,y 1),B(x 2,y 2).联立{x −2y +a =0x 2+y 2=2,化为:5y 2−4ay +a 2−2=0, 直线x −2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),∴△=16a 2−20(a 2−2)>0,解得:a 2<10.∴y 1+y 2=4a 5,y 1y 2=a 2−25,OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0⇔x 1x 2+y 1y 2=0, ∴(2y 1−a)(2y 2−a)+y 1y 2=0,∴5y 1y 2−2a(y 1+y 2)+a 2=0,∴5×a 2−25−2a ×4a 5+a 2=0,解得a =±√5.则“a =√5”是“OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0”的充分不必要条件. 故选:A .。
高一数学充分条件与必要条件练习题及答案详解
高一数学充分条件与必要条件练习题及答案详解Last revised by LE LE in 2021例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D⇒⇒⇔说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②∵是成立的充要条件,∴③C B C B⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是 [ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A(B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
专题04 充分条件与必要条件(练)(解析版).pdf
《2020-2021学年高一数学同步讲练测(新教材人教A 版必修第一册)》专题04充分条件与必要条件(练)1.a ,b 中至少有一个不为零的充要条件是( )A .ab =0B .ab>0C .a 2+b 2=0D .a 2+b 2>0【参考答案】D 【解析】,ab =0是a ,b 中至少有一个不为零的非充分非必要条件;A ab>0是a ,b 中至少有一个不为零的充分非必要条件;,B ,a 2+b 2=0是a ,b 中至少有一个不为零的非充分非必要条件;C ,a 2+b 2>0,则a ,b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0.所以a 2+b 2>0是a ,b 中至少有一个不D 为零的充要条件.故选:D2.a >b 的一个充分不必要条件是( )A .a 2>b 2B .|a |>|b |C .D .a -b >111a b <【参考答案】D 【解析】,,,则ABC 错误;22a b a b >⇒>/11b a a b <⇒/>||||a b a b>⇒>/a -b >1⇒a -b >0而a -b >0⇏a -b >1,则D正确;故选:D3.一元二次函数的图像的顶点在原点的必要不充分条件是( )2y ax bx c =++A .B .C .D .0,0b c ==0a b c ++=0b c +=0bc =【参考答案】D 【解析】若一元二次函数的图像的顶点在原点,则,且,所以顶点在2y ax bx c =++02b a -=0c =原点的充要条件是故A 是充要条件,B 、C 既不充分也不必要,D 是必要条件,非充分条件.0,0,b c ==故选:D.4.【黑龙江省海林市朝鲜族中学人教版高中数学同步练习】设集合,,则“”是“{}1,2M ={}2N a =1a =-”的( )N M ⊆A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件【参考答案】A 【解析】解:当时,,满足,故充分性成立;1a =-{}1N =N M ⊆当时,或,所以不一定满足,故必要性不成立.N M ⊆{}1N ={}2N =a 1a =-故选:A.5.【浙江省湖州市2019-2020学年高二上学期期中】已知,那么“”是“”的()a R ∈1a >21a >A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【参考答案】A 【解析】当时,成立,1a >21a >取,此时成立,但是不成立,2a =-21a >1a >“”是“”的充分不必要条件,1a >21a >故选:A.6.【必修第一册 逆袭之路】若,则“且”是“且”的( ),a b ∈R 1a >1b >1ab >2a b +≥A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【参考答案】A 【解析】因为且,所以根据同向正数不等式相乘得,根据同向不等式相加得,即成1a >1b >1ab >2a b +>2a b +≥立,因此充分性成立;当时满足且,但不满足且,即必要性不成立;1,2a b ==1ab >2a b +≥1a >1b >从而“且”是“且”的充分不必要条件,1a >1b >1ab >2a b +≥故选:A7.【必修第一册 逆袭之路】设,则“”是“”的( )x ∈R 250x x -<|1|1x -<A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【参考答案】B 【解析】化简不等式,可知 推不出;05x <<11x -<由能推出,11x -<05x <<故“”是“”的必要不充分条件,250x x -<|1|1x -<故选B .8.若“”是“”的必要不充分条件,则实数的最大值为_______.21x >x m <m 【参考答案】1-【解析】由得,21x >-11x x <>或“”是“”的必要不充分条件,21x >x m <,(,)(,1)(1,)m ∴-∞⊆-∞-⋃+∞.1m ∴≤-故参考答案为.1-9.“方程没有实数根”的充要条件是________.220x x a --=【参考答案】1a <-【解析】解析因为方程没有实数根,所以有,解得,因此“方程没220x x a --=440a ∆=+<1a <-220x x a --=有实数根”的必要条件是.反之,若,则,方程无实根,从而充分性成立.故“方1a <-1a <-∆<0220x x a --=程没有实数根”的充要条件是“”.220x x a --=1a <-故参考答案为:1a <-10.已知a 、b 是实数,则“a >1,且b >1”是“a +b >2,且ab >1”的____条件.【参考答案】充分不必要【解析】解:a 、b 是实数,则“a >1,且b >1”⇒“a +b >2,且ab >1”正确,当a =10,b =0.2时,a +b >2,且ab >1,所以a >1,且b >1不成立,即前者是推出后者,后者推不出前者,所以a 、b 是实数,则“a >1,且b >1”是“a +b >2,且ab >1”的充分而不必要条件.故参考答案为:充分而不必要.11.设集合A ={x |x (x ﹣1)<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的____条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”).【参考答案】充分不必要【解析】解:由于A ={x |0<x <1},则A ⊊B ,由m ∈B 不能推出m ∈A ,如x =2时,故必要性不成立.反之,根据A ⊊B ,“m ∈A ”⇒“m ∈B ”.所以“m ∈A ”是“m ∈B ”的充分不必要条件.故参考答案为:充分不必要12.“a >1且b >1”是“ab >1”成立的____条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要.【参考答案】充分不必要【解析】解:若a >1且b >1时,ab >1成立.若a =﹣2,b =﹣2,满足ab >1,但a >1且b >1不成立,∴“a >1且b >1”是“ab >1”成立的充分不必要条件.故参考答案为:充分不必要.13.试判断“”是“”的充分条件还是必要条件?并给出证明.:1p x =32:10q x x x --+=【参考答案】充分条件,证明见解析【解析】是充分条件,但不是必要条件,证明如下由()()()()2322111110x x x x x x x x --+=---=-+=得或1x =1x =-或,或不能.:1:1p x q x =⇒=1x =-:1q x =1x =-:1p x ⇒=所以是充分条件,但不是必要条件.14.已知是实数,求证:成立的充分条件是,该条件是否为必要条件?试证,a b 44221a b b --=221a b -=明你的结论.【参考答案】必要条件,证明见解析.【解析】由,即44221a b b --=442210a b b ---=由()()()()244242222221111a b b a b a b a b -++=-+=++--则由()()222222442111021a b a b a b a b b -=⇒++--=⇒--=所以成立的充分条件是44221a b b --=221a b -=另一方面如果()()442222221110a b b a b a b --=⇒++--=因为,2210a b ++≠故,()()2222221101a b a b a b ++--=⇒-=所以成立的必要条件是.44221a b b --=221a b -=15.不等式x 2﹣3x +2>0的解集记为p ,关于x 的不等式x 2+(a ﹣1)x ﹣a >0的解集记为q ,若p 是q 的充分不必要条件,求实数a 的取值范围.【参考答案】﹣2<a ≤﹣1【解析】解:由不等式x 2﹣3x +2>0得,x >2或x <1;不等式x 2+(a ﹣1)x ﹣a >0等价为(x ﹣1)(x +a )>0,①当﹣a ≤1,即a ≥﹣1时,不等式的解是x >1或x <﹣a ,∵p 是q 的充分不必要条件,∴﹣a ≥1,即a =﹣1,②若﹣a >1,即a <﹣1时,不等式的解是x >﹣a 或x <1,∵p 是q 的充分不必要条件,∴﹣a <2,即﹣2<a <﹣1,综上﹣2<a ≤﹣1.1.【必修第一册(上) 重难点知识清单】已知a ,b ∈R,则“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【参考答案】A 【解析】若“0≤a ≤1且0≤b ≤1”,则“0≤ab ≤1”.当a =-1,b =-1时,满足0≤ab ≤1,但不满足0≤a ≤1且0≤b ≤1,∴“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”成立的充分不必要条件.故选A.2.【必修第一册(上) 重难点知识清单】“不等式在上恒成立”的充要条件是( )A .B .C .D .【参考答案】A 【解析】∵“不等式x 2﹣x +m >0在R 上恒成立”,∴△=(﹣1)2﹣4m <0,解得m ,又∵m ⇒△=1﹣4m <0,所以m是“不等式x 2﹣x +m >0在R 上恒成立”的充要条件,故选:A .3.【浙江省杭州二中检测】“”的一个充分但不必要的条件是( )260x x --<A .B .23x -<<03x <<C .D .32x -<<33x -<<【参考答案】B 【解析】由解得,260x x --<23x -<<要找“”的一个充分但不必要的条件,260x x --<即是找的一个子集即可,{}23x x -<<易得,B 选项满足题意.故选B4.【必修第一册 逆袭之路】设且,则是的( ),a b ∈R 0ab ≠1ab >1a b >A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【参考答案】D 【解析】若“ab >1”当a =﹣2,b =﹣1时,不能得到“”,1a b >若“”,例如当a =1,b =﹣1时,不能得到“ab >1“,1a b >故“ab >1”是“”的既不充分也不必要条件,1a b >故选:D .5.【河南省6月联考】关于的不等式成立的一个充分不必要条件是,则的取x ()()30x a x -->11x -<<a 值范围是( )A .B .C .D .1a ≤-0a <2a ≥1a ≥【参考答案】D 【解析】由题可知是不等式的解集的一个真子集.()1,1-()()30x a x -->当时,不等式的解集为,此时 ;3a =()()30x a x -->{}3x x ≠()1,1-{}3x x ≠当时,不等式的解集为,3a >()()30x a x -->()(),3,a -∞⋃+∞,合乎题意;()1,1- (),3-∞当时,不等式的解集为,3a <()()30x a x -->()(),3,a -∞⋃+∞由题意可得,此时.()1,1-(),a -∞13a ≤<综上所述,.1a ≥故选:D.6.【河南省开封市2020届高三第三次模拟】设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【参考答案】C 【解析】由a >b ,①当a >b ≥0时,不等式a |a |>b |b |等价为a •a >b •b ,此时成立.②当0>a >b 时,不等式a |a |>b |b |等价为﹣a •a >﹣b •b ,即a 2<b 2,此时成立.③当a ≥0>b 时,不等式a |a |>b |b |等价为a •a >﹣b •b ,即a 2>﹣b 2,此时成立,即充分性成立;由a |a |>b |b |,①当a >0,b >0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )>0,因为a +b >0,所以a ﹣b >0,即a >b .②当a >0,b <0时,a >b .③当a <0,b <0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )<0,因为a +b <0,所以a ﹣b >0,即a >b .即必要性成立,综上可得“a >b ”是“a |a |>b |b |”的充要条件,故选:C .7.【必修第一册 过关斩将】设,则“”是“”的( )R x ∈11||22x -<31x <A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【参考答案】A 【解析】绝对值不等式,1122x -<⇔111222x -<-<⇔01x <<由.31x <⇔1x <据此可知是的充分而不必要条件.1122x -<31x <本题选择A 选项.8.【必修第一册 过关斩将】设集合,,那么“或”是“{|2}M x x =>{|3}P x x =<x M ∈x P ∈x P M ∈⋂”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)【参考答案】必要不充分【解析】解:条件是或等价于;结论是.:p x M ∈x P ∈x P M ∈⋃:q x P M ∈⋂依题意得是的真子集,所以“”能推出“”,反之不成立,P M ⋂P M ⋃x P M ∈⋂x P M ∈⋃即结论条件p ,必要性成立;条件结论q ,充分性不成立.q ⇒p ⇒综上,“或”是“”的必要不充分条件.x M ∈x P ∈x P M ∈⋂故参考答案为:必要不充分9.【必修第一册 逆袭之路】设,则“”是“”的______条件选填“充分不必要”,“必要不充a R ∈1a >1a >.(分”,“充要”,“既不充分也不必要”之一)【参考答案】充分不必要条件【解析】解:解绝对值不等式“”,得或,1a >1a >1a <-又“”是“或”的充分不必要条件,1a >1a >1a <-即“”是“”的充分不必要条件,1a >1a >故参考答案为充分不必要条件.10.【必修第一册 过关斩将】已知,若是p 的一个必要条件,则使:13p x -<<1(0)a x a a -<-<>恒成立的实数b 的取值范围是________.a b >【参考答案】{|2}b b <【解析】∵,111a x a a x a -<-<⇔-<<+∴,所以解得{|13}{|11}x x x a x a -<<⊆-<<+11,13,a a -≤-⎧⎨+≥⎩2a ≥又使恒成立,因此,故实数b 的取值范围是.a b >2b <{|2}b b <故参考答案为:.{|2}b b <11.【必修第一册 过关斩将】若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的________条件.【参考答案】充分不必要【解析】命题的充分必要性具有传递性.根据题意得,但,,且,因此M N P Q ⇒⇔⇒Q P ⇒N P ⇔N M ⇒,但,故M 是Q 的充分不必要条件.M Q ⇒Q M ⇒故参考答案为:充分不必要12.【必修第一册 过关斩将】若实数a ,b 满足,,且,则称a 与b 互补记0a ≥0b ≥0ab =,那么“”是“a 与b 互补”的________条件.(填“充分不必要”“必要不充(,)a b a b ϕ=--(,)0a b ϕ=分”“充要”或“既不充分也不必要”)【参考答案】充要【解析】解析若,,平方得,当时,所以;(,)0a b ϕ=a b =+0ab =0a =b =0b ≥当时,所以,故a 与b 互补;0b =a =0a ≥若a 与b 互补,易得.(,)0a b ϕ=故“”是“a 与b 互补”的充要条件(,)0a b ϕ=故参考答案为:充要条件13.【必修第一册(上) 重难点知识清单】已知,.{}2320P x x x =-+≤{}11S x m x m =-≤≤+(1)是否存在实数,使是的充要条件?若存在,求出的取值范围,若不存在,请说明理由;m x P ∈x S ∈m (2)是否存在实数,使是的必要条件?若存在,求出的取值范围,若不存在,请说明理由.m x P ∈x S ∈m 【参考答案】(1)不存在实数,使是的充要条件m x P ∈x S ∈(2)当实数时,是的必要条件0m ≤x P ∈x S ∈【解析】(1).{}{}232012P x x x x x =-+≤=≤≤要使是的充要条件,则,即 此方程组无解,x P ∈x S ∈P S =11,12,m m -=⎧⎨+=⎩则不存在实数,使是的充要条件;m x P ∈x S ∈(2)要使是的必要条件,则 ,x P ∈x S ∈S ⊆P 当时,,解得;S =∅11m m ->+0m <当时,,解得S ≠∅11m m -≤+0m ≥要使 ,则有,解得,所以,S ⊆P 11,1+2m m -≥⎧⎨≤⎩0m ≤0m =综上可得,当实数时,是的必要条件.0m ≤x P ∈x S ∈14.已知两个关于的一元二次方程和,求两方程的根都是x 2440mx x -+=2244450x mx m m -+--=整数的充要条件.【参考答案】1m =【解析】∵是一元二次方程,∴.2440mx x -+=0m ≠又另一方程为,且两方程都要有实根,2244450x mx m m -+--=∴()()212224160,1644450,m m m m ⎧∆=--≥⎪⎨∆=---≥⎪⎩解得.5,14m ⎡⎤∈-⎢⎥⎣⎦∵两方程的根都是整数,∴其根的和与积也为整数,即24,4,445,Z m m Z m m Z ⎧∈⎪⎪∈⎨⎪--∈⎪⎩∴为的约数.m 4又∵,5,14m ⎡⎤∈-⎢⎥⎣⎦∴或.1m =-1当时,第一个方程可化为,其根不是整数;1m =-当时,两方程的根均为整数,∴两方程的根均为整数的充要条件是.1m =1m =15.设集合,,若“”是“”的充分不必要条件,试求满足条{}2|320A x x x =-+={}|1B x ax ==x B ∈x A ∈件的实数组成的集合.a 【参考答案】10,1,2⎧⎫⎨⎬⎩⎭【解析】∵,{}{}2|3201,2A x x x =-+==由于“”是“”的充分不必要条件.∴ .x B ∈x A ∈B A 当时,得;B =∅0a =当时,由题意得或.B ≠∅{}1B ={}2B =当时,得;当时,得.{}1B =1a ={}2B =12a =综上所述,实数组成的集合是.a 10,1,2⎧⎫⎨⎬⎩⎭。
