第三章空间力系

合集下载

(完整版)第23次课空间力系

(完整版)第23次课空间力系

课时授课计划第23次课【教学课题】:第三章空间力系【教学目的】:理解空间力系的平衡条件【教学重点及处理方法】:空间力系平衡问题的平面解法处理方法:详细讲解【教学难点及处理方法】:空间力系的平衡空间力系的定义,空间力系的计算及平衡问题。

处理方法:结合例题分析讲解【教学方法】: 讲授法【教具】:三角板【时间分配】:引入新课 5min新课 80 min小结、作业 5min第二十三次课【提示启发引出新课】力系中各力的作用线不在同一平面内,该力系称为空间力系。

根据力的作用线的关系可以分为空间汇交力系、空间平行力系、空间任意力系。

本次课讨论空间力系的平衡问题。

【新课内容】第三章空间力系空间力系——各力的作用线不在同一平面内的力系。

3.1 力的投影和力对轴之矩3.1.1力在空间直角坐标轴上的投影1.一次投影法设空间直角坐标系的三个坐标轴如图所示,已知力F与三个坐标轴所夹的锐角分别为α、β、γ,则力F在三个轴上的投影等于力的大小乘以该夹角的余弦,即2.二次投影法有些时候,需要求某力在坐标轴上的投影,但没有直接给出这个力与坐标轴的夹角,而必须改用二次投影法。

如图所示,若已知力F与z轴的夹角为,力F和z轴所确定的平面与x轴的夹角为,可先将力F在oxy平面上投影,然后再向x、y轴进行投影。

则力在三个坐标轴上的投影分别为反过来,若已知力在三个坐标轴上的投影Fx、Fy、Fz,也可求出力的大小和方向,即例3-1 斜齿圆柱齿轮上A点受到啮合力Fn的作用,Fn沿齿廓在接触处的法线方向,如图所示。

n 为压力角,β为斜齿轮的螺旋角。

试计算圆周力Ft、径向力Fr、轴向力Fa的大小。

解建立图示直角坐标系Axyz,先将法向力Fn向平面Axy投影得Fxy,其大小为 Fxy=Fncos n向z轴投影得径向力 Fr=Fnsin n然后再将Fxy向x、y轴上投影,如图所示。

因 =β,得圆周力Ft=Fxycosβ=Fncos ncosβ轴向力 Fa=Fxysinβ=Fncos nsinβ3.1.2力对轴之矩在平面力系中,建立了力对点之矩的概念。

空间力系的平衡

空间力系的平衡
所示,重力G与三轮地面反力FNA、FNB、FNC构成空间平行力系。 (2) 选取坐标系Hxyz(点H为坐标原点)。 (3) 列平衡方程求解。
∑Mx(Fi)=0 FNC·CH-G·ED=0 ∑My(Fi)=0 G·EF+FNB·HB-FNA·AH=0 ∑Fz=0 FNA+FNB+FNC-G=0
解得:FNA=0.95 kN, FNB=0.05 kN, FNC=0.5kN
力对轴之矩等于零的情形:① 当力与轴相交时(d=0), ② 当力与轴平行时(Fxy=0)。即当力与轴共面时,力对轴之 矩为零。
第3章 空间力系的平衡
z
z


z -+
图 3.6
第3章 空间力系的平衡 3.2.2 合力矩定理
设有一空间力系F1、F2、…、Fn,其合力为FR,则合力对 某轴之矩等于各分力对同轴之矩的代数和,表达式为
第3章 空间力系的平衡
C
D 45° B
45 ° FB
45 °
FC O
G
A
(a)
G2
0.8 m C G
1
0.6 m 0.6 m
0.2 m
A NA
NC B
2m
NB
(b)
160 200 160
FAz Fr2 A
Ft2 r2 r1
FB2 B
FAx
Fr1 F FBx
t1
(c)
图 3.1
第3章 空间力系的平衡
5 4 68.6N 34 5
F3y F3 cos cos 100
5 3 51.5N 34 5
F3z F3 sin 100
3 51.5N 34
第3章 空间力系的平衡 (2) 计算力对轴之矩。

力学第三章空间力系

力学第三章空间力系

第三章空间力系二、基本内容1. 基本概念1) 力在空间直角坐标轴的投影(a) 直接投影法:巳知力F 和直角坐标轴夹角a 、丫,则力F 在三个轴上的投 影分别为X = F cos aZ = Feos/(b) 间接投影法(即二次投影法):巳知力F 和夹角八°,则力F 在三个轴上的 投影分别为X = F sin/cos^9Y = F sin/sin 。

