奥数长方形和正方形(面积)
五年级奥数 第4讲 长方形 正方形的面积
五年级奥数第4讲平均数知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出所求面积的题目,这就需要我们切实掌握有关概念,利用“割补”“平移”“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?练习:1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积?2、正方形的一条边增加30厘米,另一条边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形,求这个正方形的边长是多少分米?例2、一个大长方形被两条平行于它的两条边的线分成四个较小的长方形,其中三个长方形的面积如下图所示,求第四个长方形的面积?练习:1、下图所示为一个大长方形被分成四个小长方形,其中三个小长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2、下图所示为一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
3、下图中阴影部分是边长为5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例3、把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?练习:1、一块正方形地,一边划出15米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。
这块地原来的面积是多少平方米?2、一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。
五年级奥数分册第4周 长方形、正方形的面积-优选
第4周长方形、正方形的面积专题简析:长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例1 已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?分析从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
练习一1,有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3,把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?例2 一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为AE ×CE=6,DE ×EB=35,把两个式子相乘AE ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
练 习 二1,下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
小学五年级正方形长方形的奥数题
小学五年级正方形长方形的奥数题
题目1:正方形的面积
已知一块正方形瓷砖的边长为5厘米,请问这块瓷砖的面积是
多少?
答:这块瓷砖的面积可以通过边长的平方来计算,即5厘米乘
以5厘米,即25平方厘米。
题目2:正方形周长与边长的关系
若一个正方形的边长为7厘米,请问这个正方形的周长是多少?
答:正方形的周长可以通过边长乘以4来计算,即7厘米乘以4,即28厘米。
题目3:长方形面积
一个长方形的长为6厘米,宽为4厘米,请问这个长方形的面
积是多少?
答:长方形的面积可以通过长乘以宽来计算,即6厘米乘以4厘米,即24平方厘米。
题目4:长方形和正方形的面积比较
已知一个长方形的面积为16平方厘米,比一个正方形的面积小2平方厘米,那么这个正方形的面积是多少?
答:设正方形的面积为x平方厘米。
根据题意,长方形的面积16平方厘米比正方形的面积x平方厘米小2平方厘米,即有16平方厘米 = x平方厘米 + 2平方厘米。
解这个方程可得x = 14平方厘米,所以这个正方形的面积为14平方厘米。
结束语
这些都是一些关于小学五年级正方形和长方形的奥数题,通过这些题目可以帮助学生巩固和加深对正方形和长方形的认识和计算能力。
奥数四年级—长方形和正方形面积
7
2021/8/14
分段
例4、如图,正方形中套一长方形,正方形的边长是 15,长方形的四个顶点恰好分别把正方形的四条边都 分成两段,其中长的一段都是短的2倍。这个长方形 的面积是多少? (单位:厘米) 15÷3=5
5×2=10。
三角形面积: 5×5÷2=12.5 10×10÷2=50
12.5×2=25 50×2=100
15
2021/8/14
练 5、如图,是由9个小长方形组成的,按图中 习 编号,第1,2,3,4,5号的面积分别是1平
方米,2平方米,3平方米,4平方米,5平方 米,那么,第6号长方形和面积是多少呢?
1×1=1
16
2021/8/14
3×2.5=7.5
练 6、如图,一个正方形中套着一个长方形,
习 已知正方形的边长是20分米,长方形的四个
例1、有一块长方形的土地,长是宽的2倍,中间有一 座雕塑,雕塑的底面是一个正方形,周围是草坪,草 坪的面积是多少平方米?(单位:米)
20÷2=10 米
20×10=200 平方米
1×1=1 平方米
2
200-1=199 平方米 2021/8/14
拆分
例2、如图,是由6个相同的等腰三角形拼成的图形, 求这个图形的面积是多少?
最多能裁出12张 长4宽1厘米的纸条
10
2021/8/14
练 1.用48厘米长的一根铁丝围成一个正方形, 习 它的面积是多少?用这根铁丝围成一个长15
厘米的长方形,它的面积是多少?