1.4 充分条件与必要条件(AB分层训练)解析版 2023-2024学年高一数学重难点突破
1.4 充分条件与必要条件故真命题的个数是3.故答案为:316.(2023秋·云南大理·高一统考期末)若“不等式1x m -<成立”的充要条件为“2x <”,则实数m 的值为______.【答案】1【分析】解不等式1x m -<,根据充要条件的定义可得出关于m 的等式,解之即可.【详解】解不等式1x m -<得1x m <+,因为“不等式1x m -<成立”的充要条件为“2x <”,所以21m =+,解得1m =,所以,1m =.故答案为:1.23.(2023·江苏·高一假期作业)已知:210p x -≤≤,:11(0)q m x m m -≤≤+>,若p 是q 的必要不充分条件,求实数m 的取值范围.【答案】{}|03m m <≤.【分析】由题意可得{}|11x m x m ≤-+≤是{}|210x x -≤≤的真子集,从而有12110m m -≥-⎧⎨+<⎩或12110m m ->-⎧⎨+≤⎩,求解即可.【详解】因为p 是q 的必要不充分条件,所以{}|11x m x m ≤-+≤是{}|210x x -≤≤的真子集,故有12110m m -≥-⎧⎨+<⎩或12110m m ->-⎧⎨+≤⎩解得3m ≤.又0m >,所以实数m 的取值范围为{}|03m m <≤.24.(2023春·江西新余·高一新余市第一中学校考阶段练习)已知p :关于x 的方程22220x ax a a -++-=有实数根,q :13m a m -≤≤+.(1)若命题p ⌝是真命题,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数m 的取值范围.【答案】(1)2a >;(2)1m ≤-.【分析】(1)由命题p ⌝是真命题,可得命题p 是假命题,再借助Δ0<,求出a 的取值范围作答.(2)由p 是q 的必要不充分条件,可得出两个集合的包含关系,由此列出不等式求解作答.【详解】(1)因为命题p ⌝是真命题,则命题p 是假命题,即关于x 的方程22220x ax a a -++-=无实数根,因此2244(2)0a a a ∆=-+-<,解得2a >,所以实数a 的取值范围是2a >.(2)由(1)知,命题p 是真命题,即:2p a ≤,因为命题p 是命题q 的必要不充分条件,则{|13}a m a m -≤≤+ {}|2a a ≤,因此32m +≤,解得1m ≤-,所以实数m 的取值范围是1m ≤-.25.(2021秋·高一课时练习)已知{|1A x x =≤-或1}x ≥,{|21}B x a x a =<<+ (B 为非空集合),记:p x A ∈,:q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.。
湘教版(2019)必修第一册课本习题1.2.2充分条件和必要条件
湘教版(2019)必修第一册课本习题1.2.2充分条件和必要条件一、解答题(共88 分)下列命题中,哪些命题是“四边形是矩形”的充分条件?1. 四边形的对角线相等;2. 四边形的两组对边分别相等;3. 四边形有三个内角都为直角;4. 四边形的两组对边分别平行且有一组对角互补.【答案】1. 不是; 2. 不是;3. 是;4. 是.【分析】根据矩形的判定定理,结合充分条件的定义逐一判断即可.【1题详解】因为四边形的对角线相等不一定互相平分,所以由四边形的对角线相等不一定能推出四边形是矩形,因此四边形的对角线相等不是四边形是矩形的充分条件;【2题详解】因为四边形的两组对边分别相等,但是对角线不一定相等,所以由四边形的两组对边分别相等不一定能推出四边形是矩形,因此四边形的两组对边分别相等不是四边形是矩形的充分条件;【3题详解】因为四边形有三个内角都为直角能推出四边形是矩形,所以四边形有三个内角都为直角是四边形是矩形的充分条件;【4题详解】因为四边形的两组对边分别平行,所以该四边形是平行四边形,因此该平行四边形的对角相等,由已知可知该四边形对角互补,所以这两个角为直角,因此该平行四边形是矩形,所以由四边形的两组对边分别平行且有一组对角互补能推出四边形是矩形,因此四边形的两组对边分别平行且有一组对角互补是四边形是矩形的充分条件. 设x,y∈R,下列各式中哪些是“xy≠0”的必要条件?5. x+y=0;6. x2+y2>0;7. x2+y2≠0;8. x3+y3≠0.【答案】5. 不是; 6. 是;7. 是;8. 不是.【分析】(1)根据必要条件的定义进行求解即可;(2)根据必要条件的定义进行求解即可;(3)根据必要条件的定义进行求解即可;(4)根据必要条件的定义进行求解即可.【5题详解】因为xy≠0,所以x≠0且y≠0,而当x=2,y=2时,显然x+y=0不成立,所以x+y=0不是xy≠0的必要条件;【6题详解】因为xy≠0,所以x≠0且y≠0,所以有x2+y2>0,所以x2+y2>0是xy≠0的必要条件;【7题详解】因为xy≠0,所以x≠0且y≠0,所以有x2+y2≠0,所以x2+y2≠0是xy≠0的必要条件;【8题详解】因为xy≠0,所以x≠0且y≠0,而当x=2,y=−2时,显然x3+y3≠0不成立,所以x3+y3≠0不是xy≠0的必要条件.二、填空题(共11 分)9.从“充分而不必要条件”“必要而不充分条件”“充要条件”与“既不充分又不必要条件”中选出适当的一种填空:(1)△ABC中,∠C=90°是AB2=AC2+BC2的______;(2)x>0是x≥1的______;(3)x=2是x2=4的______;(4)0<x<2是1<x<3的______.【答案】(1). 充要条件;(2). 必要而不充分条件;(3). 充分而不必要条件;(4). 既不充分又不必要条件.【分析】根据充分性、必要性的定义逐一判断即可.【详解】空1:由∠C=90°能推出AB2=AC2+BC2,由AB2=AC2+BC2能推出∠C= 90°,所以△ABC中,∠C=90°是AB2=AC2+BC2的充要条件;,由x≥1能推出x>0,空2:由x>0不一定能推出x≥1,比如x=12所以x>0是x≥1的必要而不充分条件;空3:由x=2推出x2=4,由x2=4不一定能推出x=2,比如x=−2,所以x=2是x2=4的充分而不必要条件;空4:由0<x<2不一定能推出1<x<3,比如x=1,由1<x<3不一定能推出20<x<2,比如x=2.1,所以0<x<2是1<x<3的既不充分又不必要条件. 故答案为:充要条件;必要而不充分条件;充分而不必要条件;既不充分又不必要条件.。
充分条件和必要条件经典练习及答案详解
[基础巩固]1.(2022·邵阳模拟)“a =1”是“|a |=1”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析 由a =1可推出|a |=1,由|a |=1,即a =1或a =-1,推不出a =1,故“a =1”是“|a |=1”的充分不必要条件.故选B.答案 B2.“四边形的四条边相等”是“四边形是正方形”的( )A .充分条件B .必要条件C .既是充分条件又是必要条件D .既不是充分条件也不是必要条件解析 因为正方形的四条边相等,但四条边相等的四边形不一定是正方形,所以“四边形的四条边相等”是“四边形是正方形”的必要条件.答案 B3.(多选)下列“若p ,则q ”形式的命题中,p 是q 的充分条件的是( )A .若1x =1y,则x =y B .若x =1,则x 2=1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2解析 B 项中,x =1⇒x 2=1;C 项中,当x =y <0时,x ,y 无意义;D 项中,当x <y <0⇒x 2>y 2,所以C ,D 中p 不是q 的充分条件.答案 AB4.下列说法不正确的是________.(只填序号)①x 2≠1是x ≠1的必要条件;②x >5是x >4的充分不必要条件;③xy =0是x =0且y =0的充分条件;④x 2<4是x <2的充分不必要条件.解析 若“x 2≠1,则x ≠1”的意思是“若x =1,则x 2=1”,易知x =1是x 2=1的充分不必要条件,故①不正确;③中由xy =0不能推出x =0且y =0,,则③不正确;②④正确.答案 ①③5.已知p :1-x <0,q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围是________. 解析 p :x >1,若p 是q 的充分不必要条件,则p ⇒q ,但q ⇒/p ,也就是说,p 对应集合是q 对应集合的真子集,所以a <1.答案 {a |a <1}6.指出下列各组命题中,p 是q 的什么条件:(1)在△ABC 中,p :A >B ,q :BC >AC ;(2)p :a =3,q :(a +2)(a -3)=0;(3)p :a <b ,q :a b<1. 解析 在(1)中,由大角对大边,且A >B 知BC >AC ,反之也正确,所以p 是q 的充要条件;在(2)中,若a =3,则(a +2)(a -3)=0,但(a +2)(a -3)=0不一定a =3,所以p 是q 的充分不必要条件;在(3)中,若a <b <0,则推不出a b <1,反之若a b<1,当b <0时,也推不出a <b ,所以p 既不是q 的充分条件,也不是必要条件.[能力提升]7.(多选)下列命题中,p 是q 的充分条件的是( )A .p :a 是无理数,q :a 2是无理数B .p :四边形为等腰梯形,q :四边形对角线相等C .p :x >2,q :x ≥1D .p :a >b ,q :ac 2>bc 2解析 A 中,a =2是无理数,a 2=2是有理数,所以p 不是q 的充分条件;B 中,因为等腰梯形的对角线相等,所以p 是q 的充分条件;C 中,x >2,x ≥1,所以p 是q 的充分条件;D 中,当c =0时,ac 2=bc 2,所以p 不是q 的充分条件.答案 BC8.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么( )A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙既不是甲的充分条件,也不是甲的必要条件解析 因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒/丙,如图.综上,有丙⇒甲,但甲⇒/丙,即丙是甲的充分条件,但不是甲的必要条件.答案 A9.若A ={x |2a -1<x <2a +1},B ={x |x <-3或x >1},且A 是B 的充分不必要条件,则实数a 的取值范围为____________ .解析 因为A 是B 的充分不必要条件,所以A B ,又A ={x |2a -1<x <2a +1},B ={x |x <-3或x >1}.因此2a +1≤-3或2a -1≥1,所以实数a 的取值范围是a ≤-2或a ≥1.答案 a ≤-2或a ≥110.(1)是否存在实数m ,使2x +m <0是x <-1或x >3的充分条件?(2)是否存在实数m ,使2x +m <0是x <-1或x >3的必要条件?解析 (1)欲使2x +m <0是x <-1或x >3的充分条件,则只要⎩⎨⎧⎭⎬⎫x |x <-m 2⊆{x |x <-1或x >3},即只需-m 2≤-1,所以m ≥2. 故存在实数m ≥2,使2x +m <0是x <-1或x >3的充分条件.(2)欲使2x +m <0是x <-1或x >3的必要条件,则只要{x |x <-1或x >3}⊆⎩⎨⎧⎭⎬⎫x |x <-m 2,这是不可能的.故不存在实数m ,使2x +m <0是x <-1或x >3的必要条件.[探索创新]11.命题“对任意x 且1≤x <2,x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.答案 B。
高中试卷-1.4 充分条件与必要条件 练习(2)(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1.4 充分条件与必要条件【本节明细表】知识点、方法题号充分、必要条件的判断1,2,3,5,7,11充要条件的证明12利用充分、必要条件求参数的范围4,6,8,9,10,13基础巩固1.“x>3”是“不等式x2-2x>0”的( )A.充分不必要条件B.充分必要条件C.必要不充分条件D.非充分非必要条件【答案】A【解析】当x>3,则x2-2x>0,充分性成立;当x2-2x>0时,则x<0或x>2,必要性不成立.故选A.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】当四边形ABCD为菱形时,其对角线互相垂直,必有AC⊥BD;但当AC⊥BD时,四边形不一定是菱形,因此“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.故选A.3.已知命题“若p,则q”,假设其逆命题为真,则p是q的( ).A.充分条件B.必要条件C.既不充分也不必要条件D.无法判断【答案】B【解析】原命题的逆命题是“若q,则p”,它是真命题,即q⇒p,所以p是q的必要条件.4.若x>2m2-3是-1<x<4的必要不充分条件,则实数m的取值范围是( )A.{x|―3≤x≤3} B.x|x≤―3,或x≥3C.x|x≤―1,或x≥1 D.{x|―1≤x≤1}【答案】D【解析】 由x>2m2-3是-1<x<4的必要不充分条件得{x|―1<x<4}x|x>2m2-3,所以2m2-3≤-1,解得-1≤m≤1,故选D.5.若a,b为实数,则“0<ab<1”是“b<1a”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】D【解析】当0<ab<1,a<0,b<0时,有b>1a ;反过来,b<1a,当a<0时,有ab>1.所以“0<ab<1”是“b<1a”的既不充分也不必要条件,故选D.6.已知p:x2+x-2>0,q:x>a,若q是p的充分不必要条件,则a的取值范围是( )A.a<―2 B.a>―2C.―2<a≤1 D.a≥1【答案】D【解析】由x2+x-2>0得x>1或x<-2,若q是p的充分不必要条件,则a≥1.故选D.7.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的 条件.【答案】充分不必要【解析】当A∩B={4}时,m2=4,所以m=±2.所以“m=2”是“A∩B={4}”的充分不必要条件.8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是 .【答案】{x|x>2}【解析】根据充分条件、必要条件与集合间的包含关系,应有{x|―2<x<―1}{x|(a+x)(1+x)<0},故有a>2.能力提升9.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0 B.a>0C.a<-1 D.a<1【答案】C【解析】 一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件是1a<0,即a<0,则充分不必要条件的范围应是集合{a|a<0}的真子集,故选C.10.设p:12≤x≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不必要条件,则实数a的取值范围是( )A. 0<a <12B . 0≤a ≤12C. 0≤a <12D. 0< a ≤12【答案】B【解析】 ∵q :a ≤x ≤a +1,p 是q 的充分不必要条件,∴{a <12,a +1≥1 或{a ≤12,a +1>1,解得0≤a ≤12.11.已知p 是r 的充分条件而不是必要条件,s 是r 的必要条件,q 是r 的充分条件, q 是s 的必要条件.现有下列命题:①s 是q 的充要条件 ②p 是q 的充分条件而不是必要条件③r 是q 的必要条件而不是充分条件 ④r 是s 的充分条件而不是必要条件则正确命题序号是 . 【答案】①②【解析】由p 是r 的充分条件而不是必要条件,可得p ⇒r,由s 是r 的必要条件可得r ⇒s,由q 是r 的充分条件得q ⇒r,由q 是s 的必要条件可得s ⇒q,故可得推出关系如图所示:据此可判断命题①②正确.12.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【答案】见解析.【解析】 (1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac D =->为12120(,cx x x x a=<方程的两根),所以ac <0.(2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.素养达成13.已知p :关于x 的方程4x 2-2ax +2a +5=0的解集至多有两个子集,q :1-m ≤a ≤1+m ,m >0.若q 是p的必要不充分条件,求实数m 的取值范围.【答案】见解析.【解析】∵q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.对于p ,依题意,知Δ=(-2a )2-4×4(2a +5)=4(a 2-8a -20)≤0,∴-2≤a ≤10.设P ={a |-2≤a ≤10},Q ={a |1-m ≤a ≤1+m ,m >0},由题意知P Q ,∴{m >0,1-m <-2,1+m ≥10 或{m >0,1-m ≤-2,1+m >10,解得m ≥9,∴实数m 的取值范围是{m |m ≥9}。
