高一数学测试题及答案解析
高一数学必修一综合测试题(含答案)
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学测试题(含答案)
高一数学测试题(含答案)一.选择题1..下列结论正确的是A.若,a b c d >>,则a c b d ->-B. 若,a b c d >>,则a d b c ->-C.若,a b c d >>,则ac bd >D. 若,a b c d >>,则a b d c> 2.若直线a 不平行于平面α,且a α⊄,则下列结论成立的是A. α内所有的直线与a 异面.B. α内不存在与a 平行的直线.C. α内存在唯一的直线与a 平行.D. α内的直线与a 都相交. 3.圆x 2+y 2=1和圆x 2+y 2-6y +5=0的位置关系是A .外切B .内切C .外离D .内含二.填空题 1.已知sin cos tan 2,sin cos a aa a a+=--则的值是2.已知向量b a ,的夹角为3π,3,1==b a ,则b a -的值是 3.求值:οοοο15sin 105sin 15cos 105cos -=4.设函数⎪⎩⎪⎨⎧≥-<=-2),1(log 2,2)(231x x x e x f x 则))2((f f 的值为= 5.等比数列{}n a 中,0n a >,569a a =,则313233310log log log log a a a a +++⋅⋅⋅+= 6.已知函数f (x )满足f (x )=(2),0,2,0,xf x x x +<⎧⎨⎩≥ 则(7.5)f -=( ).。
三.解答题1.已知)2,(),3,2(x b a ==,(1)当b a 2-与b a +2平行时,求x 的值; (2)当a 与b 夹角为锐角时,求x 的范围.2.已知函数2()2sin 1f x x x θ=+-,⎥⎦⎤⎢⎣⎡-∈23,21x(1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x 在⎥⎦⎤⎢⎣⎡-∈23,21x 上是单调增函数,且[0,2)θπ∈,求θ的取值范围.3.求过两直线3420x y +-=和220x y ++=的交点且与直线3240x y -+=垂直的直线方程.4. (满分12分)如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别为1CC 、11B C 、1DD 的中点,O 为BF 与1B E 的交点,(1)证明:BF ⊥面11A B EG(2)求直线1A B 与平面11A B EG 所成角的正弦值.5.已知数列{}n a 中,*1121,()2nn na a a n N a +==∈+ (1)求 1234,,,a a a a ; (2)求数列{}n a 的通项公式.高一测试题答案 一.选择题1.B2.B3.A4.C5.A6.D7.C 二.填空题 1.312、73、21- 4、2 5、10 6、2 三.解答题 1.解:(1)由题意得:b a 2-=)1,22(--xb a +2=)8,4(x + 由b a 2-与b a +2平行得:0)4()1(8)22(=+⋅--⋅-x x 分34=∴x (2)由题意得:⎪⎩⎪⎨⎧>•不共线与b a b a 0(3) 即⎩⎨⎧≠->+034062x x343≠->∴x x 且 2解:(1)当6πθ=时,45)21(1)(22-+=-+=x x x x f 分∴当21-=x 时,函数)(x f 有最小值45-当23=x 时,函数)(x f 有最大值4123- (2)要使()f x 在⎥⎦⎤⎢⎣⎡-∈23,21x 上是单调增函数, 则 -sin θ≤-21即sin θ≥21 又)2,0[πθ∈Θ 解得:⎥⎦⎤⎢⎣⎡∈65,6ππθ 3.。
高一数学《指数函数与对数函数》测试题(含答案解析)
高一数学《指数函数与对数函数》测试题(含答案解析)一、选择题:1、已知(10)xf x =,则(5)f =( ))A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >¹,下列说法中,正确的是(,下列说法中,正确的是( ))①若M N =则log log aa M N =; ②若loglog aaM N =则M N =;③若22log log a a M N =则M N =; ④若M N =则22log log a aM N=。
A 、①②③④、①②③④ B 、①③、①③ C 、②④、②④ D 、②、②3、设集合2{|3,},{|1,}xS y y x R T y y x x R ==Î==-Î,则S T 是 ( )) A 、Æ B 、T C 、S D 、有限集、有限集 4、函数22log (1)y x x =+³的值域为(的值域为( ))A 、()2,+¥B 、(),2-¥C 、[)2,+¥D 、[)3,+¥5、设 1.50.90.4812314,8,2y y y -æö===ç÷èø,则(,则( ))A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 6、在(2)log(5)a b a -=-中,实数a 的取值范围是(的取值范围是( )) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++×等于(等于( ))A 、0B 、1C 、2D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是(表示是( ))A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a -- 9、若21025x=,则10x-等于(等于()) A 、15 B 、15- C 、150 D 、16251010、若函数、若函数2(55)xy a a a =-+×是指数函数,则有(是指数函数,则有( ))A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ¹ 11、当1a >时,在同一坐标系中, 函数xy a -=与log xa y =的图象是图中的(的图象是图中的( ))12、已知1x ¹,则与x 3log 1+x 4log 1+x5log 1相等的式子是(相等的式子是( )) A 、x 60log 1 B 、3451log log log x x x ×× C 、 60log 1x D 、34512log log log x x x ×× 1313、、若函数()l o g (01)af x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ))A 、24B B、、22C C、、14D D、、121414、下图是指数函数(、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)x y d =x的图象,则的图象,则a 、b 、c 、d 与1的大小关系是(的大小关系是( ))A 、1a b c d <<<<B B、、1b a d c <<<<C 、1a b c d <<<<D D、、1a b d c <<<< 1515、若函数、若函数my x +=-|1|)21(的图象与x 轴有公共点,轴有公共点,则m 的取值范围是(的取值范围是( ))A 、1m £-B B、、10m -£<C C、、1m ³D D、、01m <£二、填空题:1616、指数式、指数式4532-ba 化为根式是化为根式是 。
高一数学期末考试测试卷参考答案
高一数学期末考试测试卷参考答案1.B【详解】因为,所以,则,所以复数所对应的向量的坐标为.故选:B 2.A【详解】,故选:A.3.D【详解】向量在上的投影为,向量在上的投影向量为.故选:D.4.C 【详解】由题意,可得,即因为,所以,即,故△ABC 是直角三角形故选:C 5.A【详解】由可得: ,故 ,解得 ,故 ,故选:A 6.C【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即.故选:.7.D【详解】对于A ,空间中两直线的位置关系有三种:平行、相交和异面,故A 错误;对于B ,若空间中两直线没有公共点,则这两直线异面或平行,故B 错误;对于C ,和两条异面直线都相交的两直线是异面直线或相交直线,故C 错误;12i z z +=⋅()2i 11z -⋅=()()112i 12i 12i 2i 12i 112i 555z ----====------z 12,55⎛⎫-- ⎪⎝⎭()441414333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=-+=-+ a b ·cos 3a π ab 1·cos ·232b a b b b π=⨯= 1cos 22a b C a ++=⨯cos b C a=2222b a b c a ab+-=222a b c =+90A =︒sin 2sin B C =2b c =22222567cos 248b c a c A bc c +--===2,4c b ==11sin 4222ABC S bc A ==⨯⨯ 3331115162312p ⎛⎫⎛⎫⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C对于D ,如图,在长方体中,当所在直线为所在直线为时,与相交,当所在直线为所在直线为时,与异面,若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面,故D 正确.(8题)故选:D8.A【详解】在△ABC 中,b cos A =c﹣a ,由正弦定理可得sin B cos A =sin C ﹣sin A ,可得sin B cos A =sin (A +B )﹣sin A =sin A cos B +cos A sin B ﹣sin A ,即sin A cos B =sin A ,由于sin A ≠0,所以,由B ∈(0,π),可得B=,设AD =x,则CD =2x ,AC =3x ,在△ADB ,△BDC,△ABC 中分别利用余弦定理,可得cos ∠ADB=,cos ∠CDB =,cos ∠ABC =,由于cos ∠ADB =﹣cos ∠CDB ,可得6x 2=a 2+2c 2﹣12,再根据cos ∠ABC =,可得a 2+c 2﹣9x 2=ac ,所以4c 2+a 2+2ac =36,根据基本不等式可得4c 2+a 2≥4ac ,所以ac ≤6,当且仅当a =c 所以△ABC 的面积S =ac sin ∠ABC ac A .9.AC【详解】对于A ,是纯虚数,故A 正确;对于B ,,对应的点的坐标为,位于第四象限,故B 错误;对于C ,复数的共轭复数为,故C 正确;对于D ,,故D 错误.故选:AC10.BC ABCD A B C D -''''A B ',a BC 'b a b A B ',a B C 'b a b 12121212121cos 2B =3π2244x c x +-22448x a x +-22292a c x ac+-12122z 12(1i)2i 13i z z -=--=-(1,3)-1z 11i z =+12(1i)2i 2i 2z z =-⋅=+11.【详解】对于A ,由,则,故A 错误;对于B ,与相互独立,则与相互独立,故,故B 正确;对于CD ,互斥,则,,故C 正确,D 错误.故选:BC11.BC【详解】对于A 选项,由图形可知,直线、异面,A 错;对于B 选项,连接,因为,则直线与所成角为或其补角,易知为等边三角形,故,因此,直线与所成的角为,B 对;对于C 选项,分别取、的中点、,连接、、,因为四边形为正方形,、分别为、的中点,所以,且,又因为,则四边形为矩形,所以,,且,同理可证,且,因为平面,则平面,因为平面,则,因为,、平面,所以,平面,因为平面,所以,,因此,平面与平面所成二面角的平面角为,因为平面,平面,所以,,又因为,故为等腰直角三角形,故,因此,平面与平面所成二面角的平面角为,C 对;对于D 选项,易知,又因为且,则四边形为等腰梯形,分别过点、在平面内作、,垂足分别为、,()()0.2,0.6P A P B ==()()1P A P B+≠A B A B ()()()()()()10.48P AB P A P B P A P B ==-=,A B ()()()0.8P A B P A P B ⋃=+=()()0P AB P =∅=AM BN 1AD 1//MN CD MN AC 1ACD ∠1ACD △160ACD ∠= MN AC 60 AB CD E F ME MF EF ABCD E F AB CD //AE DF AE DF =AD AE ⊥AEFD EF AB ⊥//EF AD 1//MF DD 12MF DD ==1DD ⊥ABCD MF ⊥ABCD AB ⊂ABCD AB MF ⊥EF MF F ⋂=EF MF ⊂EMF AB ⊥EMF ME ⊂EMF AB ME ⊥AMB ABCD MEF ∠MF ⊥ABCD EF ⊂ABCD MF EF ⊥2MF EF ==MEF 45MEF Ð=o AMB ABCD 45 BN ===1A M =1//MN A B 112MN A B =1A BNM M N 1A BNM 1MP A B ⊥1NQ A B ⊥P Q因为,,,所以,,所以,,因为,,,则四边形为矩形,所以,,所以,所以,,由A 选项可知,平面截正方体所得的截面为梯形,故截面面积为,D 错.故选:BC.12.2【详解】.故答案为:2.13.【详解】在中,由正弦定理可得,,又由题知,所以,整理得,,在中,由余弦定理得,,所以,又,所以.故答案为:.14. 【详解】由题意,恰有一个人面试合格的概率为:,甲签约,乙、丙没有签约的概率为;1A M BN =1MA P NBQ ∠=∠190MPA NQB ∠=∠= 1Rt Rt A MP BNQ △≌△1A P BQ =//MN PQ 1MP A B ⊥1NQ A B ⊥MNQP PQ MN ==112A B PQ A P BQ -====MP ===BMN 1A BNM ()1922A B MN MP +⋅==()2202a kb b a b kb k k -⋅=⋅-⇔-=⇔= π3ABC sin sin sin C c A B a b =++sin sin sin a b C a c A B -=-+a b c a c a b-=-+222b a c ac =+-ABC 2222cos b a c ac B =+-1cos 2B =()0,B π∈3B π=3π49793113113114(1)(1(1(1)(1)(14334334339P =⨯-⨯-+-⨯⨯-+-⨯-⨯=13112(1)4333P =⨯-⨯=甲未签约,乙、丙都签约的概率为甲乙丙三人都签约的概率为,所以至少一人签约的概率为.故答案为:;.15.【详解】(1)由频率分布直方图可得分数不小于60的频率为:,则分数小于60的频率为:,故从总体的500名学生中随机抽取一人,其分数小于60的概率估计为;(2)由频率分布直方图易得分数小于70的频率为,分数小于80的频率为,则测评成绩的第分位数落在区间上,所以测评成绩的第分位数为;(3)依题意,记事件 “抽到的学生分数小于30”,事件 “抽到的学生是男生”,因为分数小于40的学生有5人,其中3名男生;所以“抽到的学生是男生”的概率为,因为分数小于30的学生有2人,其中1名男生,所以“抽到的学生分数小于30” 的概率为,因为事件表示“抽到的学生分数小于30且为男生”,满足条件的只有1名男生,所以,因为,所以这两个事件不相互独立.16.