Z = F cos/2) 力矩的计算(a) 力对点之矩—、目的和要求能熟练地计算力在空间直角坐标轴上的投影。

熟练掌握力对点之矩与力对轴之矩的计算。

对空间力偶的性质及其作用效应有清晰的理解。

了解空间力系向一点简化的方法,明确空间力系合成的四种结果。

能正确地画出各种常见空间的约束反力。

会应用各种形式的空间力系平衡方程求解简单空间平衡问题。

对平行力系中心和重心应有清晰的概念,能熟练地应用坐标公式求物体 的重心。

1、2、3、4、5、6^ 7、在空间情况下力对点之矩为一个定位矢量,其定义为i j kM0(F) = rx F = x y z = (yZ - zY)i + (zX - xZ)j + (xY - yX)kX Y Zr = xi + yj + zk F = Xi+ Yj + Zk其中尸为力尸作用点的位置矢径(b)力对轴之矩在空间情况下力对轴之矩为一代数量,其大小等于此力在垂直于该轴的平面上的投影对该轴与此平面的交点之矩,其正负号按右手螺旋法则来确定,即M Z(F) = ±F u,h = +2AOAB在直角坐标条下有Mx (乃=yZ-zY M y (F)=zX-xZ M z (F) =xY-yX(c)力矩关系定理力对己知点之矩在通过该点的任意轴上的投影等于同一力对该轴之矩。

在直角坐标系下有Mo(F)^M x(F)i+My(F)j+M2(F)k(d)合力矩定理空间力系的合力对任一点之矩等于力系中各力对同一点之矩的矢量和,即Mo g)二 W, (F)空间力系的合力对任一轴(例如z轴)之矩等于力系中各力对同一轴之矩的代数和,即M z(F R)=ZM z(F)=Z(xY-yX)3)空间力偶及其等效条件(a)力偶矩矢空间力偶对刚体的作用效果决定于三个要素(力偶矩大小、力偶作用面方位及力偶的转向),它可用力偶矩矢肱表示。

第三章力系的平衡介绍

第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学

空间力系

空间力系

第三章 空间力系一、空间汇交力系(一)空间汇交力系的合成 1.空间力在坐标轴上的投影 (1)一次投影法如图3-1所示,若已知力F 与三个坐标轴x,y,z 间的夹角分别为θ、β和γ,则力F 在三个坐标轴上的投影分别为⎪⎭⎪⎬⎫===γβθcos cos cos z y x F F F (3.1)图3-1相应的,若已知力F 的三个投影,可以求出力F 的大小和方向,即大小为 222z y x F F F F ++=(3.2)方向 ⎪⎪⎪⎭⎪⎪⎪⎬⎫===F FF F F F z yx γβθcos cos cos(3.3)(2)二次投影法如图3-2所示,若已知力F 与坐标轴Oxy 的仰角γ以及力F 在Oxy 平面上的投影xy F 与x 轴间的夹角ϕ,则力F 在三个坐标轴上的投影分别为γϕλϕγsin sin in cos in F F Fs F Fs F z y x ===,,图3-22.合力投影定理 合力在某轴上的投影,等于各分力在同一坐标轴上投影的代数和。

即∑=+++=xixn x x Rx FF F F F 21 同理 ∑∑==ziRz yi RyF F F F ,3.空间共点力系的合成空间共点力系可以合成为一个合力,该合力的作用线通过力系的公共作用点,合力的大小和方向为()()()222∑∑∑++=zyxR F F F F (3.4)()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫===∑∑∑R z R R yRR xRF F F F F F k F j F i F ,cos ,cos ,cos(3.5)(二)空间汇交力系的平衡 1.空间汇交力系的平衡条件空间汇交力系平衡的充要条件是合力等于零,即()()()0222=++=∑∑∑zyxR F F F F2.空间汇交力系的平衡方程根据平衡条件,得到空间汇交力系的平衡方程为⎪⎪⎭⎪⎪⎬⎫===∑∑∑000y x zFFF(3.6)利用上述三个方程,可以求解3个未知量。

第三章 第四节 空间力系的简化

第三章 第四节 空间力系的简化
O O O O'
' FR
'' ' FR d FR FR
O'
d FR
MO(FR) =MO=SMO(F ) Mx(FR)=SMx(F )
空间力系对点(轴)之矩的合力矩定理
4. 空间力系简化为力螺旋的情形 FR' ≠0 MO ≠ 0且FR' // MO 力螺旋 ' FR MO ' FR ' FR MO O O O 右螺旋 力系的中心轴:力螺旋中力的作用线 左螺旋
F1' M2 M1
F2'
O
FR' MO
Fn' ห้องสมุดไป่ตู้M F3' Mn 3 Mi=MO(Fi )
2. 主矢和主矩 主矢:空间力系中所有各力的矢量和 (与简化中心的位置无关)
FR'= SF
主矩:各力对于任选的简化中心 O之矩的矢量和 MO=SMO(F ) (一般与简化中心的位置有关)
三、空间力系的简化结果 合力矩定理 1. 空间力系平衡的情形 FR' =0 MO=0 2. 空间力系简化为一合力偶的情形 FR' =0 MO≠0 (主矩与简化中心的位置无关) 3. 空间力系简化为一合力的情形 合力矩定理 (1) FR' ≠0 MO=0 合力的作用线通过简化中心O,合力矢等于原力系的主矢。 (2) FR' ≠0 MO ≠ 0且FR' ⊥ MO 合力的作用线通过另一点O ' ,d=MO /FR MO
一、空间力的平移定理 空间力的平移定理:作用在刚体上的一个力,可平行移至刚体 中任意一指定点,但必须同时附加一力偶,其力偶矩矢等于原 力对于指定点的力矩矢。
第四节 空间力系的简化

