土力学-第三章地基中的应力计算1

合集下载

第三章 土体中的应力计算(1-3节)

第三章 土体中的应力计算(1-3节)
4
3.均质、等向问题 理想弹性体是均质且各向同性的。天然
地基是各向异性的。但当土层性质变化 不大时,这样假定对竖直应力分布引起 的误差通常在容许范围之内。
5
二、地基中的几种应力状态
1.三维应力状态(空间应力状态)
局部荷载作用下,地基中的应力状态属 三维应力状态。每一点的应力可写成矩 阵形式
24
25
在空间将z相同的点连 接成曲面即形成应力泡。
当地基表面作用有几个集中力时,根据弹 性体应力叠加原理求出附加应力的总和
26
(二)水平集中力作用-西罗提解
z

3Ph
2
xz 2 R5
(3- 9)
27
28
二、矩形面积上各种分布荷载作用下的附 加应力计算
(一)矩形面积竖直均布荷载 1.角点下的应力
x

K
s x
p
τ
xz
K
s xz
p
(3- 25) (3- 26)
剪Kx应s和力K分xzs布分系别数为(水表平3向-5应)力,m分布x ,系n 数z和。
BB
55
P
56
57
(三)条形面积竖直三角形分布荷载 条形面积上竖直三角形分布荷载在地基
内引起的应力也可利用应力叠加原理, 通过积分求得。
zM ' (KsI KsII KsIII KsIV ) p
(3 -13a)
37
第二种情况:计算矩形面积外任一点M’ 下深度为z的附加应力(图3-17b)。设法使 M’点为几个小矩形的公共角点,然后将 其应力进行代数迭加。
zM ' (KsI KsII KsIII KsIV ) p
29

土力学:第三章土中应力计算

土力学:第三章土中应力计算

附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。

土力学与地基基础(土中的应力计算)

土力学与地基基础(土中的应力计算)
此时基底平均压力按下式计算: 此时基底平均压力按下式计算:
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1

岩土力学课件第三章土体中的应力计算

岩土力学课件第三章土体中的应力计算

一、集中荷载作用下的附加应力计算
(一)、竖直集中力作用——布辛内斯克解
布辛内斯克根据弹性理论计算出地基下某一点M的6个应力
分量和三个位移分量。由于对地基沉降意义最大的是竖向法向
应力2020z/4/,1 只研究z
岩土力学
2020/4/1
z
3P
2
z3 R5
k
地基土和基础的刚度大小 荷载大小 基础埋深 地基土的性质
2020/4/1
岩土力学
一、基底压力的分布规律
(一)基础的刚基度的底影响压力的分布规律
1. 弹性地基上的完全柔性基 础(EI=0) 土坝(堤)、路基、油罐等 薄板基础、机场跑道。 可认为土坝底部的接触压 力 分布与土坝的外形轮廓 相同, 其大小等于各点以 上的土柱重量。(图3-35)
条基:在长度方向取1米
p F G P BB
P —2为020/沿4/1 长度方向1米内的相应岩荷土力载学 值kN/m
2020/4/1
(二)、偏心荷载作用 1、单向偏心 基底压力计算公式
pm a x,m inFra bibliotekF G BL
(1
6ex B
)
(c)e>B/6, 应力重新分布 1/2×L ×pmax × 3K=P pmax=2P/( 3KL)
0 =( 1 h1+ 2 h2 +…… )/(h1+ h2 +…… ), 其中地下 水位以下的容重取浮容重,kN/m3 ;
d — 基础埋深,必须从天然地面算起,对于新填土 场地则应从老天然地面起算,d= h1+ h2 +…… , m
说明:当基坑的平面尺寸和深度较大时,坑底回弹是明显的,在 沉降计算中,为适当考虑这种坑底的回弹和再压缩而增加的沉 降,,改取