【详解】(1)由,,故,由余弦定理可得,即,即,13111(143336P=-⨯⨯=3311143312P =⨯⨯=2117336129++=4979()0.020.040.02100.8++⨯=10.80.2-=0.20.40.875%[)70,8075%0.35701078.750.4+⨯=A =B =()35P B =()25P A =AB ()15P AB =()()()P A P B P AB ≠sin θ=π,π2θ⎛⎫∈ ⎪⎝⎭cos θ==2222cos 54413BD AB AD AB AD θ=+-⋅=++=BD CD ==sin sin AB BD ADB θ=∠sin sin AB ADB BD θ∠=⋅==则故有,故,;(2),,故,则,其中,则当,即ABCD 的面积最大,此时,即此时小路BD.17.【详解】(1)取棱的中点,连接、、,则就是所求作的线,如图:在正方体中,连,是的中点,为的中点,则,且,于是得四边形是平行四边形,有,而平面,平面,因此平面,πcos cos sin 2ADC ADB ADB ⎛⎫∠=+∠=-∠= ⎪⎝⎭2222cos 4132225AC AD CD AD CD ADC ⎛=+-⋅∠=+-⨯= ⎝5AC =22111117sin 222222ABCD ABD BCD S S S AB AD BD θ=+=⋅+=+⨯= 1sin 2ABD S AB AD θθ=⋅= 2222cos 549BD AB AD AB AD θθθ=+-⋅=+-=-21922BCD S BD θ==- ()995sin 22ABCD ABD BCD S S S θθθϕ=+=+-=-+ sin ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭π2θϕ-=πcos cos sin 2θϕϕ⎛⎫=+=-= ⎪⎝⎭2917BD ⎛=-= ⎝1DD F AF CF AC ,,FC FA CA 1111ABCD A B C D -EF E 1CC F 1DD EF CD BA ∥∥EF CD BA ==ABEF AF BE ∥BE ⊂1BD E AF ⊄1BD E AF 1BD E又,,即四边形为平行四边形,则,又平面,平面,于是有平面,而,平面,从而得平面平面,所以就是所求作的线.(2)在正方体中,连接,如图,且,则四边形为平行四边形,有,三棱锥的体积,所以四棱锥的体积.18.【详解】(1)解:由频率分布直方图,根据平均数的计算公式,估计这次知识能力测评的平均数:分.(2)解:由频率分布直方图,可得的频率为,的频率为,所以用分层随机抽样的方法从,两个区间共抽取出4名学生,可得从抽取人,即为,从中抽取人,即为,从这4名学生中随机抽取2名依次进行交流分享,有 ,共有12个基本事件;其中第二个交流分享的学生成绩在区间的有:,共有3个,所以概率为.(3)解:甲最终获胜的可能性大.理由如下:由题意,甲至少得1分的概率是,1FD CE ∥1FD CE =1CED F 1CF ED ∥1ED ⊂1BD E CF ⊄1BD E CF 1BD E CF AF F ⋂=,CF AF ⊂AFC AFC 1BD E ,,FC FA CA 1111ABCD A B C D -11111,,,,,,AD BC EA EB EC ED AC 11AB C D ∥11AB C D =11ABC D 1112ABC D ABC S S = △1E ABC -111111112()21233263E ABC A BC E BC E V V S AB BC C E AB --==⋅=⋅⋅=⨯⨯⨯= 11E ABC D -111423E ABC D E ABC V V --==(650.01750.015850.045950.03)1084.5x =⨯+⨯+⨯+⨯⨯=[)60,700.1[]90,1000.3[)60,70[]90,100[)60,701a []90,10031,2,3()()()()(),1,,2,,3,1,2,1,3,a a a ()()()()()()()2,3,1,,2,,3,,2,1,3,1,3,2a a a []60,70()()()1,,2,,3,a a a 31124P ==4750可得,其中,解得,则甲的2分或3分的概率为:,所以乙得分为2分或3分的概率为,因为,所以甲最终获胜的可能性更大.19.【详解】(1)由题知,,所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB .因为,所以AO ⊥平面,所以OC 是AC 在平面内的射影,在四边形ABCD是等腰梯形中,,高得,,在和中,, 所以,,所以,因为AO ⊥平面,平面,所以,因为,所以平面,因为平面,所以(2)由(1)知,,所以⊥平面AOC .设,过点E 作于点F ,连接,因为,所以平面,因为平面,所以所以是二面角的平面角.由(1)知得,,高得,.所以,,12471(1)(1)(1)2550p ----=01p ≤≤45p =1241241241243(1(1(12552552552555P =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯=253255>1OA OO ⊥1OB OO ⊥1OO OB O = 1OBCO 1OBCO 3AB CD =h =tan A =6AB =2CD =1OO =1Rt OO B 1Rt OO C △11tan OB OO B OO ∠==111tan O C O OC OO ∠===160OO B ∠=︒130O OC ∠=︒1OC BO ⊥1OBCO 1BO ⊂1OBCO 1AO BO ⊥AO OC O = 1BO ⊥AOC AC ⊂AOC 1AC BO ⊥1AC BO ⊥1OC BO ⊥1BO 1OC O B E ⋂=EF AC ⊥1O F 1EF O B E = AC ⊥1O EF 1O F ⊂1O EF 1O F AC⊥1O FE ∠1O AC O --3AB CD =h =tan A =6AB =2CD =3OA =1OO =11O C =所以,因为平面平面,平面平面,,所以平面,因为平面,所以 所以又所以二面角1O A =AC =1AOO D ⊥1BOO C 1AOO D 11BOO C OO =11OO CO ⊥1CO ⊥1AOO D 1AO ⊂1AOO D 11CO AO ^111O A O C O F AC ⋅=11sin30O E OO =⋅= 111sin O E O FE O F ∠==1O AC O --。
高一数学必修一第一章测试题及答案
1.1集合的概念专项练习解析版一、单选题1.若1∈{x ,x 2},则x =( )A .1B .1-C .0或1D .0或1或1- 【答案】B【分析】根据元素与集合关系分类讨论,再验证互异性得结果【详解】根据题意,若1∈{x ,x 2},则必有x =1或x 2=1,进而分类讨论:∈、当x =1时,x 2=1,不符合集合中元素的互异性,舍去,∈、当x 2=1,解可得x =-1或x =1(舍),当x =-1时,x 2=1,符合题意,综合可得,x =-1,故选B .【点睛】本题考查元素与集合关系以及集合中元素互异性,考查基本分析求解能力,属基础题.2.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( )A .-2B .2C .4D .2或4 【答案】A【分析】根据元素和集合的关系以及集合元素的互异性确定正确选项.【详解】依题意2A ∈,若2a =,则2=a ,不满足集合元素的互异性,所以2a ≠; 若2=a ,则2a =-或2a =(舍去),此时{}2,2,4A =--,符合题意;若22a -=,则4a =,而4a =,不满足集合元素的互异性,所以4a ≠.综上所述,a 的值为2-.故选:A【点睛】本小题主要考查元素与集合的关系,考查集合元素的互异性,属于基础题.3.下列关系中,正确的有( ) ∈1R 2;5Q ;∈3N ;∈2Q ∈.A .1个B .2个C .3个D .4个【分析】根据元素与集合之间的关系判断可得答案.【详解】12|3|3-=是非负整数,2是有理数.因此,∈∈∈∈正确,故选:D .4.考查下列每组对象,能组成一个集合的是( )∈一中高一年级聪明的学生;∈直角坐标系中横、纵坐标相等的点;∈不小于3的正整数;值.A .∈∈B .∈∈C .∈∈D .∈∈ 【答案】C【分析】利用集合中的元素满足确定性判断可得出结论.【详解】∈“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;∈“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;∈“不小于3的正整数”的标准确定,能构成集合;”的标准不确定,不能构成集合.故选:C.5.下列各组对象不能构成集合的是( )A .参加运动会的学生B 的正整数C .2022年高考数学试卷上的难题D .所有有理数【答案】C【分析】根据集合的基本概念辨析即可.【详解】解:对于A 选项,参加运动会的学生,是确定的,没有重复的,所以能构成集合;对于B 对于C 选项,2022年高考数学试卷上的难题,多难的题才算是难题,有一定的不确定性,不符合集合中元素的确定性,故不能构成集合;对于D 选项,所有有理数,所研究的有理数,是确定的,没有重复的,所以能构成集合;故选:C.6.已知集合{}21,2,22A a a a =---,若1A -∈,则实数a 的值为( ) A .1B .1或12-C .12-D .1-或12-【分析】由题可知21a -=-或2221a a --=-,即求.【详解】∈1A -∈,∈21a -=-或2221a a --=-,∈1a =或12a =-, 经检验得12a =-.故选:C.7.已知集合A ={x |ax 2﹣3x +2=0}只有一个元素,则实数a 的值为( )A .98B .0C .98或0D .1【答案】C 【分析】根据a 是否为0分类讨论.【详解】0a =时,2{|320}{}3A x x =-+==,满足题意; 0a ≠时,980a ∆=-=,98a =,此时294|320}83A x x x ⎧⎧⎫=-+==⎨⎨⎬⎩⎭⎩,满足题意. 所以0a =或98.故选:C二、多选题8.已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=A BB .()1,2A ∈C .1B ∉D .2A ∈【答案】CD 【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∈{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∈2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∈(1,2)B ∈,(1,2)A ∉,故B 错误.故选:CD .9.下列选项正确的有( )A .()R Q π∈B .13Q ∈C .0*N ∈D 4Z【答案】ABD【分析】根据常见集合的意义和元素的性质可判断各选项中的属于关系是否成立,从而可得正确的选项.【详解】因为π为无理数,故()R Q π∈,故A 正确. 因为13为有理数,故13Q ∈,故B 正确. 因为*N 为正整数集,但*0N ∉,故C 不正确.2=Z ,故D 成立.故选:ABD.【点睛】考查常见集合的表示,注意正确区分各字母表示的常见集合,不要混淆,本题属于基础题.10.下列各组中M 、P 表示不同..集合的是( ) A .{3,1}M =-,{13}P =-,B .{}{(31)},(1,3)M P ==, C .{}21,R M y y x x ==+∈,{}t t 1P =≥D .{}21,R M y y x x ==-∈,2{(,)|1,R}P x y y x x ==-∈【答案】BD【分析】根据集合相等的概念依次分析各选项即可得答案.【详解】选项A 中,根据集合的无序性可知M P =;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,{}t t 1P =≥=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有y 组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合,故M P ≠.故选:BD .11.下列四个命题:其中不正确的命题为( )A .{}0是空集B .若N a ∈,则N a -∉;C .集合{}2R 210x x x ∈-+=有一个元素 D .集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是有限集. 【答案】ABD【分析】根据空集的定义可判断A ;根据元素与集合的关系可判断B ;解方程求出集合中的元素可判断C ;x 为正整数的倒数时,都有6N x∈可判断D ,进而可得正确选项. 【详解】对于A :{}0含有一个元素0,所以{}0不是空集,故选项A 不正确;对于B :当0a =时,N a ∈,则N a -∈,故选项B 不正确;对于C :{}(){}{}22R 210R 101x x x x x ∈-+==∈-==只有一个元素,故选项C 正确; 对于D :Q 表示有理数,包括整数和分数,比如x 为正整数的倒数时,都有6N x∈,所以集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是无限集,故选项D 不正确;故选:ABD.三、填空题12.已知集合{}1,2,A m =,{}13,B n =,,若A B =,则m n +=_______. 【答案】5【分析】由集合的性质,即元素的无序性和互异性可得3,2m n ==,得5m n +=.【详解】根据集合的元素具有无序性和互异性可得,3,2m n ==,所以5m n +=.故答案为:5.【点睛】(1)集合A B =的充要条件是A B ⊆,且A B ⊇;(2)集合由三个性质:确定性,互异性和无序性.13.若{}221,,2a a ∈-,则=a ______.【答案】2-【分析】结合集合的互异性来求得a .【详解】若2a =,则222a -=,不满足互异性,所以2a ≠.若222,2a a -==-或2a =(舍去),所以2a =-.故答案为:2-四、解答题14.已知集合{}222,1,A a a a =+-,{}20,7,5B a a =--,且5A ∈,求集合B .【答案】{}0,7,1B =【分析】根据题意,结合集合中元素的确定性与互异性,分类讨论即可求解.意;若2a =-,则26a a -=,此时{}2,5,6A =,{}0,7,1B =.而当25a a -=时,集合B 中250a a --=,根据互异性可知,不满足题意.综上,{}0,7,1B =.15.已知集合{}2210,A x ax x a R =++=∈, (1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)用列举法表示集合A .【答案】(1)见解析(2)1a >(3)见解析【分析】(1)分为0a =和0a ≠两种情形即可;(2)根据方程无解时,440a ∆=-<即可得结果;(3)根据(1)(2)的结果结合求根公式即可得结果.【详解】(1)∈0a =时,12A ⎧⎫=-⎨⎬⎩⎭满足题意; ∈0a ≠时,要使A 只有一个元素,则需:440a ∆=-=,即1a =,此时{}1A =-.综上:0a =时,12A ⎧⎫=-⎨⎬⎩⎭;1a =时,{}1A =-. (2)∈A =∅,0a =显然不合题意,∈440a ∆=-<,即1a >∈1a >时,A =∅.(3)由(2)得,当1a >时,方程2210ax x ++=无解,即A =∅,由(1)得0a =时,方程210x +=的解为12x =-,即12A ⎧⎫=-⎨⎬⎩⎭; 当1a =时,方程2210x x ++=的解为=1x -,即{}1A =-.当1a <时,由求根公式得2210ax x ++=的解为1x =2x =,即A =⎪⎪⎩⎭综上可得:当1a >时,A =∅;当0a =时,12A ⎧⎫=-⎨⎬⎩⎭,当1a =时,{}1A =-;当1a <时,A =⎪⎪⎩⎭. 【点睛】考查了用描述法表示集合,含有参数一元二次方程的解,分类讨论思想的应用,属于中档题。
