硝化与反硝化

合集下载

硝化与反硝化

硝化与反硝化

3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。

生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。

上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。

关于硝化反硝化的碳源碱度的计算!

关于硝化反硝化的碳源碱度的计算!

关于硝化反硝化的碳源碱度的计算!硝化反硝化是自然界中一种重要的生化过程。

它通过细菌的作用,将氨氮转化为硝态氮,再将硝态氮还原为氨氮,完成氮的循环。

本文将重点介绍硝化反硝化中碳源和碱度的计算方法。

一、碳源的计算1.硝化过程中的碳源硝化过程中,细菌将氨氮氧化为亚硝酸盐,此过程需要耗费能量。

为了维持细菌的正常生长和代谢,需要提供足够的碳源。

一般来说,硝化过程中适宜的碳源包括有机物和无机碳源。

无机碳源:常用的无机碳源有碳酸盐、碳酸氢盐、苏打灰等。

这些无机碳源在水中溶解后可以为细菌提供能量和碳源。

有机碳源:常用的有机碳源包括葡萄糖、乳糖、酒精等。

有机碳源的加入可以增加水中的溶解有机物质,为细菌提供能量和碳源,促进硝化反应的进行。

2.反硝化过程中的碳源反硝化过程中,细菌将硝态氮还原为氮气释放到大气中,此过程同样需要耗费能量。

同样需要提供足够的碳源。

常用的碳源包括有机物和无机碳源。

无机碳源:常用的无机碳源有硫酸盐、碳酸盐等。

这些无机碳源在水中溶解后可以为细菌提供能量和碳源。

有机碳源:常用的有机碳源包括葡萄糖、乳糖、酒精等。

有机碳源的加入可以增加水中的溶解有机物质,为细菌提供能量和碳源,促进反硝化反应的进行。

二、碱度的计算碱度是指水溶液中碱性物质所占的量。

在硝化反硝化中,强碱性条件对细菌的生长和代谢有一定的影响。

因此,合理控制碱度是保证硝化反硝化顺利进行的重要因素。

常用的计算碱度的方法有以下几种:1.pH法pH是衡量水溶液酸碱程度的指标,与碱度密切相关。

一般来说,当pH在7.0-8.5之间时,硝化和反硝化的效果较好。

因此,可以通过测定水样的pH值来初步评估碱度的情况。

2.碱定法碱定法是一种量化测定碱度的方法。

常用的碱定方法有酸碱滴定法和酸碱指示剂法。

通过向水样中加入酸或碱滴定剂,直到水样的酸碱度发生变化,从而计算出水样中的碱度。

3.碳酸盐盐度法碳酸盐盐度法是一种通过测定水样中的碳酸盐盐度来推测碱度的方法。

碳酸盐盐度是指水中溶解的碳酸盐所占的量,可以通过测量水样中的总碱度来计算。

污水处理—硝化与反硝化

污水处理—硝化与反硝化

污水硝化—反硝化脱氮处理是一种利用硝化细菌和反硝化细菌的污水微生物脱氮处理方法。

此法分为硝化和反硝化两个阶段,在好氧条件下利用污水中硝化细菌将含氮物质转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。

两段生物脱氮法是污水微生物脱氮的有效方法,作为标准生物脱氮法已得到较广泛应用。

硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌( Nitrosomonas sp)参预将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参预的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用 CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或者 NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic 或者 Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:1.亚硝化反应方程式: 55NH4++76O2+109HCO3-→C5H7O2N ﹢ 54NO2-+57H2O+10 4H2CO32.硝化反应方程式: 400NO2-+195O2+NH4++4H2CO3+HCO3-→C5H7O2N+400NO3- +3H2O3.硝化过程总反应式: NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1. 04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1 克氨氮氧化为硝酸盐氮需好氧4.57 克(其中亚硝化反应需耗氧 3.43 克,硝化反应耗氧量为1.14 克),同时约需耗 7.14 克重碳酸盐(以 CaCO3 计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子 NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐 NO2-→硝酸盐 NO3-。