2024年新高一数学初升高衔接《充分条件与必要条件》含答案解析
第04讲充分条件与必要条件模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解充分条件、必要条件的概念,理解充要条件的意义;2.了解充分条件与判定定理、必要条件与性质定理的关系;3.培养逻辑思维能力,能够在复杂情况下运用充分条件与必要条件进行推理,解决数学问题.知识点1充分条件与必要条件1、命题(1)命题的定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫命题.判断为真的语句是真命题,判断为假的语句是假命题.(2)命题的形式:中学数学中的许多命题可以写成“若p,则q”,“如果p,那么q”等形式.其中p 称为命题的条件,q 称为命题的结论.2、充分条件与必要条件(1)一般地,“若p ,则q ”为真命题,是指由条件p 通过推理可以得出结论q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说,p 是q 的充分条件,q 是p 的必要条件.(2)如果“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p q ¿.这时,我们就说,p 不是q 的充分条件,q 不是p 的必要条件.(3)充分条件与必要条件的关系p 是q 的充分条件反映了p q ⇒,而q 是p 的必要条件也反映了p q ⇒,所以p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,只是说法不同.而p 是q 的充分条件只反映了p q ⇒,与q 能否推出p 没有任何关系.3、充要条件(1)充要条件的概念:如果“若p ,则q ”和它的逆命题“若q ,则p ”均为真命题,即既有p q ⇒,又有q p ⇒,就记作p q ⇔.此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称充要条件.(2)充要条件的含义:若p 是q 的充要条件,则q 也是p 的充要条件,虽然本质上是一样的,但在说法上还是不同的,因为这两个命题的条件与结论不同.(3)充要条件的等价说法:p 是q 的充要条件又常说成是q 成立当且仅当p 成立,或p 与q 等价.4、充分条件与必要条件的传递性(1)若p 是q 的充分条件,q 是s 的充分条件,即p q ⇒,q s ⇒,则有p s ⇒,即p 是s 的充分条件;(2)若p 是q 的必要条件,q 是s 的必要条件,即q p ⇒,s q ⇒,则有s p ⇒,即p 是s 的必要条件;(3)若p 是q 的充要条件,q 是s 的充要条件,即p q ⇔,q s ⇔,则有p s ⇔,即p 是s 的充要条件.5、条件关系判定的常用结论p 与q 的关系结论p q ⇒,但q p ¿p 是q 的充分不必要条件q p ⇒,但p q ¿p 是q 的必要不充分条件p q ⇒且q p ⇒,即p q ⇔p 是q 的充要条件p q ¿且q p¿p 是q 的既不充分也不必要条件知识点2从不同角度理解充分必要性1、从命题的角度充分理解充分必要性若把原命题中的条件和结论分别记作p和q,则原命题与逆命题同p与q之间有如下关系:(1)若原命题是真命题,逆命题是假命题,则p是q的充分不必要条件;(2)若原命题是假命题,逆命题是真命题,则p是q的必要不充分条件;(3)若原命题和逆命题都是真命题,则p和q互为充要条件;(4)若原命题和逆命题都是假命题,则p是q的既不充分也不必要条件.2、从集合的角度理解充分必要性若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,(1)若A B,则p是q的充分不必要条件;(2)若A⊇B,则p是q的必要条件;(3)若A B,则p是q的必要不充分条件;(4)若A=B,则p是q的充要条件;(5)若A⊈B且A⊉B,则p是q的既不充分也不必要条件.充分必要条件判断精髓:小集合推出大集合,小集合是大集合的充分不必要条件,大集合是小集合的必要不充分条件;若两个集合范围一样,就是充要条件的关系;知识点3充分、必要、充要条件的证明1、证明“充分不必要条件”“必要不充分条件”,一般先证明一个方面,然后验证另一个方面不成立。
专题1.4 充分条件与必要条件【六大题型】(解析版)-2024-2025初升高衔接(新高一暑假学习)
专题1.4充分条件与必要条件【六大题型】【人教A版(2019)】【题型1命题的概念】 (1)【题型2判断命题的真假】 (2)【题型3充分条件、必要条件及充要条件的判定】 (5)【题型4充分条件、必要条件及充要条件的探索】 (6)【题型5由充分条件、必要条件求参数】 (8)【题型6充要条件的证明】 (9)【知识点1命题】命题及相关概念【题型1命题的概念】【例1】(2023·江苏·高一假期作业)下列语句为真命题的是()A.>B.四条边都相等的四边形为矩形C.1+2=3D.今天是星期天【解题思路】先根据命题的定义判断是否是命题,然后再判断真假即可【解答过程】对于A,因为此语句不能判断真假,所以不是命题,所以A错误,对于B,此语句是命题,而在平面内四条边都相等的四边形是菱形,所以B错误,对于C,1+2=3是命题,且是真命题,所以C正确,对于D,因为此语句不能判断真假,所以不是命题,所以D错误,故选:C.【变式1-1】(2023·江苏·高一假期作业)以下语句:①0∈N;②2+2=0;③2>;④2+1=0,其中命题的个数是()A.0B.1C.2D.3【解题思路】根据命题的定义进行判断.【解答过程】①是命题,且是假命题;②、③不能判断真假,不是命题;④不是陈述句,不是命题.故选:B.【变式1-2】(2023·高一课时练习)下列语句中:①−1<2;②>1;③2−1=0有一个根为0;④高二年级的学生;⑤今天天气好热!⑥有最小的质数吗?其中是命题的是()A.①②③B.①④⑤C.②③⑥D.①③【解题思路】根据命题的定义即可求解.【解答过程】命题是能判断真假的陈述句,由于⑤⑥不是陈述句,故不是命题,②④无法判断真假,故不是命题,①③可以判断真假且是陈述句,故是命题,故选:D.【变式1-3】(2022·高一课时练习)给出下列语句:①>1.②3比5大.③这是一棵大树.④求证:3是无理数.⑤二次函数的图象太美啦!⑥4是集合1,2,3,4中的元素.其中是命题的个数为()A.2B.3C.4D.5【解题思路】根据命题的定义逐个分析判断即可.【解答过程】命题是指可以判断真假的陈述句,所以②⑥是命题,①不能判断真假,不是命题;③“大树”没有界定标准,不能判断真假,不是命题;④是祈使句,不是命题;⑤是感叹句,不是命题.故选:A.【题型2判断命题的真假】【例2】(2023·江苏·高一假期作业)下列命题中真命题有()①B2+2−1=0是一元二次方程;②函数=2−1的图象与x轴有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.A.1个B.2个C.3个D.4个【解题思路】对于①,举反例=0即可判断;对于②,令=0,求解即可判断;对于③,根据包含关系即可判断;对于④,根据空集不是本身的真子集即可判断.【解答过程】①中,当=0时,B2+2−1=0是一元一次方程,①错误;②中,令=0,则2−1=0,=12,所以函数=2−1的图象与x轴有一个交点,②正确;③中,互相包含的两个集合相等,③正确;④中,空集不是本身的真子集,④错误.故选:B.【变式2-1】(2022秋·重庆·高一校考期中)下列命题中,是真命题的是()A.如果>,那么2>2B.如果>,那么B2>B2C.如果>s>,那么>D.如果>s<,那么−>−【解题思路】ABC选项举出反例即可判断,D选项结合不等式的性质即可判断.【解答过程】A选项:若=0,=−1,满足>,但是2<2,因此是假命题,故A错误;B选项:若=3,=−1,=0,满足>,但是B2=B2,因此是假命题,故B错误;C选项:若=3,=−1,=2,=−13,满足>s>,但是<,因此是假命题,故C错误;D选项:因为<,则−>−,且>,因此−>−,因此是真命题,故D正确,故选:D.【变式2-2】(2023·全国·高一假期作业)下列命题:①矩形既是平行四边形又是圆的内接四边形;②菱形是圆的内接四边形且是圆的外切四边形;③方程2−3−4=0的判别式大于0;④周长相等的两个三角形全等或面积相等的两个三角形全等;⑤集合∩是集合A的子集,且是∪的子集.其中真命题的个数是()A.1B.2C.3D.4【解题思路】根据矩形以及菱形的性质即可判断①②,根据一元二次方程的判别式即可判断③,根据三角形全等的判断即可判断④,根据集合的关系即可判断⑤.【解答过程】对于①,矩形是平行四边形,同时矩形有外接圆,故正确;对于②,菱形不一定有外接圆,故错误,对于③,方程2−3−4=0的判别式为Δ=9−4×−4=25>0,故正确,对于④,周长或者面积相等的三角形不一定全等,故错误,对于⑤,∩⊆s⊆∪,故正确;故选:C.【变式2-3】(2023秋·上海黄浦·高一校考阶段练习)设∈R,关于s的方程组−B=1B+=.对于命题:①存在a,使得该方程组有无数组解;②对任意a,该方程组均有一组解,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【解题思路】通过解方程组的知识求得正确答案.【解答过程】由−B=1得=B+1,则B+1+=,2+1=0,所以=0,则=1B=,解得=1,所以关于s的方程组−B=1B+=有唯一解=1=0.所以①为假命题,②为真命题.故选:D.【知识点2充分、必要与充要条件】1.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.2.充要条件如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,记作p⇔q.此时p既是q的充分条件,也是q的必要条件.我们说p是q的充分必要条件,简称为充要条件.如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件.【注】:“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p是s的充要条件.3.充分、必要与充要条件的判定(1)如果既有p⇒q,又有q⇒p,则p是q的充要条件,记为p⇔q.(2)如果p⇒q⇒p是q的既不充分也不必要条件.(3)如果p⇒q且q⇒p是q的充分不必要条件.(4)如p⇒q⇒p,则称p是q的必要不充分条件.(5)设与命题p对应的集合为A={x|p(x)},与命题q对应的集合为B={x|q(x)},若A B,则p是q的充分条件,q是p的必要条件;若A=B,则p是q的充要条件.【题型3充分条件、必要条件及充要条件的判定】【例3】(2023·上海普陀·上海市校考模拟预测)“>1”是“1<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解题思路】根据分数不等式求解1<1答范围,即可根据集合间的关系求解.【解答过程】由1<1可得1−<0,解得>1或<0,故>1是>1或I0的真子集,故“>1”是“1<1”的充分不必要条件,故选:A.【变式3-1】(2023·全国·高一假期作业)已知集合={V,=2,则“=1”是“=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【解题思路】由=求得=0或=1,然后即可得出答案.【解答过程】由=可得=2,解得=0或=1.所以“=1”是“=”的充分非必要条件.故选:A.【变式3-2】(2023·江苏·高一假期作业)已知实数a,b,则“r K>0”是“>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解题思路】根据不等式的性质结合充分条件和必要条件的定义进行判断.【解答过程】r K>0⇔+−>0⇔2−2>0⇔2>2⇔|U>|U为充要条件.故选:C.【变式3-3】(2020秋·上海浦东新·高一校考阶段练习)已知是的充分不必要条件,是的充分条件,是的必要条件,是的必要条件,现有下列命题:①是的充要条件;②是的充分不必要条件;③是的必要不充分条件;④是的充分不必要条件;正确的命题序号是()A.①④B.①②C.②③D.③④【解题思路】根据条件及充分条件和必要条件的的确定s s s之间的关系,然后逐一判断命题①②③④即可.【解答过程】因为是的充分不必要条件,所以⇒,⇏,因为是的充分条件,所以⇒,因为是的必要条件,所以⇒,因为是的必要条件,所以⇒,因为⇒,⇒,所以⇒,又⇒,所以是的充要条件;命题①正确,因为⇒,⇒,⇒,所以⇒,若⇒,则⇒,⇒,⇒,故⇒,与⇏矛盾,所以⇏,所以是的充分不必要条件,命题②正确;因为⇒,⇒,所以⇒,是的充分条件,命题③错误;因为⇒,⇒,所以⇒,又⇒,所以是的充要条件,命题④错误;故选:B.【题型4充分条件、必要条件及充要条件的探索】【例4】(2023·高一课时练习)关于x的方程B+1=0有实根的一个充分条件是()A.=0B.=1C.≠1D.<1【解题思路】根据一元一次方程的求解即可判断≠0,由充分条件的定义即可求解.【解答过程】由B+1=0⇒B=−1,要使方程有实根,则≠0,故=1是方程B+1=0有实根的一个充分条件,故选:B.【变式4-1】(2023春·山西运城·高二校考阶段练习)若s∈,则“>”的一个充分不必要条件可以是()A.>B.2>2C.>1D.2K>2【解题思路】根据充分不必要条件的概念,逐项判断,即可得出结果.【解答过程】由>,2>2推不出>,排除AB;由>1可得K>0,解得>>0或<<0,所以>1是>的既不充分也不必要条件,排除C;2K>2⇒>,反之不成立,D正确;故选:D.【变式4-2】(2022秋·江苏连云港·高一校考期中)使∈U≤0或>3}成立的一个充分不必要条件是()A.≤0或>3B.<−1或>3C.≤0或>1D.≥0【解题思路】根据充分不必要条件的定义和集合间的包含关系判断可得答案.【解答过程】对于A,因为U≤0或>3=∈U≤0或>3,故错误;对于B,因为∈U<−1或>3U≤0或>3,故正确;对于C,因为U≤0或>3U≤0或>1,故错误;对于D,因为U≥0不是U≤0或>3的真子集,故错误.故选:B.【变式4-3】(2023春·陕西商洛·高二校考阶段练习)不等式“2+2−≥0在∈R上恒成立”的一个充分不必要条件是()A.<−1B.>4C.2<<3D.−1<<2【解题思路】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【解答过程】因为“不等式2+2−≥0在R上恒成立”,所以等价于二次方程的2+2−=0判别式Δ=4+4≤0,即≤−1.所以A选项,<−1是≤−1充分不必要条件,A正确;B选项中,>4不可推导出≤−1,B不正确;C选项中,2<<3不可推导出≤−1,故C不正确;D选项中,−1<<2不可推导出≤−1,故D不正确.故选:A.【题型5由充分条件、必要条件求参数】【例5】(2023春·湖南长沙·高二校联考期中)已知G≥s G2−r1≤0,如果是的充分不必要条件,则实数的取值范围是()A.2,+∞B.1,+∞C.1,+∞D.−∞,−1【解题思路】根据充分必要条件的定义结合集合的包含关系求解.【解答过程】G2−r1≤0,即G<−1或≥2,又G≥s是的充分不必要条件,所以≥2,即的取值范围是2,+∞.故选:A.【变式5-1】(2022秋·青海西宁·高一校考阶段练习)“一元二次方程2+B+1=0有两个不相等的正实根”的充要条件是()A.≤−2B.<−2C.>2D.<−2或>2【解题思路】先求出一元二次方程2+B+1=0有两个不相等的正实根时的取值范围,再根据充要条件的定义即可求解.【解答过程】解:∵一元二次方程2+B+1=0有两个不相等的正实根,设两根分别为:1,2,故=2−4>01+2=−>012=1>0,解得:<−2,故“一元二次方程2+B+1=0有两个不相等的正实根”的充要条件是<−2.故选:B.【变式5-2】(2022·高一单元测试)若p:2+−6=0是q:B−1=0(≠0)的必要而不充分条件,则实数a的值为()A.−12B.−12或13C.−13D.12或−13【解题思路】根据题意确定q可以推得P,但p不能推出q,由此可得到关于a的等式,求得答案.【解答过程】p:2+−6=0,即=2或=−3,q:∵≠0,∴=1,由题意知p:2+−6=0是q:B−1=0(≠0)的必要而不充分条件,则1=2,或1=−3,解得=12,或=−13,故选:D.