48÷4=12 12×12=144
15×2=30
48-30=18 18÷2=9
15×9=135
11
2021/8/14
练 2、有一个长方形的市民广场,长100米,宽 习 80米。广场中间留了宽4米的人行道,把广
(三年级)长方形和正方形的面积奥数题训练
(三年级)长方形和正方形的面积奥数题训
练
题一:
一个长方形的长为10cm,宽为5cm。
计算它的面积。
解答:
长方形的面积可以通过将长乘以宽来计算。
根据题目给出的数据,我们可以使用以下公式来计算面积:
面积 = 长 ×宽
将给定的数值代入公式,即可得到答案:
面积 = 10cm × 5cm = 50cm²
所以,该长方形的面积为50平方厘米。
题二:
一个正方形的边长为20cm。
计算它的面积。
解答:
正方形的面积可以通过将边长的平方来计算。
根据题目给出的数据,我们可以使用以下公式来计算面积:
面积 = 边长²
将给定的数值代入公式,即可得到答案:
面积 = 20cm × 20cm = 400cm²
所以,该正方形的面积为400平方厘米。
题三:
一个长方形的面积是36平方米,宽为6米,求它的长。
解答:
根据题目给出的数据,我们可以使用以下公式来计算长方形的长:
面积 = 长 ×宽
将给定的数值代入公式,即可得到答案:
36平方米 = 长 × 6米
解方程,可以得出:
36 = 长 × 6
长 = 36 / 6 = 6米
所以,该长方形的长为6米。
总结:
通过这些奥数题训练,我们研究了如何计算长方形和正方形的面积。
对于长方形,可以使用长乘以宽的方式计算面积;对于正方形,可以使用边长的平方来计算面积。
小学数学五年级数学奥数举一反三长方形正方形的面积04
五年级奥数举一反三
【练习4】
1,四个完全一样的长方形和一个小正方形组成了一个大正方形,如果 大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的 宽。 2,正图的每条边都垂直于与它相邻的边,并且28条边的长都相等。如 果此图的周长是56厘米,那么,这个图形的面积是多少? 3,正图中,正方形ABCD的边长4厘米,求长方形EFGD的面积。
题一
题二
题三
五年级奥数举一反三
【例题5】 有一个周长是72厘米的长方形,它是由三个大小 相等的正方形拼成的。一个正方形的面积是多少 平方厘米?
【思路导航】 三个同样大小的正方形拼成的长方形,它的周长 是原正方形边长的8倍,正方形的边长为72÷8=9 (厘米),一个正方形的面积就是9×9=81(平 方厘米)。
五年级奥数举一反三
【例题1】 已知大正方形比小正方形边长多2厘米, 大正方形比小正方形的面积大40平方厘米。 求大、小正方形的面积各是多少平方厘米?
五年级奥数举一反三
【思路导航】 从图中可以看出,大正方形的面积比小正 方形的面积大出的40平方厘米,可以分成三 部分,其中A和B的面积相等。因此,用40平 方厘米减去阴影部分的面积,再除以2就能得 到长方形A和B的面积,再用A或B的面积除以 2就是小正方形的边长。求到了小正方形的边 长,计算大、小正方形的面积就非常简单了。
五年级奥数举一反三
【例题2】 一个大长方形被两条平行于它的两条边的线段分成四个较小 的长方形,其中三个长方形的面积如下图所求,求第四个长 方形的面积。
【思路导航】 因为AE×CE=6,DE×EB=35,把两个式子相乘 AE×CE×DE×EB=35×6,而CE×EB=14,所以 AE×DE=35×6÷14=15。
三年级奥数长方形和正方形的周长与面积
三年级奥数长方形和正方形的周长与面积------------------------------------------作者xxxx------------------------------------------日期xxxx第一讲正方形和长方形的周长与面积例1、把两个边长是6厘米的正方形拼成一个长方形,这个长方形的周长和面积分别是多少?例2、把一个边长是16分米的正方形纸裁成4个完全一样的小正方形,这4个小正方形的周长和比原来的大正方形的周长增加的多少?例3、你能求出以下图形的周长和面积吗?例4、如图,王阿姨家长7米,宽5米的菜地中间有一条1米宽的小路,求菜地中种植蔬菜的面积是多少?例5、一个长方形,如果长增加3厘米,面积就增加15平方厘米。
如果宽减少3厘米,面积就减少24平方厘米。