高一数学必修一测试题
高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。
A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。
A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。
2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。
三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。
求直线 l1 的解析式,并画出其图像。
2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。
3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。
四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。
证明:BD = CD。
2. 若 a + b = b + c,证明 a = c。
答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。
2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。
全国高一高中数学同步测试带答案解析
全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( ) A .sin (α+θ)=sinα B .sin (α+θ)=﹣cosα C .cos (α+θ)=﹣cosα D .cos (α+θ)=﹣sinα2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).3.已知点A (2,0),B (0,2),点C (x ,y )在单位圆上. (1)若|+|=(O 为坐标原点),求与的夹角; (2)若⊥,求点C 的坐标.4.如图,已知A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,点A 的坐标为,点B 在第二象限,且△AOB 为正三角形.(Ⅰ)求sin ∠COA ; (Ⅱ)求△BOC 的面积.5.如图,以Ox 为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(,).(1)求sin2α的值; (2)若β﹣α=,求cos (α+β)的值.全国高一高中数学同步测试答案及解析一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( )A .sin (α+θ)=sinαB .sin (α+θ)=﹣cosαC .cos (α+θ)=﹣cosαD .cos (α+θ)=﹣sinα【答案】B【解析】根据三角函数的定义和题意,分别求出角α、α+θ的正弦值和余弦值,再对比答案项即可. 解:∵任意角α的终边与单位圆的交点为P 1(x ,y ), ∴由三角函数的定义得,sinα=y ,cosα=x , 同理sin (α+θ)=﹣x ,cos (α+θ)=y , 则sin (α+θ)=﹣cosα,cos (α+θ)=sinα, 故选:B .点评:本题考查任意角的三角函数的定义,属于基础题.2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .【答案】D【解析】利用单位圆的性质求解. 解:∵角α的终边与单位圆相交于点P (sin ,cos),∴sinα=cos =cos (2)=cos=.故选:D .点评:本题考查角的正弦值的求法,是基础题,解题时要认真审题,注意单位圆的性质的灵活运用.3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)【答案】D【解析】直接求出A ,B 的坐标,利用向量是数量积求解即可. 解:由题意可知A (cosα,sinα),B (cosβ,sinβ), 所以=cosαcosβ+sinαsinβ=cos (α﹣β). 故选D .点评:本题是基础题,考查向量的数量积的应用,两角差的余弦函数公式的推导过程,考查计算能力.二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .【答案】().【解析】首先求出点B 的坐标,将点B 沿单位圆逆时针旋转到达A 点,利用两角和与差的三角函数即可求出点A 的坐标.解:在平面直角坐标系xOy 中,锐角α的终边与单位圆交于B 点, 且点B 的纵坐标为, ∴sinα=,cosα=将点B 沿单位圆逆时针旋转到达A 点, 点A 的坐标A (cos (),sin ()),即A (﹣sinα,cosα),∴A ()故答案为:().点评:本题主要考查了任意角的三角函数的定义,属于基础题.2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .【答案】(1)32,(2)见解析【解析】(1)利用诱导公式、平方关系对条件和所求的式子化简后,代入值求解; (2)由S △OPA <S 扇形OPA <S △OAE ,分别表示出3个面积,可推得,所以sinx <x <tanx ,据此判断即可.解:(1)由sin (3π+θ)=,可得sinθ=﹣, ∴======32,(2)∵S △OPA <S 扇形OPA <S △OAE ,,,, ∴,∴sinx <x <tanx .点评:本题主要考查了同角三角函数的基本关系,三角函数线,以及单位圆的性质的运用,属于基础题.三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 【答案】(1),.(2)﹣【解析】(1)利用任意角的三角函数的定义,先找出x ,y ,r ,代入公式计算. (2)利用∠AOB=90°,cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣. 解:(1)∵A 点的坐标为,根据三角函数定义可知,,r=1;(3分) ∴,.(6分) (2)∵三角形AOB 为直角三角形, ∴∠AOB=90°, 又由(1)知sin ∠COA=,cos ∠COA=;∴cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣.(12分) 点评:本题考查任意角的三角函数的定义,诱导公式cos (+θ)=﹣sinθ 的应用.2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).【答案】见解析【解析】(1)利用单位圆中的三角函数线,通过面积关系证明sinx <x <tanx ; (2)利用(1)的结论,采用放缩法,求出=推出结果.证明:(1)如图,在单位圆中,有sinx=MA ,cosx=OM , tanx=NT ,连接AN ,则S △OAN <S 扇形OAN <S △ONT , 设的长为l ,则,∴,即MA <x <NT ,又sinx=MA ,cosx=OM ,tanx=NT , ∴sinx <x <tanx ; (2)∵均为小于的正数,由(1)中的sinx <x 得,,将以上2010道式相乘得=,即.点评:本题考查单位圆的应用,不等式的证明的方法,考查分析问题解决问题的能力,是中档题.3.已知点A(2,0),B(0,2),点C(x,y)在单位圆上.(1)若|+|=(O为坐标原点),求与的夹角;(2)若⊥,求点C的坐标.【答案】(1)30°或150°(2)点C的坐标为(,)或().【解析】(1)由已知得,从而cos<>===y=,由此能求出与的夹角.(2)=(x﹣2,y),=(x,y﹣2),由得,由此能求出点C的坐标.解:(1),,.且x2+y2=1,=(2+x,y),由||=,得(2+x)2+y2=7,由,联立解得,x=,y=.(2分)cos<>===y=,(4分)所以与的夹角为30°或150°.(6分)(2)=(x﹣2,y),=(x,y﹣2),由得,=0,由,解得或,(10分)所以点C的坐标为(,)或().(12分)点评:本题考查两向量的夹角的求法,考查点的坐标的求法,解题时要认真审题,注意单位圆的性质的合理运用.4.如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为,点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA;(Ⅱ)求△BOC的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点坐标时,这个点的纵标就是角的正弦值.(Ⅱ)根据第一问所求的角的正弦值和三角形是一个等边三角形,利用两个角的和的正弦公式摸到的这个角的正弦值,根据正弦定理做出三角形的面积.解:(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点是,∴sin∠COA=,(Ⅱ)∵∠BOC=∠BOA+∠AOC,∴sin∠BOC==∴三角形的面积是点评:本题考查单位圆和三角函数的定义,是一个基础题,这种题目解题的关键是正确使用单位圆,注意数字的运算不要出错.5.如图,以Ox为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(,).(1)求sin2α的值;(2)若β﹣α=,求cos(α+β)的值.【答案】(1)(2)﹣【解析】(1)由三角函数的定义,得出cosα、sinα,从而求出sin2α的值;(2)由β﹣α=,求出sinβ,cosβ的值,从而求出cos(α+β)的值.解:(1)由三角函数的定义得,cosα=,sinα=;∴sin2α=2sinαcosα=2××=;(2)∵β﹣α=,∴sinβ=sin(+α)=.cosβ=cos(+α)=﹣sinα=﹣,∴cos(α+β)=cosαcosβ﹣sinαsinβ=×(﹣)﹣×=﹣.点评:本题考查了三角函数的求值与应用问题,解题时应根据三角函数的定义以及三角恒等公式进行计算,是基础题.。
重庆市中学2023-2024学年高一下学期阶段测试数学试题含答案
重庆高2026级高一(下)数学(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.如图,在平行四边形ABCD 中,,AB a AD b == ,E 是CD 边上一点,且2DE EC =,则AE = ()A.13a b+ B.23a b+ C.13a b + D.23a b + 【答案】D 【解析】【分析】由题意结合平面向量的线性运算法则、向量的数乘即可得解.【详解】由题意2233DE DC AB ==,所以232323AE AD DE AD DC AD AB a b +=+=+=+= .故选:D.【点睛】本题考查了平面向量线性运算法则及平面向量数乘的应用,考查了平面向量基本定理的应用,属于基础题.2.已知向量3AB a b =+ ,53BC a b =+ ,33CD a b =-+,则()A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线【答案】B 【解析】【分析】根据向量共线定理进行判断即可.【详解】∵262(3)2BD BC CD a b a b AB =+=+=+=,又∵BD 和AB有公共点B ,∴A ,B ,D 三点共线.故选:B .【点睛】本题考查了用向量共线定理证明三点共线问题,属于常考题.3.在等边ABC 中,点D 是边BC 的中点,且AD =,则AB BC ⋅为()A .16- B.16 C.8- D.8【答案】C 【解析】【分析】利用向量数量积定义即可求得AB BC ⋅的值.【详解】等边ABC 中,点D 是边BC 的中点,且AD =则30DAB ∠=o,()22BC BD AD AB ==-,4AB =,则()2222AB BC AB AD AB AB AD AB=⋅⋅⋅--= 224248=⨯⨯-⨯=- 故选:C4.设D ,E ,F 分别为ABC 的三边BC ,CA ,AB 的中点,则EB +FC等于()A.BCB.12AD C.ADD.12BC 【答案】C 【解析】【分析】利用向量的线性运算和中点的向量表示进行计算,即得结果.【详解】如图,EB +FC =EB +BC +FC +CB =EC +FB=12AC +12AB =()12AC AB + 122AD AD =⨯=.故选:C.5.已知1sin()64πθ-=,则sin(2)6πθ+=()A.78-B.78C.1516D.1516-【答案】B 【解析】【分析】利用诱导公式及二倍角余弦公式求解可得答案.【详解】令π6t θ=-,故1sin 4t =,π6t θ=-,故22ππ17sin(2)sin(2)cos 212sin 12()6248t t t θ+=-==-=-⨯=.故选:B.6.在等腰△ABC 中,∠BAC =120°,AD 平分∠BAC 且与BC 相交于点D ,则向量BD uu u r 在BA上的投影向量为()A.3BA 2B.3BA 4C.BA 2D.4BA 【答案】B 【解析】【分析】首先画出图形,根据投影的几何意义,计算结果.【详解】由余弦定理可知2222cos1201113BC AB AC AB AC =+-⋅⋅=++= ,BC ∴=,30ABC ∠= ,AD 平分∠BAC 且与BC 相交于点D ,ABC 是等腰三角形,D ∴是BC 中点,2BD =,由图可知向量BD uu u r在BA 上的投影向量为BE3cos304BE BD ==34BE BA = ,34BE BA ∴= .故选:B【点睛】本题考查向量的投影,重点考查数形结合分析问题,属于基础题型.7.在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点.若2AB =,3CD =,且4EF AB ⋅=,则EF = ()A.172B.2C.2D.【答案】B 【解析】【分析】由向量的数量积以及模长运算公式即可得解.【详解】连接EB ,EC ,如图,可知()()()()111222EF EB EC EA AB ED DC AB DC ⎡⎤=+=+++=+⎣⎦ .由()212EF AB AB AB DC ⋅=+⋅ ,即1242AB DC +⋅=,可得4AB DC ⋅= .