江苏省盐城市九年级上学期数学第一次月考试卷
江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题
江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.20°B.3A .B .C .D .7.将一条抛物线向左平移5个单位后得到了23y x =的函数图象,则这条抛物线是()A .235y x =+B .235y x =--C .()235y x =-D .()235y x =+8.若二次函数y =(x -m )2-1,当x ≤3时,y 随x 的增大而减小,则m 的取值范围是()A .m =3B .m >3C .m ≥3D .m ≤3二、填空题13.抛物线2y x =-14.如图,在Rt ABC △中,斜边AB 的中点,则OD 长是15.已知二次函数2y ax =+值为.16.在矩形ABCD 中,AB =的中点,点M 运动过程中线段三、解答题17.(1)解方程:22510x x --=;(2)()()23430x x x -+-=18.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为4,求图中阴影部分(弧BC 、线段BD 及CD 围成的图形)的面积.19.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及111A B C △及222A B C △;点A 、C 的坐标分别为(30)(23)--,,,(1)画出ABC 关于y 轴对称再向上平移(2)以图中的点D 为位似中心,将11A B △222A B C △.20.如图,用18米长的木方条做一个有一条横档的矩形窗子,窗子的宽米.为使透进的光线最多,求:(1)则窗子的长多少米?(2)并求出最大透光面积.(横柱遮光忽略)21.如图1,Rt ABC △两直角边的边长为(1)如图2,O 与Rt ABC △的边AB 相切于点X ,出并标明O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt ABC △上和其内部的动点,以P 为圆心的AB BC 、相切.设P 的面积为S ,能否求出最大值是多少?22.三(1)班为奖励期中考试的优秀学生,派小明到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1600元买回了奖品,求小明购买该奖品的件数.购买件数销售价格不超过30件单价50元(1)求证:ABD ECA ∽△△(2)若86AC CE ==,,求24.如图,已知抛物线y (1)求抛物线的解析式和顶点坐标;(2)点P 为抛物线上一点,若S 25.如图,在平面直角坐标系中,点Q 从点O 、动点P 从点A 同时出发,分别沿着秒和1个单位长度/秒的速度匀速运动,长为半径的P 与AB OA 、的另一个交点分别为点(1)设QCD 的面积为S ,试求(2)若P 与线段QC 只有一个交点,请写出26.如图,已知二次函数y =-交于点4(0)C ,.(1)求该二次函数的解析式;(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P .①连接AP CP ,,当三角形ACP 的面积最大时,求此时点P 的坐标;②探究是否存在点P 使得以点P ,C ,Q 为顶点的三角形与ADQ △相似?若存在,求出点P 的坐标;若不存在,说明理由.27.有一副直角三角板,在三角板ABC 中,907BAC AB AC Ð=°==,,在三角板DEF 中,9068FDE DF DE Ð=°==,,,将这副直角三角板按如图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如图(2),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(2)在三角板DEF 运动过程中,当D 在BA 的延长线上时,设BF x ,两块三角板重叠部分的面积为y .求:y 与x 的函数关系式,并求出对应的x 取值范围.。
江苏省盐城市大丰区实验初级中学2024届九年级上学期第一次月考数学试题(无答案)
大丰区试验初级中学2024-2025学年度第一学期九年级数学 第一次学情调研(满分:150分;考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,满分24分,每题只有一个正确答案).1.抛物线2y x 12=-+()的顶点坐标是 ( ▲ ) A .(-1,2) B .(-1,-2) C .(1,-2) D .(1,2)2.下列方程中,是关于x 的一元二次方程的是 ( ▲ )A. 20ax bx c ++=;B.()236x x x -=-;C.()()2211x x -=-;D.2310x x++= 3.方程0222=++x x 的两根的状况是 ( ▲ )A 、没有实数根;B 、有两个不相等的实数根C 、有两个相同的实数根D 、不能确定4.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B=25°,则∠C 的大小等于( ▲ )A .20°B .25°C .40°D .50°第4题图 第5题图 第6题图5. 如图,点P 在△ABC 的边AC 上,要推断△ABP ∽△ACB ,添加一个条件,不正确的是( ▲ )A .∠ABP=∠CB .∠APB=∠ABC C . =D . = 6.如图,在平面直角坐标系中,点A 、B 均在函数y=(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( ▲ )A.(2,2) B . (2,3) C . (3,2) D . (4,1.5)7.若关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是 ( ▲ )A. 7B. 8C. 9D.108.已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( ▲ )个.A.4B.3C.2D.1二、填空题(本大题共有10小题,每小题3分,满分 30分).9.方程2x = x 的根是 ▲ .10.二次函数622+-=x x y 的顶点是 ▲ .11.假如两个相像三角形的面积比是1:4,那么它们的周长比是 ▲12. 已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是 ▲ .13.已知线段PA 、PB 分别与⊙O 相切于点A 、B ,C 为PB 延长线上一点,CD ⊥PC 于C ,线段CD 与⊙O 相切于点D ,且P A =4,PC =6,则⊙O 的半径R = ▲ .14.现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽视不计).该圆锥底面圆的半径为 ▲ cm .15. A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为,用“>”连接 ▲ .16. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A 、B 的读数分别为86°、30°,则∠ACB 的度数为 ▲ .第13题图 第16题图17.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是 ▲ .18. 中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子23=8可以变形为3=log 28, 2=log 525也可以变形为52=25;现把式子2x =3表示为 x =log 23,请你用x 表示 y,其中y =log 224,则y =▲ .三、解答题(本大题共有10小题,共96分).19.(满分10分)(1)解方程: x 2﹣4x +2=0 (2)计算:20.(满分10分)先化简,再求值:mm m m m 211122+-÷--,其中m 满意一元二次方程0822=--m m .21.(满分10分)如图,把△ABC 沿边BA 平移到△DEF 的位置,它们重叠部分(即图中阴影部分)的面积是△ABC 面积的,若AB=2,求△ABC 移动的距离BE 的长.第21题图 第22题图22.(满分12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt △ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(﹣4,1),点B 的坐标为(﹣1,1).(1)先将Rt △ABC 向右平移5个单位,再向下平移1个单位后得到Rt △A 1B 1C 1.试在图中画出图形Rt △A 1B 1C 1(2)以点B 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2:1,并干脆写出点A 2的坐标.23.(满分10分)如图所示,菱形ABCD ,∠B =120°,AD =1,扇形BEF 的半径为1,圆心角为60°,求图中阴影部分的面积.第23题图 第24题图24.(满分12分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED .(1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1s ,△ADC 的面积为2s ,且0416221=+-s s ,求1s 和2s 的值(3)求△ABC 的面积25.(满分10分)大丰某童装专卖店在销售中发觉,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店确定实行适当的降价措施,以扩大销售量,增加利润,经市场调查发觉,假如每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x 元时,每天可销售 ▲ 件,每件盈利▲ 元;(用x 的代数式表示) (2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2024元,可能吗?请说明理由.26.(满分10分)如图,在△ABC 中,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且AC=CF ,∠CBF=∠CFB .(1)求证:直线BF 是⊙O 的切线;(2)若点D ,点E 分别是弧AB 的三等分点,当AD=5时,求BF 的长和扇形DOE 的面积;(3)填空:在(2)的条件下,假如以点C 为圆心,r 为半径的圆上总存在不同的两点到点O 的距离为5,则r 的取值范围为 ▲27.(满分12分)如图1,正方形ABCD 的边长为4,把三角板的直角顶点放置BC 中点E 处,三角板绕点E 旋转,三角板的两边分别交边AB 、CD 于点G 、F .(1)求证:△GBE ∽△GEF .(2)设AG=x ,GF=y ,求Y 关于X 的函数表达式,并写出自变量取值范围.(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相像,求线段AG的长.。
2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析
重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
2019届江苏省九年级上学期第一次月考数学试卷【含答案及解析】(3)
2017
【解析】
试题分析:因为刿:-2b=1,所亂2阿:-4]l+2015=2(tJr-2n) +2015=2+2015=2017.
第13题【答案】
4
【解析】
试题井析£根拐完全平方式的定义可去,如果二次三项式审4说是一个尧全平方式,那么疋二丫=J
第9题【答案】
无数
【解析】
试題分析;因为圆虧由对称團形.它有无数条对称轴,每一杀经过圆心的直M黠0是对称轴.
第10题【答案】
答案不唯一
【解析】
试题井析:两实隸根睜号相反的一元二;欠方程育无数个,所臥答案不唯一頁如卩-1=D、
P-2斗-3=0勢.
第11题【答案】
P
【解析】
试题分析:因为Y--51=0,所CU (H)屯 口或敦=5,所以方程的另一个根是口.
(2) 应用:有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成 一个的长方形花圃。能围成面积最大的花圃吗?如果能,请求出最大面积.
