行程问题7大经典题型归纳总结拓展教学内容

合集下载

行程问题7大经典题型归纳总结材料拓展

行程问题7大经典题型归纳总结材料拓展

行程问题7大经典题型归纳总结拓展简单地将行程问题分类:〔1〕直线上的相遇、追与问题〔含屡次往返类型的相遇、追与〕〔2〕火车过人、过桥和错车问题〔3〕多个对象间的行程问题〔4〕环形问题与时钟问题〔5〕流水、行船问题〔6〕变速问题一些习惯性的解题方法:〔1〕利用设数法、设份数处理〔2〕利用速度变化情况进展分段处理〔3〕利用和差倍分以与比例关系,将形程过程进展比照分拆〔4〕利用方程法求解1. 直线上的相遇与追与直线上的相遇、追与是行程问题中最根本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的根底例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量〔火车过人、两辆火车齐头并进,齐尾并进等〕时可以把其中一个变量看做静止,只需要研究另一个变量的行程以与二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

在客车的前方有一列行驶方向与它一样的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?〔这道题超级经典~〕例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,如此9秒钟后快车超过慢车,那么慢车车身长度是多少米。

奥数行程问题大全

奥数行程问题大全

奥数行程问题大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】奥数行程问题一、多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程二速度X时间2.相遇问题:路程和=速度和X时间3.追击问题:路程差=速度差X时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程” 例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3 分钟和丙相遇。

问:这个花圃的周长是多少米分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)X3=228 (米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228+(38-36) =114 (分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)X114=8892 (米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!二、奥数行程:追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

初中数学行程问题归纳总结

初中数学行程问题归纳总结

初中数学行程问题归纳总结数学是一门需要大量实践和思考的学科,特别是在初中阶段,数学的行程问题给了我们很多练习的机会,也考验了我们的逻辑思维和解决问题的能力。

本文将对初中数学中的行程问题进行归纳总结,帮助读者更好地理解和应用相关知识。

一、行程问题的基本概念行程问题,简单来说就是关于时间、速度和距离之间的关系问题。

在实际生活中,我们经常遇到各种行程问题,比如两车相向而行、追及问题等。

解决行程问题,关键在于建立数学模型、设立变量并列方程,推导出解析式,最终解得问题的答案。

二、相遇问题相遇问题是行程问题中常见的一种类型,也是初中阶段数学考试的常见题型之一。

相遇问题有两种典型情况:1. 两车同时出发,同向行驶在这种情况下,我们需要设立变量表示其中一个车辆的行驶时间,列出两个车辆的行程表达式,然后通过解方程求得相遇点的时间和位置。

例如,A车和B车同时从A地和B地出发,A车以v1的速度行驶,B车以v2的速度行驶,相遇于C点,求C点的位置和时间。

解决这类问题的思路是设立相遇时间t和相遇点的距离x,列出A车和B车的行程表达式,然后通过解方程求解出t和x的值。

2. 两车相向而行相向而行的行程问题可以分为两种情况:(1)两车同时出发在这种情况下,我们可以设立相遇时间t和相遇点的距离x,列出A车和B车的行程表达式,然后通过解方程求解出t和x的值。

(2)两车不同时出发在这种情况下,我们需要先找到两车相遇时的公共行驶时间,然后再求出相遇点的位置。

设A车和B车的出发时间分别为t1和t2,速度分别为v1和v2,相遇于C点,求C点的位置。

解决这类问题的思路是先设立公共行驶时间t,再设立A车和B车的行程表达式,然后通过解方程求解出t和x的值。

三、其他常见的行程问题除了相遇问题外,还有一些其他常见的行程问题,包括但不限于:1. 超车问题超车问题是行程问题中较为复杂的一类,常常涉及到多个车辆的行驶速度和距离。