从而,()()2222211212444EF EF AB DC AB AB DC DC ==+=+⋅+=,所以212EF = .故选:B.8.已知函数()()3cos 2>0,<2f x x πωϕωϕ⎛⎫=++ ⎪⎝⎭,其图象与直线5y =相邻两个交点的距离为2π,若,1216x ππ⎡⎤∀∈-⎢⎣⎦,()2f x ≥恒成立,则ϕ的取值范围是()A.,64ππ⎡⎤-⎢⎥⎣⎦B.,46ππ⎡⎤--⎢⎥⎣⎦C.,36ππ⎡⎤-⎢⎥⎣⎦D.0,4⎡⎤⎢⎣⎦π【答案】A 【解析】【分析】由5是函数的最大值,结合已知可得周期,从而得ω值,再由不等式恒成立得ϕ的范围.【详解】由题意()f x 的最大值是5,所以由()f x 的图象与直线5y =相邻两个交点的距离为2π知2T π=,242πωπ==.即()3cos(4)2f x x ϕ=++,()2f x <即cos(4)0x ϕ+<,,1216x ππ⎡⎤∈-⎢⎥⎣⎦时,4,34x ππϕϕϕ⎡⎤+∈-++⎢⎥⎣⎦,因为2πϕ<,所以36ππϕ-+<,44ππϕ+>-,所以3242ππϕππϕ⎧-+≥-⎪⎪⎨⎪+≤⎪⎩,解得64ππϕ-≤≤.故选:A .【点睛】关键点点睛:本题考查三角函数的性质,解题时能确定具体数值的先确定具体值,如4ω=,而ϕ的求法有两种:(1)由x 的范围,求出4x ϕ+的范围,并根据ϕ的范围得出3πϕ-和4πϕ+的范围,然后根据余弦函数性质得出不等关系.(2)先利用余弦函数性质,求出()2f x ≥时,x 的范围,再由已知区间,1216ππ⎡⎤-⎢⎥⎣⎦是这个范围的子集,得出结论.二、多项选择题,本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错得0分.9.下列命题为真命题的是()A.AB AM BM-=B.零向量与任意向量共线C.互为相反向量的两个向量的模相等D.若向量a ,b 满足1a = ,4b = ,则35a b ≤+≤ 【答案】BCD 【解析】【分析】由向量减法法则判断选项A ;由零向量的性质判断选项B ;由相反向量的定义判断选项C ;由向量三角不等式判断选项D.【详解】对A ,AB AM MB -=,A 选项错误;对B ,零向量与任意向量共线,B 选项正确;对C ,互为相反向量的两个向量的模相等,C 选项正确;对D ,若向量a ,b 满足1a = ,4b = ,则a b a b a b -≤+≤+ ,即35a b ≤+≤,D 选项正确.故选:BCD10.已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则()A.2OA OB OD+= B.OD OE FO+=C.若()0AO AB AC ⋅-=,则OA BC⊥D.若△ABC 为正三角形,则0OA OB OB OC OC OA ⋅+⋅+⋅=【答案】ABC 【解析】【分析】利用平面向量的线性运算及其几何意义,数量积的定义及运算法则逐项分析即得.【详解】对于A ,因为D 为OAB 中AB 的中点,所以2OA OB OD +=,故A 正确;对于B ,因为O 为ABC 的重心,,,D E F 分别为边,,AB BC CA 的中点,所以()()()111+++222OD OE OF OA OB OB OC OA OC ++=++++2+0OA OB OC OD OC ===,所以OD OE FO += ,故B 正确;对于C ,因为()0AO AB AC AO CB ⋅-=⋅=,所以OA BC ⊥,所以C 正确;对于D ,因为ABC 为正三角形,所以221cos1202OA OB OA OA ︒⋅==- ,所以232OA OB OB OC OC OA OA ⋅+⋅+⋅=-,所以D 不正确.故选:ABC.11.已知函数()()sin (0,0,0π)f x A x A ωϕωϕ=+>><<的部分图象如图所示,则()A.()f x 的单调递增区间是[]58,18,k k k -+-+∈ZB.()f x 的单调递增区间是[]5π8π,π8π,k k k -+-+∈Z C.()f x 在[]2π,2π-上有3个零点D.将函数图象向左平移3个单位长度得到的图象所对应的函数为奇函数【答案】AC 【解析】【分析】利用图象求出函数解析式,再求出单调增区间,[2π,2π]-上零点,图象的对称轴,逐一对选项判断即可.【详解】由图象得2A =,周期2π8,8T ω==,得π4ω=,所以()()ππ32sin ,12sin 0.0π,π444f x x f ϕϕϕϕ⎛⎫⎛⎫=+=+=<<∴=⎪ ⎪⎝⎭⎝⎭,()π32sin π44f x x ⎛⎫∴=+ ⎪⎝⎭.令ππ3π2ππ2π,2442k x k k -+≤+≤+∈Z ,解得5818,k x k k -+≤≤-+∈Z ,故单调递增区间为[]58,18,k k k -+-+∈Z .A 正确,B 错误;令π3ππ,44x k k +=∈Z ,解得43x k =-,令2π432πk -≤-≤得32π32π,44k k -+≤≤∈Z ,解得0,1,2k =,可知C 选项正确;函数图象关于直线3x =对称,向左平移3个单位长度,图象关于y 轴对称,得到的函数为偶函数,故D 错误.故选:AC .12.如图,边长为2的正六边形ABCDEF ,点P 是DEF 内部(包括边界)的动点,AP xAB y AD =+,x ,y ∈R .()A.0AD BE CF -+=B.存在点P ,使x y=C.若34y =,则点P 的轨迹长度为2 D.AP AB ⋅的最小值为2-【答案】AD 【解析】【分析】根据正六边形的性质,结合向量的线性运算即可求解A ,根据共线即可得矛盾求解B ,根据共线即可求解C ,根据数量积的运算律,结合图形关系即可求解D.【详解】设O 为正六边形的中心,根据正六边形的性质可得,,,ED AB EF CB CD AF ===且四边形,,OAFE OCDE OABC 均为菱形,()()()AD BE CF AB BC CD BC CD DE CD DE EF-+=++-+++++ ()0AB CD EF AB AF EF AB FA FE AB FO =++=++=-+=-=,故A 正确,假设存在存在点P ,使x y =,则()AP xAB y AD x AB AD xAM =+=+=,其中点M 为以,AB AD 为邻边作平行四边形的顶点,所以P 在直线AM 上,这与点P 是DEF 内部(包括边界)的动点矛盾,故B 错误,当34y =时,34AP xAB AD =+ ,取34AN AD = ,则34AP AD AP AN NP xAB -=-==,所以点P 的轨迹为线段HK ,其中,H K 分别为过点N 作//NH AB 与,EF FD 的交点,由于N 为OD 的中点,所以1//,12HK ED HK ED ==,故点P 的轨迹长度为1,C 错误,由于2,DB AB AD AB AB ⊥∴⋅= ,()22444AP AB xAB y AD AB xAB y AD AB x y AB x y ⋅=+⋅=+⋅=+=+ ,过F 作FT BA ⊥于T ,则112AT AF ==,所以此时1,02x y =-=,由于,x y 分别为,AB AD 上的分量,且点点P 是DEF 内部(包括边界)的动点,所以10,012x y -≤≤≤≤当P 位于F 时,此时,x y 同时最小,故AP AB ⋅的最小值为2-故选:AD三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 满足3a = ,5b = ,且a b λ= ,则实数λ的值是________.【答案】35±【解析】【分析】利用向量的线性运算,以及向量的模,转化求解即可.【详解】由a b λ= ,得a b b λλ== ,因为3a = ,5b = ,所以35λ=,即35λ=±.故答案为:35±14.计算:sin 47sin17cos30cos17︒-︒︒︒.【答案】12【解析】【分析】因为473017︒=︒+︒,所以对sin 47︒进行和差公式展开,即可求解【详解】sin 47sin17cos30cos17︒-︒︒︒()sin 3017sin17cos30cos17︒︒︒+-︒=︒sin 30cos17cos30sin17sin17cos30cos17︒︒+︒︒-︒︒=︒sin30cos171sin30cos172=︒︒︒=︒=.15.已知函数()cos (0)f x x ωω=>,将()f x 的图象向左平移π6个单位长度,所得函数()g x 的图象关于原点对称,且()g x 在ππ,3618⎛⎫-⎪⎝⎭上单调递减,则ω=__________.【答案】3【解析】【分析】根据余弦函数的性质可得πππ,62k k ω=+∈Z ,结合单调性列不等式即可求解.【详解】由题意知()()πcos ,6g x x g x ωω⎛⎫=+⎪⎝⎭图象关于原点对称,因此πππ,62k k ω=+∈Z ,解出63,k k ω=+∈Z ,由于()g x 在ππ,3618⎛⎫-⎪⎝⎭上单调递减,πππππ,6366186x ωωωωωω⎛⎫+∈-++ ⎪⎝⎭,因此ππ2π,366πππ2π,186k k ωωωω⎧≤-+⎪⎪⎨⎪+≤+⎪⎩,解出7291852k k ω+≤≤,由于k ∈Z ,所以取0k =,解得902ω<≤,又由于63,k k ω=+∈Z ,且k ∈Z ,则0,3k ω==.故答案为:316.已知O 为ABC 的外心,6,4BC BO AC =⋅=,当C ∠最大时,AB 边上的中线长为_________.【答案】【解析】【分析】作出图形,利用平面向量的运算得到228a c -=,再利用余弦定理与基本不等式求得C ∠最大时b 的值,从而得解.【详解】取AC 中点D ,连接OD BD 、,则DO AC ⊥,则()()()142BO AC BD DO AC BD AC BC BA BC BA ⋅=+⋅=⋅=+⋅-=,所以228BC BA -= ,即228a c -=,又6BC = ,所以6a =,c =则22228cos 212123a b c b C ab b b +-+==≥=,当且仅当28b =,即b =时取等号,此时角C 最大,同时222a b c =+,所以90A =︒,所以AB边上中线长为CE ===.【点睛】关键点睛:本题解决的关键是利用面向量的运算转化BO AC ⋅ ,得到228BC BA -= ,从而得解.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在平行四边形ABCD 中,,AB a AD b == .(1)如图1,如果E F 、分别是BC DC 、的中点,试用,a b 分别表示,BF DE .(2)如图2,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a b ,表示AG .【答案】(1)12BF b a =- ,12DE a b =- (2)1344AG a b =+ 【解析】【分析】(1)根据向量的线性运算结合图形直接表示即可;(2)根据向量的线性运算结合图形直接表示即可.【小问1详解】因为,E F 分别是,BC DC 的中点,所以1122BF BC CF AD AB b a =+=-=- ,1122DE DC CE AB AD a b =+=-=- .【小问2详解】因为O 是AC 与BD 的交点,G 是DO 的中点,所以()3344BG BD AD AB ==-u u u r u u u r u u u r u u u r ,()3131344444AG AB BG AB AD AB AB AD a b ∴=+=+-=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r r .18.已知||2a = ,||1b = ,(23)(2)17a b a b -⋅+= .(1)求a 与b 的夹角和a b + 的值;(2)设2c ma b =+ ,2d a b =- ,若c 与d 共线,求实数m 的值.【答案】(1)a 与b 的夹角为23π,a b += ;(2)4m =-.【解析】【分析】(1)根据(23)(2)17a b a b -⋅+= 求出1a b ⋅=- ,根据数量积关系求出夹角,a b += (2)根据共线定理必存在λ使得:()2,2c ma d b b a λλ=+-= ,求解参数.【详解】(1)||2a = ,||1b = ,(23)(2)17a b a b -⋅+= ,2243417a b a b --⋅= ,163417a b --⋅= 1a b ⋅=- ,所以1cos ,2a b a b a b⋅==-⋅ ,所以a 与b 的夹角为23π,a b +== ;(2)由(1)可得:a 与b不共线,2c ma b =+ ,2d a b=- ,若c 与d 共线,则必存在λ使得:()2,2c ma d b b a λλ=+-= ,所以2,2m λλ==-,得4m =-.【点睛】此题考查向量的数量积运算,根据数量积关系求向量夹角和模长,利用平面向量基本定理结合向量共线求参数的值.19.如图,在ABC ∆中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =.(1)用向量AB 、AC 表示DE;(2)设6AB =,4AC =,60A =︒,求线段DE的长.【答案】(1)1162AB AC +.【解析】【详解】试题分析:(1)现将DE 转换为DB BE + ,然后利用题目给定的比例,将其转化为以,AB AC为起点的向量的形式.(2)由(1)将向量DE 两边平方,利用向量的数量积的概念,可求得DE .试题解析:(1)由题意可得:21DE DB BE AB BC 32=+=+ ()21AB AC AB 32=+- 11AB AC62=+ (2)由11DE AB AC 62=+ 可得:2222211111|DE |DE AB AC AB AB AC AC623664⎛⎫==+=+⋅+ ⎪⎝⎭ 22111664cos60473664=⨯+⨯⨯⨯︒+⨯=.故DE =20.已知()()()()π3πsin cos tan π22tan πsin πf αααααα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---(1)化简()f α;(2)若()513f α=,()35f αβ-=-,且0πα<<,0πβ<<,求()f β.【答案】(1)()cos f αα=(2)()6365f β=-【解析】【分析】(1)运用诱导公式进行求解即可;(2)根据同角的三角函数关系式,结合两角差的余弦公式进行求解即可.【小问1详解】()()()()()π3πsin cos tan πcos sin tan 22cos tan πsin πtan sin f αααααααααααα⎛⎫⎛⎫-+- ⎪ ⎪--⎝⎭⎝⎭===---;【小问2详解】()55cos 1313f αα=⇒=,因为0πα<<,所以π02α<<所以12sin 13α===,()()33cos 55f αβαβ-=-⇒-=-,因为π02α<<,0πβ<<,所以ππ2αβ-<-<,因为()3cos 05αβ-=-<,所以ππ2αβ-<-<-,于是()4sin 5αβ-===-所以()()()()cos cos cos cos sin sin f ββααβααβααβ⎡⎤==--=-+-⎣⎦531246313513565⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭.21.