四、填空题
28.(12分)在一节数学实践活动课上,老师拿出三个边长都为4cm的正方形硬纸板,
他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形 硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论, 大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时 的最小直径•老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如 下图所示:
2019
答案及解析】
姓名班级分数
题号
-二二
三
四
总分
得分
、选择题
1.已知0和-1都是某个方程的解,此方程是()
2019届盐城市景山中学九年级10月月考数学试卷含详细答案
2019届江苏省盐城市景山中学九年级10月月考数学试卷一、单选题(共8小题)1.已知是一元二次方程的一个解,则m的值为()A.-1B.1C.-3D.2或-32.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是()A.25°B.65°C.50°D.130°3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9环,方差依次为0.56、0.65、0.51、0.40,则成绩最稳定的是()A.甲B.乙C.丙D.丁4.一元二次方程的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.一个口袋装有4个白球,1个红球,7个黄球,除颜色外,完全相同,充分搅匀后随机摸出一球,恰好是白球的概率是()A.B.C.D.6.已知圆锥的底面半径为6㎝,高为8㎝,圆锥的侧面积为()A.48πcm2B.96πcm2C.30πcm2D.60πcm27.如图所示,给出下列条件:①;②;③;④.其中单独能够判定的个数为()A.1B.2C.3D.48.如图平面直角坐标系中,⊙A的圆心在轴上,半径为1,直线为,若⊙A 沿轴向右运动,当⊙A与有公共点时,点A移动的最大距离是()A.B.3C.D.二、填空题(共10小题)9.若 =,则 =__________________10.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,则这个百分率为____________.11.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是.12.已知,则代数式的值为.13.据有关实验测定,当气温处于人体正常体温(37o C)的黄金比值时,人体感到最舒适。
这个气温约为_______ o C (精确到1 o C)14.已知一组数据x1,x2,x3,x4,x 5的平均数是2,方差是,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x 5-2的方差是________15.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.16.如图平行四边形中,是边上的点,交于点,如果,那么。
2020年中考数学复习冲刺小卷06 三角形1
06三角形2一、选择题:1.(江苏省镇江市丹徒区江心实验学校2019届九年级3月份调研考试数学试题)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是A.60°B.65°C.55°D.50°【答案】A【解析】∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.2.(江苏省镇江市丹阳市2019年中考一模数学试题)如图,在长方形纸片ABC D中,AD= 4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为A.6cm B.7cmC.8cm D.10cm【答案】C【解析】根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC =∠ACD , ∴∠EAC =∠ACD , ∴AO =CO =5cm ,在直角三角形ADO 中,DO ,CD = AB =DO +CO =3+5=8cm . 故选C .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.3.(江苏省如皋市2019届九年级第一次模拟考试数学试题)如图,点D 在△ABC 的边AB 的延长线上,DE ∥BC ,若∠A =35°,∠C =24°,则∠D 的度数是A .24°B .59°C .60°D .69°【答案】B【解析】∵∠A =35°,∠C =24°, ∴∠DBC =∠A +∠C =35°+24°=59°, 又∵DE ∥BC , ∴∠D =∠DBC =59°, 故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.4.(江苏省2019年苏州市常熟市中考数学模拟试题)如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为A.40ºB.50ºC.60ºD.70º【答案】D【解析】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.5.(江苏省盐城市阜宁县实验初级中学2019-2020学年九年级上学期12月月考数学试题)如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为A.(-5,-6)B.(4,-6)C.(-6,-4)D.(-4,-6)【答案】D【解析】过A作AB⊥NM交y轴于B,连接AM,∵点M (0,−3)、N (0,−9), ∴MN =6, ∴BM =BN =3, ∴OB =3+3=6,∴()06B -,, ∵=5AM ,由勾股定理得:4AB ==, ∴点A 的坐标为(−4,−6), 故答案为:(−4,−6).【点睛】本题考查了勾股定理和垂径定理,能根据垂径定理求出BM 和BN 是解此题的关键. 6.(江苏省无锡市2019届九年级中考适应性考试数学试题(三))如图,字母B 所代表的正方形的面积是A .12B .144C .13D .194【答案】B【解析】如图,根据勾股定理我们可以得出: a 2+b 2=c 2a 2=25,c 2=169,b 2=169﹣25=144, 因此B 的面积是144. 故选B .【点睛】本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.7.(江苏省无锡市江阴市青阳片2019-2020学年九年级上学期期中数学试题)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A .B .C .D .【答案】C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心. 故选C .【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.8.(江苏省苏州市2019届九年级中考数学模拟试题(一))如图,已知60AOB ∠=︒,点P 在OA 上,12OP =.点M 、N 在OB 边上,PM PN =.若2MN =,则OM =A .3B .4C.5D.6【答案】C【解析】过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=1,在Rt△OPQ中,OP=12,∠AOB=60°,∴∠OPQ=30°,∴OQ=6,则OM=OQ-QM=6-1=5.故选:C.【点睛】本题考查等腰三角形的性质,以及含30度直角三角形的性质,熟练掌握等腰三角形以及含30°直角三角形的性质是解题的关键.9.(江苏省南通市海安市十校联考2019-2020学年九年级上学期期中数学试题)如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE的长为A.4 BC.5 D【答案】B【解析】作EF⊥AE,且EF=DE,连接AF、DF,因为∠AEF=90°,所以∠DEF=90°-30°=60°,DE=EF,所以△DEF是等边三角形,所以∠EDF=60°,∠ADF=∠BDE,因为AD=BD,DE=EF,∠ADF=∠BDE,所以△BDE≌△ADF,所以BE=AF=B.【点睛】本题主要考查的就是三角形全等证明的应用以及直角三角形勾股定理的应用,解决这个问题的关键就是要能够作出辅助线,将所求的线段转化到直角三角形中,利用勾股定理进行求解.对于这种无法直接计算的题目,我们可以通过旋转,作直角三角形等将所求的线段放到特殊的三角形中,然后来进行求解,特别需要注意的就是题目中出现30°、45°、135°等特殊角的时候.10.(江苏省南京市联合体(秦淮下关浦口沿江)2019年中考三模数学试题)如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC一定是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】A【解析】如图:∵所给图形是长方形,∴∠1=∠2,∵∠2=∠ABC,∴∠1=∠ABC,∴AC=BC,即△ABC为等腰三角形.故选:A.【点睛】本题考查了翻折变换的问题,综合性较强,注意熟练掌握翻折不变性、平行线的性质、等腰三角形的性质.二、填空题11.(2019年江苏省连云港市海州区新海实验中学九年级(下)第一次月考数学试题)如图,在△AB C中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.【答案】13【解析】已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,12.(江苏省南通市海安市十校2019-2020学年九年级上学期10月月考数学试题)平面直角坐标系中,C(0,4),A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当点A在x轴上运动时,OB+BC 的最小值为_____.【答案】【解析】过点B作BE⊥x轴,∴∠AEB=∠COA=90°,∵将AC绕A点顺时针旋转90°得到AB,∴∠CAB=90°,AC=AB,∴∠OCA+∠CAO=∠CAO+∠BAE=90°,∴∠OCA=∠BAE,∴△ACO≌△BAE,∴CO=AE=4,OA=BE,如图,作点O关于BE的对称点D,则BE垂直平分OD,∴OB =DB ,∴当点C 、B 、D 三点共线时OB +BC =BD +BC =CD ,OB +BC 的最小值为CD ; 设点A 坐标为(x ,0),则OA =x (0x ≥), ∴点E 为(x +4,0),则点D 为(2x +8,0), ∴OD =2x +8,在直角三角形OCD 中,由勾股定理,得:222CD OC OD =+,∴CD ==, ∵0x ≥,∴当0x =时,CD 有最小值,CD 的最小值为:min CD ==,∴OB +BC 的最小值为:【点睛】本题考查了旋转的性质,全等三角形的判定和性质,二次函数的性质,轴对称求最短距离问题,以及勾股定理,解题的关键是正确理解题意,找到使OB +BC 得到最小值的情况,然后进行分析解答.13.(江苏省徐州市2019届中考模拟考试数学试题)如图,在△AB C 中,AB =5cm ,AC =3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为__________cm . 【答案】8【解析】∵DE 是BC 的垂直平分线, ∴BD =CD ,∴AB =AD +BD =AD +CD ,∴△ACD 的周长=AD +CD +AC =AB +AC =8cm ; 故答案为8【点睛】本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等.14.(江苏省东台市第四联盟2019届九年级下学期学情调查一数学试题)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.【答案】60°或120°【解析】如图(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如图(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;综上所述,它的顶角度数为:60°或120°.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.15.(江苏省常州市新北区外国语学校2019届九年级下学期一模数学试题)在Rt△AB C中,∠ACB=90°,AC=8,BC=6,点D、E分别在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,则BE=_________.【答案】307或154.【解析】①如图1中,当∠AED=90°,DE=BE时,设DE=BE=x.在Rt△AB C中,∵AC=8,BC=6,∴AB,∵∠A=∠A,∠AED=∠C=90°,∴△AED∽△ACB,∴AE DE AC BC=,∴1086x x-=,解得x=307.②如图2中,当∠ADE=90°,DE=EB时,设DE=BE=x,∵△ADE∽△ACB,∴DE AE BC AB=,∴10610x x-=,解得x=154,综上所述,BE的值为307或154.【点睛】本题考查等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.16.(江苏省盐城市建湖县2019-2020学年九年级上学期期中数学试题)如图,BC=cm,点D是线段BC上的一点,分别以BD、CD为边在BC的同侧作等边三角形ABD和等边三角形CDE,AC、BE相交于点P,则点D从点B运动到点C时,点P的运动路径长(含与点B、C重合)为_________.