解决超车问题的关键在于找到相互超越的点和时间,建立相应的方程并进行求解。

初中物理行程题总结归纳

初中物理行程题总结归纳

初中物理行程题总结归纳初中物理学中的行程题是学习物理过程和物理规律的重要一环。

通过解答行程题,学生可以加深对物理概念的理解,培养逻辑思维能力,并且能够应用所学知识解决实际问题。

本文将总结归纳初中物理行程题的常见类型、解题方法和注意事项。

一、匀速直线运动行程题匀速直线运动是指物体在相同的时间内,每个相邻时间点所通过的位移相等。

行程题常常涉及到匀速直线运动的速度、位移、时间等相关量的计算。

解答这类问题时,我们可以运用匀速直线运动的公式进行计算。

例如,一辆汽车以每小时60公里的速度匀速行驶2小时,求汽车的位移是多少?解答这类问题时,我们可利用匀速直线运动的公式S=vt进行计算。

即位移等于速度乘以时间。

根据题意将速度转换成米每秒的单位,再代入公式计算。

二、加速直线运动行程题加速直线运动是指物体在运动过程中速度的变化量不断改变。

行程题常常涉及到加速直线运动的加速度、初速度、末速度、位移等相关量的计算。

解答这类问题时,我们可以运用加速直线运动的公式进行计算。

例如,一个物体初速度为2m/s,加速度为4m/s²,经过3秒后它的速度是多少?解答这类问题时,我们可利用加速直线运动的公式v = u+ at进行计算。

三、自由落体运动行程题自由落体运动是指物体在只受重力作用下下落的运动。

行程题常常涉及到自由落体运动的时间、位移等相关量的计算。

解答这类问题时,我们可以运用自由落体运动的公式进行计算。

例如,一个物体从高空自由落体,落地经过5秒,求它下落的高度是多少?解答这类问题时,我们可利用自由落体运动的公式h = (1/2)gt²进行计算,其中h表示下落的高度,g表示重力加速度。

四、斜抛运动行程题斜抛运动是指物体在一个斜向抛出的过程中同时具有匀速直线运动和自由落体运动的特点。

行程题常常涉及到斜抛运动的初速度、角度、飞行时间、最大高度、水平位移等相关量的计算。

解答这类问题时,我们可以将斜抛运动拆分为匀速直线运动和自由落体运动来分别计算。

初一数学行程问题题型总结

初一数学行程问题题型总结

初一数学行程问题题型总结摘要:一、初一数学行程问题概述二、初一数学行程问题题型分类与解题方法1.直线行程问题2.曲线行程问题3.相遇问题4.追及问题5.比例行程问题6.往返行程问题三、解题技巧与策略四、巩固练习与答案解析正文:一、初一数学行程问题概述初一数学行程问题主要研究物体在一定时间内所行驶的路程、速度和时间之间的关系。

通过对行程问题的学习,学生可以更好地理解代数、几何和三角函数等知识,为后续学习打下基础。

二、初一数学行程问题题型分类与解题方法1.直线行程问题:题目中涉及物体在直线上的运动,通过已知条件求解速度、时间或路程等问题。

解题方法:掌握速度、时间、路程之间的关系公式,如v=s/t,s=vt,t=s/v等。

2.曲线行程问题:题目中涉及物体在曲线上的运动,需要运用三角函数等知识求解。

解题方法:将曲线问题转化为直线问题,运用三角函数关系式,如sinα=对边/斜边,cosα=邻边/斜边等。

3.相遇问题:两个或多个物体在某一地点相向而行,求解相遇时间、地点等问题。

解题方法:利用相对速度的概念,设相遇时间为t,则各物体行驶的路程之和等于总路程,即v1+v2=s/t。

4.追及问题:一个物体在另一个物体前追逐,求解追及时间、距离等问题。

解题方法:利用相对速度的概念,设追及时间为t,则追及距离等于速度差乘以时间,即v1-v2=s/t。

5.比例行程问题:物体在两种不同速度下行驶相同距离,求解速度比等问题。

解题方法:设两种速度分别为v1和v2,行驶时间为t1和t2,则v1/v2=t2/t1。

6.往返行程问题:物体在往返过程中,求解总时间、总路程等问题。

解题方法:将往返过程分为两个单程,利用速度、时间、路程之间的关系求解。

三、解题技巧与策略1.画图辅助:对于复杂问题,可以通过画图来帮助理解题意,更好地找出已知条件和未知量。

2.设立未知量:根据题意,设定合适的未知量,然后列出方程求解。

3.单位统一:在解题过程中,要保持单位一致,便于计算。

小学六年级数学行程问题

小学六年级数学行程问题

小学六年级数学行程问题第一篇:小学六年级数学行程问题行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。

2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。

3、基本数量关系:速度x时间=路程速度和x时间(相遇时间)=路程和(相遇路程)速度差x时间(追及时间)=路程差(追击路程)二、学法提示1.火车过桥:火车过桥路程=桥长+车长过桥时间=路程÷车速过桥过程可以通过动手演示来帮助理解。

2.水流问题:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度顺水速度-逆水速度=2x水流速度3.追及问题:追击路程÷速度差=追及时间追击距离÷追及时间=速度差4.相遇问题:相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间三、解决行程问题的关键画线段图,标出已知和未知。