空间任意力系的简化结果分析

空间任意力系的简化结果分析

FT
6 P 100 6
6N (拉力)
Mil1 0
FAx 4 FT1
4 20 20
FAx
30பைடு நூலகம்6

FT

2 100N 20
Mil2 0
FAx 4 FAy 2 0
FAy 2FAx 200 N
z

E FAz
2m
FAx
A

0时,空间力系为平衡力系

7
§3–2 空间力系的平衡
平衡力系所要满足的条件称为力系的平衡条件。
1.空间力系的平衡条件

任意空间力系平衡的充要条件是:力系的主矢 定点O的主矩 M O 全为零。
FR
和对任一确

n
FR Fi 0
i 1
n
(7.1)
M O M O (Fi ) 0
sin BC
42 32
0.8944
AB
42 32 2.52
cos 0.4472
sin CD
4
0.8
BC
42 32
cos BD
3
0.6
BC
42 32
z 4m
600
F2
F1
F3
x
Fx F sin cos 1500 0.8944 0.6 805N

3
主矢和主矩的计算
主矢—通过投影法
先计算得到主矢在 各轴上的投影
根据它们,可得到 主矢的大小和方向
n
FRx
Fxi
i 1
n
FRy

工程力学:第三章 空间问题的受力分析

工程力学:第三章 空间问题的受力分析

。CDB平面与水平
面间的夹角
,物重
。如起重杆的重量不计,试求
起重杆所受的压力和绳子的拉力。
解:取起重杆AB与 重物为研究对象。
取坐标轴如图所示。 由已知条件知:
列平衡方程 解得
§3-3 力对轴的矩 力F对z轴的矩就是分力Fxy 对点O的矩, 即
力对轴的矩是力使刚体绕该 轴转动效果的度量、是一个 代数量。
空间力偶系平衡的必要和充分条件是:该力偶系的合力偶矩等 于零,亦即所有力偶矩矢的矢量和等于零,即
由上式,有 欲使上式成立,必须同时满足
空间力偶系未知量)
空间力偶系平衡的必要和充分条件为:该力偶系中所有各力偶 矩矢在三个坐标轴上投影的代数和分别等于零。
§3-5 空间任意力系的平衡方程
可将上述条件写成空间任意力系的平衡方程
注:1.与平面力系相同,空间力系的平衡方程也有其它的形式。 2.六个独立的平衡方程,求解六个未知量。 3.可以从空间任意力系的普遍平衡规律中导出特殊情况的 平衡规律,例如空间平行力系、空间汇交力系和平面任意 力系等平衡方程。
例:设物体受一空间平行力系作用。 令z轴与这些力平行,则
绝对值: 该力在垂直于该轴的平面上的投影对于 这个平面与该轴的交点的矩的大小。
正负号: 从z轴正端来看,若力的这个投影使物体绕该轴 按逆时针转向转动,则取正号,反之取负号。
也可按右手螺旋规则来确定其正负号,如图所 示,姆指指向与z轴一致为正,反之为负。
当力与轴在同一平面时,力对该轴的矩等于零:
(1)当力与轴相交时 (此时h=0);
(三个方程,可 求解三个未知量)
空间汇交力系平衡的必要和充分条件为:该力系中所有各力 在三个坐标轴上的投影的代数和分别等于零。

第3章-平面与空间一般力系

第3章-平面与空间一般力系
【解】 土压力 FR 可使挡土墙绕A点倾覆,
故求土压力 FR使墙倾覆的力矩,就是求 FR
对A点的力矩。由已知尺寸求力臂d不方便,但如果将
FR分解为两分力 F1 和 F2
M A (FR ) M A (F1) M A (F2 )
F1h / 3 F2b

=FR cos 30
=150kN 3
1h3.5m -F1R50siknN301h1.5m
注意:主矢与简化中心位置无关,主矩则有关。因此说
到力系的主矩时,必须指出是力系对于哪一点的主矩。
主矢的解析表达法
R RX 2 RY 2
RX X1 X 2 X n X1 X 2 X n X
同理: RY Y
R X 2 Y 2
Tan RY Y RX X
M0=∑M0=M0(F1)+M0(F2)+…M0(Fn)=∑M0(F)
又B处的支座反力垂直于支持面,要形成与已知力偶M反向的 力偶,B处的支座反力 FB 方向只能斜向上,A处的支座反力
FA 的方向斜向下,作用线与 FB 平行,且有 FA FB
n
由平衡条件 Mi 0 ,得: i 1
FB d M 0
30°
FB (4m sin 30 ) 20MkN m 0
n
Mi 0
i 1
【例题3-3】 如图3-10(a)所示的简支梁AB,受一力偶的作用。
已知力偶 M 20kN m ,梁长l 4m ,梁的自重不计。 求梁A、B支座处的反力。
30°
M
A B
4m
60°
d
M
A FA
B FB 4m
【解】 取梁AB为研究对象,梁AB上作用一集中力偶M且保持 平衡,由于力偶只能用力偶来平衡,则A、B处的支座反力必形 成一对与已知力偶M反向的力偶