反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

硝化反硝化

硝化反硝化

A、硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:亚硝化反应方程式:55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3硝化反应方程式:400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O硝化过程总反应式:NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。

B、反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。

当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和OH-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。

污水处理中的硝化与反硝化过程

污水处理中的硝化与反硝化过程
污水处理中的硝化与反硝化应用
污水处理厂的硝化与反硝化应用
污水处理厂是硝化与反硝化过程的重要应用场所,通过硝化反应将有机 氮转化为硝酸盐,再通过反硝化反应将硝酸盐转化为氮气,从而达到去 除氮污染物的目的。
硝化反应通常在好氧条件下进行,由硝化细菌将氨氮氧化成硝酸盐;反 硝化反应则在缺氧条件下进行,由反硝化细菌将硝酸盐还原成氮气。
THANKS
THANK YOU FOR YOUR WATCHING
硝化反应的微生物学基础
硝化细菌是一类好氧性细菌,能够将氨氮氧化成硝酸盐。
硝化细菌主要包括亚硝化Байду номын сангаас菌和硝化细菌两类,分别负责亚硝化和硝化两个阶段 。
硝化反应的影响因素
溶解氧
硝化反应是好氧反应,充足的溶解氧是保证硝化 反应顺利进行的关键。
pH值
硝化细菌适宜的pH值范围为7.5-8.5。
ABCD
温度
硝化细菌对温度较为敏感,适宜的温度范围为 20-30℃。
应对气候变化
资源回收利用
探索污水处理过程中资源的回收利用,如能源、肥 料等,提高污水处理的经济效益和社会效益。
随着气候变化加剧,污水处理系统需应对极 端天气和自然灾害的挑战,保障硝化与反硝 化过程的稳定运行。
国际合作与交流
加强国际合作与交流,引进先进技术与管理 经验,推动硝化与反硝化技术的创新发展。
害。
城市污水处理中的硝化与反硝化应用
城市污水中的氮污染物主要来源于生活污水和部分工业废水,硝化与反硝化过程在 城市污水处理中具有重要作用。
城市污水处理厂通常采用生物反应器进行硝化与反硝化反应,通过合理控制反应条 件,提高脱氮效率。
城市污水处理中的硝化与反硝化应用可以有效降低水体中氮污染物含量,改善城市 水环境质量。

短程硝化反硝化与同步硝化反硝化

短程硝化反硝化与同步硝化反硝化

短程硝化反硝化与同步硝化反硝化短程硝化反硝化与同步硝化反硝化1. 简介短程硝化反硝化和同步硝化反硝化是两种常见的废水处理方法,它们在去除氨氮和硝酸盐方面具有独特的优势。