【变式5-3】(2022秋·山东潍坊·高一校考阶段练习)若“-1<x-m<1”成立的充分不必要条件是“13<x<12”,则实数m的取值范围是()A.U−43≤B.U−12≤C.U<D.U≥【解题思路】先化简不等式为m-1<x<m+1⊆−1,+1≠−1,+1,根据子集关系列式解得参数范围即可.【解答过程】不等式-1<x-m<1等价于:m-1<x<m+1,由题意得“1<x<12”是“-1<x-m<1”成立的充分不必要条件,3⊆−1,+1≠−1,+1,所以−1≤13+1≥12,且等号不能同时成立,解得−12≤≤43.故选:B.【题型6充要条件的证明】【例6】(2023·全国·高一假期作业)已知,是实数,求证:4−4−22=1成立的充要条件是2−2=1.【解题思路】根据充要条件的定义分别证明充分性和必要性即可得到结论.【解答过程】解:先证明充分性:若2−2=1,则4−4−22=(2−2)(2+2)−22=2+2−22=2−2=1成立.所以“2−2=1”是“4−4−22=1”成立的充分条件;再证明必要性:若4−4−22=1,则4−4−22−1=0,即4−(4+22+1)=0,∴4−(2+1)2=0,∴(2+2+1)(2−2−1)=0,∵2+2+1≠0,∴2−2−1=0,即2−2=1成立.所以“2−2=1”是“4−4−22=1”成立的必要条件.综上:4−4−22=1成立的充要条件是2−2=1.【变式6-1】(2023·全国·高一假期作业)已知s 都是非零实数,且>,求证:1<1的充要条件是B >0.【解题思路】根据充要条件的定义进行证明即可.【解答过程】(1)必要性:由1<1,得1−1<0,即K B<0,又由>,得−<0,所以B >0.(2)充分性:由B >0及>,得B >B,即1<1.综上所述,1<1的充要条件是B >0.【变式6-2】(2023·全国·高一假期作业)求证:等式12+1+1=22+2+2对任意实数恒成立的充要条件是1=2,1=2,1=2.【解题思路】利用充分性和必要性的定义证明即可.【解答过程】充分性:若1=2,1=2,1=2,则等式12+1+1=22+2+2显然对任意实数恒成立,充分性成立;必要性:由于等式12+1+1=22+2+2对任意实数恒成立,分别将=0,=1,=−1代入可得1=21+1+1=2+2+21−1+1=2−2+2,解得1=21=21=2,必要性成立,故等式12+1+1=22+2+2对任意实数恒成立的充要条件是1=2,1=2,1=2.【变式6-3】(2023·江苏·高一假期作业)设s∈,求证|+U=|U+|U成立的充要条件是B≥0.【解题思路】分为充分性和必要性两种情况来进行证明即可,充分性:若B≥0,则|+U=|U+|U成立;必要性:若|+U=|U+|U,则B≥0;证明过程结合去绝对值的方法和2=2的性质即可得证【解答过程】①充分性:若B≥0,则有B=0和B>0两种情况,当B=0时,不妨设=0,则|+U=|U,|U+|U=|U,∴等式成立.当B>0时,>0,>0或<0,<0,当>0,>0时,|+U=+,|U+|U=+,∴等式成立,当<0,<0时,|+U=−(+p,|U+|U=−−=+,∴等式成立.综上,当B≥0时,|+U=|U+|U成立.②必要性:若|+U=|U+|U且s∈,则|+U2=(|U+|U)2,即2+2B+2=2+2+2|U⋅|U,∴|B|=B,∴B≥0.综上可知,B≥0是等式|+U=|U+|U成立的充要条件.。
20道充分条件必要条件判断总结练习题(含答案)
20道充分条件必要条件判断总结练习题(含答案)20道高中数学充分条件,必要条件判断练习题(含答案)1.设,,a b c 为正数,则“a b c +>”是“222a b c +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.“ 11()()33a b <”是“22log log a b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.不等式01>-xx 成立的一个充分不必要条件是( ) 1.>x A 1.->x B 101.<<-<<-x x D 或4、设a ∈R ,则“2a a >”是“1>a ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.若1a >,则“y x a a >”是“log log a a x y >”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件6.在实数范围内,使得不等式110x->成立的一个充分而不必要的条件是( ) A .1x < B .02x << C .01x << D . 103x << 7.“sin cos αα=”是“cos20α=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.“2211og a og b <”是“11a b<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设p :x<3,q :-1<x<=""></xA.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.设,a b 为非零向量,则“//a b ”是“a 与b 方向相同”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.“43m =”是“直线x -my +4m -2=0与圆224x y +=相切”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12已知p :(x -1)(x -2)≤0,q :log 2(x +1)≥1,则p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件13.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为()A .B .C .D .14、“0a =”是“复数(),a bi a b R +∈为纯虚数”的().A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件.设a b 、是非零向量,则“=2a b ”是“=||||a b a b ”成立的A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件16.已知向量,则“”是“与反向”的() A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17、设集合{}A x x a =<,{}3B x x =<,则“3a <”是“A B ?”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.设R x ∈,则“1<2x ”是“1<="">A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.“1a ≥”是“()()1,,ln 1x x x a ?∈+∞--<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要2:()3()p x m x m ->-2:340q x x +-<-或17m m ≥≤-或71m -<<71m -≤≤20.在ABC ?中,“A B >”是“cos cos A B <”的 ( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件答案1.B.∵,,a b c 为正数,∴当2,2,3a b c ===时,满足a b c +>,但222a b c +>不成立,即充分性不成立,若222a b c +>,则()2 22+->a b ab c ,即()2222+>+>a b c ab c ,>a b c +>,成立,即必要性成立,则“a b c +>”是“222a b c +>”的必要不充分条件,故选:B2.B3.A5.【答案】A【解析】【分析】先找出y x a a >及log log a a x y >的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【详解】由a>1,得y x a a > 等价为x>y; log log a a x y >等价为x>y>0故“y x a a > ”是“log log a a x y >”的必要不充分条件故选:A【点睛】本题主要考查充分条件和必要条件的判断,指对函数的单调性,根据充分条件和必要条件的定义是解决本题的关键.6.D7.A【解析】【分析】由2211og a og b <可推出a b <,再结合充分条件和必要条件的概念,即可得出结果.【详解】若2211og a og b <,则0a b <<,所以110ab>>,即“2211og a og b <”不能推出“11a b <”,反之也不成立,因此“2211og a og b <”是“11a b <”的既不充分也不必要条件.故选D【点睛】本题主要考查充分条件和必要条件,熟记概念即可,属于基础题型.9.C10.B12A13.B14【答案】B【解析】试题分析:0a =,00b a bi =?+=为实数;复数(),a bi a b R +∈为纯虚数0,00a b a ?=≠?=,所以“0a =”是“复数(),a bi a b R +∈为纯虚数”的必要不充分条件,选B.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ?q ”为真,则p 是q 的充分条件.2.等价法:利用p ?q 与非q ?非p ,q ?p 与非p ?非q ,p ?q 与非q ?非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ?B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.15.B16【答案】C【解析】与反向则存在唯一的实数,使得,即所以是“与反向”的充要条件故选C17.A18.B19.B20.A。
充分条件与必要条件(经典练习及答案详解)
充分条件与必要条件1.设x∈R,则“1<x<2”是“1<x<3”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“1<x<2”⇒“1<x<3”,反之不成立.所以“1<x<2”是“1<x<3”的充分不必要条件.故选B.2.(2020年佛山高一期末)“x=1”是“x2-4x+3=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x =1或x=3,不是必要条件.故选A.3.(2021年荆州期末)x2<9的必要不充分条件是()A.-3≤x≤3 B.-3<x<0C.0<x≤3 D.1<x<3【答案】A【解析】x2<9即-3<x<3.因为-3<x<3能推出-3≤x≤3,而-3≤x≤3不能推出-3<x<3,所以x2<9的必要不充分条件是-3≤x≤3.4.(多选)对任意实数a,b,c,下列命题中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.“a>b”是“a2>b2”的充分条件D.“a<5”是“a<3”的必要条件【答案】BD【解析】因为A中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac =bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;因为B中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;因为C中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;因为D中{a|a<5}{a|a<3},故“a<5”是“a <3”的必要条件,故D为真命题.故选BD.5.(多选)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,下列命题正确的是()A.r是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.r是s的充分条件而不是必要条件.【答案】AB【解析】由已知有p⇒r,q⇒r,r⇒s,s⇒q,由此得r⇒q且q⇒r,A正确,C不正确,p⇒q,B正确,r⇒s且s⇒r,D不正确.故选AB.6.“m=9”是“m>8”的________条件,“m>8”是“m=9”的________条件(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”).【答案】充分不必要条件必要不充分条件【解析】当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,“m>8”是“m=9”的必要不充分条件.7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.【答案】{a|a<1}【解析】p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,即p对应集合是q对应集合的真子集,所以a<1.8.下列说法正确的是________(填序号).①“x>0”是“x>1”的必要条件;②“a3>b3”是“a>b”的必要不充分条件;③在△ABC中,“a>b”不是“A>B”的充分条件.【答案】①【解析】①中,当x>1时,有x>0,所以①正确;②中,当a>b时,a3>b3一定成立,但a3>b3也一定能推出a>b,即“a3>b3”是“a>b”的充要条件,所以②不正确;③中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以③不正确.9.指出下列各命题中,p是q的什么条件,q是p的什么条件.(1)p:x2>0,q:x>0.(2)p:x+2≠y,q:(x+2)2≠y2.(3)p:a能被6整除;q:a能被3整除.(4)p:两个角不都是直角;q:两个角不相等.解:(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要条件,q是p的充分条件.(2)p:x+2≠y,q:(x+2)2≠y2,则x+2≠y,且x+2≠-y,故p是q的必要条件,q是p的充分条件.(3)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分条件,q 是p的必要条件.(4)p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这个角一定不都是直角,故p是q的必要条件,q是p的充分条件.B级——能力提升练10.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,(a -b )a 2可以为0,所以“(a -b )a 2<0”是“a <b ”的充分不必要条件.11.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】“a +b >4”⇒“a ,b 中至少有一个大于2”,反之不成立.所以“a +b >4”是“a ,b 中至少有一个大于2”的充分不必要条件.故选A .12.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则a 的取值范围是________.【答案】⎩⎨⎧⎭⎬⎫a ⎪⎪0≤a ≤12 【解析】因为q :a ≤x ≤a +1,p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,解得0≤a ≤12. 13.(2020年大庆高一期中)已知p :-4<x -a <4,q :2<x <3.若q 是p 的充分条件,则实数a 的取值范围为________.【答案】{a |-1≤a ≤6} 【解析】因为p :-4<x -a <4,即a -4<x <a +4,q :2<x<3.若q 是p 的充分条件,则{x |2<x <3}⊆{x |a -4<x <a +4},则⎩⎪⎨⎪⎧a -4≤2,a +4≥3,即-1≤a ≤6.所以实数a 的取值范围为{a |-1≤a ≤6}.14.若集合A ={x |x >-2},B ={x |x ≤b ,b ∈R },试写出:(1)A ∪B =R 的一个充要条件;(2)A ∪B =R 的一个必要不充分条件;(3)A ∪B =R 的一个充分不必要条件.解:(1)集合A ={x |x >-2},B ={x |x ≤b ,b ∈R }.(1)若A ∪B =R ,则b ≥-2,故A ∪B =R 的一个充要条件是b ≥-2.(2)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个必要不充分条件可以是b≥-3.(3)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个充分不必要条件可以是b≥-1.C级——探究创新练15.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设y=x2+ax+b,则y=x2+ax+b的图象是开口向上的抛物线.又|α|<2,|β|<2,所以当x=2时,y>0且当x=-2时,y>0,即有-(4+b)<2a<4+b.因为|b|<4,所以4+b>0,即2|a|<4+b.(2)必要性:令y=x2+ax+b,由2|a|<4+b,得当x=2时,y>0且当x=-2时,y>0,因为|b|<4,所以方程y=0的两根α,β同在{x|-2<x<2}内或无实根.因为α,β是方程y=0的实根,所以α,β同在{x|-2<x<2}内,即|α|<2且|β|<2.。
数学充分条件与必要条件试题答案及解析