【答案】16π3【解析】作△BCP的外接圆⊙O,过点O作OF⊥BC于F,延长OF交⊙O于G,连接BG,CG,OB,OC,∵△ABD和△CDE是等边三角形,∴∠ABD=∠EDC=60°,∴AB//DE,∠ABD+∠ADE=∠EDC+∠ADE,∴∠ABE=∠BED,∠BDE=∠ADC,在△BDE和△AD C中,BD ADBDE ADC DE DC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△ADC,∴∠BED=∠ACD,∴∠ACD=∠ABE,∴∠ACD+∠EBC=∠ABE+∠EBC=∠ABD=60°,∴∠BPC=180°-(∠ACD+∠EBC)=120°,∴点D从点B运动到点C时,点P的运动路径长(含与点B、C重合)为»BC的长,∵OG⊥BC,∠BGC=∠BPC=120°,∴BF=12BC=12×,∠OGB=12∠BGC=60°,∵OB=OG,∴△OBG是等边三角形,∴∠BOG=60°,∴∠BOC=2∠BOG=120°,∠OBF=30°,∴OF=12 OB,∴OB 2=OF 2+BF 2,即OB 2=(12OB )22, 解得OB =8,(负值舍去),∴»BC=120π8180⨯=16π3,故答案为:16π3【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、圆周角定理及垂径定理,根据圆周角定理确定点P 的运动轨迹是解题关键.17.(江苏省东台市第四联盟2019届九年级下学期学情调查一数学试题)如图,在等边△AB C 中,AB =4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是.【答案】6MN ≤≤.【解析】如图1,当点P 为BC 的中点时,MN 最短.此时E 、F 分别为AB 、AC 的中点, ∴PE =12AC ,PF =12AB ,EF =12BC , ∴MN =ME +EF +FN =PE +EF +PF =6;如图2,当点P 和点B (或点C )重合时,此时BN (或CM )最长.此时G (H )为AB (AC )的中点,∴CG (BH ,CM (BN .故线段MN 长的取值范围是6≤MN18.(江苏省徐州市2019届九年级第二次模拟考试数学试题)如图,△AB C 中,AB =AC ,∠A =40º,点P 是△ABC 内一点,连结PB 、PC ,∠1=∠2,则∠BPC 的度数是_________.【答案】110°【解析】∵△ABC 中,AB =AC ,∠A =40°, ∴∠ABC =12(180°−40°)=70°, ∴∠1+∠PBC =70°, ∵∠1=∠2, ∴∠2+∠PBC =70°,∴∠BPC =180°-(∠2+∠PBC )=180°-70°=110°, 故答案为:1100.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和三角形内角和解答.19.(江苏省盐城市中学2019-2020学年九年级上学期第一次月考数学试题)已知:在ABC △中,AB AC =.(1)求作:ABC △的外接圆.(要求:尺规作图,保留作图痕迹,不写作法) (2)若ABC △的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S =e .【答案】(1)见解析;(2)25π 【解析】(1)如图O e 即为所求.(2)设线段BC 的垂直平分线交BC 于点E . 由题意4,3OE BE EC ===,在Rt OBE △中,5OB ==,∴2π·525πO S ==圆. 故答案为25π.【点睛】本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题20.(江苏省镇江市丹徒区江心实验学校2019-2020学年九年级12月份月考数学试题)三角形的两边长分别为3和4,第三边的长是方程x 2﹣8x +15=0的解,求此三角形的面积【答案】6或【解析】x 2﹣8x +15=0,解得123,5x x ==,根据三角形三边关系可知,此三角形第三边大于1且小于7, ∴当三边长为3,4,5时,三角形是直角三角形,其面积S =134=62⨯⨯; 当三边长为3,3,4时,三角形为等腰三角形,∴面积为S =142⨯∴三角形面积为:6或【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系、勾股定理及三角形面积的求法.21.(江苏省扬州市江都区邵樊片2019-2020学年九年级上学期第一次质量检测数学试题)已知关于x 的方程22(21)0x m x m m -+++=. (1)用含m 的代数式表示这个方程的实数根.(2)若Rt ABC ∆的两边a b 、恰好是这个方程的两根,另一边长5c =,求m 的值. 【答案】(1)11x m =+,2x m =;(2)3m =或12m =.【解析】(1)22(21)0x m x m m -+++=()2224[(21)]4b ac m m m -=-+-+ 2244144m m m m =++--1=∴2112m x +±=∴11x m =+,2x m =(2)当5c =为斜边时,22(1)25m m ++=13m =,24m =-(舍去)当边长为1m +斜边时2225(1)m m +=+12m =综上:3m =或12m =【点睛】本题考查的是求根公式与勾股定理,解题的关键是根据求根公式和根据勾股定理列出关于m 的方程,注意把不合题意的解舍去.22.(江苏省镇江市丹徒区江心实验学校2019届九年级3月份调研考试数学试题)如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,BC =EF . (1)求证:ΔABC ≌△DEF ;(2)若∠A =55°,∠B =88°,求∠F 的度数.【答案】(1)证明见解析;(2)37°【解析】(1)∵AC =AD +DC ,DF =DC +CF ,且AD =CF ∴AC =DF在△ABC 和△DEF 中,AB DEBC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB,∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,∴∠F=∠ACB=37°.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.(江苏省如皋市2019届九年级第一次模拟考试数学试题)如图,A、B、C是直线l上的三个点,∠DAB =∠DBE=∠ECB=a,且BD=BE.(1)求证:AC=AD+CE;(2)若a=120°,点F在直线l的上方,△BEF为等边三角形,补全图形,请判断△ACF的形状,并说明理由.【答案】(1)详见解析;(2)△ACF为等边三角形.【解析】(1)∵∠DAB=∠DBE=α,∴∠ADB+∠ABD=∠CBE+∠ABD=180°﹣α.∴∠ADB=∠CBE在△ADB和△CBE中,∵ADB CBEDAB BCEDB BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB≌△CBE(AAS)∴AD=CB,AB=CE.∴AC=AB+BC=AD+CE (2)补全图形.△ACF为等边三角形.理由如下:∵△BEF为等边三角形,∴BF=EF,∠BFE=∠FBE=∠FEB=60°.∵∠DBE=120°,∴∠DBF=60°.∵∠ABD=∠CEB(已证),∴∠ABD+∠DBF=∠CEB+∠FEB,即∠ABF=∠CEF.∵AB=CE(已证),∴△AFB≌△CFE(SAS),∴AF=CF,∠AFB=∠CFE.∴∠AFC=∠AFB+∠BFC=∠CFE+∠BFC=60°.∴△ACF为等边三角形.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练运用全等三角形的判定和性质是本题关键.24.(2019年江苏省无锡市中考数学试题)如图,在△AB C中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;△≌△;求证:(1)DBC ECB.(2)OB OC【答案】(1)见解析;(2)见解析. 【解析】(1)∵AB =AC , ∴∠ECB =∠DBC , 在DBC ECB ∆∆与中BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴DBC ECB △≌△;(2)由(1)DBC ECB △≌△, ∴∠DCB =∠EBC , ∴OB =O C.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质与判定,熟练掌握全等三角形的判定定理与性质定理是解题的关键.25.(江苏省南通市海安市八校联考2019-2020学年九年级上学期第一次阶段性测试数学试题)如图,等腰Rt △AB C 中,BA =BC ,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE . (1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.【答案】(1)90°;(2)【解析】(1)∵△ABCD 为等腰直角三角形, ∴∠BAD =∠BCD =45°.由旋转的性质可知∠BAD =∠BCE =45°. ∴∠DCE =∠BCE +∠BCA =45°+45°=90°. (2)∵BA =BC ,∠ABC =90°, ∴AC=.∵CD=3AD,∴AD,DC.由旋转的性质可知:AD=EC.∴DE=21。
2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]
九年级数学(考试时间:60分钟,满分:100分)一、选择题(本大题共5小题,每小题2分,共10分).1.已知O e 的半径为4,平面内有一点M .若5OM =,则点M 与O e 的位置关系是( ).A .在圆内B .在圆上C .在圆外D .不能确定2.已知x=2是关于x 的一元二次方程x 2+ax=0的一个根,则a 的值为( )A .-2B .2C .12D .12-3.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 AC 上的点.连接AC ,若20BAC =°∠,则D Ð的度数为( ).A .100°B .110°C .120°D .130°4.某商品经过连续两次降价,销售单价由原来200元降到160元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .200(1-x )2=160B .200(1+x )2=160C .160(1+x )2=200D .160(1-x )2=2005.如图,四边形ABCD 内接于O e ,AE CB ^交CB 的延长线于点E ,若BA 平分DBE Ð,6AD =,4CE =,则AE 的长为( ).A .2B .3C .D .二、填空题(本大题共10小题,每小题3分,共30分)6.方程230x x -=的根为 .7.用配方法解方程2250x x --=时,原方程应变形为__________.8.写一个一元二次方程,使得它的两个根为1-,3,该方程为 .9.如图,等边△ABC 内接于⊙O ,AD 是直径,则∠CBD= °.10.如图,C 为O e 的劣弧AB 上一点,若124AOB Ð=o ,则ACB =∠ .11.若1x 、2x 是一元二次方程2210x x +-=的两个实数根,则12122x x x x +-的值为 .12.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.54A OC CD Ð=°=,,的长为 .13.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程()2(2)20a xb xc -+-+=的解为 .14.已知O e 的半径1OA =,弦AB ,若在O e 上找一点C ,则BCA Ð= °.15.如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若142Ð=°,则AOC Ð= °.三、解答题(本大题共7小题,共60分)16.解下列方程(1)2316x x-=(2)2(21)63x x -=-.17.已知关于x 的方程x 2+kx -2=0.(1)求证:不论k 取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.18.如图,AD 、BC 是O e 的弦,且AD BC =,AC 是直径,求证:四边形ABCD 是矩形.19.已知关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x .(1)若2,8p q =-=-,则24p q -的值是 ,方程的解是 ;(2)若123,2x x ==-,求24p q -的值;(3)用含12,x x 的代数式表示24p q -,下列结论中正确的是( )A. 22124()p q x x -=+B. 22124()p q x x -=C. 22124()p q x x -=- D. 2212124()p q x x x x -=++20.某商店经销的某种商品,每件成本为40元.调查表明,这种商品的售价为50元时,可售出200件;售价每增加5元,其销售量将减少50件.为了实现2000元的销售利润,这种商品的售价应定为多少元?21.如图,已知点A 、B 是平面内两点,线段a 长度一定,在平面内作O e 使得它过点A 、B 且半程长为a (尺规作图,保留作图痕迹,写出必要的作图说明).22.如图,四边形ABCD 是O e 的内接四边形,AC BD ^,OF AB ^,垂足分别是E 、F .(1)直接写出OF 与CD 的数量关系__________,并证明你的结论;(2)若AB AC ==8BC =.求CD 的长.1.C【分析】本题考查了点与圆的位置关系:设圆的半径为r ,点P 到圆心的距离OP 为d ,当d r >时,则点P 在圆外;当d r =时,点P 在圆上;当d r <时,点P 在圆内,根据点P 与圆的位置关系的判定方法对点M 与O e 位置关系进行判断.【详解】解:∵O e 的半径为4,5OM =∴点M 到圆心的距离大于圆的半径,∴点M 在圆外.故选:C .2.A【分析】把x=2代入x 2+ax=0,即可求解.【详解】∵x=2是关于x 的一元二次方程x 2+ax=0的一个根,∴2220a +=,解得:a=-2.故选A.【点睛】本题主要考查一元二次方程的根的定义,理解方程的根的定义,是解题的关键.3.B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出ADB Ð及BDC Ð的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴90ADB Ð=°,∵20BAC =°∠,∴20BDC BAC Ð=Ð=°,∴9020110ADC ADB BDC Ð=Ð+Ð=°+°=°,故选:B .4.A【分析】根据某商品经过连续两次降价,销售单价由原来200元降到160元,平均每次降价的百分率为x ,可以列出相应的方程,本题得以解决.