【常考题】七年级数学下期中一模试卷(含答案)

合集下载

【人教版】初一数学下期中一模试卷附答案

【人教版】初一数学下期中一模试卷附答案

一、选择题1.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5 3.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 4.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16 5.81的平方根是( ) A .9B .-9C .9和9-D .81 6.下列实数是无理数的是( )A . 5.1-B .0C .1D .π 7.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3-8.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±99.如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行10.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°11.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定 12.能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2 二、填空题13.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.14.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 15.已知a 、b 2|3|0a b -++=,则(a +b )2021的值为________.16.-64的立方根是____,9的平方根是_____,16的算术平方根是_____81_____.17.设a ,b 8是一个无理数,若8a b <<,是,则a b =____.18.一副三角板按图1的形式摆放,把含45°角的三角板固定,含30°角的三角板绕直角顶点逆时针旋转,设旋转的角度为α(0180α︒<<︒).在旋转过程中,当两块三角板有两边平行时,α的度数为______.19.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.20.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.三、解答题21.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=. (1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积.(3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.22.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标. 23.我们知道2 1.414≈,于是我们说:“2的整数部分为1,小数部分则可记为21-”.则:(1)21+的整数部分是__________,小数部分可以表示为__________;(2)已知32+的小数部分是a ,73-的小数部分为b ,那么a b +=__________; (3)已知11的在整数部分为x ,11的小数部分为y ,求1(11)x y --的平方根. 24.计算:(1)238127(5)÷---;(2)03(0)8|32|π--+-(3)解方程:4x 2﹣9=0.25.如图,DE ∥BC ,∠ADE =∠EFC ,那么∠1与∠2相等吗?说明理由.26.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后即可判断点P 所在的象限.【详解】解:∵2(2)30a b +-=,∴20a +=,30b -=,∴2a =-,3b =,∴点P (2-,3)在第二象限;故选:B .【点睛】本题考查了非负性的应用,以及判断点所在的象限,解题的关键是正确求出a 、b 的值. 2.D解析:D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案.【详解】解:数形结合可得点D 的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是(2,5)故选:D .【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.3.D解析:D【分析】根据点(1,)A n -在x 轴上,计算得n 的值,从而计算出点B 的坐标,即可完成求解.【详解】∵点(1,)A n -在x 轴上∴0n =∴11n +=,11n -=-∴(1,1)B n n +-为(1,1)B -∴(1,1)B n n +-在第四象限故选:D .【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解.4.D解析:D【解析】试题如图所示,当△ABC 向右平移到△DEF 位置时,四边形BCFE 为平行四边形,C 点与F 点重合,此时C 在直线y=2x-6上,∵C (1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A (1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .5.C解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=, 81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型. 6.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、 5.1-是分数,是有理数,故选项不符合题意;B 、0是整数,是有理数,故选项不符合题意;C 、1是整数,是有理数,故选项不符合题意;D 、π是无理数,故选项符合题意.故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3-是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x-=,∴29x=,∵2(39)±=,∴3x=±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.9.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.10.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.11.