本文将详细介绍这两种技术的原理、应用领域,并对其效果和限制进行评估。

2. 短程硝化反硝化2.1 硝化反硝化原理短程硝化反硝化是一种将硝化和反硝化两个过程耦合起来,实现废水中氨氮的高效去除的技术。

在短程硝化反硝化过程中,废水中的氨氮首先经过硝化作用被氧化为硝态氮,然后立即发生反硝化作用将硝态氮还原为氮气排出。

2.2 应用领域短程硝化反硝化广泛应用于城市污水处理厂、工业废水处理厂等领域。

它在处理高浓度氨氮废水以及有限操作空间的情况下具有明显的优势。

由于其反应迅速、体积小、投资少的特点,使得短程硝化反硝化成为一种非常经济有效的废水处理方法。

2.3 效果和限制短程硝化反硝化的主要优势在于处理效果显著,能够快速去除废水中的氨氮,达到废水排放标准。

然而,由于该技术对废水中的氨氮浓度要求较高,处理低浓度氨氮废水时效果不明显。

短程硝化反硝化还对温度和pH值等环境因素较为敏感。

3. 同步硝化反硝化3.1 硝化反硝化原理同步硝化反硝化是指在同一处理单元中同时进行硝化和反硝化过程的一种废水处理技术。

该技术通过优化废水处理工艺,加强好氧和厌氧条件下微生物的协同作用,实现氨氮和硝态氮的同时去除。

3.2 应用领域同步硝化反硝化广泛应用于生活污水处理、工业废水处理以及农业废水处理等领域。

由于同步硝化反硝化能够同时去除氨氮和硝态氮,使得废水处理过程更加高效,减少了处理单元的占地面积,降低了处理成本,因而受到了广泛的关注和应用。

3.3 效果和限制同步硝化反硝化的主要优势在于处理效果稳定,同时可以实现氨氮和硝态氮的全面去除。

然而,该技术对微生物的选择性较高,因此在操作和维护时需要严格控制环境因素,以确保微生物的正常生长和活性。

同步硝化反硝化对废水中COD和其他有机物的降解效果较差,需要配合其他技术进行。

硝化反应和反硝化反应

硝化反应和反硝化反应

一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3-0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3-需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。

硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。

当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。

b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。

最适合PH为8.0-8.4。

碱度维持在70mg/L以上。

碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。

15℃以下时,硝化反应速度急剧下降;5℃时完全停止。

d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。

e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。

因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。

总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。

硝化作用及反硝化作用

硝化作用及反硝化作用

硝化作用及反硝化作用
硝化作用(nitrification)氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。

氨转化为硝酸的氧化必须有O2参与,通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。

硝化细菌,先是亚硝化细菌将铵根(NH4+)氧化为亚硝酸根(N02-);然后硝化细菌再将亚硝酸根氧化为硝酸根(N03-)。

硝化作用所产生的硝酸盐(NO3-),因其自身的负电性而不容易被固定在正离子交换点(主要是腐殖质)多于负离子的土壤中。

反硝化作用,是指在厌氧条件下,微生物将硝酸盐及亚硝酸盐还原为气态氮化物和氮气的过程。

是活性氮以氮气形式返回大气的主要生物过程。

反硝化作用不仅在土壤中进行,还可在江河湖泊和海洋中进行。

发生反硝化作用的条件是:①反硝化微生物;②合适的电子供体,如有机碳化物、还原态硫
化物;③厌氧条件;④氮的氧化物。

土壤中已知能进行反硝化作用的微生物种类有24个属性。

绝大多数反硝化细菌是异养型细菌,亦有少数自养型细菌如反硝化硫杆菌。

影响反硝化作用的因素包括:①氧的供应,当氧的供应受到限制时发生反硝化作用;②碳的供应,如土壤有机质、根分泌物等;③硝酸盐的供应;④pH,在酸性土壤中,反硝化作用受到抑制。

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术简介:是一种高效的生物处理技术,用于处理含高浓度氨氮的废水。

本文将介绍的原理、应用、优缺点以及未来发展方向。

一、原理是利用硝化细菌和反硝化细菌的协同作用,将废水中的氨氮转化为氮气释放。

整个过程可以分为两步:硝化和反硝化。

硝化指的是将废水中的氨氮通过硝化细菌氧化为亚硝酸盐,进一步氧化为硝酸盐的过程。

这一步在好氧条件下进行,需要提供足够的氧气供给。

反硝化指的是将硝酸盐通过反硝化细菌还原为氮气并释放到大气中的过程。

这一步在缺氧条件下进行,需要消耗有机物作为电子供体。

二、应用1. 功能与特点在处理含高浓度氨氮废水时具有以下功能与特点:(1)高效除氮:该技术能够将氨氮转化为氮气释放,实现高效除氮,将废水中的氨氮浓度降低至国家排放标准以下。