理论力学-空间力系

理论力学-空间力系

第三章空间力系一、是非题1.一个力沿任一组坐标轴分解所得的分力的大小和这力在该坐标轴上的投影的大小相等。

()2.在空间问题中,力对轴的矩是代数量,而对点的矩是矢量。

()3.力对于一点的矩在一轴上投影等于该力对于该轴的矩。

()4.一个空间力系向某点简化后,得主矢’、主矩o,若’与o平行,则此力系可进一步简化为一合力。

()5.某一力偶系,若其力偶矩矢构成的多边形是封闭的,则该力偶系向一点简化时,主矢一定等于零,主矩也一定等于零。

()6.某空间力系由两个力构成,此二力既不平行,又不相交,则该力系简化的最后结果必为力螺旋。

()7.一空间力系,若各力的作用线不是通过固定点A,就是通过固定点B,则其独立的平衡方程只有5个。

()8.一个空间力系,若各力作用线平行某一固定平面,则其独立的平衡方程最多有3个。

()9.某力系在任意轴上的投影都等于零,则该力系一定是平衡力系。

()10.空间汇交力系在任选的三个投影轴上的投影的代数和分别等于零,则该汇交力系一定成平衡。

()二、选择题1.已知一正方体,各边长a,沿对角线BH作用一个力,则该力在X1轴上的投影为。

①0;②F/2;③F/6;④-F/3。

2.空间力偶矩是。

①代数量;②滑动矢量;③定位矢量;④自由矢量。

3.作用在刚体上仅有二力A、B,且A+B=0,则此刚体;作用在刚体上仅有二力偶,其力偶矩矢分别为M A、M B,且M A+M B=0,则此刚体。

①一定平衡;②一定不平衡;③平衡与否不能判断。

4.边长为a的立方框架上,沿对角线AB作用一力,其大小为P;沿CD边作用另一力,其大小为3P/3,此力系向O点简化的主矩大小为。

①6Pa;②3Pa;③6Pa/6;④3Pa/3。

5.图示空间平行力系,设力线平行于OZ轴,则此力系的相互独立的平衡方程为。

①Σmx()=0,Σmy()=0,Σmz()=0;②ΣX=0,ΣY=0,和Σmx()=0;③ΣZ=0,Σmx(F)=0,和Σm Y()=0。

工程力学—空间力系力的投影

工程力学—空间力系力的投影
第三章 空间力系 空间一般力系:各力的作用线在空间任意分布的力系。
平面汇交力系、平面平行力系、平面一般力系都是它的特 殊情况。
设直角坐标系Oxyz如
图所示,已知力 与 F
x﹑y﹑z 轴间的夹角分别为
z
﹑ ﹑ 。 则力 在 F
x﹑y﹑z 轴上的投影Fx﹑ Fy﹑Fz 分别为:
Fx F cos
Fz F Fx o
y
Fy F cos
x
Fy
Fz F cos
注意
Fx﹑Fy﹑Fz为代数量。
二次投影法
z
Fx F sin cos Fy F sin sin Fz F
Fz F cos
力的正交分解
i、 j、k分别为x、y、z
Fx o
x
Fy
y
Fxy
方向的单位矢量,若以 ﹑F
x、y、z 的三个正交分量,则
合力的大小为
F Fx2 Fy2 Fz2 1643 N
合力与 x、y、z 轴的夹角分别为
arccosFx arccos 300 79o29
F
1643
arccosFy arccos 600 68o35
F
1643
arccosFFz arccos11654030
arccos(0.9130 ) 155 o55
F Fz
Fx Fy
x
﹑F
y分F别z表示
沿直F角坐标轴
F Fx Fy Fz Fxi Fy j Fzk
已知力的三个投影,求力的大小和方向的公式
F Fx2 Fy2 Fz2
arccosFxFΒιβλιοθήκη arccosFyF
注意
arccosFz
F
力的投影和分量的区别:

理论力学空间力

理论力学空间力

理论力学空间力————————————————————————————————作者:————————————————————————————————日期:第三章空间力系一、是非题1.一个力沿任一组坐标轴分解所得的分力的大小和这力在该坐标轴上的投影的大小相等。