地基中的应力计算

地基中的应力计算

地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。

在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。

本文将介绍地基中应力计算的方法和计算公式。

首先,需要了解地基中的应力是如何形成的。

地基承受的主要应力有自重应力、活载荷载应力和附加应力。

自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。

活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。

附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。

接下来,我们介绍如何计算地基中的应力。

地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。

下面以均质土壤的地基为例,介绍几种常用的应力计算方法。

1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。

首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。

根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。

2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。

首先,在地基中进行试孔,并记录试孔的深度和直径。

然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。

3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。

首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。

综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。

在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。

地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。

土力学-第三章-土中应力计算详解

土力学-第三章-土中应力计算详解

基本假定
地基土是各向同性、均质、半无限空间弹性体 地基土在深度和水平方向都是无限的
地 表 临 空
地基:均质各向同性线性变形半空间体
应用弹性力学关于弹性半空间的理论解答
1.均质土竖向自重应力
若将地基视为均质半无限空间弹性体,土体在自重作用下只能产 生竖向变形,而无侧向位移及剪切变形存在,因此在深度z处平面上, 土体因自身重力产生的竖向应力等于单位面积上土柱体的重力。
3.水平向自重应力
天然地面
地基土在重力作用下,除承受 作用于水平面上的竖向自重应力外, 在竖直面上还作用有水平向自重应 力。由于土柱体在重力作用下无侧 向变形和剪切变形,因此可以证明 侧向自重应力与竖向自重应力成正 比,剪应力均为零。
cz z
cx cy K0 cz
cz
z
cx
cy
侧压力系数或静止 土压力系数
4 地下水位升降对自重应力的影响
自重应力分布曲线的变化规律
土的自重应力分布曲线是一条折线,拐点在土 层交界处和地下水位处。
同一层土的自重应力按直线变化。
自重应力随深度的增加而增大。
【例题3-1 】计算自重应力,并绘分布图。
4. 例题分析 【例】一地基由多层土组成,地质剖面如下图所示,试计算并绘制 自重应力σcz沿深度的分布图。
57.0kPa
80.1kPa
103.1kPa 150.1kPa 194.1kPa
cz 1h1 2 h2 n hn i hi
i 1
n


均质地基
1 (
1
2)
2 2
成层地基
3.2 基底压力与基底附加应力
上部结构

土力学-第三章-地基中的应力状态、有效应力原理1 张丙印

土力学-第三章-地基中的应力状态、有效应力原理1 张丙印

智者乐水 仁者乐山
应力状态及应力应变关系
有效应力原理 自重应力 基底压力计算 附加应力
修建筑物以前,地基中由 土体重量所产生的应力
建筑物重量等外荷载在地 基中引起的应力增量
土体中的应力计算
3
第三章:本章概要
智者乐水 仁者乐山
3-1(假定水位骤降后,黏土和粉质黏土
层中孔隙水压力近似为0)
3-2 3-3 3-4
智者乐水 仁者乐山
z zx xz x
εy γ yx γ yz
地基中的应力状态(2)
9
§3.1 地基中的应力状态
智者乐水 仁者乐山
二维应力状态(平面应变状态)
应变条件 εy
γ yx γ yz
εx
εij
0
0
γ
xz
0
0
γ
xz
0
εz
应力条件
εy
σy E
ν E
σx σz
独立变量 εx εy ; εz
σc 0
σ ij
0
σc
0 0
试 样
y
x
σx σy σc
0
εx 0 0
0
εij
0
εx
0
σz
0 0 εz
地基中的应力状态(1) 8
§3.1 地基中的应力状态
二维应力状态(平面应变状态)
o
y
z
x
y
z zx xy
yz
x
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,l/b≧10 在x, z平面内可以变形,但在y方向没有变形
13
§3.1 应力状态及应力应变关系
智者乐水 仁者乐山

3地基中的应力计算

3地基中的应力计算

第三章 地基中的应力计算土中的应力按引起的原因可分为:(1)由土本身有效自重在地基内部引起的自重应力;(2)由外荷(静荷载或动荷载) 在地基内部引起的附加应力。

应力计算方法:1.假设地基土为连续、均匀、各向同性、半无限的线弹性体;2.弹性理论。

第一节 土中自重应力研究目的:确定土体的初始应力状态研究方法:土体简化为连续体,应用连续体力学 (例如弹性力学)方法来研究土中应力的分布。

假设天然土体是一个半无限体,地面以下土质均匀,天然重度为γ (kN/m3),则在天然地面下任意深度z (m)处的竖向自重应力σcz (kPa),可取作用于该深度水平面上任一单位面积上土柱的重量γz ⨯ l 计算,即: σcz= γzσcz 沿水平面均匀分布,且与z 成正比,即随深度按直线规律分布地基中除有作用于水平面上的竖向自重应力外,在竖直面上还作用有水平向的侧向自重应力。