(2)占地面积小:相比传统的生物脱氮技术,短程硝化反硝化技术所需的处理设施相对较小,能够节约占地面积和投资成本。

(3)适用范围广:该技术适用于各类含高浓度氨氮的废水,如城市生活污水、养殖废水等。

2. 应用案例在各个领域得到了广泛应用。

(1)城市生活污水处理:城市污水处理厂采用该技术对处理前的生活污水进行处理,将废水中的氨氮降低至符合排放标准。

(2)养殖废水处理:养殖业废水中含有大量的氨氮,使用该技术可以将废水中的氨氮转化为氮气释放,减少对水环境的污染。

(3)工业废水处理:一些工业废水中含有高浓度氨氮,采用短程硝化反硝化技术可实现高效除氮。

三、优缺点1. 优点(1)高效除氮:短程硝化反硝化技术能够将氨氮转化为氮气释放,实现高效除氮。

(2)占地面积小:相比传统的生物脱氮技术,所需处理设施相对较小,能够节约占地面积和投资成本。

(3)处理效果稳定:短程硝化反硝化技术对氨氮的去除效果较为稳定,能够适应废水中氨氮含量的变化。

2. 缺点(1)对氧气要求高:硝化过程需要提供足够的氧气,因此对通气设备的要求较高。

(2)电子供体限制:反硝化过程需要消耗有机物作为电子供体,在有机物供应不足时,可能影响反硝化效率。

sbr 硝化和反硝化 反应原理

sbr 硝化和反硝化 反应原理

sbr 硝化和反硝化反应原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。

并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!硝化和反硝化反应原理。

同步硝化反硝化和短程硝化反硝化

同步硝化反硝化和短程硝化反硝化

同步硝化反硝化和短程硝化反硝化同步硝化反硝化和短程硝化反硝化1. 引言:硝化和反硝化是自然界中氮循环过程中的两个关键环节。

硝化指的是将氨氧化为硝酸盐的过程,反硝化则是将硝酸盐还原为氮气(N2)的过程。

同步硝化反硝化和短程硝化反硝化是两种在水体和土壤中发生的硝化反硝化现象。

本文将对这两种现象进行深入讨论,以更好地理解它们在环境中的重要性。

2. 同步硝化反硝化的概念及机理:2.1 同步硝化反硝化是指硝化和反硝化同时在同一生境中进行的现象。

在某些特定的环境条件下,硝化细菌和反硝化细菌能够共存并相互作用,形成稳定的氮循环。

这种现象通常发生在富含有机质和氮的水体和土壤中。

2.2 同步硝化反硝化的机理包括以下几个步骤:2.2.1 硝化:硝化细菌通过氧化氨氮(NH4+)生成亚硝酸盐(NO2-),再经过氧化反应生成硝酸盐(NO3-)。

2.2.2 反硝化:反硝化细菌利用硝酸盐中的氧气进行呼吸作用,将硝酸盐还原为氮气和一氧化氮(N2O)。

3. 短程硝化反硝化的概念及机理:3.1 短程硝化反硝化是指硝化和反硝化在同一小尺度范围内交替进行的现象。

它通常发生在微生物周围,如土壤微生物团聚体、根际等环境中。

3.2 短程硝化反硝化的机理包括以下几个步骤:3.2.1 硝化:土壤中的硝化细菌通过氧化氨氮(NH4+)生成亚硝酸盐(NO2-),然后亚硝酸盐被反硝化细菌进一步氧化为硝酸盐(NO3-)。

3.2.2 反硝化:硝酸盐中的氮气被反硝化细菌还原为氮气(N2)。

4. 同步硝化反硝化和短程硝化反硝化的重要性:4.1 氮素循环:同步硝化反硝化和短程硝化反硝化都是氮素循环的重要环节。

它们促进了氨氮和硝酸盐在水体和土壤中的转化,并维持了生态系统中氮的平衡。

4.2 环境污染控制:同步硝化反硝化和短程硝化反硝化能够降低水体和土壤中的硝酸盐含量。

硝酸盐过量会导致水体富营养化和土壤酸化,而同步硝化反硝化和短程硝化反硝化可以有效地将硝酸盐还原为无害的氮气和一氧化氮。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理硝化与反硝化是水处理领域中常用的一种氨氮去除方法。