已知函数()ππ2sin cos cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图象向右平移π3个单位长度,得到函数()g x 的图象,若关于x 的方程()1g x m -=在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,求实数m 的取值范围.【答案】21.5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z22.{}11⎡⎤⋃⎣⎦【解析】【分析】(1)先根据二倍角公式以及辅助角公式化简()f x ,利用整体代换法即可解出()f x 的单调递增区间;(2)先结合条件将问题转化为“π1sin 232m x +⎛⎫-= ⎪⎝⎭在π0,2⎡⎫⎪⎢⎣⎭上恰有一解”,然后分析πsin 23y x ⎛⎫=- ⎪⎝⎭的单调性以及函数值,从而列出关于m 的不等式,由此求解出结果.【小问1详解】函数()ππ2sin cos cos44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ππsin 22sin 222sin 223x x x x x ⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,令,ππ22223π2ππk x k -≤+≤+k ∈Z ,π5,12πππ12k x k ∴-≤≤+k ∈Z ,函数()f x 的单调递增区间为5πππ,π,1212k k ⎡⎤-+⎢⎥⎣⎦k ∈Z .【小问2详解】将函数()f x 的图象向右平移π3个单位长度,得到函数()πππ2sin 22sin 2333g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,若关于x 的方程()1g x m -=在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,即π2sin 213x m ⎛⎫-=+ ⎪⎝⎭在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,即π1sin 232m x +⎛⎫-= ⎪⎝⎭在π0,2⎡⎫⎪⎢⎣⎭上恰有一解,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,ππ2π2,333x ⎡⎫-∈-⎪⎢⎣⎭,函数πsin 23y x ⎛⎫=- ⎪⎝⎭,当πππ2,332x ⎡⎫-∈-⎪⎢⎣⎭时,单调递增,当ππ2π2,323x ⎛⎫-∈ ⎪⎝⎭时,单调递减,而πsin 32⎛⎫-=- ⎪⎝⎭,πsin 12=,2πsin 32=,1222m +∴-≤≤或112m +=,解得11m ≤≤或1m =,即实数m 的取值范围为{}11⎡⎤--⋃⎣⎦.22.如图所示,在等腰直角OAB 中,π,2AOB OA M ∠==为线段AB 的中点,点,P Q 分别在线段,AM BM 上运动,且π4POQ ∠=,设AOP θ∠=.(1)设()PM f θ=,求θ的取值范围及()fθ;(2)求OPQ △面积的最小值.【答案】(1)()ππtan ,0,44fθθθ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦(21-【解析】【分析】(1)根据条件得π1,,4OM AOM OM AB ∠==⊥,即可得π0,4θ⎡⎤∈⎢⎥⎣⎦,在Rt OMP 中,利用tan PM OM POM ∠=⋅即可求出结果;(2)根据条件得到11tan tan 21tan OPQ S θθθ-⎛⎫=+ ⎪+⎝⎭ ,再利用基本不等式即可求出结果.【小问1详解】因为OAB 为等腰直角三角形,OA M =为线段AB 的中点,所以π1,,4OM AOM OM AB ∠==⊥.因为点P 在线段AM 上运动,所以π0,4θ⎡⎤∈⎢⎥⎣⎦,因为AOP θ∠=,所以ππ,tan tan 44POM PM OM POM θθ⎛⎫∠=-=⋅∠=- ⎪⎝⎭,所以()ππtan ,0,44f θθθ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦.【小问2详解】因为π4POQ MOA ∠=∠=,所以,tan tan QOM QM OM QOM ∠θ∠θ==⋅=,所以πtan tan 4PQ PM QM θθ⎛⎫=+=-+⎪⎝⎭,所以11π11tan tan tan tan 22421tan OPQ S PQ OM θθθθθ⎡⎤-⎛⎫⎛⎫=⋅=-+=+ ⎪⎪⎢⎥+⎝⎭⎝⎭⎣⎦ ()12121tan 11tan 22121tan 21tan 2θθθθ⎛⎫⎛⎫=+-=++-≥=- ⎪ ⎪++⎝⎭⎝⎭,当且仅当[]tan 10,1θ=-∈时,等号成立,所以OPQ △1-.。
山西高一高中数学同步测试带答案解析
山西高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合,,则()A.B.C.D.2.下列各组函数中的两个函数是相等函数的是()A.与B.与C.与D.与3.若函数的定义域为,则实数取值范围是()A.B.C.D.4.下列判断正确的是()A.函数是奇函数B.函数是偶函数C.函数是非奇非偶函数D.函数既是奇函数又是偶函数5.已知函数是上的减函数,则的取值范围是()A.B.C.D.6.已知函数(且)在内的值域是,则函数的函数大致是()7.给出函数(为常数,且,),无论取何值,函数恒过定点,则的坐标是()A.B.C.D.8.不等式的解集为()A.B.C.D.9.若,则函数的值域是()A.B.C.D.10.函数的值域是()A.B.C.D.二、填空题1.函数的单调递减区间是 .2.已知定义在上的奇函数,当时,,那么时, .3.已知函数与满足,且为上的奇函数,,则 .4.将函数的图象先向下平移2个单位,得到的图象的函数表达式为,然后继续向左平移1个单位,最终得到的图象的函数表达式为 .5.直线与函数(且)的图象有且仅有两个公共点,则实数的取值范围是 .三、解答题1.设集合,,且,,求实数,的取值范围.2.计算:(1);(2).3.已知函数,为常数,且函数的图象过点.(1)求的值;(2)若,且,求满足条件的的值.4.已知函数为定义域在上的增函数,且满足,.(1)求,的值;(2)如果,求的取值范围.5.设函数.(1)证明:;(2)计算:.山西高一高中数学同步测试答案及解析一、选择题1.设集合,,则()A.B.C.D.【答案】C【解析】,,所以.故选C.【考点】集合运算.2.下列各组函数中的两个函数是相等函数的是()A.与B.与C.与D.与【答案】B【解析】A中两函数定义域不同;B中两函数定义域与对应关系都相同;C中两函数定义域不同;D中两函数定义域不同.故选B.【考点】函数概念.3.若函数的定义域为,则实数取值范围是()A.B.C.D.【答案】A【解析】由题意可知对于恒成立,所以,所以.故选A.【考点】1、函数定义域;2、不等式恒成立.4.下列判断正确的是()A.函数是奇函数B.函数是偶函数C.函数是非奇非偶函数D.函数既是奇函数又是偶函数【答案】C【解析】A中函数的定义域为不关于原点对称,不是奇函数;B中函数的定义域为不关于原点对称,不是偶函数;C中函数的定义域为,,,所以是非奇非偶函数;D中是偶函数,不是奇函数.故选C.【考点】函数的奇偶性.【方法点睛】判断函数奇偶性的方法:⑴定义法:对于函数的定义域内任意一个,都有〔或或〕函数是偶函数;对于函数的定义域内任意一个,都有〔或或函数是奇函数;判断函数奇偶性的步骤:①判断定义域是否关于原点对称;②比较与的关系;③下结论.⑵图象法:图象关于原点成中心对称的函数是奇函数;图象关于轴对称的函数是偶函数.⑶运算法:几个与函数奇偶性相关的结论:①奇函数+奇函数=奇函数;偶函数+偶函数=偶函数;②奇函数×奇函数=偶函数;奇函数×偶函数=奇函数;③若为偶函数,则.5.已知函数是上的减函数,则的取值范围是()A.B.C.D.【答案】D【解析】因为函数是上的减函数,所以解得.故选D.【考点】1、函数的基本性质;2、分段函数.6.已知函数(且)在内的值域是,则函数的函数大致是()【答案】B【解析】由题意可知,所以,所以,,所以.故选B.【考点】指数函数的图象与性质.7.给出函数(为常数,且,),无论取何值,函数恒过定点,则的坐标是()A.B.C.D.【答案】D【解析】因为恒过定点,所以函数恒过定点.故选D.【考点】指数函数的性质.8.不等式的解集为()A.B.C.D.【答案】C【解析】化为,即,解得.故选C.【考点】指数不等式.9.若,则函数的值域是()A.B.C.D.【答案】C【解析】试题分:将化为,即,解得,所以,所以函数的值域是.故选C.【考点】1、指数不等式;2、指数的性质;3、一元二次不等式的解法.【方法点睛】将指数不等式化为一元二次不等式,求得函数的定义域,再根据指数函数的性质求得函数的值域.利用函数的单调性是解指数不等式的重要依据,解指数不等式的基本思想是“化同底,求单一”,即把不同底的指数化为同底的,再通过函数的单调性将复合情形转化为整式不等式求解,属于基础题.10.函数的值域是()A.B.C.D.【答案】B【解析】令,则,而,所以.故选B.【考点】函数的性质.【方法点睛】求函数值域的常用方法有:基本函数法、配方法、分离变量法、单调性法、图象法、换元法、不等式法等,无论用什么方法求函数的值域,都必须考虑函数的定义域;求函数的定义域就是使函数的表达式有意义得自变量的取值集合,可根据函数解析式有意义列出不等式(组)解之即得函数定义域.本题是求复合函数的值域,先通过换元将函数转化为指数函数,再根据单调性求解.属于基础题.二、填空题1.函数的单调递减区间是 .【答案】,【解析】函数,所以函数的单调递减区间为,.所以答案应填:,.【考点】1、函数的基本性质;2、分段函数.2.已知定义在上的奇函数,当时,,那么时, .【答案】【解析】设,则,因为当时,,所以,又因为是定义在上的奇函数,所以,,即.所以答案应填:.【考点】1、函数的基本性质;2、分段函数.3.已知函数与满足,且为上的奇函数,,则 .【答案】【解析】由题意知,所以,又因为为上的奇函数,所以,所以.所以答案应填:.【考点】1、函数的基本性质;2、分段函数.4.将函数的图象先向下平移2个单位,得到的图象的函数表达式为,然后继续向左平移1个单位,最终得到的图象的函数表达式为 .【答案】或,或【解析】将函数的图象先向下平移个单位,得到,然后继续向左平移个单位,最终得到.所以答案应填:或,或.【考点】函数的平移变换.【方法点睛】函数的平移变换分两种一是左右平移,而是上下平移.函数平移的规律:将函数的图象沿轴向右()或向左()平移个单位得到函数的图象;将函数的图象沿轴向下()或向上()平移个单位得到函数的图象.本题考查的是函数的平移变换,属于基础题.5.直线与函数(且)的图象有且仅有两个公共点,则实数的取值范围是 .【答案】【解析】①当时,作出函数图象,若直线与函数(且)的图象有两个公共点,由图象可知,∴.②当时,作出图象,若直线与函数(且)的图象有两个公共点,由图象可知,此时无解.综上:实数的取值范围是.所以答案应填:.【考点】1、指数函数的图象与性质;2、指数函数综合题.【思路点睛】先分①和时两种情况,作出函数图象,再由直线与函数(且)的图象有两个公共点,作出直线,移动直线,用数形结合求解.本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,同时还考查了数形结合的思想方法,属于压轴题.三、解答题1.设集合,,且,,求实数,的取值范围.【答案】或,或.【解析】由知,因此可能为,,,进而求出的取值范围,由知,因此可能为,,,,进而得到的取值范围.试题解析:.∵,∴,∴可能为,,,,∵,∴,又∵,∴中一定有1,∴,或,即或.经验证,均满足题意,又∵,∴,∴可能为,,,.当时,方程无解,∴,∴,当时,无解;当时,也无解;当时,,综上所述,或,或..【考点】1、集合运算;2、一元二次方程的解法.2.计算:(1);(2).【答案】(1);(2).【解析】先将根式化分数指数幂,在应用指数幂的运算性质计算.试题解析:(1);(2).【考点】指数幂的运算性质.3.已知函数,为常数,且函数的图象过点.(1)求的值;(2)若,且,求满足条件的的值.【答案】(1);(2).【解析】(1)函数的图象过点,代入得解出即可;(2)根据(1),由得,可化为,解之即可.试题解析:(1)由已知得,解得.(2)由(1)知,又,则,即,即,令,则,又因为,解得,即,解得.【考点】指数函数的性质.4.已知函数为定义域在上的增函数,且满足,.(1)求,的值;(2)如果,求的取值范围.【答案】(1);(2).【解析】(1)令,可得,再令,得;(2)原不等式即,由(1)知,原不等式即,由单调性得求得不等式的解集即可.试题解析:(1)∵,∴令,则,即,令,则.(2),即,即,即,∵函数为定义域在上的增函数,∴即∴,故的取值范围是.【考点】1、抽象函数及其应用;2、函数的基本性质.【方法点睛】(1)通过赋值求,的值;(2)借助抽象函数的性质将问题转化为具体的不等式求解. 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数.解决抽象函数问题时,常可采用赋值法、借助模型函数分析法、直接推证法和数形结合法,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,本题考查函数的单调性的应用,注意函数的定义域,考查不等式的解法,属于中档题.5.设函数.(1)证明:;(2)计算:.【答案】(1)证明见解析;(2).【解析】(1)由已知得,由此证得;(2)令①,则②,①+②,由此可求出结果.试题解析:(1).(2)令,则,由(1)得:,故.【考点】函数的值.【思路点睛】(1)由已知得,即证得.(2)根据(1)的结论,将代数式,倒序后再与其相加,即采用倒序相加法,即可求出结果.本题考查等式成立的证明,考查函数值的求法,解题时要认真审题,注意函数性质的合理应用,属于中档题.。
高一数学必修一集合与函数的概念单元测试题附答案解析
高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学测试卷及答案详解(附答案)
第一部分选择题(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.设集合 ,那么集合 是()
A. B. C. D.
2.设集合 和集合 都是自然数集 ,映射 把集合 中的元素 映射到集合 中的元素 ,则在映射 下,像20的原像是( )
16.本小题主要考查指数函数和对数函数的性质,考查函数的单调性.满分14分.
解:(1)函数 有意义,则 ……2分
当 时,由 解得 ;当 时,由 解得 .
所以当 时,函数的定义域为 ;……4分
当 时,函数的定义域为 .……6分
(2)当 时,任取 ,且 ,则
,即
由函数单调性定义知:当 时, 在 上是单调递增的.……10分
对称,那么必有()
A. B. C. D.
8.如果直线 ,那么 的位置关系是()
A.相交B. C. D. 或
9.在空间直角坐标系中,点 关于 轴的对称点坐标为()
A. B. C. D.
10.一个封闭的立方体,它的六个表面各标出ABCDEF这六个字母.现放成下面三中不同的位置,所看见的表面上字母已标明,则字母A、B、C对面的字母分别为( )
13.集合 ,若 ,则实数 的取值范围为_____________
14.已知函数 分别由下表给出,则 _______, ________.