()2.在空间问题中,力对轴的矩是代数量,而对点的矩是矢量。

()3.力对于一点的矩在一轴上投影等于该力对于该轴的矩。

()4.一个空间力系向某点简化后,得主矢R’、主矩M o,若R’与M o平行,则此力系可进一步简化为一合力。

()5.某一力偶系,若其力偶矩矢构成的多边形是封闭的,则该力偶系向一点简化时,主矢一定等于零,主矩也一定等于零。

()6.某空间力系由两个力构成,此二力既不平行,又不相交,则该力系简化的最后结果必为力螺旋。

()7.一空间力系,若各力的作用线不是通过固定点A,就是通过固定点B,则其独立的平衡方程只有5个。

()8.一个空间力系,若各力作用线平行某一固定平面,则其独立的平衡方程最多有3个。

()9.某力系在任意轴上的投影都等于零,则该力系一定是平衡力系。

()10.空间汇交力系在任选的三个投影轴上的投影的代数和分别等于零,则该汇交力系一定成平衡。

()二、选择题1.已知一正方体,各边长a,沿对角线BH作用一个力F,则该力在X1轴上的投影为。

①0;②F/2;③F/6;④-F/3。

2.空间力偶矩是。

①代数量;②滑动矢量;③定位矢量;④自由矢量。

3.作用在刚体上仅有二力F A、F B,且F A+F B=0,则此刚体;作用在刚体上仅有二力偶,其力偶矩矢分别为M A、M B,且M A+M B=0,则此刚体。

①一定平衡;②一定不平衡;③平衡与否不能判断。

4.边长为a的立方框架上,沿对角线AB作用一力,其大小为P;沿CD边作用另一力,其大小为3P/3,此力系向O点简化的主矩大小为。

①6Pa;②3Pa;③6Pa/6;④3Pa/3。

5.图示空间平行力系,设力线平行于OZ轴,则此力系的相互独立的平衡方程为。

第3章 空间力系2

第3章 空间力系2

矩一般将随着简化中心的位臵
不同而改变。
空间任意力系向任一点简化的结果,可得到一力和一力偶,
该力作用于简化中心;
其力矢等于力系的主矢; 该力偶的力偶矩矢等于力系对于简化中心的主矩。
2.空间任意力系的简化结果分析(四种情形)
1 简化结果为一力偶 主矢F’R=0,主矩MO≠0。此力系简化结果与简化中心位臵无关。
又有 F2=2F1
F1 3 000 N F2 6 000 N FAx 1 004 N FAz 9 397 N FBx 3 348 N FBz 1 799 N
29
§ 3-6 重心
1. 平行力系的中心(解析推导)
假定力系Fi,i=1,2,…,n,关于z轴
平行,作用点在(xi, yi, zi),合力为FR,
M Ox ( yi Fzi z i Fyi ) M Oy ( z i Fxi xi Fzi ) M Oz ( xi Fyi y i Fxi )
8
简化理论依据:力线平移定理
M M 0 (F )
o d
F F
o A
力线平移定理:作用于刚体上的任一力,可平移至刚体的任意一点,
解以上各式得
R ( R R sin 30 ) FBN p sin 30 mgR sin 30 0 2
M AC (F ) 0,
FAN 66 N , FBN 66 N , FCN 166 N
圆桌对地面的压力为
F ' AN 66 N , F 'BN 66 N , F 'CN 166 N
§3-3 空间力偶
1. 概念

力偶是力系的基本元素。由一对等值、反向不共线的力组成。

第三章 空间力系

第三章  空间力系

第三章 空间力系一、 判别题(正确和是用√,错误和否用×,填入括号内。

) 4-1 力对点之矩是定位矢量,力对轴之矩是代数量。

( √ )4-2 当力与轴共面时,力对该轴之矩等于零。

( √ )4-3 在空间问题中,力偶对刚体的作用完全由力偶矩矢决定。

( √ )4-4 将一空间力系向某点简化,若所得的主矢和主矩正交,则此力系简化的最后结果为 一合力。

( √ )4-5 某空间力系满足条件:ΣΣΣΣy x y F 0,Z 0,M (F )0,M (F )0====,该力系简化的最后结果可能是力、力偶或平衡。

( √ )4-6 空间力对点之矩矢量在任意轴上的投影,等于该力对该轴之矩。

( × ) 4-7 空间力对点之矩矢量在过该点的任意轴上的投影等于该力对该轴之矩。

( √ ) 4-8 如果选取两个不同的坐标系来计算同一物体的重心位置,所得重心坐标相同。

( × )4-9 重心在物体内的位置与坐标系的选取无关。

( √ )4-10 如题图4-10所示,若力F 沿x 、y 、z 轴的分力为F x 、F y 和F z ,则力F 在x 1轴上的投影等于F x 和F z 在x 1轴上的投影的代数和。

( √ )4-11 在题图4-10中,当x 1轴与z 轴间的夹角⎪⎭⎫ ⎝⎛=c b arctg ϕ时,力F 才能沿x 1轴和y 轴分解成两个分量。

( √ ) 4-12 由n 个力系组成的空间平衡力系,若其中(n -1)个力相交于A 点,则另一个力也一定通过A 点。

( √ )4-13 空间汇交力系在任选的三个投影轴上的投影的代数和分别为零,则汇交力系一定平衡。

( × )4-14 某空间力系由两个力组成,此二力既不平行,又不相交,则该力系简化的最终结果为力螺旋。

( √ )4-15 空间任意力系的合力(如果存在合力)的大小一定等于该力系向任一点简化的主矢大小。

( √ )题4-10图4-16 任一平衡的空间汇交力系,只要A 、B 、C 三点不共线,则∑M A (F ) = 0,∑M B (F ) = 0和∑M C (F ) = 0是一组独立的平衡方程。