能够从线段图中分析出数量关系,找到解决问题的突破口。

四、练习题(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。

3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。

4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。

每小时行72千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。

6.一人沿铁路边的便道行走,一列火车从身后开来,在身旁通过的时间为15秒,车长105米,每小时行28.8千米,求步行速度。

7.公路两旁的电线杆间隔都是30米,一位乘客坐在运行的汽车中,他从看到第一根电杆到看到第26根电线杆正好是3分钟。

行程问题的知识点归纳

行程问题的知识点归纳

行程问题的知识点归纳行程问题是一种经典的数学问题,它涉及到物体或人在某个空间中移动的路径、速度、时间等概念。

行程问题在现实生活中有着广泛的应用,如交通规划、物流运输、行程安排等。

下面将对行程问题的知识点进行归纳和总结。

一、基本概念1. 距离:距离是指物体或人在空间中移动的直线距离。

2. 速度:速度是指物体或人在单位时间内移动的距离。

3. 时间:时间是指物体或人移动所需的时间。

4. 速度、时间和距离之间的关系:距离= 速度×时间。

二、行程问题的分类1. 直线行程问题:物体或人在一条直线上移动,涉及到相遇、追及、环形跑道等问题。

2. 曲线行程问题:物体或人在一条曲线上移动,涉及到最短路径、时间最少等问题。

3. 综合行程问题:结合了直线和曲线行程问题,涉及到行程安排、交通规划等问题。

三、解题思路和方法1. 画图分析:通过画图的方式将问题可视化,帮助理解问题的本质和规律。

2. 方程求解:根据速度、时间和距离之间的关系,建立方程求解。

3. 逻辑推理:根据题目中的条件和规律,进行逻辑推理,得出结论。

四、知识点归纳1. 相遇问题:两个物体或人在同一直线上相对运动,求相遇时的距离和时间。

2. 追及问题:两个物体或人在同一直线上相对运动,一个追赶另一个,求追及时的距离和时间。

3. 环形跑道问题:两个或多个物体或人在同一直线上同向运动,求再次相遇所需的时间和距离。

4. 最短路径问题:在平面或曲面上,求两个点之间的最短路径和时间。

5. 时间最少问题:在给定路径和速度的情况下,求最少所需的时间。

6. 行程安排问题:在给定多个任务和时间限制的情况下,如何合理安排行程,使得完成任务的总时间最短。

7. 交通规划问题:在给定道路网络和交通流量的情况下,如何规划路线,使得运输效率最高,交通拥堵最小。

8. 流水行船问题:在河流中,船只顺流而下或逆流而上,求船行的速度、时间和距离之间的关系。

9. 火车过桥问题:火车过桥时,求火车和桥的长度、速度之间的关系,以及火车过桥所需的时间。

(完整版)小学奥数行程问题经典整理

(完整版)小学奥数行程问题经典整理

第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

行程问题7大经典题型四年级

行程问题7大经典题型四年级

行程问题7大经典题型四年级
行程问题在数学中是一个经典的题型,旨在训练学生的逻辑思维和计算能力。

下面将介绍四年级学生常见的行程问题的七种经典题型。

1. 单程问题:给定起点和终点,要求计算从起点到终点所需的距离
或时间。

这种题型要求学生直接计算两个点之间的距离或时间差。

2. 往返问题:给定起点和终点,要求计算从起点到终点再返回起点
的总距离或时间。

这种题型要求学生计算两次单程的距离或时间,并将其相加。

3. 同步问题:给定两个人从相同的地点同时出发,要求计算他们在
指定时间或指定距离后到达的位置。

这种题型要求学生计算两个人的行程,并比较他们的位置。

4. 平均速度问题:给定两个地点之间的距离和时间,要求计算平均
速度。

这种题型要求学生将距离除以时间,得到平均速度。

5. 快慢车问题:给定两辆车的速度和距离,要求计算两辆车分别到
达终点所需的时间。

这种题型要求学生根据速度和距离的关系,计算出所需的时间。

6. 集合问题:给定多个地点之间的距离,要求计算从起点到终点经过指定的中间点的最短路径。

这种题型要求学生进行路径规划,选择最短的路径。

7. 排队问题:给定多个人按照不同的顺序排队,要求计算某个人离队伍起点或终点的距离。

这种题型要求学生计算相对位置,并进行加减运算。

通过解决这些行程问题,四年级学生可以培养逻辑思维能力和计算能力,提高他们的数学综合素质。