数学充分条件与必要条件试题答案及解析1.“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】f(x)=|(ax-1)x|=|ax2-x|,若a=0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y=ax2-x的对称轴x=<0,且x=0时y=0,此时y=ax2-x在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax2-x|在区间(0,+∞)上单调递增,故a≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y=ax2-x的对称轴x=>0,且在区间0,上y<0,此时f(x)=|ax2-x|在区间0,上单调递增,在区间,上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.2.设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知中|a·b|=|a|·|b|可得,a与b同向或反向,所以a∥b.又因为由a∥b,可得|cos 〈a,b〉|=1,故|a·b|=|a|·|b||cos〈a,b〉|=|a|·|b|,故|a·b|=|a|·|b|是a∥b的充分必要条件.3.设a,b∈R,i是虚数单位,则“ab=0”是“复数a+为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】本小题主要考查充要条件的概念以及复数的相关知识,解题的突破口为弄清什么是纯虚数,然后根据充要条件的定义去判断.a+=a-bi,若a+为纯虚数,a=0且b≠0,所以ab=0不一定有a+为纯虚数,但a+为纯虚数,一定有ab=0,故“ab=0”是复数a+为纯虚数”的必要不充分条件,故选B.4.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】本题考查充分必要条件及函数的单调性,考查推理论证能力,容易题.当f(x)=a x为R上的减函数时,0<a<1,2-a>0,此时g(x)=(2-a)x3在R上为增函数成立;当g(x)=(2-a)x3为增函数时,2-a>0即a<2,但1<a<2时,f(x)=a x为R上的减函数不成立,故选A.5. 设a ,b ∈R ,“a =0”是“复数a +bi 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】∵若a =0,则复数a +bi 是实数(b =0)或纯虚数(b≠0).若复数a +bi 是纯虚数则a =0.综上,a ,b ∈R ,“a =0”是“复数a +bi 是纯虚数”的必要而不充分条件.6. 数列{x n }满足x 1=0,x n +1=-x n 2+x n +c(n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c<0; (2)求c 的取值范围,使{x n }是递增数列. 【答案】(1)见解析 (2)【解析】(1)证明:先证充分性,若c<0,由于x n +1=-x n 2+x n +c≤x n +c<x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列, 则由x 2<x 1可得c<0.(2)(i)假设{x n }是递增数列,由x 1=0,得x 2=c ,x 3=-c 2+2c , 由x 1<x 2<x 3,得0<c<1.由x n <x n +1=-x n 2+x n +c 知, 对任意n≥1都有x n <.①注意到-x n +1=x n 2-x n -c +=(1--x n )(-x n ).② 由①式和②式可得1--x n >0即x n <1-. 由②式和x n ≥0还可得,对任意n≥1都有 -x n +1≤(1-)(-x n ).③ 反复运用③式,得-x n ≤(1-)n -1(-x 1)<(1-)n -1, x n <1-和-x n <(1-)n -1两式相加, 知2-1<(1-)n -1对任意n≥1成立. 根据指数函数y =(1-)x 的性质,得2-1≤0,c≤,故0<c≤.(ii)若0<c≤,要证数列{x n }为递增数列,即x n +1-x n =-x n 2+c>0. 即证x n <对任意n≥1成立.下面用数学归纳法证明当0<c≤时,x n <对任意n≥1成立.(1)当n =1时,x 1=0<≤,结论成立.(2)假设当n =k(k ∈N *)时结论成立,即:x k <.因为函数f(x)=-x 2+x +c 在区间内单调递增,所以x k +1=f(x k )<f()=,这就是说当n =k +1时,结论也成立.故x n <对任意n≥1成立. 因此,x n +1=x n -x n 2+c>x n ,即{x n }是递增数列. 由(i)(ii)知,使得数列{x n }单调递增的c 的范围是.7. 命题且满足.命题且满足.则是的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由得,,即,故,反之也成立,故是的充要条件.8.条件,条件;若p是q的充分而不必要条件,则的取值范围是()A.B.C.D.【答案】B【解析】由题意,只需满足,则,即,选B.9.对任意的实数,若表示不超过的最大整数,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由题得,当时,满足,但是,所以.若,则,所以.综上,是的必要不充分条件,故选B.10.设则是“”成立的 ( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C【解析】,,由于,因此应选C.11.已知集合,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】时,因为,所以;反之,若,则必有,所以或,故“”是“”的充分不必要条件.选.12.条件,条件,则是的()A.充分非必要条件B.必要不充分条件C.充要条件D.既不充分也不必要的条件【解析】不等式的解集为:或,不等式的解集为:,故为,为,则,则是的充分非必要条件.13.设,则“” 是“且”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【答案】B【解析】由不能得到且,如也满足;由且一定可以得到,因为,故选B.14.已知,则是成立的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】当时,成立,而,所以,条件,由于,所以,则,所以是成立的必要不充分条件,故选C15.“”是“函数在区间内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】当时,,此时函数在区间内单调递增,当时,令,解得或,当时,结合图象可知,函数在区间内单调递增,当时,结合图象可知,函数在区间上单调递增,在区间上单调递减,在区间上单调递增,不合乎题意!因此“”是“函数在区间内单调递增”的充分必要条件,故选C.16.设且,则“函数在上是减函数”,是“函数在上是增函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若函数在上是减函数,则这样函数在上单调递增;若函数在上是增函数,则【考点】本题结合函数的单调性考查充分必要条件的判定,从基础知识出发,通过最简单的指数函数入手,结合熟知的三次函数设计问题,考查了综合解决问题的能力17.“命题是假命题”是“或”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】由“命题是假命题”得“命题”是真命题,故,即或,记或,或,因为,所以“命题是假命题”是“或”的必要不充分条件.【命题意图】本题考查含一个量词命题的否定、充分条件和必要条件等基础知识,意在考查逻辑思维能力.18.已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】“”的充要条件是;“”的充要条件是,显然“”是“”的充分不必要条件,所以“”是“”的充分也不必要条件.故选A.【命题意图】本题主要考查充要条件的判断以及对数函数与指数函数的性质,意在考查学生基本的逻辑推理能力.19.“”是“数列为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A.【解析】设,由,得故能推出数列为递增数列,但数列为递增数列不能推出,故“”是“数列为递增数列”的充分而不必要条件,故选A.【命题意图】本题考查充分必要条件、数列的单调性等基础知识,意在考查基本运算能力、逻辑推理能力.20.已知,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题考查不等式性质以及充要条件的判定等基础知识,意在考查运算求解及逻辑推理能力.【答案】A.【解析】解得,,故可以推出,但不能推出,故选A.。
充分条件与必要条件经典练习及答案详解
[基础巩固]1.“x>0”是“x≠0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析由“x>0”⇒“x≠0”,反之不一定成立.因此“x>0”是“x≠0”的充分不必要条件.答案 A2.“a>b”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件解析由a>|b|⇒a>b,而a>b推不出a>|b|.答案 B3.“函数y=x2-2ax+a的图象在x轴的上方”是“0≤a≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析函数y=x2-2ax+a的图象在x轴的上方,则Δ=4a2-4a<0,解得0<a<1,由集合的包含关系可知选A.答案 A4.设a,b是实数,则“a+b>0”是“ab>0”的________条件.解析若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若ab>0,取a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分也不必要条件.答案既不充分也不必要5.若“x2>1”是“x<a”的必要不充分条件,则实数a的最大值为________.解析由x2>1,得x<-1或x>1.又“x2>1”是“x<a”的必要不充分条件,则由“x <a”可以推出“x2>1”,但由“x2>1”推不出“x<a”,所以a≤-1,所以实数a的最大值为-1.答案-16.求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.证明假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.(1)证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a·12+b·1+c=0,即a+b+c=0.(2)q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[能力提升]7.(多选)在整数集Z中,被5除所得作数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.则下列结论正确的是()A.2022∈[2]B.Z=[0]∪[1]∪[2]∪[3]∪[4]C.-3∈[3]D.整数a,b属于同一“类”的充要条件是“a-b∈[0]”解析A:2022除以5,所得余数为2,满足[2]的定义,故正确;B:整数集Z就是由除以5所得余数为0,1,2,3,4的整数构成的,故正确;C:-3=5×(-1)+2,故-3∉[3],故错误;D:设a=5n1+m1,b=5n2+m2,n1,n2,∈Z,m1,m2∈{0,1,2,3,4},则a-b=5(n1-n2)+m1-m2;若整数a,b属于同一“类”,则m1-m2=0,所以a-b∈[0];反之,若a-b∈[0],则m1-m2=0,即m1=m2,a,b属于同一“类”.故整数a,b属于同一“类”的充要条件是“a-b∈[0]”,正确.故选ABD.答案ABD8.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=________.解析当m=-2时,f(x)=x2-2x+1,其图象关于直线x=1对称,反之也成立,所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案-29.已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的________条件.解析因为|a+b|=|a|+|b|⇔a2+2ab+b2=a2+2|ab|+b2⇔|ab|=ab⇔ab≥0,而由ab≥0不能推出ab>0,由ab>0能推出ab≥0,所以由|a+b|=|a|+|b|不能推出ab>0,由ab>0能推出|a+b|=|a|+|b|.答案必要不充分10.求证:关于x的方程x2+mx+1=0有两个负实根的充要条件是m≥2.证明 (1)充分性:∵m ≥2,∴Δ=m 2-4≥0,方程x 2+mx +1=0有实根,设x 2+mx +1=0的两根为x 1,x 2,由根与系数的关系知:x 1x 2=1>0,∴x 1,x 2同号,又∵x 1+x 2=-m ≤-2,∴x 1,x 2同为负根.(2)必要性:∵x 2+mx +1=0的两个实根x 1,x 2均为负,且x 1·x 2=1,∴m -2=-(x 1+x 2)-2=-⎝⎛⎭⎫x 1+1x 1-2 =-x 21+2x 1+1x 1=-(x 1+1)2x 1≥0. ∴m ≥2.综上(1),(2)知命题得证.[探索创新]11.已知方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,试求实数m 的取值范围. 解析 由于方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,设这两个根为x 1,x 2,则有⎩⎪⎨⎪⎧ Δ=4(m +2)2-4(m 2-1)≥0,(x 1-2)+(x 2-2)>0,(x 1-2)(x 2-2)>0.结合⎩⎪⎨⎪⎧x 1+x 2=2(m +2),x 1x 2=m 2-1. 解得m >5.所以当m >5时,方程x 2-2(m +2)x +m 2-1=0有两个大于2的根.所以,m 的取值范围是(5,+∞).。
充分条件与必要条件 高中数学例题课后习题详解
第一章集合与常用逻辑用语1.4充分条件与必要条件例1下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若四边形的两组对角分别相等,则这个四边形是平行四边形;(2)若两个三角形的三边成比例,则这两个三角形相似;(3)若四边形为菱形,则这个四边形的对角线互相垂直;(4)若21x =,则1x =;(5)若a b =,则ac bc =;(6)若x ,y 为无理数,则xy 为无理数.解:(1)这是一条平行四边形的判定定理,p q ⇒,所以p 是q 的充分条件.(2)这是一条相似三角形的判定定理,p q ⇒,所以p 是q 的充分条件.(3)这是一条菱形的性质定理,p q ⇒,所以p 是q 的充分条件.(4)由于()211-=,但11-≠,p q ⇒/,所以p 不是q 的充分条件.(5)由等式的性质知,p q ⇒,所以p 是q 的充分条件(62=为有理数,p q ⇒/,所以p 不是q 的充分条件.例2下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若四边形为平行四边形,则这个四边形的两组对角分别相等;(2)若两个三角形相似,则这两个三角形的三边成比例;(3)若四边形的对角线互相垂直,则这个四边形是菱形;(4)若1x =,则21x =;(5)若ac bc =,则a b =;(6)若xy 为无理数,则x ,y 为无理数.解:(1)这是平行四边形的一条性质定理,p q ⇒,所以,q 是p 的必要条件.(2)这是三角形相似的一条性质定理,p q ⇒,所以,q 是p 的必要条件.(3)如图1.4-1,四边形ABCD 的对角线互相垂直,但它不是菱形,p q ⇒/,所以,q 不是p 的必要条件.(4)显然,p q ⇒,所以,q 是p 的必要条件.(5)由于()1010-⨯=⨯,但11-≠,p q ⇒/,所以,q 不是p 的必要条件.(6)由于122=为无理数,但12不全是无理数,p q ⇒/,所以,q 不是p 的必要条件.例3下列各题中,哪些p 是q 的充要条件?(1)p :四边形是正方形,q :四边形的对角线互相垂直且平分;(2)p :两个三角形相似,q :两个三角形三边成比例;(3)p :0xy >,q :0x >,0y >;(4)p :1x =是一元二次方程20ax bx c ++=的一个根,q :0a b c ++=(0a ≠).解:(1)因为对角线互相垂直且平分的四边形不一定是正方形(为什么),所以q p ⇒/,所以p 不是q 的充要条件.(2)因为“若p ,则q ”是相似三角形的性质定理,“若q ,则p ”是相似三角形的判定定理,所以它们均为真命题,即p q ⇔,所以p 是q 的充要条件.(3)因为0xy >时,0x >,0y >不一定成立(为什么),所以p q ⇒/,所以p 不是q 的充要条件.(4)因为“若p ,则q ”与“若q ,则p ”均为真命题,即p q ⇔,所以p 是q 的充要条件.例4已知:O 的半径为r ,圆心O 到直线l 的距离为d .求证:d r =是直线l 与O 相切的充要条件.分析:设p :d r =,q :直线l 与O 相切.要证p 是q 的充要条件,只需分别证明充分性(p q ⇒)和必要性(q p ⇒)即可.证明:设p :d r =,q :直线l 与O 相切.(1)充分性(p q ⇒):如图1.4-2,作OP l ⊥于点P ,则OP d =.若d r =,则点P 在O 上.在直线l 上任取一点Q (异于点P ),连接OQ .在Rt OPQ △中,OQ OP r >=.所以,除点P 外直线l 上的点都在O 的外部,即直线l 与O 仅有一个公共点P .所以直线l 与O 相切.(2)必要性(q p ⇒):若直线l 与O 相切,不妨设切点为P ,则OP l ⊥.