由于地基中的自重应力状态属于侧限应力状态,故εx=εy=0,且σcx = σcy ,根据广义虎克定理,侧向自重应力σcx 和σcy 应与σcz 成正比,而剪应力均为零,即σcx = σcy = K0σczτxy=τyz=τzx =0式中 K0 ―比例系数,称为土的侧压力系数或静止土压力系数。

它是侧限条件下土中水平向有效应力与竖直向有效应力之比。

(1) 土中任意截面都包括有骨架和孔隙的面积,所以在地基应力计算时考虑的是土中单z σsz = γz 天然地面σcy zσcx天然地面σcz位面积上的平均应力。

(2) 假设天然土体是一个半无限体,地基中的自重应力状态属于侧限应力状态,地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形。

地基中任意竖直面和水平面上均无剪应力存在。

(3) 土中竖向和侧向的自重应力一般均指有效自重应力。

为了简便起见,把常用的竖向有效自重应力σcz ,简称为自重应力,并改用符号σc 表示。

成层地基土中自重应力因各层土具有不同的重度。

土力学-第三章-有效应力原理2、地基自重应力计算1 张丙印

土力学-第三章-有效应力原理2、地基自重应力计算1 张丙印
接触点
饱和土有效应力原理
2
§3.2 有效应力原理
智者乐水 仁者乐山
饱和土体内任一平面上受到的总应力可分为两部
分σ和u,并且: σ σ'u
土的变形与强度都只取决于有效应力
一般地, σ σ u
τσyxx
τ xy σy
τ xz τ yz
σx τ yx
τ xy σy
τ τ
xz yz
u
均与有关
是土体强度的成因:土 的凝聚力和粒间摩擦力
均与有关
有效应力原理的讨论
5
§3.2 有效应力原理
孔隙水压 力的作用
有效应力 的作用
简单实例
智者乐水 仁者乐山
讨论: 海底与土粒间的接触压力 哪一种情况下大?
1m σz=u=0.01MPa
104m
σz=u=100MPa
有效应力原理的讨论
6
§3.2 有效应力原理
12
§3.3 地基的自重应力计算 – 基本方法
竖直向总应力:等于单位面积上土 柱和水柱的总重量
σsz γi Hi
i取值:• 非饱和土用天然容重
• 饱和土用饱和容重sat • 纯水部分用水的容重w
智者乐水 仁者乐山
地面
1 H1
2 H2 地下水 z
3 H3 sy
sz sx
孔隙水压力:根据实际地下水条件,区分静水条件和 稳定渗流条件等情况进行计算
2. (1 n) n u
反映颗粒本身应力的大 小,两种情况计算得到 的有效应力相差巨大
课堂讨论:有效应力原理的不同形式
10
第三章:土体中的应力计算
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6 §3.7

土力学与地基基础(第三章土的自重应力计算)_图文

土力学与地基基础(第三章土的自重应力计算)_图文

一、竖向集中力下的地基附加应力
由上面分析和图可知,集中力P在地基中引起的附加应力在地基中向深 部和四周无限传播,在传播过程中应力强度逐渐降低。为直观表示出这 种现象,绘出应力等值线,其空间形状如泡状,称为应力泡。图中离集 中力作用点越远,附加应力越小,这种现象称为应力扩散现象。
集中力作用下土中的自重应力分布图
r z
5
2