求原来长方形的面积?例6、为了更好的开展体育活动,学校准备将长60米、宽40米的长方形操场进行矿建,长增加40米,宽增加20米,操场的面积增加了多少平方米?例7、从一张边长7厘米的正方形纸片中,最多能裁出多少个长4厘米,宽1厘米的长方形纸条?例8、如图是两块大小不同的草坪,重叠部分是一个花坛,求草坪的面积是多少?‘例9、一个正方形的边长是20厘米,中间套着一个长方形,长方形的四个角的这个长方形的面积的多少?例10、有图中大正方形比小正方形的边长长2厘米,大正方形的面积不小正方形的面积多1平方分米。
大正方形的面积是多少平方厘米?练习与思考1、一个长方形是由两个边长是8分米的正方形拼成的,这个长方形的周长和面积分别是多少?2、一根铁丝围成一个长18厘米、宽12厘米的长方形,如果用它重新围成一个正方形,这个正方形的边长是多少厘米?3、把一张边长是9厘米的正方形纸裁成4个完全一样的小正方形,这4个小正方形的周长比原来的大正方形的周长增加了多少?4、把一个长50厘米,宽38厘米的长方形,剪成一个最大的正方形,面积减少了多少平方厘米?5、在一张边长是25厘米的正方形中,剪去一个宽为5厘米的长方形,剩下部分的面积是多少?6、一个长方形,如果长增加4米,面积就增加4000方分米,如果宽减少3米,面积就减少9000平方分米。
最新小学五年级奥数长方形、正方形的面积及答案
思文教育小学五年级奥数第一课时:长方形、正方形的面积一、知识点:长方形面积=长⨯宽正方形面积=边长⨯边长例题一:已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积?2、正方形的一条边增加30厘米,另一条边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形,求这个正方形的边长是多少分米?例题二:一个大长形被两条平行于它的两条边的线分成四个较小的长方形,其中三个长方形的面积如下图所示,求第四个长方形的面积?C6 14A E B? 36D1、下图所示为一个大长形的被分成四个小长方形,其中三个小长形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积?2、下图所示为一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
15 A 1245 24 B3、下图中阴影部分是边长为5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例题三:一个长方形的如果宽不变,长增加6米,面积增加30平方厘米;如果长不变,宽增加3米,面积就增加24平方米,这个长方形原来有多少平方米?1、有一个周长是72厘米的正方形,它是由四个大小相等的小正方形拼成的。
一个小正方形的面积是多少平方分米?2、3、学校操场长220米,宽80米,平整后长减少10米,宽增加了10米,平整后操场的面积比原来大还是小?4、5、有一张长方形纸,长12厘米,宽10厘米。
从这张纸上剪下一个最大的正方形后,剩下部分的面积是多少平方厘米?答案:例一;121 1、156平方米 2、2025平方分米3、17分米例二 15 1、40平方厘米 2、A;8平方厘米 B;36平方厘米 3、441平方厘米例三40平方厘米 1、81平方厘米2、1300平方米3、20平方厘米。
奥数班三年级下册第13讲 正方形和长方形的面积(全文
13
【课堂精练】 5. 教室南面的墙壁,长8米,宽3米。墙上有3个3平方米的窗户。现在要 粉刷这面墙壁,要粉刷的面积是多少平方米?
游泳池的面积÷方砖的面积=块数 游泳池的面积:60 × 30=1800m2
1800m2=180000dm2 块数: 180000÷9=20000块
答:需要20000块。
17
【杯赛试题】 9. 一根铁丝长12米能围成一个长方形,如果长是4米,那么这个长方形 的面积是多少?
长方形的宽=周长 ÷ 2 - 长 宽: 12÷2 - 4=2m
第13讲 正方形和长方形的面积(1)
三年级奥数班
【知识点拨】 一、公式:
长方形的面积=长×宽
正方形的面积=边长×边长
二、基本方法: 公式的使用 分割
拼补
【典型例题】
【典型例题】
例1:从一张长10厘米、宽8厘米的长方形纸片剪出一个面积最大的正方 形,那么剪下的剩余部分的面积是多少?