【详解】解:由题意可得,200(1-x )2=160,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.5.D【分析】连接AC ,根据圆内接四边形对角互补得到ABE ADC Ð=Ð,根据 AD AD =得到ABD ACD Ð=Ð结合角平分线得到ABE ABD Ð=Ð,即可得到:ADC ACD Ð=Ð,从而得到AC AD =,结合勾股定理即可得到答案;【详解】解:连接AC ,∵四边形ABCD 内接于O e ,∴180ADC ABC Ð+Ð=°,∵180ABE ABC Ð+Ð=°,∴ABE ADC Ð=Ð,∵ AD AD =,∴ABD ACD Ð=Ð,∵BA 平分DBE Ð,∴ABE ABD Ð=Ð,∴ADC ACD Ð=Ð,∴AC AD =,∵AE CB ^,6AD =,4CE =,∴6AC =∴AE ==故选:D .【点睛】本题考查勾股定理及圆内接四边形对角互补,同弧所对的圆周角相等,等角对等边等知识,掌握这些知识是解题的关键.6.120,3x x ==【详解】解:x (x -3)=0 ,解得:x 1=0,x 2=3.故答案为:x 1=0,x 2=3.7.()216x -=【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】移项得:x 2﹣2x =5,配方得:x 2﹣2x +1=5+1,即(x ﹣1)2=6.故答案为(x ﹣1)2=6.【点睛】本题考查了用配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.2230x x --=(答案不唯一)【分析】本题主要考查一元二次方程的根与系数的关系,根据一元二次方程的根与系数的关系可得出122b x x a +=-=,123c x x a ×==-,令1a =,则2b =-,3c =-则可得出一个符合条件的一个一元二次方程.【详解】解:∵一元二次方程的两个根为1-,3,∴122b x x a+=-=,123c x x a ×==-,令1a =,则2b =-,3c =-∴符合条件的一个一元二次方程为:2230x x --=,故答案为:2230x x --=.9.30°.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠C=∠BAC =60°,根据圆周角定理得:∠D=∠C=60°,∵AD 为直径,∴∠ABD=90°,∴∠BAD=30°∴∠CAD=∠BAC-∠BAD=90°-60°=30°∴∠CBD=∠CAD=30°.故答案为:30°10.118°【分析】本题考查了圆周角定理和圆内接四边形性质的应用,能正确作辅助线是解此题的关键.作圆周角ADB Ð,根据圆周角定理求出D Ð的度数,根据圆内接四边形性质求出C Ð即可.【详解】解:如图作圆周角ADB Ð,使D 在优弧上,124AOB Ð=°Q ,1622D AOB \Ð=Ð=°,A Q 、D 、B 、C 四点共圆,180ACB D \Ð+Ð=°,118ACB \Ð=°,故答案为:118°.11.0【分析】根据一元二次方程根与系数的关系求得1212,x x x x +的值,代入代数式即可求解.【详解】解:解:∵1x 、2x 是一元二次方程2210x x +-=的两个实数根,∴122x x +=-,121x x =-.∴12122x x x x +-()2210=--´-=,故答案为:0.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=¹的两根,12b x x a +=-,12c x x a=.12.【分析】本题考查了垂径定理,等腰直角三角形的性质和圆周角定理.解题的关键是熟练掌握以上知识点,根据圆周角定理得245BOC A Ð=Ð=°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以CE ==然后利用2CD CE =进行计算.【详解】解:∵22.5A Ð=°,∴245BOC A Ð=Ð=°,∵圆O 的直径AB 垂直于弦CD ,∴CE DE =,则OCE △为等腰直角三角形,∵OC∴CE ==∴2CD CE ==.故答案为:13.11x =,25x =【分析】本题考查一元二次方程的解的概念,将第二个方程中的()2x -看成一个整体,则由第一个方程的解可知,21x -=-或3,从而可得出答案.【详解】解:∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴方程()2(2)20a x b x c -+-+=的解为21x -=-或3,解得:11x =,25x =,故答案为:11x =,25x =.14.45°或135°.【分析】本题考查了圆周角定理,圆内接四边形的性质,勾股定理逆定理,先由勾股定理逆定理求出90AOB Ð=°,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,则145BC A Ð=°,然后根据圆内接四边形的性质可求出2135BC A Ð=°,掌握知识点的应用是解题的关键.【详解】解:∵1OA OB ==,AB =,∴222OA OB AB +=,∴90AOB Ð=°,如图,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,∴145BC A Ð=°,∵四边形12AC BC 是圆内接四边形,∴12180BC A BC A Ð+Ð=°,∴2135BC A Ð=°,故答案为:45°或135°.15.84【分析】本题主要考查线段的垂直平分线的性质,多边形内角和定理,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接BO ,并延长BO 到P ,根据线段的垂直平分线的性质得AO OB OC ==,90BDO BEO Ð=Ð=°,根据四边形的内角和为360°得180DOE ABC +=°∠∠,根据外角的性质得AOP A ABO COP C OBC Ð=Ð+ÐÐ=Ð+Ð,,相加可得结论.【详解】解:连接BO ,并延长BO 到P ,∵线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,∴AO OB OC ==,90BDO BEO Ð=Ð=°,∴180DOE ABC +=°∠∠,∵1180DOE +=°∠∠,∴142ABC Ð=Ð=°,∵AO OB OC ==,∴A ABO Ð=Ð,OBC C Ð=Ð,∵AOP A ABO Ð=Ð+Ð,COP C OBC Ð=Ð+Ð,∴24284AOC AOP COP A ABC C Ð=Ð+Ð=Ð+Ð+Ð=´°=°;故答案为:84.16.(1)11x =21x =(2)112x =,22x =.【分析】本题考查了解一元二次方程.(1)根据配方法解一元二次方程;(2)先移项,然后根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2316x x -=,2361x x -=,2123x x -=,24213x x -+=,()2413x -=,1x -=11x =21x =(2)解:2(21)63x x -=-,()()2213210x x ---=,()()212130x x ---=,∴210x -=或240x -=,∴112x =,22x =.17.(1)见解析;(2)它的另一个根为-1.【分析】(1)求判别式b 2-4ac =k 2+8>0即可证明;(2)利用根与系数的关系即可求解.【详解】(1) ∵a =1 ,b =k ,c =-2 ,∴b 2-4ac =k 2+8 ,∵不论k 取何实数,k 2≥0 ,∴k 2+8>0即b 2-4ac >0 ,∴不论k 取何实数,该方程总有两个不相等的实数根;(2) ∵a =1 ,c =-2, x 1=2,∴ x 1g x 2=-2,2x 2=-2,∴ x 2=-1,∴另一个根为-1.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握一元二次方程的根存在性的判别方法及一元二次方程的根与系数的关系是解题的关键.18.见详解【分析】本题主要考查了直径所对的圆周角等于90度,矩形的判定,勾股定理,根据直径所对的圆周角等于90度,可得出90D B Ð=Ð=°,根据勾股定理可得出2222AB BC CD AD +=+,再由AD BC =即可得出AB CD =.进而可得出四边形ABCD 是平行四边形,结合90D Ð=°即可证明.【详解】证明:∵AC 为O e 的直径,∴90D B Ð=Ð=°,在Rt ABC △中,222AB BC AC +=,在Rt ADC V 中,222CD AD AC +=,∴2222AB BC CD AD +=+,由∵AD BC =,∴AB CD =,∴四边形ABCD 是平行四边形,又∴90D Ð=°,∴四边形ABCD 是矩形.19.(1)36,124,2x x ==-(2)25(3)C【分析】(1)先把2,8p q =-=-,代入24p q -,可得2436p q -=,再代入原方程,再利用因式分解法,即可求解;(2)根据一元二次方程根与系数的关系,即可求解;(3)根据一元二次方程根与系数的关系,再利用完全平方公式的变形,即可求解.【详解】(1)解:∵2,8p q =-=-,∴()()22424836p q -=--´-=,∴方程为228=0x x --,∴()()420x x -+= ,解得:124,2x x ==-;(2)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∵123,2x x ==-,∴()()32,32p q -=+-=´- ,∴1,6p q ==- ,∴()22414625p q -=-´-=;(3)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∴()()()222222221212112212112212444242p q p q x x x x x x x x x x x x x x x x -=--=+-×=+×+-×=-×+=-.故选:C【点睛】本题主要考查了解一元二次方程和一元二次方程根与系数的关系,熟练掌握一元二次方程的解法和一元二次方程根与系数的关系是解题的关键.20.这种商品的售价应定为50元或60元.【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出方程.设这种商品的售价应定为x 元,利用销售总利润等于每件利润乘以销售数量,即可得出关于x 的一元二次方程,解方程即可得到答案.【详解】解:设这种商品的售价应定为x 元,根据题意列方程得:50(40)2005020005x x éù-æö--=ç÷êúèøëû 整理得:2x 110x 30000-+=解得:150x =,260x =,答:这种商品的售价应定为50元或60元.21.见详解【分析】本题主要考查了作图,画圆,作线段垂直平分线,连接AB ,作AB 的垂直平分线CD ,以点A 为圆心线段a 为半径画弧交CD 于点O ,再以点O 为圆心线段AO 为半径作圆即为所求.【详解】解:如下图:O e 即为所求:22.(1)12OF CD =,证明见详解(2)【分析】(1)连接AO 并延长交O e 于点G ,连接BG ,证明OF 是ABG V 的中位线,则有12OF BG =,再根据同弧所对的圆周角相等可得AGB ECB Ð=Ð,直径所对的圆周角是直角可得90ABG Ð=°,则有90BAG AGB Ð+Ð=°,根据AC BD ^,90ECB EBC Ð+Ð=°,从而可得BAG EBC Ð=Ð,BG CD =,继而可得12OF CD =;(2)先证明AG BC ^,由等腰三角形三线合一的性质得出142BH HC BC ===,再由勾股定理求出AH ,再证明AHC BHG ∽V V ,由相似三角形的判定以及性质即可得出答案.【详解】(1)解:12OF CD =,证明如下:连接AO 并延长交O e 于点G ,连接BG ,∵OF AB ^,∴AF BF =,∵AO GO =,∴OF 是ABG V 的中位线,∴12OF BG =,∵AG 是O e 的直径,∴90ABG Ð=°,∴90BAG AGB Ð+Ð=°,∵AC BD ^,∴90CEB Ð=°,∴90ECB EBC Ð+Ð=°,∵ AB AB =,∴AGB ECB Ð=Ð,∴BAG EBC Ð=Ð,∴BG CD =,∴12OF CD =;(2)∵AB AC =,∴ACB ABC Ð=Ð,∵ACB AGB Ð=Ð,∴ABC AGB Ð=Ð,∵90ABC CBG AGB GBC Ð+Ð=Ð+Ð=°∴AG BC ^,∵AB AC =,8BC =,∴142BH HC BC ===,∴8AH ===,∵ACB HGB Ð=Ð,AHC BHG Ð=Ð,∴AHC BHG ∽V V ,AH BH,84=,∴BG =∴CD BG ==.【点睛】本题主要考查了直径所对的圆周角是90°,同弧所对的圆周角相等,三角形中位线的判定以及性质,等腰三角形的性质,相似三角形的判定以及性质,勾股定理等知识, 掌握这些性质以及判定是解题的关键.。
江苏省盐城市大丰区飞达路初级中学2024-2025学年九年级上学期10月月考数学试题