2


一、竖向集中力下的地基附加应力 2、多个竖向集中力下的地基附加应力
z

1 z2
n
i1
i Fi
例2:在地基中作用有一集中力P=100kN,求:(1)在地基中z=2m的水平 面上,水平距离r=0,1,2,3,4m处各点的附加应力,并绘出分布图; (2)在地基中r=0的竖直线上距地基表面z =0,1,2,3,4m处各点的附 加应力,并绘出分布图; (3)取σ z =10,5,2,1kPa,反算在地基中z =2m的水平面上的r值和在r=0的竖直线上的z值,并绘出相应于该四个应 力值的σ z等值线图。
在距地表深度z处,土体的自重应力为:
竖向:sz = z 水平向:sx = sy = K0 sz 剪应力:τxy= τyz= τzx
H1
地下水位
H2
sz sx
sy
一、均质土中竖向自重应力
σ(kPa)
cz= z
z
地基中的初始应力,即地基中任一点的自重应力,只需用竖向应力和
水平向应力表示。天然地面下任意深度z处水平面上的竖向自重应力为
cz= z
竖直面上的水平向自重应力为
cx=K0 cz = K0 z
K0 为静止侧压力系数。
二、成层土中自重应力

土力学地基中的应力计算

土力学地基中的应力计算

p
arctan
1
2(x / b) 2(z / b)
arctan 1 2(x / b) 2(z / b)
4 z [4( x )2 4( z )2 1]
bb
b
[4( x )2 4( z )2 1]2 16( z )2
b b
b
b
b
13
•带状三角形荷载
b
p
x
z
Mx
(x, z)
z
查表3-3
e 基底压力呈三角形分布
e 基底局部出现拉应力
基底与地基脱开
对于矩形底面,= b
6
37
(1) 矩形底面单轴偏心荷载作用时(e)
由竖向、弯矩平衡方程
P
b 2
(
p1
p2 ) a
M
b 2 ( p1
p2
)
a
(
b 2
b) 3
p1 p2
PM AW
P (1 A
e)
P 1 A
6e b
e a
b
P M Pe
z
p
{x b
(arctan
x z
/ /
b b
arctan
x
/b 1) z/b
z b
(x
/
b
x/b 1)2
1 (z
/
b)2
}
k(x b
,
z b
)
p
•带状梯形荷载
14
5、矩形均布面积荷载作用下附加应力旳计算
1)角点下旳垂直附加应力
dP pdxdy
d z
3dP 2
z3 R5
3p 2
z3 R5
dxdy

第3章 土体中的应力计算

第3章 土体中的应力计算
Chapter
3
土体中的应力计算


研究土中的应力和分布规律是研究地基和土工建筑物变形
和稳定问题的依据
自重应力 附加应力 惯性力 渗透力
: 由土体自身重量所产生的应力 :由外荷载引起的土中应力
1 地基中的几种应力状态 a、三维(空间)应力状态
xy xy xz ij yz yy yz zx zy zz
zz (OXAY ) zz (OYBZ) zz (OZCT) zz (OTDX )
A
Y O
B
Z
Point of interest
zo ( KsI KsII KsIII KsIV ) p
(b)O 在荷载面外部
O D C X D Z O
(q)
C
(q)
影响因素 (1) 分布荷载p(x,y)的分布规律及其大小 (2) 分布荷载作用面积 A 的几何形状及大小
(3) 应力计算点的坐标值
z p0
3.3.2.1 空间问题的附加应力计算 (一) 矩形面积竖直均布荷载 1. 角点下应力
B
dP dA
x
p
x L y x
R z
R
z
集中荷载 dP = dxdyp0, M点处 dz 为
基压缩变形的主要原因。因为一般基础都埋臵于地面下一定深度,因此在计
算由建筑物造成的基底附加压力时,应扣除基底标高处土中原有的自重应力
p0 p cd p 0 d
cd
cd
p
cd
p0
3.3 地基中的附加应力
附加应力:指建筑物荷重在土体中引起的附加于原有应力之上 的应力。