1
2
3
4
1
2
3
4
2
3
4
1
2
1
4
3
三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.(其中15题和18题每题12分,其他每题14分)
高一数学必修一第二章测试题及答案
人教版高中数学必修一第二章 《一元二次函数、方程和不等式》测试题及答案解析(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式x 2≥2x 的解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2}解析:选D 由x 2≥2x 得x (x -2)≥0,解得x ≤0或x ≥2,故选D. 2.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >BD .A >B解析:选B ∵A-B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,∴A ≥B.3.不等式组⎩⎨⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C 由⎩⎨⎧x2-1<0,x2-3x<0,得⎩⎨⎧-1<x<1,0<x<3,所以0<x<1,即不等式组的解集为{x|0<x<1},故选C.4.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( ) A .{x |x <5a 或x >-a } B .{x |x >5a 或x <-a } C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选A 方程x 2-4ax -5a 2=0的两根为-a ,5a.因为2a +1<0,所以a<-12,所以-a>5a.结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x|x<5a 或x>-a},故选A.5.已知a ,b ,c ∈R ,则下列说法中错误的是( ) A .a >b ⇒ac 2≥bc 2 B.a c >b c,c <0⇒a <b C .a 3>b 3,ab >0⇒1a <1bD .a 2>b 2,ab >0⇒1a <1b解析:选D 对于A ,c 2≥0,则由a>b 可得ac 2≥bc 2,故A 中说法正确; 对于B ,由a c >b c ,得a c -b c =a -bc >0,当c<0时,有a -b<0,则a<b ,故B 中说法正确;对于C ,∵a 3>b 3,ab>0,∴a 3>b 3两边同乘1a3b3,得到1b3>1a3,∴1a <1b,故C 中说法正确;对于D ,∵a 2>b 2,ab>0,∴a 2>b 2两边同乘1a2b2, 得到1b2>1a2,不一定有1a <1b,故D 中说法错误.故选D.6.若关于x 的一元二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( )A .m ≤-2或m ≥2B .-2≤m ≤2C .m <-2或m >2D .-2<m <2解析:选B 因为不等式x 2+mx +1≥0的解集为R ,所以Δ=m 2-4≤0,解得-2≤m≤2.7.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-300x +80 000,为使平均处理成本最低,该厂每月处理量应为( )A .300吨B .400吨C .500吨D .600吨解析:选B 由题意,月处理成本y(元)与月处理量x(吨)的函数关系为y=12x 2-300x +80 000,所以平均处理成本为s =y x =12x2-300x +80 000x =x 2+80 000x -300,其中300≤x≤600,又x 2+80 000x-300≥2x 2·80 000x-300=400-300=100,当且仅当x 2=80 000x 时等号成立,所以x =400时,平均处理成本最低.故选B.8.设正数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y-2z的最大值是( ) A .0 B .1 C.94D .3解析:选B 由题意得xy z =xy x2-3xy +4y2=1x y +4y x -3≤14-3=1,当且仅当x=2y 时,等号成立,此时z =2y 2.故2x +1y -2z =-1y2+2y =-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时,等号成立,故所求的最大值为1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知不等式ax 2+bx +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2,则下列结论正确的是( )A .a >0B .b >0C .c >0D .a +b +c >0解析:选BCD 因为不等式ax 2+bx +c>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2,故相应的二次函数y =ax 2+bx +c 的图象开口向下,所以a<0,故A 错误;易知2和-12是关于x 的方程ax 2+bx +c =0的两个根,则有c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,-b a =2+⎝ ⎛⎭⎪⎫-12=32>0,又a<0,故b>0,c>0,故B 、C 正确;因为ca =-1,所以a +c =0,又b>0,所以a +b +c>0,故D 正确.故选B 、C 、D.10.下列结论中正确的有( )A .若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B .若a ,b ,m 为正实数,a <b ,则a +m b +m <a bC .若a c 2>bc2,则a >bD .当x >0时,x +2x的最小值为2 2解析:选ACD 对于A ,∵a ,b 为正实数,a ≠b ,∴a 3+b 3-(a 2b +ab 2)=(a -b)2(a +b)>0,∴a 3+b 3>a 2b +ab 2,故A 正确;对于B ,若a ,b ,m 为正实数,a<b ,则a +m b +m -a b =m (b -a )b (b +m )>0,则a +m b +m >ab,故B 错误;对于C ,若a c2>bc2,则a>b ,故C 正确; 对于D ,当x>0时,x +2x 的最小值为22,当且仅当x =2时取等号,故D正确.故选A 、C 、D.11.下列各式中,最大值是12的是( )A .y =x 2+116x 2B .y =x 1-x 2(0≤x ≤1)C .y =x 2x 4+1D .y =x +4x +2(x >-2) 解析:选BCA中,y =x 2+116x2≥2x2·116x2=12⎝ ⎛⎭⎪⎫当且仅当x =±12时取等号,因此式子无最大值;B 中,y 2=x 2(1-x2)≤⎝⎛⎭⎪⎫x2+1-x222=14,y ≥0, ∴0≤y ≤12,当且仅当x =22时y 取到最大值12; C 中,当x =0时,y =0,当x≠0时,y =1x2+1x2≤12x2·1x2=12,当且仅当x =±1时y 取到最大值12;D 中,y =x +4x +2=x +2+4x +2-2≥2(x +2)·4x +2-2=2(x>-2)(当且仅当x =0时取等号),无最大值,故选B 、C.12.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏,若售价每提高1元,则日销售量将减少2盏.为了使这批台灯每天获得400元以上(不含400)的销售收入,则这批台灯的售价x (元)的取值可以是( )A .10B .15C .16D .20解析:选BC 设这批台灯的售价定为x 元,x ≥15,则[30-(x -15)×2]·x>400,即x 2-30x +200<0,因为方程 x 2-30x +200=0的两根分别为x 1=10,x 2=20,所以x 2-30x +200<0的解集为{x|10<x<20},又因为x≥15,所以15≤x<20.故选B 、C.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知a >b ,a -1a >b -1b同时成立,则ab 应满足的条件是________.解析:因为a -1a >b -1b ,所以⎝ ⎛⎭⎪⎫a -1a -⎝ ⎛⎭⎪⎫b -1b =(a -b )(ab +1)ab >0.又a>b ,即a -b>0,所以ab +1ab>0,从而ab(ab +1)>0,所以ab<-1或ab>0.答案:ab<-1或ab>014.一个大于50小于60的两位数,其个位数字b 比十位数字a 大2.则这个两位数为________.解析:由题意知⎩⎨⎧50<10a +b<60,b -a =2,0<a ≤9,0≤b ≤9,解得4411<a<5311. 又a∈N*,∴a =5.∴b =7,∴所求的两位数为57. 答案:5715.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a +b =________,一元一次不等式ax +b <0的解集为________.解析:由题意知,-3和1是方程x 2+ax +b =0的两根, 所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3, 故a +b =-1.不等式ax +b<0即为2x -3<0, 所以x<32.答案:-1⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<32 16.已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为________. 解析:因为x ,y 为正数,且x +2y =2,所以x 2+y =1,所以x +8yxy =⎝ ⎛⎭⎪⎫1y +8x ·⎝ ⎛⎭⎪⎫x 2+y =x 2y +8yx +5≥2x 2y ·8y x +5=9,当且仅当x =4y =43时,等号成立,所以x +8yxy的最小值为9. 答案:9四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解:(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2. (2)原不等式可化为2x 2-x -1≥0. 所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≤-12或x≥1.18.(本小题满分12分)当p ,q 都为正数且p +q =1时,试比较代数式(px +qy )2与px 2+qy 2的大小.解:(px +qy)2-(px 2+qy 2)=p(p -1)x 2+q(q -1)y 2+2pqxy. 因为p +q =1,所以p -1=-q ,q -1=-p ,所以(px +qy)2-(px 2+qy 2)=-pq(x 2+y 2-2xy)=-pq(x -y)2. 因为p ,q 都为正数,所以-pq(x -y)2≤0,因此(px +qy)2≤px 2+qy 2,当且仅当x =y 时等号成立.19.(本小题满分12分)已知关于x 的方程x 2-2x +a =0.当a 为何值时, (1)方程的一个根大于1,另一个根小于1?(2)方程的一个根大于-1且小于1,另一个根大于2且小于3?解:(1)已知方程的一个根大于1,另一个根小于1,结合二次函数y =x 2-2x +a 的图象(如图所示)知,当x =1时,函数值小于0,即12-2+a<0,所以a<1.因此a 的取值范围是{a|a<1}.(2)由方程的一个根大于-1且小于1,另一个根大于2且小于3,结合二次函数y =x 2-2x +a 的图象(如图所示)知,x 取-1,3时函数值为正,x 取1,2时函数值为负,即⎩⎨⎧1+2+a>0,1-2+a<0,4-4+a<0,9-6+a>0,解得-3<a<0.因此a 的取值范围是{a|-3<a<0}.20.(本小题满分12分)已知a >0,b >0且1a +2b=1.(1)求ab 的最小值; (2)求a +b 的最小值.解:(1)因为a>0,b>0且1a +2b =1,所以1a +2b≥21a ·2b=22ab,则22ab≤1, 即ab≥8,当且仅当⎩⎪⎨⎪⎧1a +2b =1,1a =2b ,即⎩⎨⎧a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a>0,b>0且1a +2b =1,所以a +b =⎝ ⎛⎭⎪⎫1a +2b (a +b)=3+b a +2ab≥3+2b a ·2ab=3+22, 当且仅当⎩⎪⎨⎪⎧1a +2b =1,b a =2a b ,即⎩⎪⎨⎪⎧a =1+2,b =2+2时取等号,所以a +b 的最小值是3+2 2.21.(本小题满分12分)设y =ax 2+(1-a )x +a -2.(1)若不等式y ≥-2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1-a )x +a -2<a -1(a ∈R).解:(1)ax 2+(1-a)x +a -2≥-2对于一切实数x 恒成立等价于ax 2+(1-a)x +a≥0对于一切实数x 恒成立.当a =0时,不等式可化为x≥0,不满足题意; 当a≠0时,由题意得⎩⎨⎧a>0,(1-a )2-4a2≤0,解得a≥13.所以实数a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥13.(2)不等式ax 2+(1-a)x +a -2<a -1等价于ax 2+(1-a)x -1<0. 当a =0时,不等式可化为x<1,所以不等式的解集为{x|x<1}; 当a>0时,不等式可化为(ax +1)(x -1)<0,此时-1a<1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1; 当a<0时,不等式可化为(ax +1)(x -1)<0,①当a =-1时,-1a=1,不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;③当a<-1时,-1a <1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1. 综上所述,当a<-1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1;当a =-1时,不等式的解集为{x|x≠1};当-1<a<0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;当a =0时,不等式的解集为{x|x<1};当a>0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1. 22.(本小题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W (万元)与年广告费x (万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少? 解:(1)由题意可得,每年产品的生产成本为(32Q +3)万元,每万件销售价为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%万元, ∴年销售收入为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%·Q =32(32Q +3)+12x , ∴W =32(32Q +3)+12x -(32Q +3)-x=12(32Q +3)-12x =12(32Q +3-x) =-x2+98x +352(x +1)(x≥0).(2)由(1)得,W =-x2+98x +352(x +1)=-(x +1)2+100(x +1)-642(x +1)=-x +12-32x +1+50.∵x +1≥1,∴x +12+32x +1≥2x +12·32x +1=8, ∴W ≤42,当且仅当x +12=32x +1,即x =7时,W 有最大值42,即当年广告费投入7万元时,企业年利润最大,最大年利润为42万元.。
高一数学试题及答案
高一数学试题及答案一、选择题(本大题共12小题,每小题5分,共60分,每题有且只有一个选项是正确的,请把答案填在答题卡上)1.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( ) A .40 B .48 C .50 D .80 【答案】 C2.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B . 19 C .16 D .112【答案】 B3.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥【答案】 B4.函数12sin[()]34y x π=+的周期、振幅、初相分别是()A .3π,2-,4πB .3π,2,12π C .6π,2,12π D .6π,2,4π 【答案】C5.下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 【答案】选B.6.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43【答案】 D【解析】 x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x2=9,∴x =-3,∴tan α=-43.7.如果cos(π+A )=-12,那么sin(π2+A )=( )A .-12B.12 C .-32D.32【答案】 B解析:.cos(π+A )=-cos A =-12,则cos A =12,sin(π2+A )=cos A =12.8.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3【答案】 C解析:.由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z ).又φ∈[0,2π],所以φ=3π2,故选C.9.已知函数sin()y A x B ωϕ=++的一部分图象 如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B【答案】 C.10.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图,若s 甲,s 乙,s 丙分别表示他们测试成绩的标准差,则( ) A .s 甲<s 乙<s 丙 B .s 甲<s 丙<s 乙 C .s 乙<s 甲<s 丙 D .s 丙<s 甲<s 乙甲 乙 丙 【答案】 D11.已知1cos()63πα+=-,则sin()3πα-的值为( )A .13B .13-C .233D .233-【答案】 A12.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( )A.13 B .1 C.53D .2 【答案】 D解析:选D.将函数f (x )=sin ωx 的图象向右平移π4个单位长度得到函数y =sin[ω(x -π4)]的图象,因为所得图象经过点(34π,0),则sin ω2π=0,所以ω2π=k π(k ∈t ),即ω=2k (k ∈t ),又ω>0,所以ωmin =2,故选D.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上) 13. 已知样本9,10,11,,x y 的平均数是102,则xy =________________. 【答案】9614.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次, 则3个球颜色全不相同的概率为_______________. 【答案】2/915.如果sin α-2cos α3sin α+5cos α=-5,那么tan α的值为_______________.【答案】 -2316.16.函数f(x )=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围是_____________________.【答案】13k <<三、解答题(本大题共70分,解答应写出必要分文字说明、演算步骤或证明过程)17.(本小题满分10分) 已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1) 化简()f α; (2)若31sin()23πα-=-,求()f α的值. 【答案】17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。