因此,d OP r ==.由(1)(2)可得,d r =是直线l 与O 相切的充要条件.1.4.1充分条件与必要条件练习1.下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若平面内点P 在线段AB 的垂直平分线上,则PA PB =;(2)若两个三角形的两边及一边所对的角分别相等,则这两个三角形全等;(3)若两个三角形相似,则这两个三角形的面积比等于周长比的平方.【答案】(1)p 是q 的充分条件;(2)p 不是q 的充分条件;(3)p 是q 的充分条件【解析】【分析】根据所给命题,判断出能否得到p q ⇒,从而得到p 是否是q 的充分条件,得到答案.【详解】(1)线段垂直平分线的性质,p q ⇒,p 是q 的充分条件;(2)三角形的两边及一边所对的角分别相等的两个三角形不一定全等,p q ⇒/,p 不是q 的充分条件;(3)相似三角形的性质,p q ⇒,p 是q 的充分条件.【点睛】本题考查判断是否为充分条件,属于简单题.2.下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若直线l 与o 有且仅有一个交点,则l 为o 的一条切线;(2)若x 是无理数,则2x 也是无理数.【答案】(1)q 是p 的必要条件;(2)q 不是p 的必要条件【解析】【分析】根据所给命题,判断出能否得到p q ⇒,从而得到q 是否是p 的必要条件,得到答案.【详解】(1)这是圆的切线定义,p q ⇒,所以q 是p 的必要条件;(2是无理数,但22=不是无理数,p q ⇒/,所以q 不是p 的必要条件.【点睛】本题考查判断是否为必要条件,属于简单题.3.如图,直线a 与b 被直线1所截,分别得到了1∠,2∠,3∠和4∠.请根据这些信息,写出几个“a b ∥”的充分条件和必要条件.【答案】充分条件和必要条件见解析【解析】【分析】根据a b ∥可以得到内错角相等,同位角相等,同旁内角互补,根据内错角相等,同位角相等,同旁内角互补,得到a b ∥.【详解】因为内错角相等,同位角相等,同旁内角互补,得到a b ∥,所以“a b ∥”的充分条件:12∠=∠,14∠=∠,13180︒∠+∠=;因为a b ∥可以得到内错角相等,同位角相等,同旁内角互补,所以“a b ∥”的必要条件:12∠=∠,14∠=∠,13180︒∠+∠=.【点睛】本题考查充分条件和必要条件,属于简单题.1.4.2充要条件练习4.下列各题中,哪些p 是q 的充要条件?(1)p :三角形为等腰三角形,q :三角形存在两角相等;(2):p O 内两条弦相等,:q O 内两条弦所对的圆周角相等;(3):p A B ⋂为空集,:q A 与B 之一为空集.【答案】(1)p 是q 的充要条件;(2)p 不是g 的充要条件;(3)p 不是q 的充要条件【解析】【分析】根据所给命题,判断出能否得到p q ⇔,从而得到p 是否是q 的充要条件,得到答案.【详解】在(1)中,三角形中等边对等角,等角对等边,所以p q ⇔,所以p 是q 的充要条件;在(2)中,O 内两条弦相等,它们所对的圆周角相等或互补,因此,p q ⇒/,所以p 不是q 的充要条件;在(3)中,取{1,2}A =,{3}=B ,显然,A B =∅ ,但A 与B 均不为空集,因此,p q ⇒/,所以p 不是q 的充要条件.【点睛】本题考查充要条件的判断,属于简单题.5.分别写出“两个三角形全等”和“两个三角形相似”的几个充要条件.【答案】见解析【解析】【分析】根据三角形全等的判定和性质以及相似三角形的判定和性质,得到答案.【详解】“两个三角形全等”的充要条件如下:①三边对应相等;②两边及其夹角对应相等;③两角及其夹边对应相等;④两角及一角的对边对应相等.“两个三角形相似”的充要条件如下:①三个内角对应相等(或两个内角对应相等);②三边对应成比例;③两边对应成比例且夹角相等.【点睛】本题考查写命题的充要条件,属于简单题.6.证明:如图,梯形ABCD 为等腰梯形的充要条件是AC BD =.【答案】证明见解析【解析】【分析】先由梯形ABCD 为等腰梯形,证明AC BD =,验证必要性;再由AC BD =证明梯形ABCD 为等腰梯形,验证充分性,即可得出结论成立.【详解】证明:(1)必要性.在等腰梯形ABCD 中,AB DC =,ABC DCB ∠=∠,又∵BC CB =,∴BAC CDB ≅ ,∴AC BD =.(2)充分性.如图,过点D 作//DE AC ,交BC 的延长线于点E .∵//AD BE ,//DE AC ,∴四边形ACED 是平行四边形.∴DE AC =.∵AC BD =,∴BD DE =,∴1E ∠=∠.又∵//AC DE ,∴2E ∠=∠,∴12∠=∠.在ABC 和DCB 中,,21,,AC DB BC CB =⎧⎪∠=∠⎨⎪=⎩∴ABC DCB ≅ .∴AB DC =.∴梯形ABCD 为等腰梯形.由(1)(2)可得,梯形ABCD 为等腰梯形的充要条件是AC BD =.【点睛】本题主要考查充要条件的证明,熟记充分条件与必要条件的概念即可,属于常考题型.习题1.4复习巩固7.举例说明:(1)p 是q 的充分不必要条件;(2)p 是q 的必要不充分条件;(3)p 是q 的充要条件.【答案】(1)“1x >”是“0x >”的充分不必要条件;(2)“22x y =”是“x y =”的必要不充分条件;(3)“内错角相等”是“两直线平行”的充要条件【解析】【分析】根据充分与必要条件的概念举例即可.【详解】(1)可根据数轴上的关系举例:“1x >”是“0x >”的充分不必要条件;(2)可根据方程的根的解举例:“22x y =”是“x y =”的必要不充分条件;(3)可根据定理举例:“内错角相等”是“两直线平行”的充要条件【点睛】本题主要考查了充分与必要条件的理解,属于基础题型.8.在下列各题中,判断p 是q 的什么条件(请用“充分不必要条件”“必要不充分条件”“充要条件”“既不充分又不必要条件”回答):(1)p :三角形是等腰三角形,q :三角形是等边三角形;(2)在一元二次方程中,:p 20ax bx c ++=有实数根,2:40q b ac - ;(3):,:p a P Q q a P ∈⋂∈;(4):,:p a P Q q a P ∈⋃∈;(5)22:,:p x y q x y >>.【答案】(1)必要不充分条件;(2)充要条件;(3)充分不必要条件;(4)必要不充分条件;(5)既不充分又不必要条件.【解析】【分析】(1)根据等腰三角形与等边三角形的关系分析.(2)根据二次方程的根分析(3)根据集合的基本关系分析(4)根据集合的基本关系分析(5)举例说明分析【详解】(1)因为等腰三角形是特殊的等边三角形,故p 是q 的必要不充分条件.(2)一元二次方程20ax bx c ++=有实数根则判别式240b ac =-∆ .故p 是q 的充要条件.(3)因为a P Q ∈⋂,故a P Î且a Q ∈;当a P Î时a Q ∈不一定成立.故p 是q 的充分不必要条件.(4)因为a P Q ∈⋃,故a P Î或a Q ∈,所以a P Î不一定成立;当a P Î时a P Q ∈⋃一定成立.故p 是q 的必要不充分条件.(5)当x 1,y 2==-时,满足x y >但22x y >不成立.当2,1x y =-=时,满足22x y >但x y >不成立.故p 是q 的既不充分又不必要条件.【点睛】本题主要考查了充分条件与必要条件的判定,属于基础题型.9.判断下列命题的真假:(1)点P 到圆心O 的距离大于圆的半径是点P 在O 外的充要条件;(2)两个三角形的面积相等是这两个三角形全等的充分不必要条件;(3)A B A ⋃=是B A ⊆的必要不充分条件;(4)x 或y 为有理数是xy 为有理数的既不充分又不必要条件.【答案】(1)真命题;(2)假命题;(3)假命题;(4)真命题.【解析】【分析】(1)根据点与圆的位置关系判断.(2)举例说明即可.(3)根据集合的关系直接判断(4)举例说明即可.【详解】(1)根据点与圆的位置关系知点P 到圆心O 的距离大于圆的半径是点P 在O 外的充要条件.故(1)为真命题.(2)两个三角形面积相等也可能同底等高,全等三角形面积一定相等.故两个三角形的面积相等是这两个三角形全等的必要不充分条件.故(2)为假命题.(3)A B A ⋃=是B A ⊆的充要条件.故(3)为假命题.(4)当1,x y ==,满足“x 或y 为有理数”但“xy 为有理数”不成立.当x y ==时满足“xy 为有理数”但“x 或y 为有理数”不成立.故(4)为真命题.【点睛】本题主要考查了充分与必要条件的辨析,属于基础题型.综合运用10.已知A ={|x x 满足条件p },B ={|x x 满足条件q },(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?(3)如果A B =,那么p 是q 的什么条件?【答案】(1)充分条件;(2)必要条件;(3)充要条件.【解析】【分析】(1)根据集合间的基本关系判断p 和Q 的包含关系再即可.(2)根据集合间的基本关系判断p 和Q 的包含关系再即可.(3)根据集合间的基本关系判断p 和Q 的包含关系再即可.【详解】(1)如果A B ⊆,则满足条件p 也满足条件q .故p 是q 的充分条件.(2)如果B A ⊆,则满足条件q 也满足条件p .故p 是q 的必要条件.(3)如果A B =,则满足条件p 满足条件q ,且满足条件q 也满足条件p .故p 是q 的充要条件.【点睛】本题主要考查了集合的关系与充分必要条件的关系,属于基础题型.11.设,,a b c ∈R 证明:222a b c ab ac bc ++=++的充要条件是a b c ==.【答案】见解析【解析】【分析】分别证明充分性与必要性即可.【详解】证明:(1)充分性:如果a b c ==,那么222()()()0a b b c a c -+-+-=,2222220,a b c ab ac bc a b c ab ac bc ∴++---=∴++=++.(2)必要性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=,222()()()0,0,0,0a b b c c a a b b c c a ∴-+-+-=∴-=-=-=,a b c ==∴.由(1)(2)知,222a b c ab ac bc ++=++的充要条件是a b c ==.【点睛】本题主要考查了充分必要条件的证明,需要分别证明充分性与必要性,属于中等题型.拓广探索12.设a ,b ,c 分别是ABC 的三条边,且a b c .我们知道,如果ABC 为直角三角形,那么222+=a b c (勾股定理).反过来,如果222+=a b c ,那么ABC 为直角三角形(勾股定理的逆定理).由此可知,ABC 为直角三角形的充要条件是222+=a b c .请利用边长a ,b ,c 分别给出ABC 为锐角三角形和钝角三角形的一个充要条件,并证明.【答案】ABC 为锐角三角形的充要条件是222a b c +>.ABC 为钝角三角形的充要条件是222a b c +<.证明见解析【解析】【分析】根据勾股定理易得ABC 为锐角三角形的充要条件是222a b c +>.ABC 为钝角三角形的充要条件是222a b c +<.再分别证明充分与必要性即可.【详解】解:(1)设a ,b ,c 分别是ABC 的三条边,且a b c ,ABC 为锐角三角形的充要条件是222a b c +>.证明如下:必要性:在ABC 中,C ∠是锐角,作AD BC ⊥,D 为垂足,如图(1).显然2222222222()2AB AD DB AC CD CB CD AC CD CB CD CB CD =+=-+-=-++-⋅22222AC CB CB CD AC CB =+-⋅<+,即222c a b <+.充分性:在ABC 中,222a b c +>,C ∴∠不是直角.假设C ∠为钝角,如图(2).作AD BC ⊥,交BC 延长线于点D .则2222222222()2AB AD BD AC CD BC CD AC CD BC CD BC CD =+=-++=-+++⋅22222AC BC BC CD AC BC =++⋅>+.即222c b a >+,与“222a b c +>”矛盾.故C ∠为锐角,即ABC 为锐角三角形.(2)设a ,b ,c 分别是ABC 的三条边,且a b c ≤≤,ABC 为钝角三角形的充要条件是222a b c +<.证明如下:必要性:在ABC 中,C ∠为钝角,如图(2),显然:2222222222()2AB AD BD AC CD CD CB AC CD CD CB CD CB =+=-++=-+++⋅22222AC CB CD CB AC CB =++⋅>+.即222a b c +<.充分性:在ABC 中,222a b c +<,C ∴∠不是直角,假设C ∠为锐角,如图(1),则222222()AB AD DB AC CD CB CD =+=-+-2222222222AC CD CB CD CD CB AC CB CD CB AC CB =-++-⋅=+-⋅<+.即222a b c +>,这与“222a b c +<”矛盾,从而C ∠必为钝角,即ABC 为钝角三角形.【点睛】本题主要考查了锐角与钝角三角形的充分必要条件证明,证明时注意用反证法,属于中等题型.。
预备知识4 充分条件与必要条件(解析版)-2024-2025初升高衔接精品资料(新高一暑假学习提升)
专题04预备知识四:充分条件与必要条件1、初步理解充分条件、必要条件的含义2、通过对初中定理的再认识,理解充分条件与判定定理、必要条件与性质定理之间的关系3、体会常用逻辑用语在表达数学内容中的作用,逐步提升逻辑推理的素养1、充分条件、必要条件与充要条件的概念(1)若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;(2)若p q ⇒且q p ¿,则p 是q 的充分不必要条件;(3)若p q ¿且q p ⇒,则p 是q 的必要不充分条件;(4)若p q ⇔,则p 是q 的充要条件;(5)若p q ¿且q p ¿,则p 是q 的既不充分也不必要条件.2、集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :{|()}A x p x =,q :{|()}B x q x =,则(1)若A B ⊆,则p 是q 的充分条件;(2)若B A ⊆,则p 是q 的必要条件;(3)若A B ⊂≠,则p 是q 的充分不必要条件;(4)若B A ⊂≠,则p 是q 的必要不充分条件;(5)若A B =,则p 是q 的充要条件;(6)若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件.3、充分性必要性高考高频考点结构(1)p 是q 的充分不必要条件⇔p q ⇒且q p ¿(注意标志性词:“是”,此时p 与q 正常顺序)(2)p 的充分不必要条件是q ⇔q p ⇒且p q ¿(注意标志性词:“的”,此时p 与q 倒装顺序)对点特性一:充分条件与必要条件的判断典型例题对点特训二:充分条件与必要条件的应用精练对点特训三:充分条件与必要条件(“是”,“的”)结构对比角度1:“是”标志词角度2:“的”标志词【答案】解析:由题意得(,)+1),所以且等号不能同时成立,解得-≤≤.。
充分条件与必要条件(习题作业)解析版--2023年初升高暑假衔接之高一数学