工程力学第3章空间力系的平衡

工程力学第3章空间力系的平衡
缺点
计算量大,需要较高的数学水平。
几何法求解空间力系平衡问题
几何法
通过几何图形来描述物体的运动状态和受力 情况,通过观察和计算几何关系得到物体的 运动轨迹和受力情况。
优点
直观易懂,适用于简单运动和受力情况。
缺点
精度低,容易受到主观因素的影响。
代数法求解空间力系平衡问题
1 2
代数法
通过代数方程来描述物体的运动状态和受力情况, 通过解代数方程得到物体的运动轨迹和受力情况。
平衡方程形式
空间力系的平衡方程为三个平衡方程,分别表示力在x、y、z轴上 的平衡。
空间力系的平衡方程应用
解决实际问题
利用空间力系的平衡方程,可以 解决实际工程中的受力分析问题, 如梁的受力分析、结构的稳定性 分析等。
简化问题
通过将复杂的问题简化为简单的 空间力系问题,可以更方便地求 解问题。
验证实验结果
优点
适用范围广,可以用于解决各种复杂问题。
3
缺点
计算量大,需要较高的数学水平。
04
空间力系平衡问题的实例分 析
平面力系的平衡问题实例分析
总结词
平面力系平衡问题实例分析主要涉及二维空间中的受力分析,通过力的合成与分解,确定物体在平面内的平衡状 态。
详细描述
在平面力系中,物体受到的力可以分解为水平和垂直方向的分力。通过分析这些分力的合成与平衡,可以确定物 体在平面内的稳定状态。例如,在桥梁设计中,需要分析桥墩受到的水平风力和垂直压力,以确保桥墩的稳定性。
平衡条件
物体在空间力系作用下,满足力矩平衡、力矢平衡和 力平衡三个条件。
空间力系的简化
01
02
03
力矩
描述力对物体转动效应的 量,由力的大小、与力臂 的乘积决定。

理论力学 第3章

理论力学 第3章

• 作业: • 习题 3-6,3-12
§ 3-5 空间任意力系的平衡方程
1. 空间任意力系的平衡方程 空间任意力系平衡的必要和充分条件:
该力系的主矢r 和对于r 任一点的主矩都为零 FR 0, MO 0
Fx 0 Fy 0 Fz 0
Mx 0 My 0 Mz 0
所有各力在三个坐标轴中每一个轴上的投影的 代数和等于零,以及这些力对于每一个坐标轴的 矩的代数和也等于零。
解析法表示:
M M xi M y j M zk
Mx 0 My 0 Mz 0
——空间力偶系的平衡方程
例3-5 已知:在工件四个面上同时钻5个孔,每个 孔所受切削力偶矩均为80N·m.
求:工件所受合力偶矩在 x, y轴, z上的投影.
解:
把力偶用力偶矩 矢表示,平行移到 点A .
Mx Mix M3 M4 cos45 M5 cos45 193.1N m
力螺旋 由一力和一力偶组成的力系,其中
的力垂直于力偶的作用面
(1)FR 0, M O 0, FR // M O
中心轴过简化中心的力螺旋
钻头钻孔时施加的力螺旋
r r rr (2)FR 0, MO 0,既FR不, M平O行也不垂直,成任意夹

力螺旋中心轴距简化中心为 d M O sin
FR
F1 F2 3.54kN FA 8.66kN
§ 3-2 力对点的矩和力对轴的矩
1. 力对点的矩以矢量表示——力矩矢
力对点之矩 在平面力系中——代数量 在空间力系中——矢量
MO (F) Fh 2ΔOAB
r MO
r (F
)
rr
r F
三要素:
(1)大小:力 F与力臂的乘积

03-理论力学-第一部分静力学第三章空间力系

03-理论力学-第一部分静力学第三章空间力系
F X i Y j Z k , r xi y j zk i jk MO(F) r F x y z
X
Y
Z
( yZ zY )i (zX xZ) j (xY yX )k
2 力对轴的矩
力使物体绕某一轴转动效应的度 量,称为力对该轴的矩。
16
力对轴的矩的定 义 M z (F ) MO (Fxy )
力系简化的计算 计算主矢的大小和方向
FRx X , FRy Y , FRz Z
FR FRx2 FRy2 FRz2
cos FRx ,
FR
cos FRy ,
FR
cos FRz
FR
计算主矩的大小和方向
MOx M x (F ) , MOy M y (F ) ,
MOz M z (F )
与 z 轴共面
18
力对轴的矩的解析式
先看对z轴的矩:
M z (F ) MO (Fxy )
M O (Fy ) MO (Fx )
Fy x y Fx
xY yX
类似地,有:
M x (F) yZ zY M y (F ) zX xZ M z (F ) xY yX
Fy
Fx
Fxy
力对轴的矩的 解析表达式
3
§3 - 1 空间汇交力系 本节的主要内容有:
★ 空间力的投影;
★空间汇交力系的合成与平衡。
1 力在直角坐标轴上的投影和力沿直角坐标轴的
分解
(1) ■直接投影法
X F cos
Y F cos
Z F cos
也称为一次投影法
4
■间接投影法
Fx y F sin X Fxy cos F sin cos Y Fxy sin F sin sin