全国高一高中数学同步测试带答案解析
全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.以下命题正确的是A .两个平面可以只有一个交点B .一条直线与一个平面最多有一个公共点C .两个平面有一个公共点,它们可能相交D .两个平面有三个公共点,它们一定重合2.下面四个说法中,正确的个数为(1)如果两个平面有三个公共点,那么这两个平面重合(2)两条直线可以确定一个平面(3)若M ∈α,M ∈β,α∩β=l ,则M ∈l(4)空间中,相交于同一点的三直线在同一平面内A .1B .2C .3D .43.ABCD -A 1B 1C 1D 1是正方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论中错误的是A .A 、M 、O 三点共线B .M 、O 、A 1、A 四点共面C .A 、O 、C 、M 四点共面D .B 、B 1、O 、M 四点共面4.已知平面α内有无数条直线都与平面β平行,那么A .α∥βB .α与β相交C .α与β重合D .α∥β或α与β相交5.两等角的一组对应边平行,则A .另一组对应边平行B .另一组对应边不平行C .另一组对应边也不可能垂直D .以上都不对6.如图所示,点S 在平面ABC 外,SB ⊥AC ,SB =AC =2, E 、F 分别是SC 和AB 的中点,则EF 的长是( )A .1B .C .D .7.平面α∥平面β,AB 、CD 是夹在α和β间的两条线段,E 、F 分别为AB 、CD 的中点,则EF 与α的关系是A .平行B .相交C .垂直D .不能确定8.经过平面外两点与这个平面平行的平面A .只有一个B .至少有一个C .可能没有D .有无数个9.已知ABCD 是空间四边形形,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,如果对角线AC =4,BD =2,那么EG2+HF2的值等于A .10B .15C .20D .2510.若三个平面把空间分成6个部分,那么这三个平面的位置关系是A .三个平面共线;B .有两个平面平行且都与第三个平面相交;C .三个平面共线,或两个平面平行且都与第三个平面相交;D .三个平面两两相交。
(完整版)高一数学必修一基础知识测试含答案
必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A )3个 (B ) 4个 (C ) 5个 (D ) 6个2.已知S={x |x=2n ,n ∈Z}, T={x |x=4k ±1,k ∈Z},则 ( ) (A )S ⊂≠T (B ) T ⊂≠S (C )S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B ){(0,2 ),(1,1)} (C ){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R,则a 的取值范围是 ( ) (A)016<≤-a (B )16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B )5 (C)4 ( D )3 6。
函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C )[-1,3] (D )[0,2] 7.函数y=(2k+1)x+b 在(—∞,+∞)上是减函数,则 ( )(A)k>12 (B )k 〈12 (C)k>12- (D).k 〈12-8.若函数f (x )=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤—3 (B)a ≥-3 (C)a ≤5 (D )a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A ) 0,1a a >≠ (B) 1a = (C) 12a = ( D ) 121a a ==或10.已知函数f (x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11。
高一数学测试试题及答案
高一数学测试试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}3. 函数f(x) = x^2 - 4x + 4的对称轴是()A. x = -2B. x = 2C. x = 0D. x = 44. 计算(2x - 1)^5的展开式中,x^3的系数是()A. 10B. -10C. 20D. -205. 已知等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()B. 11C. 9D. 76. 函数y = 2x + 3的图象与x轴的交点坐标是()A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)7. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值()A. 6B. 4C. 2D. 08. 圆x^2 + y^2 = 4的圆心坐标是()A. (0, 0)B. (2, 2)C. (-2, -2)D. (1, 1)9. 已知向量a = (3, 1),向量b = (-1, 2),则向量a与向量b的点积为()A. -1B. 1C. 5D. -510. 计算sin(π/6)的值是()B. √3/2C. 1/√2D. √2/2二、填空题(每题4分,共20分)1. 函数y = x^2 - 6x + 9的最小值是______。
2. 已知等比数列{a_n}的首项a_1=2,公比q=3,则a_4等于______。
3. 函数f(x) = 3x - 5的反函数是______。
4. 已知向量a = (2, -3),向量b = (4, -6),则向量a与向量b平行,向量a与向量b的夹角是______。
5. 计算cos(π/3)的值是______。
浙江宁波市效实中学2024-2025学年新高一上学期分班考试数学试卷(解析版)
效实中学新高一数学能力测试试题卷一、填空题1. 已知 0x 是关于 x 的方程 210x ax −−=的根. 当 32a =− 时, 0x = ___; 当2a =时,3001x x −=_______ 【答案】 ①. 12或2− ②. 8+或8− 【解析】【分析】直接解方程可得第一空,利用整体的思想及方程的思想可先化简代数式,并代入方程的根计算即可得第二空.【详解】显然32a =−时,方程可化为()()22320212x x x x +−==−+, 解之得012x =或02x =−; 2a =时,有202101x x x −−=⇒=+01x =,且20021x x =+, 对于()()()()2200030000011222141xx x x x x x x x −++−===+,当01x =+时,0448x +=+当01x =时,0448x +=−. 故答案为:12或2−;8+8−. 2. 已知实数a ,b ,c 满足2221a b c ++=,则ab bc ca ++的最小值为___,此时 22a b ab ++=______ 【答案】 ①. 12−##0.5− ②. 12##0.5 【解析】【分析】由()20a b c ++≥求出ab bc ca ++的最小值,此时()c a b =−+,再将两边平方,代入2221a b c ++=求出22a b ab ++. 【详解】因为()()222220a b c ab bc ca a b c +++++=++≥,所以()2221122ab bc ca a b c ++≥−++=−,当且仅当0a b c ++=时取等号,所以ab bc ca ++的最小值为12−, 此时()c a b =−+,则()()2222212c a b a ab b =−×+=++, 则222222212a ab b b a b c a +++++=+=, 所以2212a b ab ++=.故答案为:12−;123. 对实数m ,n .定义运算 “⊗”为: m n mn n ⊗=+. 已知关于x 的方程()14x a x ⊗⊗=−.若该方程有两个相等的实数根,则实数a 的值是___,若该方程有两个不等负根,则实数a 的取值范围是___. 【答案】 ①. 0 ②. 0a > 【解析】【分析】首先化简()x a x ⊗⊗,即可得到方程()()2414110a x a x ++++=,再根据()410Δ0a +≠= 计算第一空,由根判别式及韦达定理得到不等式组,即可得到第二空. 【详解】因为a x ax x ⊗=+,所以()()()()()()211x a x x ax x x ax x ax x a x a x ⊗⊗=⊗+=+++=+++,又()14x a x ⊗⊗=−,所以()()211104a x a x ++++=, 即()()2414110a x a x ++++=, 若该方程有两个相等的实数根,则()()()2410Δ1611610a a a +≠ =+−+= ,解得0a =; 若该方程有两个不等负根,则()()()()2410Δ16116101041a a a a+≠=+−+> >+ ,解得0a >, 所以实数a 的取值范围是0a >. 故答案为:0;0a >4. 如图,AB 是半圆O 的直径,弦AD ,BC 相交于点P , 60DPB ∠= ,D 是弧BC 的中点. 则ACAB的值为_______的【答案】12##0.5 【解析】【分析】依题意可得90ACB ∠= ,即可求出30CAD ∠= ,再由D 是弧BC 的中点,得到CAD BAD ∠=∠,即可求出CAB ∠【详解】∵AB 是半圆O 的直径, ∴90ACB ∠= ,∵60APC DPB ∠=∠= , ∴30CAD ∠= ,∵D 是 BC的中点, ∴30∠=∠= CAD BAD , ∴60CAB ∠= , ∴1cos cos 602AC CAB AB ∠===. 故答案为:12. 5. 记()()2211xyx y A xy−−=. 若a b c abc ++=,则abbc ca A A A A =++的值为_________【答案】4 【解析】【分析】依题意a 、b 、c 均不为0,根据所给定义表示出ab A ,bc A ,ca A ,再通分计算可得. 【详解】依题意a 、b 、c 均不0,又()()222222111aba b a b a b A abab−−−−+==,为()()222222111bcb c c b c cb A bcb −−−−=+=,()()222222111cac a c a c ca A caa −−−−=+=,且a b c abc ++=, 所以222222222222111ab bc ca bc ac a b a b c b c b c a c a A A A A ab −−−+++−−−=++=++222222222222a a a b b babc abc c a c b c a b c a c b c b b c a c a abc −−+−−−+−+++= 222222222222a a cc a c b c a b c a c b c b b c a c a a b b ab b−−++−−−−=+++ ()()()222222a a cabc a c b c ab a b c c b cb a b c c a ca b b a b c a b −−+++−−+++−−+++=222222222222abc a c b c a b ab abc c b abc b c c b c a ca abc c aabca ab b −−+++−−=++++−−++ 44abcabc=. 故答案为:46. 若一条直线过ABC 的内心,且平分ABC 的周长. 则该直线分ABC 所成的两个图形的面积之比为_______ 【答案】1:1 【解析】【分析】设ABC 的内心为O ,内切圆的半径为r ,作出图形,再由面积公式计算可得. 【详解】设ABC 的内心为O ,内切圆的半径为r ,内切圆与三边的切点分别为D 、E 、F , 则OE OF OD r ===,且OE BC ⊥,OF AC ⊥,OD AB ⊥,过ABC 的内心,且平分ABC 的周长的直线m ,与BC 交于点M ,AC 交于点N , 则AB AN BM CN CM ++=+,又()12ABMN ANO ABO BMO S S S S AN AB BM r =++=++ , ()12CMN CNO CMO S S S CN CM r =+=+ , 所以ABMN CMN S S = ,即该直线分ABC 所成的两个图形的面积之比为1:1. 故答案为:1:17. 如果甲的身高数或体重数至少有一项比乙大. 则称甲不亚于乙. 在 100 个小伙子中, 如果某人不亚于其他 99 人, 就称他为棒小伙子, 那么 100 个小伙子中的棒小伙子最多可能有 _________人. 【答案】100 【解析】【分析】先讨论有两个、三个小伙子时棒小伙子的最多个数,再设想100个人时的极端情况,分类讨论即可. 【详解】先考虑两个小伙子的情形,如果甲的身高>乙的身高,且乙的体重>甲的体重,可知“棒小伙子”最多有2人.再考虑三个小伙子的情形,如果甲的身高>乙的身高>丙的身高,且丙的体重>乙的体重>甲的体重,可知“棒小伙子”最多有3人.由此可以设想,当有100个小伙子时,设每个小伙子为()1,2,,100i A i = ,其身高为i x ,体重为i y , 当121100i i x x x x x +>>>>>> 且1009911 i i y y y y y +>>…>>…>> 时, 由身高看,i A 不亚于12100,,i i A A A ++ ,由体重看,i A 不亚于1121,,,i i A A A − , 所以,i A 不亚于其他99人,i A 为“棒小伙子”, 因此,100个小伙子中的“棒小伙子”最多可能有100个. 故答案为:100.8. 如果直角三角形的三边都是 200 以内的正整数, 且较长的两边长相差 1 . 那么这样的直角三角形有____________个. 【答案】9 【解析】【分析】利用勾股定理及数的性质计算即可.【详解】不妨设该直角三角形的是三边长依次为,,1x y y +,其中200,N x y x y ∗≤<∈、, 由勾股定理知()2222121x y y x y +=+⇒=+,显然21y +为大于1且小于401的奇数,所以x 为大于1且小于20的奇数,则3,5,7,9,11,13,15,17,19x =,即满足题意的直角三角形有9个. 故答案为:99. 用()S n 表示自然数n 的数字和. 例如: ()10101S =+=,()90990918S =++=.若对任意自然数n ,都有()n S n x +≠. 则满足这个条件的最大的两位整数x 的值是_________. 【答案】97 【解析】【分析】列出90,,80n = 时()n S n +的值,再判断80n <且n 为自然数时()n S n +的取值情况,即可得解.【详解】因()909099S +=,()8989106S +=,()8888104S +=, ()8787102S +=,()8686100S +=,()858598S +=,()848496S +=, ()838394S +=,()828292S +=,()818190S +=,()808088S +=, 当80n <且n 为自然数时,()797995n S n +≤++=, 当90n >且n 为自然数时,nn +SS (nn )>99, 所以若对任意自然数n ,都有()n S n x +≠, x 的值为97. 故答案为:9710. 把一副扑克牌从上到下按照大王、小王、黑桃 A 、红桃 A 、方块 A 、梅花 A 、黑桃 2 、 红桃 2、方块 2、梅花 2、...、黑桃 K 、红桃 K 、方块 K 、梅花 K 的顺序依次叠成一叠,然后执行步骤①: 把整叠牌最上面一张丢掉, 再执行步骤②: 把整叠牌最上面一张移到整叠牌的最下面, 再执行步骤①, 再执行步骤②, ...... 步骤①和步骤②依次执行直至整叠牌只剩下一张,请问:最后剩下的这张牌是_________. 【答案】红桃J 【解析】【分析】根据规律分析每轮丢掉的牌与剩下的牌,即可分析出最后剩下的牌. 【详解】不妨将54张牌按照上述顺序依次标号为1,2, ,54, 第一轮将丢掉1,3,5, ,53;第二轮将丢掉2,6,10, ,54,此时需将4号移到整叠牌的最下面,剩下的牌从上到下按顺序依次为8,12,16,20,24,28,32,36,40,44,48,52,4; 第三轮将丢掉:8,16,24,32,40,48,4,此时需将12号移到整叠牌的最下面, 为剩下的牌从上到下按顺序依次为20,28,36, 44,52,12;第四轮将丢掉:20,36, 52,剩下的牌从上到下按顺序依次为28,44,12; 第五轮将丢掉:28,12,故最后剩下的为44; 又241042+×=,所以第44张为红桃J , 故最后剩下的这张牌是红桃J . 故答案为:红桃J11. 若实数 a b , 满足a b +=,则 a 的取值范围为_________. 【答案】0a ≥ 【解析】【分析】利用根式的意义先确定0a ≥,再利用换元法及反比例函数、二次函数的性质计算即可.【详解】由题意易知00a b a b +≥ −≥ ,所以0a ≥,①显然0a =时,0b =,②当0a >时,不妨设b ta =, 此时()()101110a b t a t a b t a +=+≥⇒−≤≤−=−≥,则()()()21141t a t a t +=⇒+=−若1t =,则00a b a b −=⇒== 若1t =−,则00a b a b +=⇒==,也不符合题意,所以11t −<<,即()()()()()2222418418411181142111t t a t t t t t −−+ ===−=−− ++ +++, 易知11t −<<时1101221t t<+<⇒<+, 令11m t =+,则211842a m =−− ,由二次函数的性质可知211180242a >−−= , 综上,0a ≥. 故答案为:0a ≥.12. 已知()()21R f x ax x =−∈,若关于 x 的方程 ()f x x = 与 ()()f f x x = 都有解,且两个方程的解完全相同,则实数 a 的取值范围是_________. 【答案】1344a −≤≤ 【解析】【分析】分0a =与0a ≠进行讨论,当0a ≠时结合一元二次方程的根的判别式与条件两个方程可知2210a x ax a +−+=要么没有实根,要么实根是方程210ax x −−=的根,计算即可得. 【详解】由已知()210f x x ax x =⇒−−=,()()()22110f f x x a ax x =⇒−−−= ()()342222221110a x a x x a axx a x ax a ⇒−−+−=−−+−+=,由题意可知210ax x −−=有实根, ①当0a =时,有()1f x =−,即1x =−, 令()()f f x x =,即()11f x −=−=,符合要求;②当0a ≠时,()f x x =有解,则140a ∆=+≥,解得14a ≥−, 要满足题意,此时2210a x ax a +−+=要么没有实根, 要么实根是方程210ax x −−=的根,若2210a x ax a +−+=没有实根,则()22410a a a ∆=−−<,解得34a <; 若2210a x ax a +−+=有实根且实根是方程210ax x −−=的根,则由方程210ax x −−=,得22a x ax a +,代入2210a x ax a +−+=, 有210ax +=.由此解得12x a =−,再代入得111042a a +−=,由此34a =, 综上所述, a 的取值范围是1344a −≤≤.故答案为:1344a −≤≤.二、解答题13. 已知函数()22f x x bx c =−++在1x =时有最大值1. (1)求实数⋅b c 的值;(2)设0m n <<,若当m x n ≤≤时,()f x 最小值为1n ,最大值为1m,求m ,n 的值. 【答案】(1)4− (2)1m =,n =【解析】的【分析】(1)依题意可得()1411b f = =,即可求出b 、c 的值;(2)由(1)可得()()2211f x x =−−+,即可得到1m ≥,从而得到()1f m m =且()1f n n=,从而得到m ,n 是关于x 的方程()21211x x−−+=的两个解,即可求出m 、n 的值.【小问1详解】因()22f x x bx c =−++在1x =时有最大值1, 则()14121bf b c = =−++=,解得41b c = =− ,所以4b c ⋅=−;【小问2详解】由(1)可得()()22241211f x x x x =−+−=−−+, 则()1f x ≤,又0m n <<,所以11m≤,则1m ≥, 所以当m x n ≤≤时()f x 单调递减,所以()()21211f m m m=−−+=,且()()21211f n n n=−−+=, 所以m ,n 是关于x 的方程()21211x x−−+=的两个解,即()()212210x x x −−−=, 解方程得11x =,2x =3x =, 又1m n ≤<,所以1m =,n =.为。