江苏省盐城市大丰区飞达路初级中学2024-2025学年九年级上学期10月月考数学试题一、单选题1.下列是一元二次方程的是( )A .x 2﹣2x ﹣3=0B .x ﹣2y +1=0C .2x +3=0D .x 2+2y ﹣10=0 2.关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根3.下列语句中,正确的有( )①相等的圆心角所对的弧相等;②等弦对等弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A .1个B .2个C .3个D .4个 4.在O e 中,最长的弦是6cm ,则O e 的半径为( )A .9cmB .6cmC .3cmD .1.5cm5.某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( )A .2%B .5%C .10%D .20%6.过A ,B ,C 三点能确定一个圆的条件是( )①AB =2,BC =3,AC =5;②AB =3, BC =3,AC =2;③AB =3,BC =4,AC = 5. A .①② B .①②③ C .②③ D .①③7.若※是新规定的某种运算符号,设2a b b a =-※,则26x -=※中x 的值() A .4 B .8 C .2± D .-28.如图,在矩形ABCD 中,4AB =,3AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是( )A .34r <<B .35r <<C .35r ≤≤D .4r >二、填空题9.若关于x 的方程(k -1)x 2-4x+5=0是一元二次方程,则k 的取值范围是.10.已知⊙O 的半径为5cm ,A 为线段OB 的中点,当9OB =cm 时,点A 在⊙O . 11.在半径为1的⊙O 中,弦AB 的长为1,则弦AB 所对弧的度数 .12.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于. 13.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =24cm ,则水的最大深度为 .14.如图,O e 的直径BA 的延长线与弦DC 的延长线交于点E ,且C E O B =,已知72∠︒=DOB ,则E ∠等于.15.当点A (1,2),B (3,﹣3),C (m ,n )三点可以确定一个圆时,m ,n 需要满足的条件 .16.已知实数,m n 满足2320m m +-=,2320n n +-=,则n m m n+的值为.三、解答题17.用适当方法解下列方程:(1)()24136x -=;(2)22730x x ++=;(3)()235210x x ++=; (4)()()222230x x +-+-=.18.如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点()0,4A 、()4,4B -、()6,2C -,请在网格图中进行如下操作:(1)利用网格线找出.......该弧所在圆的圆心D 点,在图上标出D 点; (2)连接AD CD 、,则D e 的半径长为__________.(结果保留根号)(3)如果点E 坐标为()2,2-,则E 点在D e __________.(填“内”、“外”或“上”)19.如图,在两个同心圆中,大圆的半径OA 和OB 分别交小圆于点C 和D ,连接AD 、BC ,交于点P .求证:PAC PBD V V ≌;20.如图,矩形纸片ABCD 一边BC 过圆心O ,O e 分别交BC AD 、于E 、F ,且4cm 3cm 5cm AB BE AF ===,,,求O e 的半径.21.已知关于x 的一元二次方程x 2-2mx +2m -1=0(m 为常数).(1)若方程的一个根为0,求m 的值和方程的另一个根;(2)求证:不论m 为何值,该方程总有实数根.22.一座跨河桥,桥拱是圆弧形,跨度(AB )为 16 米,拱高(CN )为 4 米,若大雨过后,桥下河面宽度(DE )为 12 米,求水面涨高了多少米?23.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.24.如图,已知圆O 的直径是10,点P 是圆O 内一点.(1)过点P 作弦AB ,使P 为弦AB 的中点(尺规作图,保留作图痕迹,不写作法);(2)若(1)中的弦8AB =,点Q 为圆O 上一动点,则OQ PQ +的最小值是__________. 25.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x 元时,每天可销售_______________件,每件盈利____________元;(用x 的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.26.解某些高次方程或具有一定结构特点方程时,我们可以通过整体换元的方法,把方程转化为一元二次方程进行求解,从而达到降次或变复杂为简单的目的.例如:解方程(x 2﹣3)2﹣5(3﹣x 2)+2=0,如果设x 2﹣3=y ,∵x 2﹣3=y ,∴3﹣x 2=﹣y ,用y 表示x 后代入(x 2﹣3)2﹣5(3﹣x 2)+2=0得:y 2+5y +2=0.应用:请用换元法解下列各题(1)已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值;(2)解方程:22110x x x x+++=; (3)已知a 2+ab ﹣b 2=0(ab ≠0),求a b的值. 27.如图,在△ABD 中,AB =AD ,AO 平分∠BAD ,过点D 作AB 的平行线交AO 的延长线于点C ,连接BC .(1)求证:四边形ABCD 是菱形;(2)如果OA ,OB (OA >OB )的长(单位;米)是一元二次方程x ²-7x +12=0的两根,求AB 的长以及菱形ABCD 的面积;(3)在(2)的条件下,若动点M 从A 出发,沿AC 以2米/秒的速度匀速直线运动到点C ,动点N 从B 出发,沿BD 以1米/秒的速度速直线运动到点D ,当M 运动到C 点时,运动停止.若M 、N 同时出发,问出发几秒钟后,△MON 的面积为2米2。
2023-2024学年九年级(上)第一次月考数学试卷-(含答案)
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
2024—-2025学年江苏省盐城市阜宁县实验初级中学九年级(上)10月月考数学试卷(含答案)
2024—-2025学年江苏省盐城市阜宁县实验初级中学九年级(上)10月月考数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.下列方程中,属于一元二次方程的是( )A. x−2y=1B. x2+3=2xC. x2−2y+4=0D. x2−2x+1=03.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A. −1B. 0C. 1D. 不能确定4.已知x1,x2是一元二次方程2x2+6x−5=0的两个实数根,则x1+x2等于( )A. 3B. −52C. −3D. −65.杭州亚运会吉祥物深受大家喜爱.某商户3月份销售吉祥物“宸宸”摆件为10万个,5月份销售11.5万个.设该摆件销售量的月平均增长率为x(x>0),则可列方程( )A. 10(1+x)2=11.5B. 10(1+2x)=11.5C. 10x2=11.5D. 11.5(1−x)2=106.下列结论正确的是( )A. 长度相等的两条弧是等弧B. 三点确定一个圆C. 相等的圆心角所对的弧相等D. 等弧所对的圆心角相等7.已知⊙O中,⌢AB=2⌢CD,则弦AB和2CD的大小关系是( )A. AB>2CDB. AB=2CDC. AB<2CDD. 不能确定8.如图,在Rt▵ABC中,∠C=90∘,∠A=28∘,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为( )A. 28∘B. 64∘C. 56∘D. 124∘二、填空题:本题共8小题,每小题3分,共24分。
9.一元二次方程x2−1=0的根是.10.一元二次方程x2−3x−2=0的两个实数根分别为x1和x2,则x1⋅x2=.11.若关于x的一元二次方程(k−2)x2+x+k2−4=0有一个根是0,则k的值是.12.如图,一张长12cm、宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,则该铁盒的体积为cm3.13.一条弦把圆分成1:5两部分,则这条弦所对的圆周角的度数是.14.若α,β是方程x2+2x−2024=0的两个实数根,则α2+3α+β的值为.15.已知平面直角坐标系中的三个点分别为A(1,−1)、B(−2,5)、C(4,−6),则A、B、C这三个点确定一个圆(填“可以”或“不可以”).16.如图,⌢AB所对圆心角∠AOB=90∘,半径为6,C是OB的中点,D是⌢AB上一点,把CD绕点C逆时针旋转90∘得到CE,连接AE,则AE的最小值是.三、计算题:本大题共1小题,共6分。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
江苏省盐城市盐都区鹿鸣路初级中学2023-2024学年九年级上学期第一次月考数学试题
江苏省盐城市盐都区鹿鸣路初级中学2023-2024学年九年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.30︒5.某超市销售A、B、售该三种价格的矿泉水比例分别为()A.2.8元的半径为6.如图,OA .10B .6C .5D .127.如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 在小正方形的顶点上,则△ABC 的外心是()A .点DB .点EC .点FD .点G8.如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为()A .12P P <B .12P P =C .12P P >D .无法判断二、填空题16.如图,已知AB 的切线BC于点C.为AE上一点,则OG三、解答题(1)m=___________,九年级(1)班、(年级平均数九年级(1)班b(1)求证:D 与AC 相切:(2)若5AC =,3BC =,试求AE 的长.21.一只不透明的袋子中有3个小球,分别标有编号1,2,3,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为___________;(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球,求两次摸到的小球编号相同的概率是多少?(用画树状图或列表的方法说明)22.如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE ,(1)求证:四边形ODCE 是菱形:(2)若O 的半径为4,求图中阴影部分的周长.23.如图,AB 是O 的直径,弦CD AB ⊥于点E ,连接AD ,BD .(1)求证:ADC ABD ∠=∠;(2)作OF AD ⊥于点F ,若O 的半径为10,6OE =,求OF 的长.24.如图,点E 是MPN ∠的边PM 上的点,EF PN ⊥于点F ,O 与边EF 及射线PM 、射线PN 都相切.(1)作出符合条件的O (要求:尺规作图,保留作图痕迹,不写作法)(2)若34EF PF ==,,则O 的半径为.25.已知,如图,AB 为O 的直径, 延长CP 交O 于点D ,连接BP .(1)求证:点P 是ABC 的内心;(2)已知O 的直径是52,7CD =,求26.[发现问题](1)如图1,ABC 内接于[探究问题](2)如图2.四边形ABCD 为弧AC 上一动点(不与点27.如图1,扇形OAB 的半径为12,∠AOB =90°,P 是半径OB 上一动点,Q 是弧AB 上的一动点.连接PQ .(1)当___________POQ ∠=度时,PQ 有最大值,最大值为___________;(2)如图2,若P 是OB 中点,且QP OB ⊥于点P .则 BQ 的长为___________;(结果保留π)(3)如图3,将图形AOB 沿折痕AP 折叠,使点B 的对应点B '恰好落在AO 的延长线上,求阴影部分面积.(结果保留π)(4)如图4,将扇形OAB 沿PQ 折叠,使折叠后的 QB '与半径OA 相交与F 、G 两点.若2AF OG ==,求PB 的长.。
江苏省盐城市阜宁县实验初级中学九年级数学10月月考试
2016年秋学期九年级第一次学情调研数学试题(满分150分 、时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应格子里........) 1. 化简(-3)2的结果是A .3 B.-3 C.±3 D. 92.抛物线2x 2y =,2x 2-y =,2x 21y =共有的性质是A.开口向下B.对称轴是y 轴C.都有最低点D.y 随x 的增大而减小3.一元二次方程012=--kx x 的根的情况是 A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断4.如图,⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为A.2B.3 C .4 D .5 5是同类二次根式的是6。
下列四边形中,一定有外接圆的是A .平行四边形B .菱形C .矩形D .任意四边形 7.如图,△ABC 内接于⊙O ,BD 是⊙O 的直径.若 33=∠DBC ,则A ∠等于A . 33B .57C .67D .668. 如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //,若阴影部分的面积为π9,则弦AB 的长为A .3B .4C .6D .9二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上)9x的取值范围是.10.方程x2﹣3x=0的根为______________.11.若正六边形的边长为2,则它的半径是12.如图,一个量角器放在∠BAC的上面,则∠BAC=_____13.平面上一点P到⊙O上一点的距离最长为7cm,最短为3cm,则⊙O的半径为_____ cm.14.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为_____15.已知圆锥的侧面积为π8cm2,侧面展开图的圆心角为45°,则该圆锥的母线长为 cm。
江苏省盐城市大丰区实验初级中学2024-2025学年九年级上学期第一次月考数学试题