硝化是指将水中的氨氮转化为硝态氮化合物(主要是亚硝酸盐和硝酸盐),而反硝化是指将水中的硝态氮还原为氨氮,从而达到去除氨氮的目的。

下面将分别介绍硝化和反硝化去除氨氮的原理。

硝化是由一种特殊的微生物完成的,这种微生物被称为硝化细菌。

硝化细菌主要有两类,一类是氧化亚硝酸细菌(Nitrosomonas),负责将氨氮氧化成亚硝酸;另一类是氧化硝酸细菌(Nitrobacter),负责将亚硝酸氧化成硝酸。

硝化过程主要分为两个阶段:亚硝化和硝化。

亚硝化是亚硝酸盐菌将氨氮氧化为亚硝酸的过程,可表示为:NH4+→NO2-。

而硝化是硝酸盐菌将亚硝酸氧化为硝酸的过程,可表示为:NO2-→NO3-。

硝化微生物生长的最适pH范围一般为7.8-8.2,温度范围一般为20-35℃。

在水处理工程中,为了提高硝化细菌的活性,通常会提高水体中的DO(溶解氧)浓度,同时增加氨氮与亚硝酸之间的接触时间。

反硝化是由一种特殊的微生物完成的,这种微生物被称为反硝化细菌。

反硝化细菌的主要特点是能够利用氧化亚硝酸作为电子受体,将硝酸氮还原为氨氮,并释放出氧气或一氧化氮等气体。

反硝化细菌的代表是假单胞菌(Pseudomonas),它具有较强的还原硝酸能力。

反硝化过程一般可表示为:NO3- → NO2- → NO → N2O →N2反硝化细菌的生长最适pH范围一般为6.5-7.5,温度范围一般为25-30℃。

和硝化一样,为了提高反硝化细菌的活性,通常也需要提高水体中的DO浓度。

三、硝化与反硝化联合去除氨氮的工艺流程硝反工艺的流程一般为:先将水体中的氨氮通过硝化转化为硝酸,然后利用反硝化细菌将硝酸还原为氨氮。

硝反工艺通常包括硝化反硝化生物过滤法、硝化反硝化活性污泥法等。

其中,硝化反硝化生物过滤法是一种较常用的工艺,具有处理效果好、工艺简单、运行稳定等优点。

在硝反工艺中,硝化细菌与反硝化细菌共同生长,不仅可以去除氨氮,还可以去除有机物等其他污染物,从而对水体进行全面的处理。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮操作
一、硝化与反硝化的作用机理:
1、硝化细菌包括亚硝化菌和硝化菌,亚硝化菌将废水中的NH3转化为亚硝酸盐,硝化菌将亚硝酸盐转化为硝酸盐,称为硝化作用;硝化作用必须通过这两类菌的共同作用才能完成;
2、反硝化菌将硝酸盐转化为N2、NO、N2O,称为反硝化作用;
3、硝化细菌必须在好氧条件下作用;
4、反硝化菌必须在无氧或缺氧的条件下进行;
二、作用方程式:
硝化反应:
2NH3+3O2――亚硝化菌――2HNO2+2H2O+能量氨的氧化
2HNO2+O2――硝化菌――2HNO3+能量亚硝酸的氧化
反硝化反应:
NO3— +CH3OH —— N2 + CO2+H2O+ OH—以甲醇作为C源
三、操作:
1、将购买的硝化菌投加到曝气池5、6,亚硝化菌投加到曝气池1、
2、3、4,反硝化菌投加到厌氧池;
2、控制指标:
生物硝化
①PH值:控制在—
②温度:25—30℃
③溶氧:2—4mg/L
④污泥停留时间:必须大于硝化菌的最小世代时间,一般应大于2
小时
生物反硝化:
①PH值:控制在—
②温度:25—30℃
③溶氧:L
④有机碳源:BOD5/TN>3—5过低需补加碳源。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮操作
一、硝化与反硝化的作用机理:
1、硝化细菌包括亚硝化菌和硝化菌,亚硝化菌将废水中的NH3转化为亚硝酸盐,硝化菌将亚硝酸盐转化为硝酸盐,称为硝化作用。