同时,这些问题也能够让学生在实际生活中运用数学知识,理解和应用数学的意义和价值。

中学奥数“行程问题”类型归纳及解题技巧总结

中学奥数“行程问题”类型归纳及解题技巧总结

中学奥数“行程问题”类型归纳及解题技巧总结本文将对中学奥数中常见的“行程问题”类型进行归纳并总结解题技巧。

1. 单程问题单程问题是指求解一个人或一个物体从出发地到目的地的最短路径或最快时间的问题。

解决单程问题需要根据给定的条件,运用数学知识进行计算和推理。

解题技巧:- 确定出发地和目的地;- 根据给定的条件,使用数学公式或方法计算最短路径或最快时间;- 注意考虑各种限制条件,如速度、距离等。

2. 往返问题往返问题是指一个人或一个物体在两个地点之间来回行程的问题。

解决往返问题需要考虑来回行程的距离、时间及其他相关条件。

解题技巧:- 确定往返的两个地点;- 分别计算去程和回程的距离或时间;- 综合考虑两次行程的条件,计算总距离或总时间。

3. 多次行程问题多次行程问题是指一个人或一个物体从多个地点之间进行多次行程的问题。

解决多次行程问题需要考虑多个地点之间的顺序、距离以及其他相关条件。

解题技巧:- 确定多次行程的起点和终点;- 根据给定的条件,以最优的方式确定行程的顺序;- 分别计算每次行程的距离或时间,然后求和得出总距离或总时间。

4. 排列组合问题排列组合问题是指在给定的一组元素中,通过排列或组合的方式选择其中的一部分元素的问题。

解决排列组合问题需要根据给定条件,运用组合数学的知识进行计算。

解题技巧:- 确定元素的个数和要选择的个数;- 根据给定的条件,使用组合数公式计算排列或组合的种类数;- 注意考虑元素的顺序或是否允许重复选择。

5. 时间约束问题时间约束问题是指在行程中,需要考虑到时间限制的问题。

解决时间约束问题需要根据给定的行程和时间限制,综合考虑时间与距离之间的关系。

解题技巧:- 确定行程的起点和终点;- 根据给定的时间限制,计算在限定时间内可到达的最远距离;- 注意考虑行程的速度和其他约束条件。

以上是中学奥数中常见的“行程问题”类型及解题技巧的总结。

通过熟练掌握这些技巧,可以更好地解决各类行程问题。

行程问题思维刘有珍行程问题归纳总结

行程问题思维刘有珍行程问题归纳总结

行程问题思维刘有珍行程问题归纳总结解题思路1个核心公式:路程=速度×时间2个基本题型:相遇即合作,路程和=速度和×时间;追及即干扰,路程差=速度差×时间;6种常见方法:图示法、公式法、比例法、赋值法、方程法、代入法8个行程模型:火车过桥、火车运动、队伍行进、往返相遇、等距离运动、等间隔发车、无动力漂流、流水行船精细备考考点1:基本公式法方:题干中等量关系明显,一般结合方程法,依据核心公式直接解题,方程往往围绕路程或时间展开。

【例题1】(广州2012-84)甲公司的马经理从本公司坐车去乙公司洽谈,以30千米/时的速度出发20分钟后,马经理发现文件忘带了,便让司机以原来1.5倍的速度回甲公司拿,而他自己则以5千米/时的速度步行去乙公司。

结果司机和马经理同时到达乙公司。

甲乙两公司的距离是()千米。

A. 12.5B. 13C. 13.5D. 14[答案]A[解析]20分钟的路程为30×1/3=10千米,设马经理步行的总距离为x,则,解得x=2.5(千米),因此两地的距离为12.5千米,答案选择A。

【例题2】(深圳2012-6)小强从学校出发赶往首都机场乘坐飞机回老家,若坐平均速度40千米/小时的机场大巴,则飞机起飞时他距机场还有12公里;如果坐出租车,车速50千米/小时,他能够先于起飞时间24分钟到达,则学校距离机场()公里。

A. 100B. 132C. 140D. 160[答案]C[解一]24分钟=0.4小时,假设学校距离机场的距离为s,则,解之可得s=140。

答案选择C。

[解二]12公里所需的时间为12÷40=0.3小时,24分钟=0.4小时。

两次速度比为4:5,路程一定,因此时间比为5:4,两次的时间差为0.7小时,进而得到第一次所需时间为5×0.7=3.5小时,从而可以得到学校距离机场的距离为40×3.5=140公里。

【例题3】(贵州2012-41)某部队从驻地乘车赶往训练基地,如果车速为54公里/小时,正好准点到达;如果将车速提高1/9,就可比预定的时间提前20分钟赶到;如果将车速提高1/3,可比预定的时间提前多少分钟赶到?()A. 30B. 40C. 50D. 60[答案]C[解析]54公里/小时=0.9公里/分钟,设准点达到的时间为t,则有:0.9t=1×(t-20),解得t=200(分钟),所以总路程为0.9×200=180(公里)。