土力学第三章

土力学第三章

σy = ν(σx +σz )
§3 土体中的应力计算
§3.3 地基中附加应力的计算
七. 条形面积竖直均布荷载作用下的附加应力计算
任意点下的附加应力— 任意点下的附加应力—F氏解的应用
p
σz = Ksp z σx = Ks p x τxz = Kszp x
y
B
x
z
x
z
M
x z Ks ,Ks ,Ksz = F(B, x, z) = F( , ) = F(m n) , z x x B B
§3 土体中的应力计算
§3.3 地基中附加应力的计算
五. 矩形面积水平均布荷载作用下的附加应力计算
角点下的垂直附加应力 ——C氏解的应用 氏解的应用
B
σz = mKhph
L z Kh = F(B, L, z) = F( , ) = F(m n) , B B
ph
L
σz
z
σz
矩形面积作用水平均布荷载时角点下的应力分布系数
i =1
n
i i
σ c = γ 1h1 + γ 2 h2 + ...... + γ n hn = ∑ γ h
i =1
n
i i
式中,
1、各层土容重地下水位以上取天然容重; 、各层土容重地下水位以上取天然容重; 2、地下水位以下砂土取浮容重 、 3、粘性土液性指数IL大于 时取浮容重; 、粘性土液性指数 大于1时取浮容重 时取浮容重; 4、粘性土液性指数IL小于等于 时取天然容重, 、粘性土液性指数 小于等于0时取天然容重 时取天然容重, 5、IL在0~1之间时依最不利原则取天然或浮容重。 、 之间时依最不利原则取天然或浮容重。 ~ 之间时依最不利原则取天然或浮容重

地基中的应力计算

地基中的应力计算

pmax
min
P A
1
6e B
pmin
P A
1
6e B
pmax
min
P A
1
6e B
矩形面积单向偏心荷载
高耸结构物下可 能的的基底压力
P
P
P
土不能承受拉力
B
B
e
e
x
Lx
L
y
y
pmax
pmin 0 pmax
pmin 0
e<B/6: 梯形
e=B/6: 三角形
B
压力调整
Ke
基底
x
L
水平地基半无限空间体;
半无限弹性地基内的自重应
力只与Z有关;
土质点或土单元不可能有侧
向位移侧限应变条件;
y
任何竖直面都是对称面
▪应变条件
y x 0; xy yz zx 0
o x
A
B
z
sA sB
(4)侧限应力状态—— 一维问题
▪应变条件
y x 0;
xy yz zx 0
K
P z2
查表3-1
一. 竖直集中力作用下的附加应力计算
P
-布辛内斯克课题
P z K z2
o αr
y
x
x
M’
R βz
3
1
y
K 2 [1 (r / z)2]5 / 2
0.5
M
z
特点
0.4
1.σz与α无关,应力呈轴对称分布
0.3
2.σz:τzy:τzx= z:y:x, 合力过原点,与R同向
K
0.2
基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。

第三章 地基中应力计算

第三章  地基中应力计算

粘性土地基
当基础尺寸不太大,荷载也较小时,可假定基底压力为直线分布。
二、基底接触应力简化计算法
1、中心荷载矩形基础 P
P L
B
B
P FG
P FG p A A
A B L
x
L
y F为上部结构传至基础顶面的垂直荷载,KN
3 20kN/m G为基础自重和基础台阶上的土重 G G Ad G
2

5
2

F F z2 z2

σz应力呈轴对称分布 σz:τzy:τzx= z:y:x, 竖直面上合力过原点,与R同向 P作用线上,r=0, 3 ,z=0, σz→∞,z→∞,σz=0 2 在某一水平面上z=常数,r=0, a 最大,r↑,a减小,σz减小 在某一圆柱面上r=常数,z=0, σz=0,z↑,σz先增加后减小
2 2R z y 2 z 3F 1 y z 1 2 y 3 5 5 2 3 RR z R z R R R
3 3F 3 F z 3 z cos 2 2 R 2 R5
xy yx
当e=L/6时,基底压力为三角形分布;
x a
Fv=P+G
d
y
c x b
e L
y
b
c b pmax pmax
d Pmin=0 a Pmin=0
pmax Fv 6e 1 pmin lb l
当e>L/6时,基底压力pmin<0
土不能承 受拉应力 x a
Fv=P+G
d
y
c x b
O
h1=2.5m
1
r1=18.23KN/m 3