8cm 2cm
6×2=12cm2
6
4
方法三:
6×8÷4=12cm2
答:第四个长方形的面积是12平方厘米。
8
【典型例题】 例6:一个长方形,长是5米,宽4米,若长扩大3倍,宽扩大2倍,现 在面积是多少平方米?面积扩大多少倍? 现在的长: 5×3=15cm 现在的宽: 4×2=8cm 现在的面积: 15×8=120cm2 原来的面积: 5×4=20cm2 扩大的倍数: 120÷20=6 答:现在的面积是120平方厘米;面积扩大6倍。
三年级奥数第20讲长方形和正方形的面积
第二十讲长方形和正方形的面积知识点:我们都知道长方形和正方形面积的公式是:长方形的面积=a×b(a为长,b为宽)正方形的面积=a×a(a为边长)在生活中,我们利用这两个公式可以求出各种直角多边形的面积。
例如对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或者正方形,分别计算各块的面积再求和,就得出整个图形的面积例1. 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?.(小正方形边长1米)20米同步练习1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长为2米,求水池的面积。
2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下的部分的面积是多少平方厘米?例2. 有一个长方形,如果它的长不变,宽较少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米,求原长方形的面积.同步练习1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原长方形的面积。
2.有一个长方形,如果它的宽减少2米,或者长减少3米那么它的面积都减少24平方米,求原来的这个长方形的面积。
3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形,它的面积减少了多少平方厘米?例3. 有一个正方形水池,如下图的阴影部分,在他的周围修一个宽8米的花坛,花坛的面积是480平方米,求水池的边长。
同步精练1.街心花园中一个正方形花坛四周有一米宽的水泥路。
如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?2.下图是一个长50米,宽25米的标准游泳池。
它的周围铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖的面积。
小学奥数-举一反三-长方形、正方形面积
8
5
例题2
例2 一个大长方形被两条平行于它的两条边的线段分成四 个较小的长方形,其中三个长方形的面积如下图所求,求 第四个长方形的面积。
分析
因为AE×CE=6,DE×EB=35,把两个式子相乘 AE×CE×DE×EB=35×6,而CE×EB=14,所以 AE×DE=35×6÷14=15。
举一反三
第2题解法1
思路分析:设正方形原边长为a, 增加的这边面积=缩短这边的面积 30 ×(a – 18) = a × 18 30a - 30 ×18 = 18a 30a -18a = 30 ×18 12a = 540 a = 540÷12 a = 45(厘米) 原面积=45×45=2025平方0-18)=45
正方形面积=45×45=2025平方厘米
第3题解法1
思路分析:增加部分的面积正好等于三个 长方形面积之和。如果我们把拼成的正方 形的边长当作a,就可以计算出两个阴影长 方形的面积。 5分米 5 × ( a – 8) + 8 ×(a – 5) = 181-5 ×8 13a – 80 = 141 13a = 141 + 80 a = 221÷ 13 a = 17
面积就非常简单了。
2 A
2
B
举一反三
1,有一块长方形草地,长20米,宽15米。在它的四周向外 筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米, 结果得到一个与原正方形面积相等的长方形。原正方形的面 积是多少平方厘米? 3,把一个长方形的长增加5分米,宽增加8分米后,得到一 个面积比原长方形多181平方分米的正方形。求这个正方形 的边长是多少分米?
18 30
面积=30×(a-18)
【讲义】五年级 奥数《举一反三》 第4讲 长方形、正方形的面积
第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些条件比拟隐蔽、图形比拟复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补〞、“平移〞、“旋转〞等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
二、精讲精练【例题1】大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?练习1:1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下列图所求,求第四个长方形的面积。
练习2:1.下列图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影局部的面积。
2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如下图〔单位:平方厘米〕,求A和B的面积。