行程问题奥数经典题型

行程问题奥数经典题型

行程问题奥数经典题型一、相遇问题1. 题目- 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,经过3小时两人相遇。

求A、B两地的距离。

- 解析:- 这是一个典型的相遇问题。

相遇问题的基本公式是:路程 = 速度和×相遇时间。

- 甲的速度是每小时30千米,乙的速度是每小时20千米,那么他们的速度和就是30 + 20=50千米/小时。

- 经过3小时相遇,根据公式可得A、B两地的距离为50×3 = 150千米。

2. 题目- 两辆汽车同时从相距450千米的两地相对开出,甲车每小时行40千米,乙车每小时行50千米。

几小时后两车相遇?- 解析:- 已知两地距离为450千米,这是路程。

甲车速度40千米/小时,乙车速度50千米/小时,它们的速度和为40+50 = 90千米/小时。

- 根据相遇时间=路程÷速度和,可得相遇时间为450÷90 = 5小时。

二、追及问题1. 题目- 甲、乙两人在同一条路上同向而行,甲每小时行5千米,乙每小时行3千米,乙先走4小时后甲才出发,甲几小时后能追上乙?- 解析:- 乙先走4小时,根据路程 = 速度×时间,乙先走的路程为3×4 = 12千米。

- 甲每小时行5千米,乙每小时行3千米,那么甲每小时比乙多走5 - 3=2千米。

- 甲要追上乙,就是要把乙先走的12千米追回来,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷2 = 6小时。

2. 题目- 快车和慢车同时从A地开往B地,快车每小时行60千米,慢车每小时行40千米,慢车先出发2小时,快车几小时后能追上慢车?- 解析:- 慢车先出发2小时,慢车速度为40千米/小时,那么慢车先出发所走的路程为40×2 = 80千米。

- 快车速度60千米/小时,慢车速度40千米/小时,速度差为60 - 40 = 20千米/小时。

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展引言行程问题是数学中常见的问题之一,主要研究物体在不同速度、时间、距离条件下的运动情况。

本文将对行程问题中的7大经典题型进行归纳总结,并进行拓展分析。

题型一:相遇问题定义相遇问题是指两个或多个物体从不同地点出发,以不同的速度相向而行,最终在某一点相遇的问题。

公式设A、B两点相距( d ),甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b )。

若甲乙相遇于C点,则相遇时间为( t ),有:[ t = \frac{d}{v_a + v_b} ]拓展可以拓展到多物体相遇问题,考虑物体间的速度差和相对运动。

题型二:追及问题定义追及问题是指一个物体追赶另一个物体,两者以不同速度运动,最终追上的问题。

公式设甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b ),甲追上乙所需时间为( t ),则:[ t = \frac{d}{v_a - v_b} ]拓展考虑追及过程中的加速、减速情况,以及追及的临界条件。

题型三:往返问题定义往返问题是指物体在两点间来回运动,可能涉及速度变化的问题。

公式设A、B两点相距( d ),物体速度为( v ),往返一次所需时间为( t ),则:[ t = \frac{2d}{v} ]拓展考虑物体在往返过程中速度的变化,以及往返次数与时间的关系。

题型四:流水行船问题定义流水行船问题是指船只在有水流的河流中航行,需要考虑船速与水流速度的问题。

公式设船在静水中的速度为( v_s ),水流速度为( v_r ),船顺流而下的速度为( v_{up} ),逆流而上的速度为( v_{down} ),则:[ v_{up} = v_s + v_r ][ v_{down} = v_s - v_r ]拓展考虑船只在不同水流速度下的航行策略,以及如何最优化航行时间。

题型五:环形跑道问题定义环形跑道问题是指物体在环形跑道上运动,可能涉及速度和圈数的问题。

行程问题知识点总结小升初

行程问题知识点总结小升初

行程问题知识点总结小升初一、行程的概念行程是一个物体从一个地点到另一个地点所经过的路程,是一个物体在空间中的移动过程。

在我们日常生活中,行程是非常常见的,比如我们每天都需要走路去学校或者去购物,这些都是行程。

二、行程的求解1. 行程的公式行程等于速度乘以时间,公式为:行程 = 速度 × 时间其中,行程的单位通常为米(m)或千米(km),速度的单位通常为米每秒(m/s)或千米每小时(km/h),时间的单位通常为秒(s)或小时(h)。