硝化作用必须通过这两类菌的共同作用才能完成。

2、反硝化菌将硝酸盐转化为N2、NO、N2O,称为反硝化作用。

3、硝化细菌必须在好氧条件下作用。

4、反硝化菌必须在无氧或缺氧的条件下进行。

二、作用方程式:
硝化反应:
2NH3+3O2――(亚硝化菌)――2HNO2+2H2O+能量(氨的氧化)2HNO2+O2――(硝化菌)――2HNO3+能量(亚硝酸的氧化)
反硝化反应:
NO3— +CH3OH —— N2 + CO2+H2O+ OH—(以甲醇作为C源)
三、操作:
1、将购买的硝化菌投加到曝气池5、6#,亚硝化菌投加到曝气池1、
2、
3、4#,反硝化菌投加到厌氧池。

2、控制指标:
生物硝化
1 PH值:控制在7.5—8.4
2 温度:25—30℃
3 溶氧:2—4mg/L
4 污泥停留时间:必须大于硝化菌的最小世代时间,一般应大于2小时
生物反硝化:
①PH值:控制在7.0—8.0
②温度:25—30℃
③溶氧:0.5mg/L
④有机碳源:BOD5/TN>(3—5)过低需补加碳源。

同步硝化反硝化

同步硝化反硝化

同步硝化反硝化
硝化反硝化作为地球上细菌尤其是微生物的重要代谢过程,在现有体系内具有重要的
作用,一般情况下,硝化反硝化是一种氮循环,也是营养元素硝酸盐在生物链内传递的主
要途径。

氮是地球生物体系生命活动的重要物质,它可以通过太阳能和硝酸盐等化合物
来进行氮循环,满足生物体系生成和运行的需要。

硝化变化是氮循环过程中不可缺少的一
部分,硝酸盐是生物体系中氮循环所必需的物质,硝酸盐的循环反应是硝化的反应形式。

硝化反硝化是一个相互关联的交互过程,硝化反应是一种气体交换过程,其基本原理
是硝化细菌将氮气还原为有机物化的氮的过程,而硝化反应则是将硝化产物释放到水中的
过程,也就是将氮气还原为无机水溶性硝酸盐的过程,这样就可以对硝酸盐在生物体系中
发生转化和迁移作出贡献。

硝化反硝化反应过程是相互协调的,它们之间具有很强的能力来协调氮循环的正常运行,氮的循环可以通过硝化和反硝化的过程来达到,而这些循环过程也可以持续进行,可
以更好地支持地球生物体系的支撑和发展。