【例题3】把20分米长的线段分成两段,并且在每一段上作一正方形,两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?练习3:1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。
这块地原来的面积是多少平方米?2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。
原来正方形的面积是多少平方厘米?【例题4】有一个正方形ABCD如下列图,请把这个正方形的面积扩大1倍,并画出来。
练习4:1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽.2.正图的每条边都垂直于与它相邻的边,并且28条边的长都相等。
小学奥数专题: 巧求面积(1)
第二讲巧求面积(1)知识导航一、长方形与正方形的面积1、已知长方形的长与宽,长方形的面积等于长乘宽的积。
2、已知正方形的边长,正方形的面积等于正方形边长的平方。
二、面积计算中的割补法1、如果一个复杂图形经过分割可以变成几个简单图形,可以通过算出简单图形的面积再相加来计算复杂图形的面积。
2、如果一个复杂图形可以看成一个简单图形去掉一个或几个简单图形,再通过算出整体与去掉部分的差来计算复杂图形的面积。
3、有时我们需要先割后补,分割后将分割成的几部分面积重新拼接,将复杂图形的面积转化成一个容易计算的图形面积,然后再进行计算。
典型例题一(基本图形的面积)例1 如图所示,两个正方形的边长分别为a=10厘米和b=20厘米,求阴影部分的面积。
典型例题二(通过分割将复杂图形转化为基本图形)例2 下图中各角度均为直角,求这个图形的面积。
(单位:厘米)练习如图所示,多边形ABEFGD是由一个长方形ABCD及一个正方形CEFG拼成的,线段的长度如图所示,求多边形ABEFGD的面积。
(单位:厘米)典型例题三(割补法求复杂图形的面积)例3 如图所示,小区里的草地长16米,宽8米,草地中间留了宽2米的路,把草地平均分成四块,每一块地的面积是多少?练习一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积。
典型例题四(其他方法求复杂图形的面积)例4 如图所示,一个长方形广场的正中央有一个长方形的水池,水池长8米,宽3米。
水池周围用边长为1米的方砖一圈一圈地向外铺,恰好铺了若干圈,共用了152块砖,那么共铺了多少圈?练习如图所示,从一个正方形的木板上锯下宽1米的一个长方形木条后,剩下的长方形面积为6平方米,问锯下的长方形木条的面积是多少?课后巩固1.一个长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?2.如图所示,街心花园里有一个正方形花坛,四周有一条宽1米的小路,如果小路的面积是12平方米,那么中间花坛的面积是多少平方米?3.如图所示,四边形ABCD为正方形,已知对角线AC长为12厘米,求正方形ABCD的面积。
三年级下册数学奥数试题-长方形和正方形的面积
奥数长方形和正方形的周长和面积【专题精析】一个平面图形的大小叫做它的面积。
长方形面积=长×宽,正方形面积=边长×边长。
面积单位之间的进率为1平方米=100平方分米=10000平方厘米。
例1、已知图中大正方形ABCD 的面积比小正方形AFGE 的面积多216平方厘米。
问:大、小正方形的面积各是多少平方厘米?巩固练习1、如图,是一个长为8厘米,宽5厘米的长方形,从中间剪去一个边长为5厘米的正方形。
问:剩下部分的面积是多少平方厘米?2、求下图的周长和面积(用多种方法)6cm J5cm8cm【拓展提高】 1、求阴影部分的面积。
2、如图正方形鱼池,四周是3米宽的路,路的面积共60平方米。
问:这个鱼池占地面积是多少平方米?3、计算下面阴影部分的面积。
(o 是小正方形的中心点)24cm16cm8cm16cm12cm9cmo6cm4、(1)已知长方形的长为18厘米,如果长方形的宽增加6厘米,等到的长方形面积为原来的3倍,那么原长方形的面积是多少平方厘米?(2)一个长方形由一根长120厘米的铁丝围成,已知长方形的长比宽多12厘米,那么围成的长方形面积是多少平方厘米?5、一个长方形被2条直线分成4部分,其中三个长方形的面积分别是80平方厘米,20平方厘米和50平方厘米。
问:图中阴影部分面积是多少平方厘小学数学文化知识阿基里斯追不上乌龟历曾经有一个非常的逻辑学悖论,叫阿基里斯追不上乌龟。
内容很有趣,说的是一名长跑运动员叫阿基里斯。
一次,他和一只乌龟赛跑。
假设运动员的速度是乌龟的12倍,这场比赛的结果是显而易见的,乌龟一定会输。
现在我们把乌龟的起跑线放在运动员前面12千米处。
那么结果会是如何呢?有人认为,这名运动员永远也追不上乌龟!理由是:当运动员跑了12千米时,那只乌龟也跑了1千米,在运动员的前面。
当运动员又跑了1千米的时候,那只乌龟又跑了1/12千米,还是在运动员前面。
就这样一直跑下去,虽然每次距离都在拉近,但是运动员每次都必须先到达乌龟的起始地点,那么这时又相当于他们两个相距一段路程跑步了。
三年级奥数6
第六讲长方形与正方形面积巧算知识概述长方形的面积=长×宽正方形的面积=边长×边长在生活中我们会计算很多直角图形的面积,但又直接求不出来,需要将其切割成正方形,长方形来分开计算。
例题讲解例1、有一块长30米,宽20米的长方形草地,中间是一个边长5米的花池,求草坪的面积。
思路点拨:在解决有关图形的题时,我们要学会应用画图解题,画图可以把已知条件和问题变得一目了然,更便于问题的解决。