2. 行程的求解要求解行程,就需要已知速度或时间中的一个参数,再通过行程的公式进行计算。

例如,如果已知速度和时间,就可以用公式求解行程;如果已知速度和行程,就可以用公式求解时间。

三、行程问题的应用1. 同向行程问题同向行程问题是指两个物体从同一地点出发,朝同一个方向移动,问它们何时能相遇。

这种问题通常需要通过分析两个物体的行程和速度来求解。

2. 相向行程问题相向行程问题是指两个物体从两个不同的地点出发,朝着对方的方向移动,问它们何时能相遇。

这类问题也需要通过分析两个物体的行程和速度来求解。

四、行程问题的解题步骤1. 分析题目首先要看清楚题目中给出的信息,包括物体的速度、行程和时间等,从而确定需要求解的问题类型。

2. 建立方程根据题目中给出的信息,建立相应的方程,通常是利用行程的公式进行建立。

3. 求解方程通过解方程来求解行程问题,可以使用代入法、消元法等进行求解。

4. 检查答案最后还要检查所得的答案是否符合题意,是否合理。

五、行程问题的注意事项1. 单位换算在求解行程问题时,要注意单位的换算,比如将小时换算为秒,将千米换算为米等。

2. 约束条件在建立方程时,要注意约束条件,比如物体的速度和时间不能为负数,行程不能为零等。

3. 问题拓展学习了基本的行程问题解法后,还可以拓展一些复杂的应用问题,比如通过行程问题求解相遇时间等。

六、行程问题的综合练习为了更好地掌握行程问题的解题方法,可以做一些综合练习,包括同向行程问题、相向行程问题、相遇时间问题等,从而提高解题能力。

行程问题7大经典题型四年级

行程问题7大经典题型四年级

行程问题7大经典题型四年级
行程问题是数学题中常见的一个题型,主要考察学生在时间、距离、速度等方面的计算能力。

以下是四年级常见的7大经典行程问题题型:
1. 单程问题:小明骑自行车从家到学校的距离是5公里,速度是10公里/小时,问他需要多长时间才能到学校?
2. 往返问题:小红骑自行车从家到公园的距离是8公里,速度是12公里/小时,然后原路返回,问她总共用了多长时间?
3. 多人同时出发问题:小明和小红同时从A地出发,小明骑自行车速度是15公里/小时,小红步行速度是5公里/小时,他们同时到达B地,问B地离A地有多远?
4. 多人相遇问题:小华从A地出发,小明从B地出发,他们同时向对方出发,小华速度是10公里/小时,小明速度是15公里/小时,他们多久能相遇?
5. 超速问题:小王乘坐火车从A地到B地,全程200公里,平均速度是80公里/小时,但在旅途中超速行驶,超速部分之速度是100公里/小时,问他超速了多少时间?
6. 高速公路问题:小李驾车从A地到B地,全程300公里,他在高速公路上以100公里/小时的速度行驶,而在市区行驶的速度是40公里/小时,问他全程需要多长时间?
7. 追及问题:小明从A地以15公里/小时的速度出发,小红从B地以10公里/小时的速度出发,小明比小红晚出发1小时,问小明追上小红需要多长时间?
以上是四年级常见的7大经典行程问题题型。

通过解决这些问题,学生能够提高他们的数学计算能力和逻辑思维能力,同时也锻炼了他们在实际生活中解决问题的能力。

小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结“行程问题”主要类型归纳一、直线型(1)两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。

第n次背面追及相遇,两人的路程差是(2n-1)S。

(2)单岸型:第n次迎面碰头相遇,两人的路程和为2ns。

第n次背面追及相遇,两人的路程差为2ns。

二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。

“行程问题”解题技巧总结一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。

“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。

现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。

题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。

1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。

之后的每次相遇都多走了2个全程。

所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。

而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。

即对于甲和乙而言从a到c走过的路程是从起点到a 的2倍。

相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。

则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。

初一应用题分类总结----行程问题

初一应用题分类总结----行程问题

初一应用题分类总结---------典型题型归类与解题思路(一)行程问题: 基本公式 时间×速度=距离行程问题包括相遇问题、追击问题、跑道赛跑、火车相遇、水中行船、时钟问题,还有相关的判断问题。

关键点:位置、距离、时间、速度。

清楚各点之间相关量的关系,忽略过程的细节。

1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。

分析:行走问题,可以理解为追击问题时间等量关系 车行时间+3.6=人行时间 x÷40+3.6=x÷8 距离等量关系人行时间×人行速度=甲乙距离(x÷40+3.6)×8=x2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