硝化反硝化是进行氮循环和氮转化的必要依赖,它也支撑着整个生物圈的发展与演变,是氮圈形成和保存的重要过程,也是地球生物体系
稳定发展良性循环的维持。

硝化反应和反硝化反应原理

硝化反应和反硝化反应原理

硝化反应和反硝化反应原理
硝化反应是向有机物分子中引入硝基的反应过程。

脂肪族化合物硝化时有氧化-断键副反应,工业上很少采用。

硝基甲烷、硝基乙烷、1-和2-硝基丙烷四种硝基烷烃气相法生产过程,是30年代美国商品溶剂公司开发的。

迄今该法仍是制取硝基烷烃的主要工业方法。

此外,硝化也泛指氮的氧化物的形成过程。

反硝化,也称脱氮作用,是指细菌将硝酸盐中的氮通过一系列中间产物还原为氮气的生物化学过程。

参与这一过程的细菌统称为反硝化菌。

反硝化菌在无氧条件下,通过将硝酸盐作为电子受体完成呼吸作用(respiration)以获得能量。

这一过程是硝酸盐呼吸(nitraterespiration)的两种途径之一,另一种途径是是硝酸异化还原成铵盐(DNRA)。

硝化主要方法
硝化过程在液相中进行,通常采用釜式反应器。

根据硝化剂和介质的不同,可采用搪瓷釜、钢釜、铸铁釜或不锈钢釜。

用混酸硝化时为了尽快地移去反应热以保持适宜的反应温度,除利用夹套冷却外,还在釜内安装冷却蛇管。

产量小的硝化过程大多采用间歇操作。

产量大的硝化过程可连续操作,采用釜式连续硝化反应器或环型连续硝化反应器,实行多台串联完成硝化反应。

环型连续硝化反应器的优点是传热面积大,搅拌良好,生产能力大,副产的多硝基物和硝基酚少。

硝化方法主要有:稀硝酸硝化、浓硝酸硝化、在浓硫酸中用硝酸硝化、在有机溶剂中用硝酸硝化和非均相混酸硝化等。

硝化反应和反硝化反应

硝化反应和反硝化反应

一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2 NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3- 0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2 NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3- 需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。

硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。

当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。

b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。

最适合PH为8.0-8.4。

碱度维持在70mg/L以上。

碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。

15℃以下时,硝化反应速度急剧下降;5℃时完全停止。

d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为 0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。

e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。

因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。

总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。

硝化作用及反硝化作用

硝化作用及反硝化作用

硝化作用及反硝化作用
硝化作用(nitrification)氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。