20从图中我们可以看出:草坪的面积=长方形的面积-正方形的面积。
30×20﹣5×5=575(平方米)答:练习:1、有一个长方形水池长10米,是宽的2倍,中间有一个正方形的雕塑,边长为2米,求水池中有水的面积。
2、用一根长36米的绳子围成一个正方形,它的面积是多少?如果用它围成一个长12米的长方形,它的面积是多少?例2、有一个长方形,如果它的长不变,宽减少2米,则面积就减少12平分米,如果它的宽不变,长增加3米,则面积就增加12平方米,则原来长方形的面积是多少?思路点拨:画图解题2从上图中我们可以看出面积为12平方米的长方形的宽是2米,根据长方形的面积公式我们可以计算出这个长方形的长也就是原长方形的长12÷2=6(米)同理:从图中我们可以看到面积为12平方米的长方形的宽为3米,则可求得此长方形的长即原长方形的宽12÷3=4(米)解:长:12÷2=6(米)宽:12÷3=4(米)面积:6×4=24(平方米答:练习:3、一个长方形,如果宽不变,长增加4米,面积就增加24平方米,如果长不变,宽增加3米,面积就增加36平方米,则原来长方形的面积是多少?4、一个长方形,长36厘米,如果长减少6厘米,就变为一个正方形,它的面积减少了多少?例3、有一个正方形花坛,如下图的阴影部分,在它的周围铺满草坪。
草坪的宽为8米,面积为480平方米,求花坛的边长。
思路点拔:根据题意可知图中空白部分的面积是480平方米,我们可以把它切割成下图的几个部分,从图中可以看出切割出来的四个角上都是边长为8米的正方形,8480-8×8×4=224(平方米),即剩下的四个长方形的面积,每个长方形的面积=224÷4=56(平方米),而每个长方形的一条边是8米,由长方形的面积公式可求出小长方形的另一条边的长,即花坛的边长。
《小学奥数》小学五年级奥数讲义之精讲精练第4讲 长方形、正方形的面积含答案
第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?练习1:1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
练习2:1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
【例题3】把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?练习3:1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。
这块地原来的面积是多少平方米?2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。
原来正方形的面积是多少平方厘米?【例题4】有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。
练习4:1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽.2.正图的每条边都垂直于与它相邻的边,并且28条边的长都相等。
四年级奥数专题第13讲 长方形与正方形的面积(二)
第13讲 长方形与正方形的面积(二)例1右图的长方形被分割成5个正方形,已知长方形的面积为120平方厘米,长方形的长是多少厘米?宽是多少厘米?例2在一块长60米,宽40米的长方形庭院正中央,设计了“丁字形”甬路.已知甬路宽2米,横甬路到两边的距离相等,竖甬路到两边距离也相等.如图.(1)求“丁字形”甬路的周长是多少米?(2)求“丁字形”甬路的面积是多少平方米?例3右图的长方形被分割成大小不等的6个正方形,已知中央的小正方形的面积为1平方厘米,长方形的面积是多少平方厘米?例4用同样大小的长方形纸片摆成下图,已知每张小纸片的宽是12厘米,求阴影部分的面积.习 题1.用四个相同的长方形拼成一个面积为100平方厘米的大正方形(见右图),每个长方形的周长是多少厘米?2.将一个正方形划分为9个小长方形,如图,这些小长方形周长的总和是96厘米,这个大正方形的面积是多少平方厘米?3.右图中有9个小长方形.按其编号1,2,3,4,5号的面积分别是1平方米、2平方米、3平方米、4平方米、5平方米,那么6号长方形的面积是多少平方米?4.要砌一个面积是72平方米的长方形猪圈,当以米为长度单位时,长方形的边长都是自然数,这个猪圈的围墙总长最少是多少米?5.右图中5个阴影所示的图形都是正方形,所标的数字是邻近线段的长度.那么阴影所示的5个正方形面积之和是多少?6.下图大正方形的面积是128平方厘米,阴影部分的总面积是多少平方厘米?7.四个一样的长方形和一个小正方形拼成一个大正方形,大小正方形的面积分别为64平方厘米和9平方厘米.长方形的面积是多少平方厘米?8.一个长方形,如果宽不变,长增加8米,面积增加72平方米,如长不变,宽减少4米,面积减少48平方米.原长方形面积是多少?9.有两个完全相同的长方形,如果把它们的长连在一起拼成一个新长方形,周长比原一个长方形增加10厘米;如果宽连一起拼成一个新长方形,周长比原一个长方形增加16厘米.求原每个长方形的面积.10.某工厂的一座新厂房建筑在一块边长是25米的正方形场地上,厂房的横竖都宽5米,如图.(1)求工字形新厂房的周长是多少米?(用最简单的方法解答)(2)工字形新厂房的面积是多少平方米?8 cm米。
小学奥数长方形正方形面积求解(二)
× 花圃的面积
需要知道
花圃里可以种的鲜花数:
已知 长 × 宽
200×6=1200(株)
花圃的面积:
上一张 下一张
每平方米种6株花
25×8=200(平方米)
4.数学课本长26厘米,宽18厘米,用下面这张纸包书皮合 适吗?