江苏省盐城市大丰区实验初级中学2024-2025学年九年级上学期第一次 月考数学试题一、单选题1.下列方程是一元二次方程的是( )A .21x y +=B .212x xy +=C .213x x +=D .234x x =+ 2.一元二次方程2x x =的根为( )A .1x =B .0x =C .10x =,21x =D .10x =,21x =- 3.一元二次方程2210x x +-=的根的情况是( )A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根4.已知O e 的直径是4,圆心O 到直线l 的距离4d =,则直线l 与O e 的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定 5.O e 是ABC V 的外接圆,则点O 是ABC V ( )A .三条边的垂直平分线的交点B .三个内角平分线的交点C .三条边上的中线的交点D .三条边上的高的交点6.如图,⊙O 的弦AB=6,M 是AB 上任意一点,且OM 最小值为4,⊙O 的半径为( )A .5B .4C .3D .27.如图,DCE ∠是O e 内接四边形ABCD 的一个外角,若82DCE ∠=︒,那么BOD ∠的度数为( )A .160︒B .162︒C .164︒D .170︒8.若关于x 的一元二次方程x 2+bx+c =0的两个实数根分别为x 1=﹣2,x 2=4,则b+c 的值是( )A .﹣10B .10C .﹣6D .﹣1二、填空题9.写出以14x =的一个一元二次方程;10.直角三角形的两条直角边长分别为6和8,那么这个三角形的内切圆半径为. 11.某商品经过连续两次降价,销售单价由原来的100元降到81元,若平均每次降价的百分率为x ,则可列方程.12.如图,AB 是O e 的直径,点C ,D 在O e 上,且20BDC ∠=︒,则ABC ∠的度数为.13.如图,一扇形纸扇完全打开后,两竹条外侧OA 和OB 的夹角为120︒,OC 长为8cm ,贴纸部分的CA 长为15cm ,则贴纸部分的面积为 2cm (结果保留π).14.如果m 是一元二次方程x 2﹣3x ﹣2=0的一个根,那么6m ﹣2m 2的值是.15.已知圆的一条弦把圆周分成1:3两部分,则这条弦所对的圆周角的度数是.16.如图,菱形ABCD 的边长为4,120ABC ∠=︒,P 是AB 边上的一动点,以P 为圆心,线段PB 的长为半径画圆,当P e 与ADC △边所在的直线相切时,P e 的半径为.三、解答题17.解下列方程:(1)230x x -=;(2)2420x x --=.18.如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系.(1)过A ,B ,C 三点的圆的圆心M 坐标为______;(2)请通过计算判断点(3,2)D --与M e 的位置关系.19.k 取什么值时,关于x 的一元二次方程x 2-kx+4=0有两个相等的实数根?求此时方程的根.20.已知一个扇形的圆心角是216︒,半径是15cm .(1)求这个扇形的弧长;(2)若用这个扇形围成一个圆锥的侧面,则这个圆锥的高是多少?21.如图,A 、B 、C 、D 是O e 上的四点,AB DC =.求证:AC BD =.22.某全国连锁店的一件特色商品的年销售量y (万件)与售价x (元)间的函数关系为300y x =-+.连锁店统计人员发现:每卖出一件特色商品的成本为20元.连锁店想通过提高售价的方式获得11500万元的年利润,从顾客的角度考虑售价定为多少元比较合理? 23.如图,四边形ABCD 为平行四边形,O 为AD 上一点,以OA 为半径作O e ,与BC 、CD 的延长线分别相切于点B 、E ,与AD 相交于点F .(1)求C ∠的度数;(2)试探究AB 、DE 、DF 之间的数量关系,并证明.24.如图,在平面直角坐标系中,Rt ABC V 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,F e 与y 轴相交于另一点G .(1)求证:BC 是F e 的切线;(2)若点A 、D 的坐标分别为()0,1A -,()3,0D ,求F e 的半径;25.【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.例如,把二次三项式223x x -+进行配方.解:()()22222321221212x x x x x x x -+=-++=-++=-+. 我们定义:一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”.(1)【问题解决】请你再写一个小于10的“完美数”;并判断40是否为“完美数”;(2)【问题解决】若二次三项式2613x x -+(x 是整数)是“完美数”,可配方成()2x m n -+(m ,n 为常数),则mn 的值为;(3)【问题探究】已知“完美数”22245x y x y +-++(x ,y 是整数)的值为0,则x y +的值为;(4)【问题探究】已知224812S x y x y k =++-+(x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的k 值.(5)【问题拓展】已知实数x ,y 满足2350x x y -++-=,求x y +的最小值.26.【学习心得】(1)小雯同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC V 中,AB AC =,90BAC ∠=︒,D 是ABC V 外一点,且AD AC =,求BD C ∠的度数.若以点A 为圆心,AB 长为半径作辅助圆A e ,则C ,D 两点必在A e 上,BAC ∠是A e 的圆心角,BDC ∠是A e 的圆周角,则BDC ∠=______︒.【初步运用】(2)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,24BDC ∠=︒,求BAC ∠的度数;【方法迁移】(3)如图3,已知线段AB 和直线l ,用直尺和圆规在l 上作出所有的点P ,使得30APB ∠=︒(不写作法,保留作图痕迹);【问题拓展】(4)如图4,已知矩形ABCD ,2AB =,BC m =,M 为边CD 上的点.若满足45AMB ∠=︒的点M 恰好有两个,则m 的取值范围为______.。
江苏省盐城市建湖县2024-2025学年九年级上学期9月月考数学试题[含答案]
2024年秋学期第一次阶段练习九年级数学试卷满分:150分 考试时间:120分钟一、选择题(本题共8小题,每题3分,计24分)1.将一元二次方程2320x x --=化成一般形式后,常数项是2-,则二次项系数和一次项系数分别是( )A .3,2-B .3,1C .3,1-D .3,02.如图,AB 是O e 的直径,,C D 是O e 上两点,若140AOC Ð=°,则BDC Ð=( )A .20°B .40°C .55°D .70°3.若关于x 的一元二次方程()2300ax bx a ++=¹的一个根是1x =,则代数式2021a b --的值为( )A .2018-B .2018C .2024-D .20244.关于x 的方程22220-++=x cx a b 有两个相等的实数根,若,,a b c 是ABC V 的三边长,则这个三角形一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.如图,O e 是ABC V 的内切圆,若80A Ð=°,则BOC Ð的度数为( )A .40°B .150°C .130°D .100°6.已知方程252x x -=,用换元法解此方程时,可设y =为( )A .220y y -+=B .220y y --=C .220y y +-=D .220y y ++=7.如图,在Rt △ABC 中,90ABC Ð=°,32A Ð=°,点B 、C 在⊙O 上,边AB 、AC 分别交⊙O 于D 、E 两点,点B 是 CD的中点,则∠ABE 的度数是( )A .13°B .16°C .18°D .21°8.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( )A .x 1+x 2=1B .x 1•x 2=﹣1C .|x 1|<|x 2|D .x 12+x 1=12二、填空题(本题共10小题,每题3分,计30分)9.若()()222393200x x x x +-++=,则23x x += .10.O e 的半径为4,圆心O 到直线l 的距离是方程27120x x -+=的一个根,则直线l 与O e 的位置关系是__________.11.写出一个二次项系数为1,且有一个根为2的一元二次方程: .12.如图,四边形ABCD 是O e 的内接四边形,100BOD Ð=°,则BCD Ð= °.13.如图,点A 、B 、C 、D 、E 在⊙O 上, AE的度数为40°,则∠B +∠D 的度数是 .14.若a ,b 是一元二次方程2520x x --=的两个实数根,则3252a a b a ++的值为 .15.如图,⊙O 的半径为6,点A 、B 、C 在⊙O 上,且∠ACB=45°,则弦AB 的长是 .16.方程2230x x +-=的解是121,3x x ==-,则方程()()232330x x +++-=的解是 .17.若点O 是等腰ABC V 的外心,且60BOC Ð=°,底边2BC =,则ABC V 的面积为 .18.如图,AC 是圆O 的直径,4AC =,60ACB Ð=°,点D 是弦AB 上的一个动点,那么12OD BD +的最小值为 .三、解答题(共9题,计96分)19.用合适的方法解下列方程.(1)()29225x -=;(2)()()33x x x -=-;(3)2230x x +-=;(4)214150x x +-=.20.如图,在平面直角坐标系xOy 中,点A 的坐标为()0,7,点B 的坐标为(0,3),点C 的坐标为()3,0.(1)在图中利用直尺画出ABC V 的外接圆的圆心点D ,圆心D 的坐标为 ;(2)求ABC V 外接圆的面积;(3)若点E 的坐标()1,8,点E 在ABC V 外接圆 .(填“圆内”“圆上”或“圆外”)21.已知关于x 的一元二次方程()2210x k x k -++-=.(1)若方程的一个根为1-,求k 的值和方程的另一个根;(2)求证:不论k 取何值,该方程都有两个不相等的实数根.22.如图,在t R ABC V 中,90BAC Ð=°,以点A 为圆心,AC 长为半径作圆,交BC 于点D ,交AB 于点E ,连接DE .(1)若20ABC Ð=°,求DEA Ð的度数;(2)若3AC =,4AB =,求CD 的长.23.设1x ,2x 是关于x 的方程()2212104x k x k -+++=的两个实数根.(1)求实数k 的取值范围;(2)若2212132x x +=,求k 的值.24.如图,在Rt △ABC 中,∠ACB =90°,点E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若CD =3,DE =52,求⊙O 的直径.25.某商店以每件25元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出(400﹣10a )件,但物价局限定每件商品的利润不得超过进价的30%,商店计划要盈利500元,每件商品应定价多少元?需要进货多少件?26.阅读下列材料:在苏教版九年级数学上册15P 页中,我们通过探索知道:关于x 的一元二次方程20(a 0)++=¹ax bx c ,如果240b ac -³时,这个方程的实数根就可以表示为x =,其中24b ac -就叫做一元二次方程根的判别式,我们用D 表示,即24b ac D =-,通过观察公式,我们可以发现,如果D 的值是一个完全平方数时,一元二次方程的根不一定都为整数,但是如果一元二次方程的根都为整数,D 的值一定是一个完全平方数.例:方程2210x x --=,2224(1)42(1)93b ac D =-=--´´-==,D 的值是一个完全平方数,但是该方程的根为11x =,212x =-,不都为整数;方程2680x x -+=的两根12x =,24x =,都为整数,此时2224(6)41842b ac D =-=--´´==,D 的值是一个完全平方数.我们定义:两根都为整数的一元二次方程20(a 0)++=¹ax bx c 称为“全整根方程”,代数式244ac b a -的值为该“全整根方程”的“最值码”,用(),,Q a b c 表示,即24(,,)4ac b Q a b c a-=;若另一关于x 的一元二次方程20(0)px qx r p ++=¹也为“全整根方程”,其“最值码”记为(,,)Q p q r ,当满足(,,)(,,)Q a b c Q p q r c -=时,则称一元二次方程20(a 0)++=¹ax bx c 是一元二次方程20(0)px qx r p ++=¹的“全整根伴侣方程”.(1)关于x 的一元二次方程2(1)0x m x m -++=是一个“全整根方程”①当2m =时,该全整根方程的“最值码”是__________.②若该全整根方程的“最值码”是1-,则m 的值为__________.(2)关于x 的一元二次方程22(23)450x m x m m --+--=(m 为整数,且415m <<)是“全整根方程”,请求出该方程的“最值码”.(3)若关于x 的一元二次方程2(1)40x m x m +-++=是2(1)0x n x n +--=(m ,n 均为正整数)的“全整根伴侣方程”,求m n -的值(直接写出答案).27.[概念引入]在一个圆中,圆心到该圆的任意一条弦的距离,叫做这条弦的弦心距.[概念理解](1)如图1,在O e 中,半径是5,弦8AB =,则这条弦的弦心距OC 长为 .(2)通过大量的做题探究;小明发现:在同一个圆中,如果两条弦相等,那么这两条弦的弦心距也相等.但是小明想证明时却遇到了麻烦.请结合图2帮助小明完成证明过程如图2,在O e 中,AB CD =,OM AB ^,ON CD ^,求证:OM ON =.[概念应用]如图3,在O e 中16AB CD ==,O e 的直径为20,且弦AB 垂直于弦CD 于E ,请应用上面得出的结论求OE 的长.1.C【分析】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程一般形式的相关概念是解题的关键.一元二次方程2320x x --=就是一般形式,再找出二次项系数和一次项系数即可.【详解】解:∵2320x x --=是一般形式,常数项是2-,∴二次项系数和一次项系数分别是3和1-,故选:C .2.A 【分析】首先根据邻补角互补得到1180402BOC AOC Ð=°-=°,然后利用圆周角定理求解即可.【详解】∵140AOC Ð=°∴1180402BOC AOC Ð=°-=°∵ BCBC =∴1202BDC BOC Ð=Ð=°.故选:A .【点睛】本题考查了圆周角定理,邻补角互补,熟练掌握圆周角定理是解题的关键.3.D【分析】本题主要考查了一元二次方程的解“使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根”,熟练掌握一元二次方程的解的定义是解题关键.将1x =代入方程可得30++=a b ,从而可得3a b +=-,再代入计算即可得.