山东高一高中数学同步测试带答案解析
山东高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( )A .a-2B .3a-(1+a)2C .5a-2D .3a-a22.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) A .lg5·lg7B .lg35C .35D .3.已知log 7[log 3(log 2x)]=0,那么x 等于( )A .B .C .D .4.函数y=lg ()的图像关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y=x 对称5.函数y=log (2x-1)的定义域是( ) A .(,1)(1,+)B .(,1)(1,+)C .(,+)D .(,+)6.函数y=log (x 2-6x+17)的值域是( ) A .RB .[8,+]C .(-,-3)D .[3,+]7.函数y=log (2x 2-3x+1)的递减区间为( ) A .(1,+)B .(-,]C .(,+)D .(-,]8.log a ,则a 的取值范围是( ) A .(0,)(1,+)B .(,+) C .()D .(0,)(,+)9.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2)D .[2,+)10.已知函数f(x)=,0<a<b,且f(a)>f(b),则( )A .ab>1B .ab<1C .ab=1D .(a-1)(b-1)>0二、填空题1.lg25+lg2lg50+(lg2)2=_________.2.函数f(x)=lg()是_________(奇、偶)函数.3.函数y=lg(ax+1)的定义域为(-,1),则a=_________.4.若函数y=lg[x 2+(k+2)x+]的定义域为R ,则k 的取值范围是_________.三、解答题1.若f(x)=1+log x 3,g(x)=2log,试比较f(x)与g(x)的大小.2.已知x 满足不等式2(log 2x )2-7log 2x+30,求函数f(x)=log 2的最大值和最小值.3.已知,求使f(x)>1的x 的值的集合.山东高一高中数学同步测试答案及解析一、选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( )A .a-2B .3a-(1+a)2C .5a-2D .3a-a2【答案】A【解析】log 38-2log 36,选A.点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算. (3)a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.2.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) A .lg5·lg7B .lg35C .35D .【答案】D【解析】lg 2x+(lg5+lg7)lgx+lg5·lg7=0 ,选D.3.已知log 7[log 3(log 2x)]=0,那么x 等于( )A .B .C .D .【答案】C【解析】log 7[log 3(log 2x)]=0,选C.4.函数y=lg()的图像关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【答案】C【解析】其定义域为{x|-1<x<1},∴f(x)为奇函数,奇函数的图象关于点(0,0)对称【考点】函数奇偶性5.函数y=log的定义域是()(2x-1)A.(,1)(1,+)B.(,1)(1,+)C.(,+)D.(,+)【答案】A【解析】由题意得,选A.6.函数y=log (x2-6x+17)的值域是()A.R B.[8,+]C.(-,-3)D.[3,+]【答案】C【解析】,因此选C.7.函数y=log (2x2-3x+1)的递减区间为()A.(1,+)B.(-,]C.(,+)D.(-,]【答案】A【解析】,所以当时,当时,,即递减区间为(1,+),选A.点睛:求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.,则a的取值范围是()8.logaA.(0,)(1,+)B.(,+)C.()D.(0,)(,+)【答案】A【解析】log,选A.ax的定义域应为(0,+∞).对数函数的单调性取点睛:在对数式中,真数必须是大于0的,所以对数函数y=loga决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分0<a<1与a>1两种情况讨论.(2-ax)在[0,1]上是x的减函数,则a的取值范围是()9.已知函数y=logaA.(0,1)B.(1,2)C.(0,2)D.[2,+)【答案】B【解析】由题意得,选B.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.10.已知函数f(x)=,0<a<b,且f(a)>f(b),则()A.ab>1B.ab<1C.ab=1D.(a-1)(b-1)>0【答案】B【解析】由题意得,选B.二、填空题1.lg25+lg2lg50+(lg2)2=_________.【答案】2【解析】lg25+lg2lg50+(lg2)2=2.函数f(x)=lg()是_________(奇、偶)函数.【答案】奇【解析】又所以函数f(x) 是奇函数.点睛:判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.3.函数y=lg(ax+1)的定义域为(-,1),则a=_________.【答案】-1【解析】解集为(-,1),所以4.若函数y=lg[x2+(k+2)x+]的定义域为R,则k的取值范围是_________.【答案】-【解析】由题意得x2+(k+2)x+解集为R,所以三、解答题1.若f(x)=1+log x 3,g(x)=2log ,试比较f(x)与g(x)的大小.【答案】见解析【解析】比较大小,一般利用作差法,利用对数运算法则得差为log x .再根据底与1大小比较,分类讨论,最后比较真数与1大小二次讨论试题解析:f(x)-g(x)=log x 3x-log x 4=log x .当0<x<1时,f(x)>g(x);当x=时,f(x)=g(x);当1<x<时,f(x)<g(x);当x>时,f(x)>g(x).点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.2.已知x 满足不等式2(log 2x )2-7log 2x+30,求函数f(x)=log 2的最大值和最小值.【答案】最小值-;最大值2.【解析】先将log 2x 看作整体,通过解不等式可得log 2x 取值范围,再将函数化为关于log 2x 二次函数,根据对称轴与定义区间位置关系确定最值取法,并求最值 试题解析:由2(log 2x )2-7log 2x+30解得 log 2x 3.∵f(x)=log 2(log 2x-2)=(log 2x-)2-,∴当log 2x=时,f(x)取得最小值-;当log 2x=3时,f(x)取得最大值2.3.已知,求使f(x)>1的x 的值的集合.【答案】见解析【解析】按底与1大小分类讨论,注意去对数时真数大于零这个条件,最后根据写出解集形式 试题解析:解:f(x)>1即 当a>1时∴解为x>2a -1 当0<a<1时∵a -1<2a -1∴解为a -1<x<2a -1 ∴当a>1时,{x|x>2a -1}当0<a<1时,{x|a -1<x<2a -1}均能使f(x)>1成立.。
高一数学试题大全
高一数学试题答案及解析1.给定空间直角坐标系,在x轴上找一点P,使它与点P(4,1,2)的距离为.【答案】点P坐标为(9,0,0)或(﹣1,0,0).【解析】设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.解:设点P的坐标是(x,0,0),由题意,即,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).点评:本题考查空间两点之间的距离公式,是一个基础题,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.2.已知两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为()A.B.C.19D.11【答案】A【解析】直接利用空间两点间的距离公式求出两点间的距离.解:两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为:=故选A.点评:本题是基础题,考查空间两点间的距离的求法,注意正确应用距离公式,考查计算能力.3.若函数的图象如图所示,则下列函数图象正确的是()【答案】B【解析】由图易知,,为减函数,故A错;B正确;为减函数,故C错;为减函数,故D错.故选B.【考点】函数的图象及其性质.4.、过点的直线与圆相切,且与直线垂直,则( ).A.B.1C.2D.【答案】C【解析】设直线的斜率为,则直线方程,化简得,由圆心到直线的距离等于半径得,化简得,;解之得.【考点】直线方程的应用.5.在等比数列中,若,则与的等比中项为()A.B.C.D.前3个选项都不对【答案】C.【解析】由等比数列可知,,∴与的等比中项为.【考点】等比数列的性质.6.设样本数据的均值和方差分别为和,若为非零常数,,则的均值和方差分别为 ( )A.B.C.D.【答案】A【解析】由均值和方差的定义及性质可知:,故选A.【考点】均值和方差.7.侧棱长为的正三棱锥的侧面都是直角三角形,且四个顶点都在一个球面上,则球的表面积为()A.B.C.D.【答案】D【解析】因为侧棱长为的正三棱锥的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的定点为正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为,所以球的表面积为:.【考点】本题考查三棱锥的外接球的表面积的求法,三棱锥扩展为正方体是本题的关键,正方体的对角线是外接球的直径也不容忽视,考查计算能力.8.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有A.B.C.D.【答案】D【解析】根据题意,由于甲、乙两名运动员在某项测试中的6次成绩的茎叶图,其,分别表示甲乙两名运动员这项测试成绩的平均数,故可知答案为D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第一次月考测试
(时间:120分钟满分:150分)
一、选择题(本题共12小题,每小题5分,满分60分)
1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()
A.一个算法只能含有一种逻辑结构
B.一个算法最多可以包含两种逻辑结构
C.一个算法必须含有上述三种逻辑结构
D.一个算法可能含有上述三种逻辑结构
2.下列赋值语句正确的是()
A.M=a+1B.a+1=M
C.M-1=a D.M-a=1
3.学了算法你的收获有两点,一方面了解我国古代数学家的杰出成就,另一方面,数学的机械化,能做许多我们用笔和纸不敢做的有很大计算量的问题,这主要归功于算法语句的()
A.输出语句B.赋值语句
C.条件语句D.循环语句
4.如右图
其中输入甲中i=1,乙中i=1000,输出结果判断正确的是()
A.程序不同,结果不同
B.程序不同,结果相同
C.程序相同,结果不同
D.程序相同,结果相同
5.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是()
A.m=0? B.x=0?
C.x=1? D.m=1?
6.228和1995的最大公约数是()
A.84 B.57
C.19 D.28
7.下列说法错误的是()
A.在统计里,把所需考察的对象的全体叫做总体
B.一组数据的平均数一定大于这组数据中的每个数据
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
D.一组数据的方差越大,说明这组数据的波动越大
8.1001101(2)与下列哪个值相等()
A.115(8)B.113(8)
C.114(8)D.116(8)
9.下面程序输出的结果为()
A .17
B .19
C .21
D .23
10.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )
A . c b a >>
B .a c b >>
C .b a c >>
D .a b c >>
11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000]范围内的频率为( )
A.0.001
B.0.1
C.0.2
D.0.3
12.给出两组数据x 、y 的对应值如下表,若已知x 、y 是线性相关的,且线性回
归方程:x b a y
ˆˆˆ+=,经计算知:4.1ˆ-=b ,则=a ˆ( ) x 4 5 6 7 8 y
12
10
9
8
6
A.17.4
B.-1.74
C.0.6
D.-0.6 二、填空题(本题共4小题,每小题5分,满分20分)
13.流程图中的判断框,有1个入口和 个出口.
14.一组数据的平均数是2.8,方差是3.6,
0.001
2400 2700 3000 3300 3600 3900
频率 组距
(第15题)
开始输入实数x
x <0
f (x )=2x -3输出f (x )
结束
是f (x )=5-4x
否
若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是 ,
15.如右图是某个函数求值的程序框图, 则满足该程序的函数解析式为 _________.
16.给出以下问题:
①求面积为1的正三角形的周长; ②求键盘所输入的三个数的算术平均数; ③求键盘所输入的两个数的最小数;
④求函数⎩⎨⎧=22)(x x x f 当自变量取x 0时的函数值.
其中不需要用条件语句来描述算法的问题有 . 三、解答题(本大题共6小题,满分70分) 17.(10分)把“五进制”数)5(1234转化为“十进制”数,再把它转化为“八
进制”数。
18.(12分)用秦九韶算法求函数f (x )=x 5+x 3+x 2+x +1,当x =3时的函数值.
19. (12分)某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?
20. (12分)从两个班中各随机的抽取10名学生,他们的数学成绩如下: 画出茎叶图并分析两个班学生的数学学习情况。
21.(12分)已知函数y =⎩⎨⎧
3x -2,x ≥2,
-2,x <2
(1)绘制解决该问题的程序框图,要求输入x 的值,输出相应的函数值 (2)问题1,要使输出的值为7,输入的x 的值应为多少?
,
x ≥3 ,
x <3
问题2,要使输出的值为正数,输入的x应满足什么条件?22.(12分)已知程序框图如图所示.
(1)指出该程序框图的算法功能;
(2)写出该程序框图所对应的程序.
18.(12分)
19.(12分)20.(12分)
21.(12分)
22. (12分)
参考答案
一、选择题(12×5分=60分)
13、 2 14、62.8 3.6 15、 y =⎩⎨⎧
5-4x ,x ≥0
2x-3,x <0
16、①②
三、解答题(70分)
17.(10分)解:3210
123415253545194=⨯+⨯+⨯+⨯=(5)
8194824830
余
203
194302∴=(8)
18.(12分)解 f (x )=x 5+x 3+x 2+x +1
=((((x +0)x +1)x +1)x +1)x +1. 当x =3时的值:
v 0=1,v 1=1×3+0=3,v 2=3×3+1=10, v 3=10×3+1=31,v 4=31×3+1=94, v 5=94×3+1=283. ∴当x =3时,f (3)=283.
19(12分)解:从高三年级抽取的学生人数为185(7560)50-+= 而抽取的比例为
501100020=,高中部共有的学生为1
185370020
÷=人
20.(12分)解:
21解(12分) (1)画出程序框图如下.
问题1,要使输出的值为7, 则3x -2=7,∴x =3. 即输入的x 的值应为3.
甲班 乙班 2 5
8 6 6 2 8 6 6 4 2 7 4 6 8
2 8 2 4 5 6 8 6 9 2
问题2,要使输出的值为正数,则3x-2>0,
∴x>2
3.
又x≥2,∴x≥2.故当输入的x≥2时,输出的值为正数
22. (12分)解(1)程序框图的算法功能为:求满足1×3×5×…×n>10000的最小正奇数n.
(2)程序:。