40厘米
30厘米
上一张
下一张
解析
包书皮的时候需要将书的封面封底都要包好
40厘米
上一张 下一张
思路二这种方法在实际生活中是不
可取的,面积相同的图形可以是各种形 状,这张纸的面积虽然大于课本封面封 底的面积和,可能实际是这张纸又细又 长无法包数学书。
60厘米
18厘米
26 厘 米
20 厘 米
上一张
பைடு நூலகம்下一张
5. 教室北面的墙壁长 7米,宽 3 米,其中有 2 扇窗户,每扇 窗户的面积是 4 平方米。现在要粉刷这面墙壁,要粉刷的
答:收割机半小时可以给4500平方米的麦田收割
上一张
下一张
3. 在一个长是 25 米、宽是 8 米的长方形花圃里种鲜花,如
果每平方米的地方正好适合种 6 株花,那么这个花圃里一
共可以种多少株鲜花?
25米
8米
上一张
下一张
解析
要求这个花圃里一共可以种多少株鲜花
需要知道
花圃里可种1200株的鲜花数
每平方米种6株花
1200米
压路机压路的宽度是2米
2米 上一张 下一张
有一辆收割机,每分钟行驶 75米,收割的宽度是 2米。收 割机半小时可以给多少平方米的麦田收割?
上一张 下一张
解析
方法一:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础奥数之十六——长方形和正方形(面积)
例1.一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪(如图1),草坪的面积是多少平方米?
例2.图2是由6个相等的三角形拼成的图形,求这个图形的面积。
例3.已知图3中大正方形比小正方形的边长多4厘米,大正方形面积比小正方形多96平方厘米。
大正方形和小正方形的面积各是多少?
例4.如图4,正方形中套着一个长方形,正方形的边长是15厘米,长方形的四个角的顶点,恰好分别把正方形四条边都公成两段,其中长的一段是短的2倍。
这个长方形的面积是多少?
例5.如图5,已知正方形ABCD 的边长为6分米,长方形BCEF 和长方形AGHD 的面积分别为24平方分米和20平方分米,求阴影部分和面积。
例6.一个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的纸条,请画图说明。
1米
20米
图1
4分
图2
图3
4
15 厘 米
图 4
练习与思考
1.用长36厘米长的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?
2.有一个长方形的市民广场,长100米,宽80米。
广场中间留了宽4米的人行道,把广场平均分成四块(如图6),每一块的面积是多少?
3.图7是由12个相等的三角形拼成的,这个图形的面积是多少?
4.如图8,已知大正方形的面积比小正方形多52平方分米,大正方形比小正方形的边长多2分米。
小正方形的面积是多少?大正方形的面积是多少?
5.图9是由9个小长方形组成的,按图中编号,第1,2,3,4,5号的面积分别是1平方米,2平方米,3平方米,4平方米,5平方米,那么,第6号长方形和面积是多少呢?
6.如图10,一个正方形中套着一个长方形,已知正方形的边长是16分米,长方形的四个角的顶点恰好把正方形四条边都分成两段,其中长的一段是短的3倍。
阴影部分的面积是多少?
7.图11中阴影部分的面积是多少?
8.把一块长6分米,宽5分米的长方形钢板,截成长3分米波,宽2
分米的小长方形钢板,最多能截几块?请画图说明。