理论力学第三章 空间力系汇总

理论力学第三章  空间力系汇总

Pxy Pcos45
Px Pcos45sin60 Py Pcos45cos60
P 6 Pi 2 P j 2 Pk
4
4
2
r 0.05 i 0.06 j 0 k
MO(F) r F
i
j
k
0.05 0.06 0
6P 2P 2P
4
4
2
84.8 i 70.7 j 38.2 k
称为空间汇交力系的平衡方程. 空间汇交力系平衡的充要条件:该力系中所有各力在三个坐 标轴上的投影的代数和分别为零.
[例]三角支架由三杆AB、AC、AD用球铰A连接而成,并用球铰支座B、C、
D固定在地面上,如图所示。设A铰上悬挂一重物,已知其重量W=500N。
结构尺寸为a=2m,b=3m,c=1.5m,h=2.5m。若杆的自重均忽略不计,求
(2)何时MZ (F) 0
Mz (F) Mo(Fxy ) Fxy h
z
F
Fz
Fxy o
h
P
力与轴相交或与轴平行(力与轴在同一平面内),力对该轴 的矩为零.
(3) 解析表达式
M Z (F) MO (F xy ) MO (F x ) MO (F y )
xFy yFx
M x (F) yFz zFy
空间力偶的三要素
(1) 力偶矩大小:力与力偶臂的乘积; (2) 力偶矩方向:右手螺旋; (3) 作用面:力偶作用面。
转向:右手螺旋;
2、力偶的性质
(1)力偶中两力在任意坐标轴上投影的代数和为零 . (2)力偶对任意点的矩都等于力偶矩矢,不因矩心的改变而 改变。
M x (P) 84.8(N.m) M y (P) 70.7(N.m) M x (P) 38.2(N.m)

哈工大(七)第三章空间力系

哈工大(七)第三章空间力系

根据合力矩定理
解法二 力F在x、y、z轴的投影为
力作用点D的坐标为
3.力对点的矩与力对通过该点的轴的矩的关系 .
力对点的矩矢 在三个坐标轴上的投影 又
即力对点的矩矢在通过该点的某轴上的投影等于力对该 轴的矩。
力对点的矩矢在通过该点的某轴上的投影等于力对该轴的矩。 证明: 设有力F和任意点O,力对点O 的矩 力F对z轴的矩
空间力偶理论 只要不改变力偶矩的大小和力偶的转向,力偶可以在它 的作用面内任意移转;并且作用面可以平行移动。
空间力偶对刚体 刚体的作用效果决定于下列三个因素 刚体 (1)力偶矩的大小; (2)力偶作用面的方位; (3)力偶的转向。
空间力偶用一个矢量,力偶矩矢M表示:
矢的长度 长度表示力偶矩的大小 长度 方位与力偶作用面的法线 矢的方位 方位 方位相同, 矢的指向 指向与力偶转向的关系服 指向 从右手螺旋规则 右手螺旋规则。 右手螺旋规则 注:力偶对刚体的作用完全由力偶矩矢所决定。 力偶对刚体的作用完全由力偶矩矢所决定。

空间任意力系的合力矩定理 空间任意力系的合力矩定理 空间任意力系的合力对于任一点的矩等于各分力对同一点的 矩的矢量和。 证明: 合力 对点O的矩 空间任意力系对简化中心O的主矩 所以得证 根据力对点的矩与力对轴的矩的关系,把上式投影到通过点 O的任一轴上,可得 即空间任意力系的合力对于任一轴的矩等于各分力对同一轴 的矩的代数和。
四边形ACED与平行四边形Aced相似 ACED为平行四边形
对n个空间力偶,按上法逐次 合成,最后得
合力偶矩矢的解析表达式为
合力偶矩矢的大小
方向余弦
例3—5 工件如图所示,它的四个面上同时钻五个孔,每个孔 所受的切削力偶矩均为80N·m。求工件所受合力偶的矩在x、y、 z轴上的投影 、 、 ,并求合力偶矩矢的大小和方向。 解:先将作用在四个面上的力偶用力偶 矩矢量表示,并将它们平行移到点A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MO( F ) = [MO( F )]x i + [MO( F )]y j + [MO( F )]z k
= (yZ - zY) i + (zX - xZ) j + (xY - yX) k