1.4充分条件与必要条件一、单选题1.已知:02p x <<,:13q x -<<,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】将,p q 相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由:02p x <<,可得出:13q x -<<,故p q ⇒,由:13q x -<<,得不出:02p x <<,所以p 是q 的充分而不必要条件,故选:A.2.设R a ∈,则“1a >”是“21a >”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A【分析】根据给定条件,利用充分条件、必要条件的定义判断作答.【详解】由21a >得1a >或1a <-,因此“若1a >,则21a >”是真命题,“若21a >,则1a >”是假命题,所以“1a >”是“21a >”的充分不必要条件.故选:A3.“2x >且3y >”是“5x y +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】利用充分条件与必要条件的定义判断结果.【详解】2x >且3y >能够推出5x y +>,反之5x y +>不能推出2x >且3y >,所以“2x >且3y >”是“5x y +>”的充分不必要条件.故选:A .4.已知a 、b 、R c ∈,则“a b <”是“22ac bc <”的().A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】B【分析】当0c =时,代入验证不充分,根据不等式性质得到必要性,得到答案.【详解】若a b <,当0c =时,220ac bc ==,故不充分;若22ac bc <,则0c ≠,故a b <,必要性.故“a b <”是“22ac bc <”的必要非充分条件.故选:B5.设,R x y ∈,则“0x y +>”是“0xy >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【分析】先判断充分性是否满足,再判断必要性是否满足,即可得答案.【详解】解:充分性:若0x y +>,则可得,x y 有三种可能:①两个都为正;②一个为正、一个为零;③一个为正、一个为负且正数的绝对值大于负数的绝对值,所以0xy >或0xy <或0xy =,故0x y +>不是0xy >的充分条件;必要性:若0xy >,则0,0x y >>或0,0x y <<,故0x y +>或0x y +<,故“0x y +>”不是“0xy >”的必要条件.综上,“0x y +>”是“0xy >”的既不充分也不必要条件.故选:D.6.已知集合M ,P ,则“x M ∈或x P ∈”是“()x M P ∈⋂”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【分析】x M ∈或x P ∈即()x M P ∈ ,再利用()x M P ∈⋂与()x M P ∈ 之间的关系即可判断出结论.【详解】由x M ∈或x P ∈得()x M P ∈ ,又()()M P M P ⊆ ,∴x M ∈或x P ∈不能推出()x M P ∈⋂,()x M P ∈⋂能推出x M ∈或x P ∈.则“x M ∈或x P ∈”是“()x M P ∈⋂”的必要不充分条件.故选:A.7.设x ∈R ,则“2x =”是“24x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件的定义判断即可.【详解】当2x =时24x =,故充分性成立,由24x =可得2x =或2x =-,故必要性不成立,所以“2x =”是“24x =”的充分不必要条件.故选:A8.若,R a b ∈,则“2()0a b a -<”是“a b <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据不等式的性质,结合充分条件、必要条件的判定方法,即可求解.【详解】由不等式2()0a b a -<,可得0a b -<,可得a b <,即充分性成立;反之:由a b <,可得0a b -<,又因为20a ≥,所以2()0a b a -≤,所以必要性不成立,所以2()0a b a -<是a b <的充分不必要条件.故选:A.9.若,,R a b c ∈,则“ac bc =”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件、必要条件的定义即可得解.【详解】若0c =,令2,1a b ==,满足ac bc =,但a b ¹;若a b =,则ac bc =一定成立,所以“ac bc =”是“a b =”的必要不充分条件.故选:B10)A .0,0a b ≥≥B .0,0a b >>C .0,0a b ≤≤D .0,0a b ≤<【答案】BA中,0b=,根据充分条件的定义知,选项A不是充分条件;选项C、D中,由0a≤可知,C、D不是充分条件;选项B,由0,0a b>>B是充分条件.【详解】对于选项A,因为0b=项A不是充分条件;对于选项B,当0,0a b>>a≥0,b>0.根据充分条件的定义知,选项B是充分条件;对于选项C、D,由0a≤没意义,所以选项C、D不是充分条件;故选:B.11.已知a,b为非零实数,则“1ba≥”是“b a≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分析】利用特殊值法结合充分条件、必要条件的定义判断可得出结论.【详解】由222222111||||b b b b a b aa a a⎛⎫≥⇒≥⇒≥⇒≥⇒≥⎪⎝⎭,即b a≥成立,故充分性成立;取2b=-,1a=,则b a≥成立,但1ba≥不成立,故必要性不成立.因此,“1ba≥”是“b a≥”的充分不必要条件.故选:A12.设命题121,:1.xpx>⎧⎨>⎩命题12122,:1.x xqx x+>⎧⎨>⎩则p是q的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件【答案】A【分析】判断p ,q 间关系可得答案.【详解】当1211x x >⎧⎨>⎩,则121221x x x x +>⎧⎨>⎩,故p 是q 的充分条件;当121221x x x x +>⎧⎨>⎩,则可令1250.3x x =⎧⎨=⎩,不能得到1211x x >⎧⎨>⎩,则p 不是q 的必要条件.则p 是q 的充分不必要条件.故选:A二、多选题13.有以下四种说法,其中说法正确的是()A .“m 是实数”是“m 是有理数”的必要不充分条件B .“0a b >>”是“22a b >”的充要条件C .“3x =”是“2230x x --=”的充分不必要条件D .“1a >”是“11a<”的必要不充分条件【答案】AC【分析】根据充分条件和必要条件的定义逐个分析即可.【详解】当m 是实数时,m 可能为有理数,可能为无理数,而当m 为有理数时,m 一定为实数,所以“m 是实数”是“m ”的必要不充分条件,A 正确;当0a b >>时,22a b >成立,而当22a b >时,有可能0a b <<,所以“0a b >>”是“22a b >”的充分不必要条件,B 错误;当3x =时,2230x x --=成立,而当2230x x --=时,3x =或=1x -,所以“3x =”是“2230x x --=”的充分不必要条件,C 正确;当1a >时,11a <成立,而当11a <时,有可能a<0,所以“1a >”是“11a<”的充分不必要条件,D 错误;故选:AC14.设全集为U ,在下列选项中,是B A ⊆的充要条件的是()A .AB B ⋃=B .()U A B Ç=ÆðC .()()U U A B Í痧D .()U A B U È=ð【答案】BCD【分析】利用维恩图解决集合运算问题.【详解】由维恩图可知,A 不是B A ⊆的充要条件,B ,C ,D 都是B A ⊆的充要条件,故选:BCD .15.下列命题中叙述不正确...的是()A .“关于x 的方程()200ax bx c a ++=≠有实数根”的充要条件是“240b ac ∆=-≥”B .“三角形为正三角形”是“三角形为等腰三角形”的必要而不充分条件C .“4x >”的一个充分不必要条件可以是“3x >”D .若集合A B ⊆,则“x A ∈”是“x B ∈”的充分而不必要条件【答案】BCD【分析】根据充分条件和必要条件的定义逐项判断各选项即可.【详解】由关于x 的方程()200ax bx c a ++=≠有实数根可得240b ac ∆=-≥,由240b ac ∆=-≥可得关于x 的方程()200ax bx c a ++=≠有实数根,所以“关于x 的方程()200ax bx c a ++=≠有实数根”的充要条件是“240b ac ∆=-≥”,A正确;由三角形为正三角形可得该三角形为等腰三角形,所以“三角形为正三角形”是“三角形为等腰三角形”的充分条件,B 错误;由3x >不能推出>4x ,所以“3x >”不是“4x >”的充分条件,C 错误;当A B =时,若x A ∈,则x B ∈,若x B ∈,则x A ∈,所以“x A ∈”是“x B ∈”的充要条件,所以若集合A B ⊆,则“x A ∈”可能是“x B ∈”的充要条件,D 错误;故选:BCD.16.下列说法正确的是()A .a P Q ∈⋃是a P ∈的必要不充分条件B .U UP Q ⊆痧(U 是全集)是P Q ⊆的充分不必要条件C .a b <是22a b <的充分不必要条件D .a b <是33a b <的充要条件【答案】AD【分析】根据充分条件与必要条件的定义逐项分析即可.【详解】对于A ,若a P Q ∈⋃,则可能a Q ∈且a P ∉,不能推出a P ∈,若a P ∈,则必有a P Q ∈⋃,故a P Q ∈⋃是a P ∈的必要不充分条件,故A 正确;对于B ,若U UP Q ⊆痧,则Q P ⊆,故U UP Q ⊆痧(U 是全集)是P Q ⊆的既不充分也不必要条件,故B 错误;对于C ,若a b <,取2,1a b =-=-,则22a b >,若22a b <,取1,2a b =-=-,则a b >,故a b <是22a b <的既不充分也不必要条件,故C 错误;对于D ,因为33a b a b <⇔<,所以a b <是33a b <的充要条件,故D 正确.故选:AD.17.对任意实数,,a b c ,给出下列命题,其中假命题是()A .“a b =”是“ac bc =”的充要条件B .“5a <”是“3a <”的必要条件C .“a b >”是“22a b >”的充分条件D .“5a +是无理数”是“a 是无理数”的充要条件【答案】AC【分析】根据充分必有条件的定义逐项分析.【详解】对于A ,如果a b =,则必定有ac bc =,是充分条件,如果ac bc =,则()0c a b -=,得0c =或a b =,不是必要条件,所以“a b =”是“ac bc =”的充分不必要条件,错误;对于B ,如果3a <,必定有5a <,是必要条件,正确;对于C ,如果a b >,比如1,2a b =-=-,()()2212--<,不能推出22a b >,不是充分条件,错误;对于D ,因为有理数+无理数=无理数,有理数+有理数=有理数,5是有理数,所以“a +5是无理数”必定有a 是无理数,是充分条件,如果“a 是无理数”则“a +5也是无理数”,是必要条件,所以“a +5是无理数”是“a 是无理数”的充要条件,正确;故选:AC.18.若关于x 的方程()2110x m x +-+=至多有一个实数根,则它成立的必要条件可以是()A .13m -<<B .24m -<<C .4m <D .12m -≤<【答案】BC【分析】利用()2110x m x +-+=的判别式0∆≤,求出m 的范围,再利用必要条件的定义即可求得.【详解】因为方程()2110x m x +-+=至多有一个实数根,所以方程()2110x m x +-+=的判别式0∆≤,即:2(1)40m --≤,解得13m -≤≤,利用必要条件的定义,结合选项可知,13m -≤≤成立的必要条件可以是选项B 和选项C.故选:BC.19.已知集合{}|123|{ ,2A x a x a B x x =+<<-=≤-或7}x ≥,则A B ⋂=∅的必要不充分条件可能是()A .7a <B .6a <C .5a <D .4a <【答案】AB【分析】分别在A =∅、A ≠∅的情况下,根据A B =∅ 求得a 的范围,即为A B =∅ 的充要条件,再根据选项即可得解.【详解】解:因为集合{}|123|{ ,2A x a x a B x x =+<<-=≤-或7}x ≥,当A =∅时,123a a +≥-,解得4a ≤,此时A B =∅ ,当A ≠∅时,123a a +<-,解得4a >,若A B =∅ ,则12237a a +≥⎧⎨-≤⎩,解得15a ≤≤,又4a >,则45a <≤,则A B =∅ 的充要条件为5a ≤,所以A B =∅ 的必要不充分条件可能是7a <,6a <,故选:AB .三、填空题20.已知集合{}3A x x =>,集合{}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是______.【答案】3a <【分析】根据充分不必要条件转化为集合的真包含关系,即可得解.【详解】因为命题“x A ∈”是命题“x B ∈”的充分不必要条件,所以集合A 真包含于集合B ,又集合{}3A x x =>,集合{}B x x a =>,所以3a <.故答案为:3a <21.设α:14x <≤,β:x >m ,α是β的充分条件,则实数m 的取值范围是________.【答案】(],1-∞【分析】设{}{}14,A x x B x x m =<≤=>,根据充分条件的定义结合包含关系得出实数m 的取值范围.【详解】设{}{}14,A x x B x x m =<≤=>,因为α是β的充分条件,所以集合A 是集合B 的子集,所以1m £.故答案为:(],1-∞22.已知:p x a <,:3q x <,p 是q 的必要不充分条件,则实数a 的取值范围为___________.【答案】()3,+∞【分析】由充分条件和必要条件的定义即可得出答案.【详解】因为:p x a <,:3q x <,因为p 是q 的必要不充分条件,所以3a >.所以实数a 的取值范围为()3,+∞.故答案为:()3,+∞.23.:x α是2的倍数,:x β是6的倍数,则α是β的______条件.【答案】必要非充分【分析】利用充要条件的定义判定即可.【详解】当4x =时,满足x 是2的倍数,但不满足x 是6的倍数,∴充分性不成立;若x 是6的倍数,则x 一定是2的倍数,∴必要性成立.则α是β的必要非充分条件.故答案为:必要非充分.24.设甲、乙、丙、丁是四个命题,甲是乙的充分不必要条件,丙是乙的充要条件,丁是丙的必要不充分条件,那么丁是甲的______条件.【答案】必要不充分【分析】利用充分条件,必要条件的概念即可得解.【详解】因为甲是乙的充分不必要条件,所以甲⇒乙,乙推不出甲;因为丙是乙的充要条件,即乙⇔丙;因为丁是丙的必要不充分条件,所以丙⇒丁,丁推不出丙.故甲⇒丁,丁推不出甲,即丁是甲的必要不充分条件.故答案为:必要不充分四、解答题25.已知集合{}2126A x a x a =-≤≤+,{}04B x x =≤≤,全集U =R .(1)当1a =时,求()U A B ∩ð;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.【答案】(1)(){}48U A B x x ⋂=<≤ð(2)(]1,1-【分析】(1)化简集合A ,根据补集运算、交集运算求解;(2)由题意转化为BA ,列出不等式组求解即可.【详解】(1)当1a =时,集合{}08A x x =≤≤,{0U B x x =<ð或4}x >,故(){}48U A B x x ⋂=<≤ð(2)由题知:BA ,即B A ⊆且B A ≠,当B A ⊆时,210264a a ⎧-≤⎨+≥⎩,解得11a -≤≤,当B A =时,210264a a ⎧-=⎨+=⎩,解得1a =-,由B A ≠得,1a ≠-;综上所述:实数a 的取值范围为(]1,1-.26.已知集合{}310A x x =<<,{}29140B x x x =-+<,{}32C x x m =<<,(1)求A B ⋂,A B ⋃,()A B R ð;(2)若x C ∈是()x A B ∈ 的充分而不必要条件,求实数m 的取值范围.【答案】(1){}|37x x <<;{}210x x <<;{}23x x <≤(2)7,2⎛⎫-∞ ⎪⎝⎭【分析】(1)先解出集合B ,再由集合间的运算性质求解即可;(2)由题意可得C ()A B ,分C =∅和C ≠∅两种情况讨论即可.【详解】(1){}()(){}{}2|9140|270|27B x x x x x x x x =-+<=--<=<< ,{}|37A B x x ∴⋂=<<,{}210A B x x ⋃=<<,又{R =3A x x ≤ð或}10x ≥,(){}R 23A B x x ∴⋂=<≤ð.(2)x C ∈ 是()x A B ∈ 的充分而不必要条件,C ∴()A B ,当C =∅时,有23m ≤,即32m ≤;当C ≠∅时,有2327m m >⎧⎨<⎩,即3722<<m ,综上所述,实数m 的取值范围为7,2⎛⎫-∞ ⎪⎝⎭.27.已知集合{}121,P x a x a a =+≤≤+∈R ,{}25Q x x =-≤≤.(1)若3a =,求()P Q ⋂R ð;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.【答案】(1)[2,4)-(2)(]2-∞,【分析】(1)由交集,补集的概念求解;(2)转化为集合间关系后分情况列式求解.【详解】(1)当3a =时,[4,7]P =,{|25}Q x x =-≤≤,则()(),47,P ∞∞=-⋃+R ð,()[)2,4P Q ⋂=-R ð,(2)由题意得P 是Q 的真子集,当P 是空集时,121a a +>+,解得a<0;当P 是非空集合时,则012215a a a ≥⎧⎪+≥-⎨⎪+≤⎩且12a +=-与215a +=不同时成立,解得02a ≤≤,故a 的取值范围是(]2-∞,28.已知集合{}114A x x =≤-<,{}23B x x =-<≤,{}2121C x a x a =-<<+.(1)若x C ∈是“x A ∈”的充分条件,求实数a 的取值范围.(2)若()A B C ⊆ ,求实数a 的取值范围.【答案】(1)3,22a ⎡⎤∈⎢⎥⎣⎦(2)31,2⎛⎫⎪⎝⎭【分析】(1)解不等式得到集合A x C ∈是x A ∈的充分条件列不等式求解即可;(2)根据交集的定义得到{}23A B x x ⋂=≤≤,然后根据集合的包含关系列不等式求解即可.【详解】(1)因为{}114A x x =≤-<,所以{}25A x x =≤<.因为x C ∈是x A ∈的充分条件,所以221532122a a a a ≤⎧+≤⎧⎪⇒⎨⎨-≥≥⎩⎪⎩,解得322a ≤≤,3,22a ⎡⎤∴∈⎢⎥⎣⎦.(2)因为{}23A B x x ⋂=≤≤,()A B C ⊆ ,所以212213a a -<⎧⎨+>⎩,解得312a <<.故a 的取值范围为31,2⎛⎫ ⎪⎝⎭.29.已知{|1A x x =≤-或1}x ≥,{|21}B x a x a =<<+(B 为非空集合),记:p x A ∈,:q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.【答案】1(,2][,1)2-∞-【分析】根据题意,转化为B 是A 的非空真子集,列出不等式组,即可求解.【详解】由题意知,{|1A x x =≤-或1}x ≥,{|21}B x a x a =<<+(B 为非空集合),因为p 是q 的必要不充分条件,所以B 是A 的非空真子集,可得2121a a a <+⎧⎨≥⎩或2111a a a <+⎧⎨+≤-⎩,解得2a ≤-或112a ≤<,所以实数a 的取值范围是1(,2][,1)2-∞- .30.已知集合{}{}121,24A xa x a B x x =-≤≤+=-≤≤∣∣.在①A B B ⋃=;②“x A ∈”是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第②问的横线处,求解下列问题.(1)当3a =时,求()R A B ⋂ð;(2)若______,求实数a 的取值范围.【答案】(1)()R {2A B xx =< ∣ð或4}x >(2)答案见解析【分析】(1)利用集合的交并补运算即可得解;(2)选①③,利用集合的基本运算,结合数轴法即可得解;选②,由充分不必要条件.