【详解】解:∵关于x 的一元二次方程()2300ax bx a ++=¹的一个根是1x =,∴30++=a b ,即3a b +=-,∴()()20212021202132024a b a b --=-+=--=,故选:D .4.B【分析】本题考查了一元二次方程根的判别式,勾股定理逆定理.由关于x 的方程22220-++=x cx a b 有两个相等的实数根,可得()()222240c a b =--+=V ,整理得222c a b =+,根据勾股定理逆定理判断ABC V 的形状即可.【详解】解:∵关于x 的方程22220-++=x cx a b 有两个相等的实数根,∴()()222240c a b =--+=V ,整理得222c a b =+,∴ABC V 是直角三角形,故选:B .5.C【分析】本题主要考查了三角形内切圆的定义,三角形内角和定理,根据三角形内角和定理得到180100ABC ACB A Ð+Ð=°-Ð=°,再根据三角形内切圆圆心是其角平分线的交点得到1122OBC ABC OCB ACB Ð=ÐÐ=Ð,,据此求出50OBC OCB Ð+Ð=°,则由三角形内角和定理可得答案.【详解】解:∵80A Ð=°,∴180100ABC ACB A Ð+Ð=°-Ð=°,∵O e 是ABC V 的内切圆,∴OB OC 、分别平分ABC ACB ÐÐ、,∴1122OBC ABC OCB ACB Ð=ÐÐ=Ð,,∴115022OBC OCB ABC ACB Ð+Ð=Ð+Ð=°,∴180130BOC OBC OCB =°--=∠∠∠,故选:C .6.C【分析】设y =25x x -=y 2,原方程可化为y 2=2-y ,整理即可解答.【详解】设y =25x x -=y 2,∴y 2=2-y ,即220y y +-=.故选C.【点睛】本题考查了用换元法解一元二次方程,一般方法是通过观察确定用来换元的式子,如本题中设y =7.A【分析】根据点B是 CD的中点,可得∠BDC=∠BCD=45°,再根据圆周角定理可得∠BEC=45°,然后根据三角形外角性质,即可求解.【详解】∵点B是 CD的中点,∴BD BC=,∴∠BDC=∠BCD,∵∠ABC=90°,∴∠BDC=∠BCD=45°,∵∠BEC=∠BDC,∴∠BEC=45°,∵∠BEC=∠A+∠ABE,∠A=32°,∴∠ABE=∠BEC-∠A=13°.故选:A.【点睛】本题主要考查了圆周角定理,三角形外角性质,熟练掌握圆周角定理,三角形外角性质是解题的关键.8.D【详解】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.9.4或5【分析】设x2+3x=y,方程变形后,求出解得到y的值,即可确定出x2+3x的值.【详解】设x 2+3x =y ,方程变形得:y 2﹣9y +20=0,即(y ﹣4)(y ﹣5)=0,解得:y =4或y =5,即x 2+3x =4或x 2+3x =5.故答案为4或5.【点睛】本题考查了换元法解一元二次方程,熟练掌握运算法则是解答本题的关键.10.相交或相切【分析】首先求出方程的根,再利用半径长度,由点O 到直线a 的距离为d ,若d r <,则直线与圆相交;若d r =,则直线于圆相切;若d r >,则直线与圆相离,从而得出答案.【详解】解:∵27120x x -+=,∴()()340x x --=,解得:13x =,24x =,∵点O 到直线l 距离是方程27120x x -+=的一个根,即为3或4,∴点O 到直线l 的距离3d =或4,∵O e 的半径为4,∴4r =,∴d r =或d r<∴直线l 与圆相交或相切,故答案为:相交或相切.【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.11.x 2-3x +2=0(答案不唯一)【分析】根据一元二次方程的定义及一元二次方程解的概念即可完成.【详解】∵一个二次项系数为1∴设所写的一元二次方程为230x x c -+=∵方程有一个根为2∴22320c -´+=∴c =2∴这个方程是x 2-3x +2=0但由于一次项系数还可以取其它任意实数,故所写的满足条件的方程不唯一故答案为:x 2-3x +2=0(答案不唯一)【点睛】本题考查了一元二次方程的概念及一元二次方程的解,利用已知可以写一个关于x 的一元二次方程,可以先确定一次项,常数项待定,将x =2代入可确定常数项,即可得到一个二次项系数为1,且有一个根为2的一元二次方程.12.130【分析】本题考查圆周角定理,圆内接四边形性质,根据圆周角定理求出A Ð的度数,再根据圆内接四边形的对角互补,进行求解即可.【详解】解:∵四边形ABCD 是O e 的内接四边形,100BOD Ð=°,∴1,1802A BOD A BCD Ð=ÐÐ+Ð=°,∴50A Ð=°,∴18050130BCD Ð=°-°=°;故答案为:130.13.160°.【分析】连接AB ,根据圆心角、弧、弦的关系定理求出∠ABE ,根据圆内接四边形的性质计算即可.【详解】解:连接AB ,∵ AE的度数为40°,∴∠ABE =20°,∵四边形ABCD 内接于⊙O ,∴∠ABC+∠D =180°,∴∠CBE+∠D =180°﹣20°=160°,故答案为160°.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.14.5【分析】本题考查一元二次方程的解,根与系数的关系,根据题意,得到252,5a a a b =++=,整体代入代数式求值即可.【详解】解:由题意,得:2520,5a a a b --=+=,∴252a a =+,∴原式3225a a b a b a +==+=;故答案为:5.15.【详解】解:连接OA ,OB ,∠AOB=2∠ACB=2×45°=90°,则故答案为;16.12x =-,26x =-【分析】本题考查换元法解方程,根据题意,得到方程()()232330x x +++-=的解为31+=x 或33x +=-,进行求解即可.【详解】解:∵方程2230x x +-=的解是121,3x x ==-,∴方程()()232330x x +++-=的解为31+=x 或33x +=-,解得:12x =-,26x =-;故答案为:12x =-,26x =-.17.2+或2【分析】分两种情形讨论:①当圆心O 在ABC V 内部时.②当点O 在ABC V 外时.分别求解即可.本题考查三角形的外接圆与外心、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解,属于中考常考题型.【详解】解:①当圆心O 在ABC V 内部时,作AE BC ^于E .∵60OB OC BOC =Ð=°,,∴OBC △是等边三角形,∴2OB OC BC ===,∴2AE OA OE =+=∴(1122222ABC S BC AE =×=´´+=V ②当点O 在ABC V 外时,连接OA 交BC 于E .(1122222ABC S BC AE =×=´´=V故答案为:2+218【分析】作BK CA ∥,DE BK ^于E ,OM BK ^于M ,连接OB .在Rt DBE V 中,12DE BD =,则12OD BD OD DE +=+,根据垂线段最短可知,点E 与M 重合时,12OD BD +的值最小,最小值为OM .【详解】解:作BK CA ∥,DE BK ^于E ,OM BK ^于M ,连接OB .∵AC 是O e 的直径,∴90ABC Ð=°∵60ACB Ð=°,∴30BAC Ð=°,∵BK CA ∥,∴30DBE BAC Ð=Ð=°,在Rt DBE V 中,12DE BD =,∴12OD BD OD DE +=+,根据垂线段最短可知,当点E 与M 重合时,12OD BD +的值最小,最小值为OM ,∵30BAO ABO Ð=Ð=°,∴60OBM OBA ABM Ð=Ð+Ð=°,∵4AC =,∴2OB =在Rt OBM △中,60OBM Ð=°,∴30BOM Ð=°∴112BM OB ==由勾股定理得,OM =∴12OD BD +【点睛】本题考查平行线的性质、勾股定理、直径所对的圆周角是直角,直角三角形的性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.19.(1)12111,33x x ==(2)123,1x x ==(3)123,12x x =-=(4)1215,1x x =-=【分析】本题考查解一元二次方程:(1)直接开方法解方程即可;(2)因式分解法解方程即可;(3)因式分解法解方程即可;(4)因式分解法解方程即可.【详解】(1)解:()29225x -=,()22529x -=,523x -=±,∴12111,33x x ==;(2)解:()()33x x x -=-,()()330x x x ---=,()()310x x --=,30x -=或10x -=,∴123,1x x ==;(3)解:2230x x +-=,()()2310x x +-=,230x +=或10x -=,∴123,12x x =-=;(4)解:214150x x +-=,()()1510x x +-=,150x +=或10x -=,∴1215,1x x =-=.20.(1)()5,5(2)29π(3)圆内【分析】(1)作线段AB 及线段BC 的垂直平分线,交点即为圆心D ;再根据D 的位置可得其坐标;(2)连接AD ,利用勾股定理求出AD ,再根据面积公式计算即可;(3)利用勾股定理求出DE 的长,由此判断即可.【详解】(1)解:如图,作线段AB 及线段BC 的垂直平分线,交点即为圆心D ;∴()5,5D ;(2)解:如图,连接AD ,∵2AF =,5DF =,90AFD Ð=°,∴AD ===∴ABC V 外接圆的面积为2π=29π;(3)解:∵()1,8E ,()5,5D ,∴5DE ===,∵半径AD =5>,∴点E 在ABC V 外接圆内;【点睛】此题考查三角形外接圆的圆心的确定,勾股定理,点与圆的位置关系,圆的面积的计算,正确确定三角形外接圆的圆心是解题的关键.21.(1)1k =-,方程的另一根为2(2)见解析【分析】(1)将1x =-代入()2210x k x k -++-=,即可求出k 的值,从而得到原方程为220x x --=,再根据因式分解法解方程即可得出方程的另一根;(2)根据一元二次方程根的判别式证明即可.【详解】(1)解:把1x =-代入()2210x k x k -++-=,得:()()()212101k k -´--++-=,解得:1k =-.∴原方程为220x x --=,∴()()120x x +-=,解得11x =-,22x =,∴方程的另一根为2;(2)∵()2210x k x k -++-=,∴1a =,()2b k =-+,1c k =-∴()()2224241180b ac k k k éùD =-=-+-´´-=+>ëû,∴不论k 取何值,该方程都有两个不相等的实数根.【点睛】本题考查一元二次方程的解和解一元二次方程,一元二次方程根的判别式.掌握方程的解就是使等式成立的未知数的值和掌握一元二次方程20(a 0)++=¹ax bx c 的根的判别式为24b ac D =-,且当0D >时,该方程有两个不相等的实数根;当0D =时,该方程有两个相等的实数根;当0D <时,该方程没有实数根是解题关键.22.(1)65°(2)185【分析】本题考查了垂径定理,三角形的内角和定理,勾股定理、等腰三角形的性质等知识,掌握垂径定理和等腰三角形的性质是解题的关键.(1)连接AD ,求出DAE Ð,再利用等腰三角形的性质解决问题即可.(2)如图,过点A 作AF CD ^,垂足为F .利用面积法求出AF ,再利用勾股定理求出CF ,进而利用垂径定理可得结论;【详解】(1)解:如图所示,连接AD ,∵90BAC Ð=°,20ABC Ð=°,∴180180902070ACD BAC ABC Ð=°-Ð-Ð=°-°-°=°,∵AC AD =,∴70ACD ADC Ð=Ð=°,∴180180707040CAD ACD ADC Ð=°-Ð-Ð=°-°-°=°,∴904050DAE CAB CAD Ð=Ð-Ð=°-°=°,∵AD AE =,∴11(180)(18050)6522DEA ADE DAE Ð=Ð=°-Ð=´°-°=°;(2)解:如图所示,过点A 作AF CD ^,垂足为F .∵90BAC Ð=°,3AC =,4AB =,∴5BC ==,∵1122AF BC AC AB =g g ,∴341255AC AB AF BC ´===g ,在Rt AFC V 中,根据勾股定理得,95CF ,∵AF CD ^,∴9182255CD CF ==´=.23.(1)0k ³(2)1k =【分析】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=¹的两根时,1212,b c x x x x a a+=-=,也考查了根的判别式.根据根与系数的关系及根的判别式计算即可【详解】(1)解:根据题意得()2221Δ4241104b ac k k æöéù=-=-+-´´+³ç÷ëûèø,即40k ³,解得,0k ³;(2)解:根据题意得122x x k +=+,212114x x k =+,()()22222121212122214x x x x x x k k æö+=+-=+-+ç÷èøQ ,2212132x x +=,()2211322142k k æö\+-+=ç÷èø,解得,19k =-(舍),21k =,综上所述,k 的值为1.24.(1)相切,理由见解析;(2)154【分析】(1)连接DO ,如图,根据直角三角形斜边上的中线性质,由∠BDC =90°,E 为BC 的中点得到DE =CE =BE ,则利用等腰三角形的性质得∠EDC =∠ECD ,∠ODC =∠OCD ,由于∠OCD +∠DCE =∠ACB =90°,所以∠EDC +∠ODC =90°,即∠EDO =90°,于是根据切线的判定定理即可得到DE 与⊙O 相切;(2)根据勾股定理和相似三角形的性质即可得到结论.【详解】解:(1)证明:连接DO ,如图,∵∠BDC =90°,E 为BC 的中点,∴DE =CE =BE ,∴∠EDC =∠ECD ,又∵OD =OC ,∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°,∴∠EDC +∠ODC =90°,即∠EDO =90°,∴DE ⊥OD ,∴DE 与⊙O 相切;(2)由(1)得,∠CDB =90°,∵CE =EB ,∴DE =12BC ,∴BC =5,∴BD 4,∵∠BCA =∠BDC =90°,∠B =∠B ,∴△BCA ∽△BDC ,∴AC CD =BC BD ,∴3AC =54,∴AC =154,∴⊙O 直径的长为154.