地基中的应力计算

地基中的应力计算

地基中的应力计算在工程建设中,地基承受着来自上部结构以及地面荷载的作用力。

为了确保地基的安全性和稳定性,需要进行应力计算。

地基应力计算的目的是确定地基的承载能力,以评估地基是否能够承受作用力并保持稳定。

下面将详细介绍地基应力计算的方法和步骤。

地基应力计算主要包括两个方面:地基的竖向应力计算和地基的水平应力计算。

1.地基的竖向应力计算:地基的竖向应力计算是为了确定地基的承载能力以及应力的分布情况。

主要有以下几个步骤:步骤一:确定地基的几何形状和土壤参数。

首先,需要确定地基的几何形状,包括地基的宽度、长度和深度。

然后,需要了解土壤的参数,如土壤的重度、黏聚力和内摩擦角等。

这些参数可以通过现场勘察和实验室试验获得。

步骤二:计算作用在地基上的荷载。

根据上部结构的类型和载荷特征,可以计算出作用在地基上的荷载。

常见的荷载包括自重荷载、活荷载和雪荷载等。

步骤三:确定地基的保证率。

地基的保证率是指地基的实际承载能力与设计承载能力之间的比值。

根据实际情况和风险要求,通常选择一个合适的保证率。

步骤四:计算地基的承载能力。

地基的承载能力可以通过不同的方法计算,常用的有下述几种方法:-Ф理论方法:以单轴压缩试验得到的土壤参数进行计算,同时考虑土体参数的变异性。

-岩土工程经验公式:利用大量实测资料得到具有统计学意义的经验公式进行计算。

-土壤参数反分析方法:根据实测的地基沉降数据,通过逆分析得到地基的承载能力。

步骤五:确定地基的应力分布。

通过计算得到地基的承载能力后,可以根据地基的几何形状和土壤参数,计算得到不同深度处的地基应力分布。

2.地基的水平应力计算:地基的水平应力计算是为了确定地基的稳定性。

主要有以下几个步骤:步骤一:确定地基的几何形状和土壤参数。

同样,需要确定地基的几何形状和土壤的参数。

步骤二:确定侧推力。

侧推力是指地基在侧向承受的荷载,通常由侧向土压力和水平荷载等形成。

步骤三:计算地基的稳定性。

通过考虑地基的几何形状、土壤的参数和侧推力等因素,可以计算地基的稳定性。

土力学与地基基础——第3章 地基土中的应力计算

土力学与地基基础——第3章 地基土中的应力计算
编辑ppt
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1

值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达

教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2

土力学-第三章-地基自重应力计算1、基底压力计算、地基附加应力计算 张丙印

土力学-第三章-地基自重应力计算1、基底压力计算、地基附加应力计算 张丙印

竖直集中力-布辛内斯克课题
法国数学家布辛内斯克(J. Boussinesq)1885年
推出了该问题的理论解,包括六个应力分量和三
个方向位移的表达式
其中,竖向应力z:
教材P98~99页
σz
P π
z R
π [ (r / z) ]/
P z
K
P Z2
集中力作用下的 应力分布系数 查图3-23
集中荷载的附加应力
19
§3.5 附加应力计算– 集中荷载
竖直集中力-布辛内斯克课题
智者乐水 仁者乐山
σz
π [ (r / z) ]/
P z
K
P Z2
垂直应力分布规律
σz与α无关,呈轴对称分布 P
P作用线上 在某一水平面上 在r﹥0的竖直线上
z等值线-应力泡
集中荷载的附加应力
20
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
智者乐水 仁者乐山
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
• 土层结构等
简化计算方法: 假定基底压力按直线分布的材料力学方法
基底压力的简化计算
10
§3.4 基底压力计算 – 计算方法
竖直中心
竖直偏心

P

l
b
pP A
P
x y
o
l
b
p( x, y) P M x y M y x
A Ix
Iy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