M x ( F ) = yZ - zY M y ( F ) = zX - xZ M z ( F ) = xY - yX
Fxy
O
B
h
A Fxy
力对轴的矩等于零的情形:
① 力与轴相交( h = 0 )
② 力与轴平行( Fxy = 0 ) 一句话: 只要力与轴在同一 平面内,力对轴的矩等于零。
力对轴的矩之解析表达式
z
Z
F
设空间中有一个力 F
力作用点 A( x,y,z );
F 在三轴的投影分别为 X,Y,Z ;
A(x, y, z) YY X
要使 | MO (F ) | = 0, 就有r×F =0,得:
1) r = 0 或 r 与 F 共线,即力通过矩心; 2) F = 0
力对点的矩采用行列式可得如下形式:
由: r = x i + y j + z k 和 F = X i + Y j + Z k
可得:
i jk
MO(F) r F x y z XYZ
F Fz
Fxy
y x
力对轴的矩之定义
力对轴的矩是力使刚体绕 该轴转动效果的度量,是一 个代数量,其绝对值等于该 力在垂直于该轴的平面上的 投影对于此平面与该轴的交 点的矩的大小。逆着坐标轴 正向看,力使物体绕轴逆时 针旋转为正。
即 Mz( F ) = M O( Fxy) = ± Fxy h
z
F
Fz
cos M x (F )
MO (F )
cos M y (F )
MO (F )
cos M z (F )
MO (F )
例 3-
1:
手柄 ABCE 在平面 Axy内,在D 处作用
一个力F,它垂直y轴,偏离铅垂线的角度为α,若
CD = a,BC∥x轴,CE ∥y轴,AB = BC = l。求力F
对x、y和z三轴的矩。
,
k
)
Fz FR
例:P=1000N ,各杆重不计。求:三根杆所受力。
FOB sin 45 FOC sin 45 0
FOB cos 45 FOC cos 45 FOA cos 45 0 FOA sin 45 P 0
§3-2 力对点的矩和力对轴的矩
The moment of a force about a point or an axis
= ( y Z - z Y ) i + ( z X - x Z ) j + ( x Y - y X )k
z
二、 力对轴的矩
度量力对绕定轴转动物 体的作用效果 以门为例:
门上作用一个力 F 假定门绕 z 轴旋转
将力 F 向 z 轴和 xy 面分 解成两个分力 Fz 和Fxy, 显然力 Fxy 使门绕 z 轴 旋转。
解法2
z
直接套用力对
轴之矩的解析表
达式:
A
力在 x、y、z
轴的投影为
X = F sin α
x
Y=0
Z = - F cos α
C D
E
Fx α
B
Fz
F
y
M x( F ) = yZ - zY = ( l + a )(- Fcosα) - 0 = - F( l + a )cosα M y ( F ) = zX - xZ = 0 - ( -l ) (- Fcosα) = - Flcosα M z ( F ) = xY - yX = 0 - ( l + a ) ( Fsinα) = -F( l + a )sinα
第三章 空间力系
主要内容
空间汇交力系的合成与平衡; 力对点的矩和力对轴的矩; 空间力偶; 空间任意力系的简化---主矢和主矩; 空间任意力系的平很问题和平衡方程; 物体重心的确定
§3-1 空间汇交力系 Concurrent force system in space
1、力在直角坐标轴上的投影
例3-2: 图中力F 的大小为10kN,求的力 F 在 x、
y、z三坐标轴的投影,以及对三坐标轴的矩和对
O点的矩。(长度单位为m)
解:
z
k iO j x
4
1、先求F的三个方向余弦
3 F 5 A(4,9,5)
根据合力矩定理,得
Mz( F ) = M O( Fxy)
O
y
x
= MO( X ) + MO ( Y ) = xY - yX
xy X
Y Fxy
按同类方法求得其他两式:
M x ( F ) = y Z -z Y
M y ( F ) = z X-x Z
三、 力对点的矩和力对轴的矩的关系
力对点的矩矢量可以写成:
结论: 力对点的矩矢
在通过该点的某轴
可得
[MO( F )] x = M x ( F ) [MO( F )] y = M y ( F ) [MO( F )] z = M z ( F )
上的投影,等于力 对该轴的矩。
如果力对通过O点的直角坐标轴 x、y、z 的矩
是已知的,则力对点O的矩的大小和方向余弦为: MO (F) [M x (F)]2 [M y (F)]2 [M z (F )]2
z
A
y
z
解法1
将力F沿坐标
轴分解为Fx 和Fz。
A
由合力矩定理可得: x
C D
E
Fx α
B
Fz
F
y
M x ( F ) = M x ( Fz ) = -F z (AB+CD) = - F ( l + a )cosα M y ( F ) = M y ( Fz ) = - F z (BC) = - Fl cosα M z ( F ) = M z ( Fx) = -F x (AB+CD) = -F ( l + a )sinα
z
X = Fcosα Y = Fcosβ Z = Fcosγ
Zi
Fi
γ
α
β Yi
z Zi
γ
Fi
Yi
Xi
y
x
X = Fsinγcosφ Y = Fsinγsinφ Z = Fcosγ
Xi
φ
y
x
2、空间汇交力系的合成与平衡条件:
合力的大小
cos(FR ,
j)
Fy FR
空间汇交力系的平衡方程:
cos( FR
一、空间力对点的矩
n
B
z
F
MO(F)
A rr O
h
x
1)矢量的模等于力矩的 大小;
| M O (F) | = F h
2)矢量的方位与力矩作
用面的法向同,矩心
y
为矢起端;
3)矢量的指向确定了转
向,按右手法则。
矢量记作 MO (F) ,且 MO (F) = r×F —— 定位矢量
力对点的矩为零的条件:
相关文档
最新文档