分析:相遇问题---相向而行(反方向) 甲距离+乙距离=某距离(1)甲乙两次的行走时间均已知,(2)两次行走的总距离均已知,(3)第一次甲乙时间同距离等量关系 第二次甲走+第二次乙走=18 ---(2)设甲速度x,乙的速度=距离÷第一次同时行走时间-x ---(3)x×(40+1时30)+(距离÷第一次同时行走时间-x)×1时30=18----单位应一致速度等量关系第二次甲40分钟路程÷40分钟=甲的速度第二次甲40分钟路程=总行程-第二次共同走过的行程第二次共同走过的行程=总行程×两次共同走过的时间比速度等量关系第一次共同行走时的速度=第二次行走时的速度18÷1小时48分=(18-x×40分)÷1小时30分 ----单位应一致3. 某人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?分析:行走问题。

行程问题7大经典题型

行程问题7大经典题型

行程问题7大经典题型行程问题是在现代计算机科学中研究的重要研究领域之一,也称为旅行商问题。

根据具体的应用,行程问题可分为七类经典题型:一、最短路径问题最短路径问题是指使行程开销最小化的最优路径问题,即在有权网(即有距离弧权值的有向图)中求出从起点到终点的最短路径问题。

最短路径问题的特点是将多条路径的值做比较,选择最优的路径。

最短路径问题的解法一般有迪杰斯特拉算法和贝尔曼-福德算法。

二、最小生成树问题最小生成树问题是指在连通图中求最小代价覆盖图(最小生成树)的问题。

求最小生成树也可以用迪杰斯特拉算法、贝尔曼-福德算法、克鲁斯卡尔算法等求解。

三、拓扑排序问题拓扑排序问题是指要解决有向图中的局部拓扑排序问题,让用户能够处理有向图的排序操作。

例如,拓扑排序可以用来求解项目管理中的生产流程排序,求解最长路径问题,用来求解运输问题。

某些拓扑排序问题常用拓扑排序法来解决,它的优点是举例简单,容易解决,但是在处理较大的网络可能不太方便。

四、负责度限制约束最小生成树问题负责度限制约束最小生成树问题是指当有负责度限制或边限制时,求出最小生成树的问题。

负责度限制最小生成树问题与最小生成树问题相似,但限制要求不同,使其可以求最小生成树但不需要所有节点出现。

解决负责度限制最小生成树问题的常见算法有Prim,Kruskal算法,单源最短路径算法等。

五、旅行商问题旅行商问题是指将一个实体从一个位置出发,访问所有位置,最后返回原位置,要尽可能使得整个行程之和最小的问题。

旅行商问题与最短路径问题之间存在着一定的联系,但是它更加复杂,可能有多个路径都是最优的,旅行商问题最优解的求解方法有穷举法、贪心法、遗传算法等。

六、交通网络问题交通网络问题是指涉及多晶体的旅行问题,在该问题中,客户的行程将跨越多个晶体构成的网络,以最小的费用或最短的时间从起点到终点运输物品或人员。

交通网络问题可以使用模拟退火法、遗传算法、混合算法等解决。

七、联通子图覆盖问题联通子图覆盖问题是指求解一个图G是否存在一个联通子图T,满足T中所有顶点和G中的全部顶点是相同的,最小顶点覆盖问题是联通子图覆盖问题的一个特殊情况,该问题的解法一般有贪心法和回溯法。