σ z : τ zy : τ zx = z : y : x
P σz = k ⋅ 2 z
3 1 3 1 k= = 2 5/ 2 2π [1 + (r / z) ] 2π [1 + tg2β ]5/ 2
查表3 查表3-1
集中力作用下的 应力分布系数
z
σ x τxy τxz σ ij = τyx σ y τyz τzx τzy σ z
∞ ∞ ∞ ∞
σ y σ z τ yx 学关于力的方向的规定
τzx
材料力学
σz +
正应力
剪应力 顺时针为正 逆时针为负
-
τzx
土力学
σz +
τxz
2. 竖直集中力作用下的附加应力计算 根据布辛涅斯克解
3 P 3P z3 2 cos β = σz = 2 2 πR 2π R5
3P yz2 τzy = 2π R5 3P xz2 τzx = 2π R5
R 2 = r 2 + z 2 = x2 + y 2 + z 2
3P z3 3 1 P σz = = 5 2π R 2π [1 + (r / z)2 ]5/ 2 z2
γ
γ′
均质地基
γ1 (γ
1
< γ2 )
γ2 γ′ 2
成层地基
算例分析
某地基的地 质剖面如图 所示,求各 层土界面上 竖向的自重应 力,并画出分 布图。
答案: 根据土层和地下水位将上述地质剖面分为4层 根据土层和地下水位将上述地质剖面分为 层
γ ′ = γ sat − γ w σ 0z = 0 σ 1 z = γ 1 h1 = 17.5kPa
γ xy = γ yz = γ zx = 0
(3)侧限应力状态——一维问题 侧限应力状态——一维问题 ——
应变条件 应力条件 独立变量
εy = εx = 0;
γ xy = γ yz = γ zx = 0
τxy = τyz = τzx = 0; σx = σy ;
εx = σx
E −
σz , εz = F(z)
q
y
对称面 对称面
x
q
σz
z
γ
τ =0
εx = εy = 0
•应力状态及特点 应力状态及特点
z
z
σz = q +γ z
竖向应力随深度的分布
(1)任意一个铅垂面都是对称面。 (2)由对称性,此中情况下的应力状态为一维的侧限应力状态。 水平位移为0,→水平方向的应变为0。 剪应变为0,剪应力为0。
• 具体分析 (1)剪应力
三、地基中附加应力的计算
附 加 应 力 荷 载 类 型
竖直线布荷载 竖直 集中荷载 条形面积竖直均布荷载 矩形面积竖直均布荷载 矩形面积竖直三角形荷载 圆形面积竖直均布荷载 水平 集中荷载 矩形面积水平均布荷载
主要讨论 竖直荷载
特殊面积、 特殊面积、特殊荷载
1. 均匀满布荷载及自重作用下的应力计算
′ σ 2 z = γ 1h1 + γ 1h2 = 36.5kPa ′ ′ σ 3 z = γ 1h1 + γ 1h2 + γ 2 h3 = 64.5kPa
′ ′ ′ σ 4 z = γ 1h1 + γ 1h2 + γ 2 h3 + γ 3 h4 = 84.5kPa
一、土中的应力状态 二、自重应力的计算 三、附加应力的计算
o x y
τzx
z
σz
εy = 0;
γ yx = γ yz = 0; γ zx ≠ 0
τzx
σz τxz σx
σ y τyz
τxy
σx
(2) 平面应变条件——二维问题 平面应变条件 二维问题 应变条件 应力条件 独立变量
εy = 0;
γ xy = γ yz = 0; γ zx ≠ 0
εy =
σy
E
本章的学时: 本章的学时:4 学时 学习要点: 学习要点: 1、自重应力的概念和计算方法 、 2、附加应力的概念和计算方法 、 3、基地压力的概念和简化计算方法 、 4、有效应力原理 、
课程内容的安排
第一次课 一、土中的应力状态 二、自重应力的计算 三、附加应力的计算 第二次课 一、地基的接触应力 二、基地压力的简化计算 三、有效应力原理
γ1
水平向: H1 水平向: σ x = σ y = K0σ z = K0 ∑γ i Hi
Z γ2 H2
γ3
H3
计算:地下水位以上用天然容重, 计算:地下水位以上用天然容重, 地下水位以下用浮容重
2. 分布规律 自重应力分布线的斜率是容重; 自重应力分布线的斜率是容重; 自重应力在等容重地基中随深度呈直线分布; 自重应力在等容重地基中随深度呈直线分布; 自重应力在成层地基中呈折线分布; 自重应力在成层地基中呈折线分布; 在土层分界面处和地下水位处发生转折。 在土层分界面处和地下水位处发生转折。