【详解】(1)当3a =时,{}27A xx =≤≤∣,而{}24B x x =-≤≤∣,所以{}24A B xx =≤≤ ∣,则()R {2A B x x =< ∣ð或4}x >.(2)选①:因为A B B ⋃=,所以A B ⊆,当A =∅时,则121a a ->+,即2a <-,满足A B ⊆,则2a <-;当A ≠∅时,2a ≥-,由A B ⊆得12214a a -≥-⎧⎨+≤⎩,解得312a -≤≤;综上:2a <-或312a -≤≤,即实数a 的取值范围为()3,21,2∞⎡⎤--⋃-⎢⎥⎣⎦;选②:因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集,当A =∅时,则121a a ->+,即2a <-,满足题意,则2a <-;当A ≠∅时,2a ≥-,则12214a a -≥-⎧⎨+≤⎩,且不能同时取等号,解得312a -≤≤;综上:2a <-或312a -≤≤,即实数a 的取值范围为()3,21,2∞⎡⎤--⋃-⎢⎥⎣⎦;选③:因为A B ⋂=∅,所以当A =∅时,则121a a ->+,即2a <-,满足A B ⋂=∅,则2a <-;当A ≠∅时,2a ≥-,由A B ⋂=∅得212a +<-或14a ->,解得32a <-或5a >,又2a ≥-,所以322a -≤<-或5a >;综上:32a <-或5a >,实数a 的取值范围为()3,5,2⎛⎫-∞-+∞ ⎪⎝⎭ .31.设U =R ,已知集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-.(1)当4B ∈时,求实数m 的范围;(2)设:p x A ∈;:q x B ∈,若p 是q 的必要不充分条件,求实数m 的范围.【答案】(1)532≤≤m (2)3m ≤【分析】(1)由题意知,4是集合B 的元素,代入可得答案;(2)由题可得B 是A 的真子集,分类讨论B 为空集和B 不为空集合两种情况,即可求得m 的取值范围.【详解】(1)由题可得1421m m +≤≤-,则532≤≤m ;(2)由题可得B 是A 的真子集,当B =∅,则1212m m m +>-⇒<;当B ≠∅,2m ≥,则21512m m -≤⎧⎨+≥-⎩(等号不同时成立),解得23m ≤≤综上:3m ≤.32.已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题:p x A ∈,命题:q x B ∈,若p 是q 成立的充分不必要条件,求实数m 的取值范围.【答案】(1){}0mm ≥∣(2){}2mm ≤-∣【分析】(1)讨论B =∅,B ≠∅两种情况,结合交集运算的结果得出实数m 的取值范围;(2)由p 是q 成立的充分不必要条件,得出A 是B 的真子集,再由包含关系得出实数m 的取值范围.【详解】(1)由A B ⋂=∅,得①若21m m ³-,即13m ≥时,B =∅,符合题意;②若21m m <-,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩,解得103m ≤<.综上,实数m 的取值范围为{}0mm ≥∣.(2)由已知A 是B 的真子集,知122113m m m m ->⎧⎪≤⎨⎪-≥⎩两个端不同时取等号,解得2m ≤-.由实数m 的取值范围为{}2mm ≤-∣.33.已知集合{}12A x x =<<,{}22B x m x m =-<<(1)当2m =时,求A B ⋂;(2)若______,求实数m 的取值范围.请从①x A ∀∈且x B ∉;②“x B ∈是“x A ∈”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)【答案】(1){}12A B x x ⋂=<<(2)答案见解析【分析】(1)先求两个集合,再求交集;(2)若选择①,则A B ⋂=∅,再分集合B =∅和B ≠∅,两种情况,列式求解;若选择②,则A B ⊆,列式求m 的取值范围.【详解】(1)当2m =时,{}04B x x =<<,所以{}12A B x x ⋂=<<(2)若选择条件①,由x A ∀∈且x B ∉得:A B ⋂=∅,当B =∅时,22m m -≥,即2m ≤-;当B ≠∅时,22m m -<,即2m >-22m -≥或21m ≤,即4m ≥或12m ≤,所以4m ≥或122m -<≤,综上所述:m 的取值范围为:4m ≥或12m ≤.若选择条件②,由“x B ∈”是“x A ∈”的必要条件得:A B ⊆,即2122m m -≤⎧⎨≥⎩,所以13m ≤≤.34.已知全集R U =,集合{}|11A x m x m =-<<+,{}|4B x x =<.(1)当4m =时,求A B ⋃和()R A B ⋂ð;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.【答案】(1){}|5x x <,{}|45x x ≤<(2)3m ≤【分析】(1)根据集合并集、交集、补集运算求解即可;(2)根据充分不必要条件转化为集合的包含关系求解即可【详解】(1)当4m =时,集合{}||35A x x x =<<,因为{}|4B x x =<,所以{}R |4B x x =≥ð.所以{}|5A B x x =< ,{}R |45A B x x ⋂=≤<ð(2)因为“x A ∈”是“x B ∈”所以A 是B 的真子集,而A 不为空集,所以14m +≤,因此3m ≤.。
(word版)高中数学充分条件、必要条件练习题
高一数学充分条件与必要条件练习题一、选择题1.“x=1”是“x2−2x+1=0”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件2.若不等式|x−1|<a成立的充分条件为0<x<4,则实数a的取值范围是()A. {a|a≥3}B. {a|a≥1}C. {a|a≤3}D. {a|a≤1}3.下面四个条件中,使a>b成立的充分不必要的条件是()A. a>b+1B. a>b−1C. a2>b2D. a3>b34.若x,y∈R,则x>y的一个充分不必要条件是().A. B. x2>y2 C. √x>√y D. x3>y35.条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 即不充分也不必要条件6.“x=1”是“x∈{x|x≤a}”的充分条件,则实数a的取值范围为()A. a=12B. a<12C. a<1D. a≥17.已知p:x−a>0,q:x>1,若p是q的充分条件,则实数a的取值范围为()A. {a|a<1}B. {a|a≤1}C. {a|a>1}D. {a|a≥1}8.“a+b>2”的一个充分条件是()A. a>1或b>1B. a>1且b<1C. a>1且b>1D. a>1或b<19.“(x−1)(y−2)=0”是“(x−1)2+(y−2)2=0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件10.已知命题p:−1<x<2,命题q:x<−3或x≥−1,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11.已知a,b∈R,则“a<b<0”是“1a >1b”的()A. 充分不必要条件B. 必要比充分条件C. 充要条件D. 既不充分又不必要条件12.已知a,b为实数,则“ab>b2”是“a>b>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、填空题13.设集合A={x|x2+x−6=0},B={x|mx+1=0},则B⫋A的一个充分而不必要条件是_______.14.如果p:x=2,q:x2=4,那么p是q的______.(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要”中选择一个填空)三、解答题15.设集合A={x|x2+2x−3<0},集合B={x||x+1|<a,a>0},命题p:x∈A,命题q:x∈B.(1)若p是q的充要条件,求正实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求正实数a的取值范围.16.已知P={x|1≤x≤4},S={x|1−m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.(2)是否存在实数m,使x∈P是x∈S的必要条件?若存在,求出m的取值范围;若不存在,请说明理由.17.已知P={x|−2≤x≤10},非空集合S={x|1−m≤x≤1+m}.(1)若x∈P是x∈S的必要条件,求m的取值范围;(2)是否存在实数m,使x∈P是x∈S的充要条件.答案和解析1.【答案】A本题考查了充分、必要条件的判断,考查一元二次方程问题,是简单题. 先求出方程x 2−2x +1=0的解,再和x =1比较,从而得到答案. 【解答】解:由x 2−2x +1=0,解得:x =1, 由x =1可得x 2−2x +1=0,故“x =1”是“x 2−2x +1=0”的充要条件, 故选A .2.【答案】A本题考查充分条件的判断,属于基础题.由已知中不等式|x −1|<a 成立的充分条件是0<x <4,令不等式的解集为A ,可得{x|0<x <4}⊆A ,可以构造关于a 的不等式组,解不等式组即可得到答案. 【解答】解:∵不等式|x −1|<a 成立的充分条件是0<x <4, 设不等式的解集为A ,则{x|0<x <4}⊆A , 当a ≤0时,A =⌀,不满足要求; 当a >0时,A ={x|1−a <x <1+a }, 若{x|0<x <4}⊆A ,则{1−a ⩽01+a ⩾4, 解得a ≥3. 故选A .3.【答案】A本题考查充分条件、必要条件,考查了不等式的性质,属于基础题.a >b +1⇒a >b ;通过举反例判断出a >b 推不出a >b +1,利用充分不必要条件的定义判断出选项. 【解答】解:a >b +1⇒a >b ;反之,例如a =2,b =1满足a >b ,但a =b +1,即a >b 推不出a >b +1, 故a >b +1是a >b 成立的充分不必要的条件. 易判断BCD 不符合题意. 故选:A .4.【答案】C本题考查了不等式的性质、充要条件的判定方法,考查了推理能力,属于基础题.利用不等式的性质可得:由x>y−1,x2>y2,推不出x>y,而x3>y3⇔x>y,只有√x>√y⇒x>y,反之不成立,即可判断出.【解答】解:由x>y−1,x2>y2,推不出x>y,而x3>y3⇔x>y,只有√x>√y⇒x> y,反之不成立.因此x>y的一个充分不必要条件是√x>√y.故选:C.5.【答案】A【解析】解:由x>1,y>1可得x+y>2,xy>1,取x=1.9,y=0.9.则x+y>2,xy>1成立,但x>1,y>1,则条件p是条件q的充分而不必要条件.故选:A.题目中的x和y明显有对称性,即x和y可以互换题目不变,显然前者可以推出后者,通过取特殊值可得出后者不可以推出前者.方法不好,那么这就是一道难度较大的题目,如果没发现利用特殊值法验证,则都是比较复杂的.6.【答案】D本题考查充分条件,考查推理能力,属于基础题.根据充分条件的定义,则{1}是{x|x≤a}的子集即可求解.【解答】解:由题意,{1}是{x|x≤a}的子集,∴a≥1.故选D.7.【答案】D【解答】解:已知p:x−a>0,x>a,q:x>1,若p是q的充分条件,则{x|x>a}⊆{x|x>1},即a≥1.故选D.8.【答案】C本题考查充分条件,属于基础题.由充分条件的定义对选项逐一判断即可求解.【解答】解:对于A,a>1或b>1,不能保证a+b>2成立,比如a=2,b=0;对于B,a>1且b<1,不能保证a+b>2成立,比如a=2,b=0;对于C,a>1且b>1,由不等式的性质知,a+b>2,故C正确;对于D,a>1或b<1,不能保证a+b>2成立,比如a=2,b=0.故选C.9.【答案】B本题考查了必要条件、充分条件与充要条件的判断,属于基础题.先理解“(x−1)(y−2)=0”和“(x−1)2+(y−2)2=0”的意义,即可判断.【解答】解:∵“(x−1)(y−2)=0”表示的是直线x=1,直线y=2和点(1,2),“(x−1)2+(y−2)2=0”表示的是点(1,2),∴“(x−1)(y−2)=0”是“(x−1)2+(y−2)2=0”的必要不充分条件.故选B.10.【答案】A本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:依题意可p⇒q成立,反之不成立.即p是q的充分不必要条件,故选:A.11.【答案】A本题考查充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.根据a<b<0,一定能得到1a >1b;但当1a>1b,不一定能推出a<b<0,从而得到答案.【解答】解:由a<b<0,则ab>0,两边都乘以1ab ,一定能得到1a>1b;但当1a >1b时,不一定能推出a<b<0,(如当a>0,b<0时),则“a <b <0”是“1a >1b ”的充分不必要条件, 故选A .12.【答案】B本题考查了不等式的性质,属于基础题.a >b >0⇒ab >b 2,反之不一定成立,例如:a =−2,b =−1,即可判断出关系. 【解答】解:a >b >0⇒ab >b 2,反之不一定成立,例如:a =−2,b =−1, ∴“ab >b 2”是“a >b >0”的必要不充分条件, 故选B .13.【答案】m =−12(或m =13或m =0)本题主要考查集合间的关系及充分不必要条件的判定,属于基础题.由B ⫋A ,可得B =⌀或{−3}或{2},进而求得m =−12或m =13或m =0,即可得解. 【解答】解:集合A ={x|x 2+x −6=0}={−3,2}, 若B ⫋A ,则B =⌀或{−3}或{2}, 当B =⌀时,m =0,当B ={−3}时,有−3m +1=0,解得m =13, 当B ={2}时,有2m +1=0,解得m =−12,故B ⫋A 的一个充分而不必要条件是m =−12(或m =13或m =0) 故答案为m =−12(或m =13或m =0).14.【答案】充分不必要条件【解析】解:由p :x =2能推出q :x 2=4,是充分条件, 由q :x 2=4推不出p :x =2,不是必要条件, 故答案为:充分不必要条件.根据充分必要条件的定义,分别证明充分性,必要性,从而得到答案. 本题考查了充分必要条件,是一道基础题.15.【答案】解:A ={x|x 2+2x −3<0}={x|−3<x <1},B ={x|−a −1<x <a −1}, (1)∵p 是q 的充要条件,∴A =B ,即{−a −1=−3a −1=1a >0,解得a =2.(2)∵¬q 是¬p 的必要不充分条件, ∴p 是q 的必要不充分条件, ∴集合B 是集合A 的真子集, ∴{−a −1≥−3,a −1<1,a >0或{−a −1>−3,a −1≤1,a >0,解得0<a <2,即正实数a 的取值范围是(0,2).【解析】本题考查二次不等式的求解及充分条件必要条件的判定,同时考查集合关系中参数的取值范围,属于中档题. (1)求出A ,B ,由已知得A =B 求解即可;(2)将问题转化为集合B 是集合A 的真子集求解即可.16.【答案】解:P ={x|1⩽x ⩽4}.(1)要使x ∈P 是x ∈S 的充要条件, 则P =S ,即{1−m =11+m =4 此方程组无解, 则不存在实数m ,使x ∈P 是x ∈S 的充要条件; (2)要使x ∈P 是x ∈S 的必要条件,则S ⊆P , ①当S =⌀时,1−m >1+m ,解得m <0; ②当S ≠⌀时,1−m ⩽1+m ,解得m ⩾0, 要使S ⊆P ,则有{1−m ≥11+m ≤4, 解得m ⩽0, 所以m =0,综上可得,当实数m ⩽0时,x ∈P 是x ∈S 的必要条件.【解析】【试题解析】本题主要考查充分条件与必要条件的判断、集合间的基本关系,考查了逻辑推理能力,属中档题.(1)由题意可知P =Q ,得{1−m =11+m =4,求解可得结论;(2)由题意可知S ⊆P ,分S =⌀与S ≠⌀两种情况讨论求解.17.【答案】解:(1)若x ∈P 是x ∈S 的必要条件,则x ∈S 是x ∈P 的充分条件,所以S ⊆P , 即{1−m ≤1+m 1−m ≥−21+m ≤10, 解得0≤m ≤3,所以m 的取值范围是0≤m ≤3; (2)x ∈P 是x ∈S 的充分条件时,P ⊆S , 所以{1−m ≤1+m1−m ≤−21+m ≥10,解得m ≥9;由(1)知,x ∈P 是x ∈S 的必要条件时,0≤m ≤3; 由此知x ∈P 是x ∈S 的充要条件时,m 的值不存在.【解析】【试题解析】本题考查了充分与必要条件的应用问题,是基础题. (1)由题意知S ⊆P ,列不等式求出m 的取值范围;(2)求出x ∈P 是x ∈S 的充分条件时m 的取值范围,结合(1)中m 的取值范围,由此得出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学充分条件与必要条件练习题及答案详解Document number【980KGB-6898YT-769T8CB-246UT-18GG08】例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D⇒⇒⇔说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②∵是成立的充要条件,∴③C B C B⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是 [ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A(B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。