初中奥数“行程问题”类型归纳及解题技巧总结

初中奥数“行程问题”类型归纳及解题技巧总结

初中奥数“行程问题”类型归纳及解题技巧总结概述初中奥数中的“行程问题”类型是指涉及对象的移动路径和位置的数学问题。

这类问题需要学生根据给定的条件,确定对象的具体位置和路径,并运用数学方法进行计算。

本文将对初中奥数中的“行程问题”类型进行归纳,并总结解题技巧。

类型归纳初中奥数中的“行程问题”类型可以分为以下几类:1. 直线行程问题:涉及对象沿直线路径移动的问题。

该类问题通常需要计算对象的起始位置、终止位置、移动距离或移动时间。

2. 圆周行程问题:涉及对象沿圆周路径移动的问题。

该类问题通常需要计算对象的起始位置、终止位置、移动角度或移动距离。

3. 多边形行程问题:涉及对象沿多边形路径移动的问题。

该类问题通常需要计算对象的起始位置、终止位置、移动距离或移动顺序。

解题技巧解决初中奥数中的“行程问题”可以采用以下技巧:1. 画图辅助:根据问题描述,画出对象的移动路径和位置图示,有助于直观理解问题。

2. 利用几何知识:根据问题描述和已知条件,应用几何知识来求解问题。

例如,使用直线段的长度计算公式、圆的周长公式等。

3. 分析问题条件:仔细分析问题中给出的条件,提取关键信息,确保理解问题的要求和限制。

4. 列方程求解:根据已知条件和问题要求,列出合适的方程式来求解问题。

通过代入计算,得出结果。

5. 反复验证:在求解过程中,反复验证计算结果的准确性,确保解答正确。

总结初中奥数中的“行程问题”类型包括直线行程、圆周行程和多边形行程问题。

解答这些问题时可以使用画图辅助、几何知识应用、分析问题条件、列方程求解和反复验证的技巧。

通过熟练掌握这些技巧,学生可以更好地解决“行程问题”类型的数学题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题7大经典题型归纳总结拓展
行程问题7大经典题型归纳总结拓展
简单地将行程问题分类:
(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)
(2)火车过人、过桥和错车问题
(3)多个对象间的行程问题
(4)环形问题与时钟问题
(5)流水、行船问题
(6)变速问题
一些习惯性的解题方法:
(1)利用设数法、设份数处理
(2)利用速度变化情况进行分段处理
(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解
1.直线上的相遇与追及
直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础
例题1.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?
例题2.两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?
2.火车过人、过桥与错车问题
在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关
下面教你一招——以静制动法解决火车过桥问题。

呵呵~~
这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3.一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4.某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)
例题5有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身
长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。

(齐头并进,齐尾并进问题,充分锻炼以静制动法解题,另外还有头头相向和头尾相接两种类型噢~思考一下。


补充题:火车经过长度400米的大桥需要6秒的时间,车身完全在大桥上的时间是4秒,求火车的速度。

3多个对象间的行程问题
虽然这类问题涉及的对象至少有三个,但在实际分析时不会同时分析三、四个对象,而是把这些对象两两进行对比。

因此,求解这类行程问题的关键,就在于能否将某两个对象之间的关系,转化为与其它对象有关的结论。

例题6.有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。

现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

那么,东、西两村之间的距离是多少米?
例题7有甲乙丙三人在300m环形跑道上行走,甲每分钟行走120m,乙每分钟行走100m,丙每分钟行走70m,如果3个人同时同向出发,那么几分钟后又可以相遇?(这道题也是环形问题,与公倍数的只是联系紧密)
4.环形问题与时钟问题
例题8.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?
例题9.有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?(周期周期~~~~)
5.流水行船问题
例题10甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而上。

相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B地、乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米。

如果从第一次相遇到第二次相遇时间相隔1小时20分,那么河水的流速为每小时多少千米。

例题11甲乙两名选手在一条河中进行划船比赛,赛道是河中央的长方形ABCD,其中AD=80米,AB=60米。

已知水流从左到右,速度为1m/s,甲乙两名选手从A出发,甲沿顺时针方向划行,乙沿逆时针方向划行,已知甲比乙的静水速度快1m/s (AB、CD边上的划行速度视为静水速度),两人第一次相遇在CD边上的P点,CD=3CP,那么:
(1)甲选手划行一圈用多少分钟?
(2)在比赛开始的10分钟内,两人一共相遇了多少次?
6变速问题
例题12已知甲从A到B,丁从B到A,甲,丁两人行走速度之比是6:5。

如图所示,M是AB的中点,离M点26千米处有一点C,离M点4千米处有一点D。

谁经过C点都要减速
1/4,经过D点都要加速1/4。

现在甲、丁两人同时出发,同时到达。

求A、B之间的距离是多少千米?
7多次往返类型的相遇和追及
下面来练练手~~
1大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车.如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车.问:小轿车实际上每小时行多少千米?
2小强骑自行车从家到学校去,平常只用20分钟。

由于途中有2千米正在修路,只好推车步行,步行速度只有骑车的1/3,结果用了36分钟才到学校。

小强家到学校有多少千米?
3小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前的路程中乘车,车速是小灵通步行速度的10倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,您猜一猜咱们爷孙俩谁先到家?
4客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的,甲、乙两城相距多少千米?
5小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。

有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。

那么小明每天步行上学需要时间多少分钟?
6甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从甲地出发到乙地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

7甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。

有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

8一个圆的圆周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米,在运动过程中它们不断地调头。

如果把出发算作第零次调头,那么相邻两次调头的时间间隔顺次是1秒、3秒、5秒、……,即是一个由连续奇数组成的数列。

问它们相遇时,已爬行的时间是多少秒?
9甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。

两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好到半山腰。

那么甲回到出发点共用多少小时?
10一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。

求水流的速度。

11某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下
一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。

12甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B 站驶去,与此同时乙轮船自B站出发逆水向A站驶来。

7.2时后乙轮船与自漂水流测试仪相遇。

已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离。

13江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。

又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。

则游船在静水中的速度为每小时多少千米?
14一只小船从甲地到乙地往返一次共用2时,回来时顺水,比去时每时多行驶8千米,因此第2时比第1时多行驶6千米。

求甲、乙两地的距离。

相关文档
最新文档