为什么要计算地基应力?
上部结构
基 础 地 基 地 基:受上部结构影响(受力、变形)的一定范围内的地层。 计算地基应力的目的 • 确定地基的承载力 • 确定地基的变形(压缩)
一、土中的应力状态 二、自重应力的计算 三、附加应力的计算
一、土中一点的应力状态
1、土的应力-应变关系的假定 、土的应力离散体 非线性 弹塑性 成层土 各向异性 ①连续介质 宏观平均) (宏观平均) ②线弹性体 应力较小时) (应力较小时) ③均匀一致各向同性体 土层性质变化不大时) (土层性质变化不大时) 无关 E、ν 与(x, y, z)无关 与方向无关 卸载 线弹性体
∂τ xy ∂x
+
∂σ y ∂y
+
∂τ yz ∂z
= −Y
∂τ xz ∂τ yz ∂σ z + + =-Z ∂x ∂y ∂z
∂τ xz ∂τ yz ∂σ z + + =γ ∂x ∂y ∂z
土体中仅存在Z向 的体积力γ。
3、地基中常见的应力状态 、
(1)一般应力状态——三维问题 一般应力状态 三维问题
计算自重应力的目的: 计算自重应力的目的:确定土体的初始应力状态 地基计算模型的基本假定: 地基计算模型的基本假定:
半无限体 semi-infinite mass 线弹性 linear elastic 均 质 homogeneous 各向同性 isotropic 地基中的应力为一维的 地基中的应力为一维的侧限应力状态 一维
基本假定: 基本假定: 水平地基→半无限空间体; 水平地基→半无限空间体; 半无限弹性地基内的自重应力 只与Z有关; 只与Z有关; 土质点或土单元不可能有侧向 位移→侧限应变条件; 位移→侧限应变条件; 任何竖直面都是对称面。 任何竖直面都是对称面。 应变条件
o x y
A B
z
σA =σB
εy = εx = 0;
u、v、w
求解比较 困难, 困难,通 常要进行 条件简化。 条件简化。
方 程: 15个
平衡方程 equilibrium equations 3个: 协调方程 compatibility equations 6个:应变-位移关系 本构方程 constitutive equations 6个: 应力-应变关系
σx
拉为正 压为负
σx
压为正 拉为负
逆时针为正 顺时针为负
τxz
(3)土体的应力平衡方程
弹性力学平衡方程:
∂σ x ∂τ xy ∂τ xz + + = −X ∂x ∂y ∂z
土体的平衡方程:
∂σ x ∂τ xy ∂τ xz + + =0 ∂x ∂y ∂z ∂τ xy ∂x + ∂σ y ∂y + ∂τ yz ∂z =0
σz
波松比
水平正应力
σx =σy =
ν
1 −ν
σz
2. 竖直集中力作用下的附加应力计算
P
o
x R αr y M’ βz M
σz
x
τzx
τxy
σx
σ y τyz
y z
R2 = r 2 + z 2 = x 2 + y 2 + z 2
r / z = tgβ
σ x σ y σ z τxy τyz τzx P;x,y,z;R, α, β) ( ; ; )
τ xy = τ xz = τ yz = 0
q
∂τ xz ∂τ yz ∂σ z + + =γ (2)由竖向平衡方程 ∂x ∂y ∂z
竖向正应力
σz = q +γ z
εx =
(也可直接建立土柱 的受力平衡关系得到)
(3)由胡克定律
1 [σ x −ν (σ y + σ z )] = 0 E 1 ε y = [σ y −ν (σ x + σ z )] = 0 E
第三章 地基中的应力计算
主要内容
第一节 土中应力状态和应力平衡方程 第二节 饱和土有效应力及孔隙水压力 第三节 非饱和土孔隙压力及有效应力(自学) 非饱和土孔隙压力及有效应力(自学) 第四节 孔隙压力系数(自学) 孔隙压力系数(自学) 第五节 在简单条件下地基中的应力分布 第六节 地基的接触应力 第七节 刚性基础基地压力简化计算 第八节 弹性半无限体内的应力计算

ν
E
(σ x + σ z ) = 0
σx , σz , τxz ; εx , εz , γ xz ; = F(x, z)
σy = ν(σx + σz )
εx 0 εij = 0 0 γ zx 0
γ xz 0 εz
σ x 0 τxz σ σij = 0 σ yy 0 τzx 0 σ z
相关文档
最新文档