氨转化为硝酸的氧化必须有O2参与,通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。

硝化细菌,先是亚硝化细菌将铵根(NH4+)氧化为亚硝酸根(N02-);然后硝化细菌再将亚硝酸根氧化为硝酸根(N03-)。

硝化作用所产生的硝酸盐(NO3-),因其自身的负电性而不容易被固定在正离子交换点(主要是腐殖质)多于负离子的土壤中。

反硝化作用,是指在厌氧条件下,微生物将硝酸盐及亚硝酸盐还原为气态氮化物和氮气的过程。

是活性氮以氮气形式返回大气的主要生物过程。

反硝化作用不仅在土壤中进行,还可在江河湖泊和海洋中进行。

发生反硝化作用的条件是:①反硝化微生物;②合适的电子供体,如有机碳化物、还原态硫
化物;③厌氧条件;④氮的氧化物。

土壤中已知能进行反硝化作用的微生物种类有24个属性。

绝大多数反硝化细菌是异养型细菌,亦有少数自养型细菌如反硝化硫杆菌。

影响反硝化作用的因素包括:①氧的供应,当氧的供应受到限制时发生反硝化作用;②碳的供应,如土壤有机质、根分泌物等;③硝酸盐的供应;④pH,在酸性土壤中,反硝化作用受到抑制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3C5H7O2N+19H2O 式中C5H7O2N为反硝化微生物的化学组成。
反硝化还原和微生物合成的总反应式为: NO3-+1.08CH3OH+H+―――→ 0.065C5H7O2N+0.47N2+0.76CO2+ 2.44H2O 从以上的过程可知,约 96%的NO3--N经异化 过程还原,4%经同化过程合成微生物。
日出东方 希望中国
硝化与反硝化
(公用工程污水车间)
生物脱氮除磷技术
一、 废水中氮的处理技术
(一)概述
废水中氮的存在形式 有机氮 氨氮 亚硝酸氮 硝酸氮
生活污水中,主要含有有机氮和氨氮。
当污水中的有机物被生物降解氧化时,其 中的有机氮被转化为氨氮。
经活性污泥法处理的污水有相当数量的 氨氮排入水体,可导致水体富营养化。 水体若为水源,将增加给水处理的难度 和成本。
(三)生物脱氮工艺
1、三段生物脱氮工艺
2、Bardenpho生物脱氮工艺
3、A/O生物脱氮工艺
4、SBR工艺 5、氧化沟工艺
(四)物理化学脱氮技术
1、空气吹脱法脱氮工艺 2、折点氯氧化法脱氮工艺
谢谢大家
下降
下降
硝化菌的泥龄
硝化菌的生长世代周期较长,为了保证硝化作 用的进行,泥龄应取大于硝化菌最小世代时间两 倍以上。
溶解氧
硝化反应对溶解氧有较高的要求,处理 系统中的溶
硝化菌受PH值的影响很敏感,适宜的 PH值7-8。 在废水中保持足够的碱度,以调节PH值 的变化。
(2)反硝化反应
定义 反硝化反应是指在无氧条件下,反硝 化菌将硝酸盐氮(NO3-)和亚硝酸盐氮(
NO2-)还原为氮气的过程。
6NO3-+2CH3OH―――→6NO2-+2CO2+4H2O
硝酸还原菌
亚硝酸还原菌
6NO2-+3CH3OH———→3N2+3H2O+6OH-+3CO2
总反应式 :
6NO3-+5CH3OH—————→
二级处理的出水需 进行脱氮处理。
(二)生物法脱氮
1、生物脱氮机理
生物脱氮是在微生物的作用下,将有机氮 和氨态氮转化为N2和NxO气体的过程。 其中包括硝化和反硝化两个反应过程。
(1)硝化反应
定义
硝化反应是在好氧条件下,将 NH 4 + 转 化为NO2—和NO3-的过程。
细菌
由亚硝酸菌和硝酸菌两种菌共同完成的。
影响因素
①BOD5/TKN 当污水中BOD5/TKN>3~5时,可认为碳源
充足。不同的有机碳将导致反硝化速率的不同。
碳源按其来源可分为三类: 外加碳源,多采用甲醇,因为甲醇被分 解后的产物为 CO 2 , H 2 O ,不产生其它难降 解的中间产物,但其费用较高;
原水中含有的有机碳; 内源呼吸碳源——细菌体内的原生物质及 其贮存的有机物;
这两种菌属于化能自养型微生物。
2NH4 + 3O2―――→2NO2- + 4H+ + 2H2O

硝化菌
2NO2
-+
O2――― -→2NO3-

硝化菌
总反应式: NH4
硝化 + 2O2―――→NO3-+ 2H+ + H2O 菌
硝化细菌是化能自养菌,生长率低,对环境 条件变化较为敏感。
影响因素
温度 硝化反应的适宜温度为20℃-30℃ 低于15℃时,反应速度迅速下降,5℃时反 应几乎完全停止。 BOD5/TKN 硝化菌是自养菌,若水中BOD5值过高,将有 助于异氧菌的迅速增殖,微生物中的硝化菌的比 例下降。
★反硝化具备的条件(1)污水中含有充足的
电子供体;(2)厌氧或亏氧条件。 ★因此,污水中氨氮的去除,需先在好氧条件下 进行硝化处理,在厌氧或缺氧条件下进行反硝化 处理。
(3)同化作用
在生物处理过程中,污水中的一部分氮(氨 氮或有机氮)被同化成微生物细胞的组成部 分,并以剩余活性污泥的形式得以从污水中 去除的过程,称为同化作用。 当进水氨氮浓度较低时,同化作用可能成为 脱氮的主要途径。
5CO2+3N2+7H2O+ 6OH-
反硝化菌
反硝化菌属异型兼性厌氧菌。 在有氧存在时,它会以O2为电子受体进行 好氧呼吸;
在无氧而有 NO 3 - 或 NO 2 - 存在时,则以 NO3-或NO2-为电子受体,以有机碳为电子供 体和营养源进行反硝化反应。
在反硝化菌代谢活动的同时,伴随着反硝 化菌的生长繁殖,即菌体合成过程,其反应 如下: 3NO3-+14CH3OH+CO2+3H+—————→
② pH值

反硝化反应的适宜PH值为6.5~7.5。
‡ PH值高于8或低于6时,反硝化速率将迅 速下降。
③温度 反硝化反应的温度范围较宽,在5℃-40℃ 范围内都可以进行。
。 但温度低于15℃时,反硝化速率明显下降
小结
★ 从硝化和反硝化的机理可看出,硝化过程
仅改变了废水中氮素的存在形式,反硝化过程 才是真正的脱氮过程。
相关文档
最新文档