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了直角三角形斜边上的中线性质和相似三角形的判定与性质.25.需要进货100件,每件商品应定价30元【分析】根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价﹣每件进价,建立等量关系,列出出方程,求解即可.【详解】根据题意得:(a ﹣25)(400﹣10a )=500整理得:a 2﹣65a +1050=0,解得:a 1=30,a 2=35.当a =30时,利润率为:302525-´100%=20%<30%,符合题意;当a =35时,利润率为:352525-´100%=40%>30%,不符合题意,舍去;则400﹣10a =400﹣10×30=100(件).答:需要进货100件,每件商品应定价30元.【点睛】本题考查了一元二次方程的应用,读懂题意,找出题目中的等量关系,列出方程是解题的关键;解一元二次方程的应用题,需要检验结果是否符合题意.26.(1)①14-;②1-或3;(2)494-或481-;(3)2m n -=.【分析】本题考查了一元二次方程根的判别式以及“全整根方程”的定义,(1)①把2m =代入方程()210x m x m -++=得到方程2320x x -+=,根据“最值码”的定义即可求解;②根据“最值码”的定义可得方程2230m m --=,解方程可求得m 的值;(2)通过m 的取值范围确定根的判别式24b ac -的范围,继而根据“整数根”特点确定根的判别式的取值,最后结合m为整数确定m 取值,按照“最值码”定义求解即可;(3)依次求出方程()2140x m x m +-++=和()210x n x n +--=的“最值码”,根据“全整根伴侣方程”的定义列得方程2261521444m m n n m -++----=+,结合m ,n 均为正整数即可求解;读懂题目中“全整根方程”的“最值码”及“全整根伴侣方程”的定义是解题的关键.【详解】(1)解:①当2m =时,代入()210x m x m -++=得,2320x x -+=,∴()224123414414ac b a ´´---==-´,即()1,,4Q a b c =-,故答案为:14-;②由题意得,()2411141m m éù´´--+ëû=-´,整理得,2230m m --=,解得11m =-,23m =,故答案为:1-或3;(2)解:∵()2223450x m x m m --+--=,∴()()2224234145429b ac m m m m éù-=---´´--=+ëû,∵415m <<,∴4542989m <+<,∵()2223450x m x m m --+--=是“全整根方程”,∴24b ac -是完全平方数,即429m +是完全平方数,∴42949m +=或64或81,解得5m =或354或13,∵m 为整数,∴354m =不合,舍去,∴5m =或13,当5m =时,方程()2223450x m x m m --+--=化为270x x -=,∴()()2207449,,4414ac b Q a b c a ---===-´;当13m =时,方程()2223450x m x m m --+--=化为2231120x x -+=,∴()()224111223481,,4414ac b Q a b c a ´´---===-´,∴方程()2223450x m x m m --+--=的“最值码”为494-或481-;(3)解:方程()2140x m x m +-++=的“最值码”为()()()224141615,,414m m m m Q a b c ´´+---++==´,方程()210x n x n +--=的“最值码”为()()()2241121,,414n n n n Q p q r ´´------==´,∵()2140x m x m +-++=是()210x n x n +--=的“全整根伴侣方程”,∴()(),,,,Q a b c Q p q r c -=,即2261521444m m n n m -++----=+,整理得,22220m n m n ---=,∴()()()20m n m n m n +--+=,即()()20m n m n +--=,∵m ,n 均为正整数,∴0m n +>,∴20m n --=,∴2m n -=.27.(1)3;(2)证明见解析;EO =【分析】(1)根据垂径定理得出4BC =,然后再根据勾股定理求出结果即可;(2)连接BO 、OC ,证明Rt Rt (HL)BOM CON V V ≌,即可得出答案;[概念应用]过点O 作OG CD ^交于G ,过点O 作OH AB ^交于H ,连接DO ,证明四边形GEHO 是正方形,得出GE GO =,根据垂径定理得出8DG =,根据勾股定理求出6GO =,最后求出结果即可.【详解】(1)解:连接OB ,CO AB ^Q ,BC AC \=,90BCO Ð=°,8AB =Q ,4BC \=,5BO =Q ,3CO \==,故答案为:3;(2)证明:连接BO 、OC ,OM AB ^Q ,BM AM \=,90BMO Ð=°,ON CD ^Q ,CN DN \=,90CNO Ð=°,AB CD =Q ,BM CN \=,BO CO =Q ,Rt Rt (HL)BOM CON \V V ≌,OM ON \=;[概念应用]解:过点O 作OG CD ^交于G ,过点O 作OH AB ^交于H ,连接DO ,16AB CD ==Q ,GO OH \=,AB CD ^Q ,90GEH \Ð=°,\四边形GEHO 是正方形,GE GO \=,16CD =Q ,\=,DG8Qe的直径为20,O\=,DO10\=,GO6\==,GE GO6\=EO【点睛】本题主要考查了垂径定理,正方形的判定和性质,三角形全等的判定和性质,勾股定理,解题的关键是作出辅助线,熟练掌握三角形全等的判定方法和正方形的判定和性质.。
盐城市九年级数学第一次月考试题及答案
(考试范围:一元二次方程-----圆周角 试卷总分:150分 考试时间:120分钟 命题人:刘红生)一、选择题(本大题共10小题,每小题3分,计30分,请把正确答案的序号填在相应方框内。
) 1、下列方程中,一元二次方程是( ) A .221xx +=0 B. bx ax +2=0 C .(x-1)(x+2)=1 D .052322=--y xy x 2、方程2x 2+x-4=0的解的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根3、下列命题中,真命题的个数是 ( )①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形。
③任意一个三角形一定有一个外接圆,并且只有一个外接圆,④三角形的外心到三角形的三个顶点距离相等。
A. 4个 B. 3个 C. 2个 D. 1个 4、关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则a 值为( ) A 、1 B 、1- C 、1或1- D 、0 5、已知21x x 、是方程x 2-2x-1=0的两个根,则2111x x +的值为( ) A.21-B.2C.21D.-26、已知⊙O 的半径为5㎝,P 到圆心O 的距离为6㎝,则点P 在⊙O ( ) A. 外部 B. 内部 C. 上 D. 不能确定7、如图,△ABC 内接于⊙O,∠A =60°,则∠BOC 等于( ) A.30° B. 120° C. 110° D. 100°8、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x, 则由题意列方程应为( )A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 9、如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( ) A .6 B .5 C .4 D .310、若圆的一条弦把圆分成度数的比为1:3的两条弧,则弦所对的圆周角等于( ) A. 45° B. 90° C. 135° D. 45° 或135° 二、填空题(本大题共8小题,每小题3分,计24分,请把正确答案的序号填在相应横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省盐城市九年级上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)一元二次方程x2﹣5=0的解是()
A . x=5
B . x=﹣5
C . x1=5,x2=﹣5
D . x1=,x2=
2. (2分) (2019九上·台州期中) 一元二次方程3x2-6x+4=0根的情况是()
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 有两个实数根
D . 没有实数根
3. (2分) (2016九上·萧山期中) 下列关系式中,属于二次函数的是(x为自变量)()
A .
B .
C .
D .
4. (2分) (2018九上·天台月考) 下列一元二次方程中,没有实数根的是()
A .
B .
C .
D .
5. (2分)若二次函数y=2x2-3的图象上有两个点当x=1时,y=m;当x=2时,y=n,则m与n的关系正确的是()
A . m≥n
B . m≤n
C . m>n
D . m<n
6. (2分)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()
A . 2x%
B . 1+2x%
C . (1+x%)x%
D . (2+x%)x%
7. (2分)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限
A . 四
B . 三
C . 二
D . 一
8. (2分) (2020九上·洪山月考) 将抛物线y=﹣x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线解析式为()
A . y=﹣(x+2)2+3
B . y=﹣(x﹣2)2+3
C . y=﹣(x+2)2﹣3
D . y=﹣(x﹣2)2﹣36.
9. (2分)下列各点中,抛物线经过的点是()
A . (0,4)
B . (1, )
C . ( , )
D . (2,8)
10. (2分) (2018九上·兴化期中) 关于抛物线,下列说法错误的是()
A . 开口向上
B . 与x轴有且只有一个公共点
C . 对称轴是直线
D . 当x>0时,y随x的增大而增大
11. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a-b+c<0,其中正确的个数()
A . 4个
B . 3个
C . 2个
D . 1个
12. (2分) (2017七上·武汉期中) 某商场出售甲、乙两种不同价格的笔记本电脑,其中甲电脑因供不应求,连续两次提价10%,而乙电脑因外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9801元售出.若商场同时售出甲、乙电脑各一台与价格不升不降比较,商场的盈利情况是()
A . 前后相同
B . 少赚598元
C . 多赚980.1元
D . 多赚490.05元
二、填空题 (共6题;共6分)
13. (1分) (2019八上·闵行月考) 把一元二次方程(x+1)(1﹣x)=2x化成二次项系数大于零的一般式是________.
14. (1分) (2018九上·朝阳期中) 将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=________.
15. (1分) (2019九上·道外期末) 二次函数y=x2+2的图象,与y轴的交点坐标为________.
16. (1分)(2018·嘉定模拟) 如果函数(为常数)是二次函数,那么取值范围是 ________.
17. (1分)(2017·青岛模拟) 已知二次函数y=mx2+2mx+2的图象与x轴只有一个交点,则m的值是________.
18. (1分)某市出租车公司收费标准如图所示,如果小明乘此出租车最远能到达13千米处,那么他最多只有________元钱.
三、解答题 (共6题;共47分)
19. (10分) (2016九上·临洮期中) 选择适当的方法解方程:
(1) 2(x﹣3)=3x(x﹣3).
(2) 2x2﹣3x+1=0.
20. (5分) (2020九上·铁岭月考) 关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求
的值.
21. (5分)求二次函数y=x2﹣3x﹣10的图象和x轴、y轴的交点坐标.
22. (10分) (2019九上·海珠期末) 已知抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),且经过点B(﹣2,6)
(1)求该抛物线的解析式;
(2)若点(﹣,y1)与点(2,y2)都在该抛物线上,直接写出y1与y2的大小关系.
23. (10分) (2018九上·黄石期中) 如图,矩形ABCD的长AD=5 cm,宽AB=3 cm,长和宽都增加x cm,那么面积增加y cm2.
(1)写出y与x的函数关系式;
(2)当增加的面积y=20 cm2时,求相应的x是多少?
24. (7分)(2019·盘龙模拟) 如图,已知抛物线与轴交于点,,且线段,该抛物线与轴交于点,对称轴为直线 .
(1)求抛物线的函数表达式;
(2)根据图象,直接写出不等式的解集:________;
(3)设D为抛物线上一点,为对称轴上一点,若以点,,,为顶点的四边形是菱形,则点的坐标为________.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共6题;共6分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
三、解答题 (共6题;共47分)答案:19-1、
答案:19-2、
考点:
解析:
答案:20-1、
考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:
答案:23-1、
答案:23-2、考点:
解析:
答案:24-1、答案:24-2、答案:24-3、考点:
解析:。