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.12.B解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可.【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100,∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°, ∴点C 在点A 的南偏东55°的方向上.故答案为:55.【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向.14.0<m <1【分析】根据第一象限内点的坐标特征得到然后解不等式组即可【详解】∵点P (m1﹣m )在第一象限∴解得:0<m <1故答案为0<m <1【点睛】本题考查的是象限点的坐标特征熟知第一象限内点的坐标特 解析:0<m <1【分析】根据第一象限内点的坐标特征得到010m m ⎧⎨-⎩>>,然后解不等式组即可. 【详解】∵点P (m ,1﹣m )在第一象限,∴010m m ⎧⎨-⎩>>, 解得:0<m <1,故答案为0<m <1.【点睛】本题考查的是象限点的坐标特征,熟知第一象限内点的坐标特点是解答此题的关键. 15.-1【分析】要使只有当和时成立即此时解出a 和b 代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 16.【分析】根据立方根平方根算术平方根的等于即可得答案【详解】∵(-4)3=-64∴-64的立方根是-4∵(±3)2=9∴9的平方根是±3∵(±4)2=164>0∴16的算术平方根是4∵=9∴的平方根是解析:4- 3± 4 3±【分析】根据立方根、平方根、算术平方根的等于即可得答案.【详解】∵(-4)3=-64,∴-64的立方根是-4,∵(±3)2=9,∴9的平方根是±3,∵(±4)2=16,4>0,∴16的算术平方根是4,∵,∴±3,故答案为:-4,±3,4,±3【点睛】本题考查立方根、平方根、算术平方根,熟练掌握定义是解题关键.17.9【分析】求出的范围求出ab的值代入求出即可【详解】∵2<<3∴a=2b =3∴ba=32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab的值解析:9【分析】a、b的值,代入求出即可.【详解】3,∵2∴a=2,b=3,∴b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.18.30°或45°或120°或135°或165°【分析】分五种情况进行讨论分别依据平行线的性质进行计算即可得到∠α的度数【详解】解:①当CD∥OB时∠α=∠D=30°②当OC∥AB时∠OEB=∠COD=解析:30°或45°或120°或135°或165°【分析】分五种情况进行讨论,分别依据平行线的性质进行计算即可得到∠α的度数.【详解】解:①当CD∥OB时,∠α=∠D=30°②当OC∥AB时,∠OEB=∠COD=90°,此时∠α=90°-∠B=90°-45°=45°③当DC∥OA时,∠DOA=∠D=30°,此时∠α=∠AOB+∠AOD=90°+30°=120°④当OD∥AB时,∠AOD=∠A=45°,此时∠α=∠A+∠AOD=90°+45°=135°⑤当CD∥AB时,延长BO交CD于点E,则∠CEO=∠B=45°∴∠DEO=180°-∠CEO=135°∴∠DOE=180°-∠DEO-∠D=15°此时∠α=180°-∠DOE=180°-15°=165°综上,在旋转过程中,当两块三角板有两边平行时, 的度数为30°或45°或120°或135°或165°【点睛】本题主要考查了平行线的性质的运用.在旋转过程中,注意分情况讨论是解题关键.19.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.20.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.三、解答题21.(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.22.(1)画△ABC 见解析,△ABC 的面积为272;(2)平移后的△A′B′C′见解析,A′(-1,7),B′(2,1)【分析】(1)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出各对应点位置,进而得出答案.(1)△ABC如图所示:△ABC的面积为:ABC11127 666333362222S=⨯-⨯⨯-⨯⨯-⨯⨯=;(2)如图所示:△A′B′C′即为所求,A′(-1,7),B′(2,1);故答案为:A′(-1,7),B′(2,1).【点睛】本题考查了作图-平移变换,熟知图形平移不变性的性质以及正确得出对应点位置是解答此题的关键.23.(1)221-;(2)1;(3)3±.【分析】(1221的整数部分和小数部分;(232和73-a与b的值,最后代入代数式计算(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.24.(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±.本题考察实数的运算,熟练掌握运算法则是解题的关键.25.∠1=∠2,理由见解析.【分析】根据平行线的性质推出∠ADE =∠ABC ,推出∠ABC =∠EFC ,根据平行线的判定推出EF ∥AB 即可.【详解】解:∠1=∠2,理由是:∵DE ∥BC ,∴∠ADE =∠ABC ,∵∠ADE =∠EFC ,∴∠ABC =∠EFC ,∴EF ∥AB ,∴∠1=∠2.【点睛】本题考查了对平行线的性质和判定的应用,解题的关键是熟练掌握平行线的性质及判定. 26.(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.。

2021-2022年七年级数学下期中一模试卷(附答案)

2021-2022年七年级数学下期中一模试卷(附答案)

一、选择题1.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)2.某人先以v1的速度由A地出发去B地,途中在超市购买了一瓶水之后,又以v2的速度继续进行至B地,已知v1<v2,下面图象中能表示他从A地到B地的时间t(分钟)与路程s(千米)之间关系的是()A. B.C.D.3.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( )A.-2 B.2 C.-1 D.04.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量5.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( ) A .4 cmB .5 cmC .小于2 cmD .不大于2 cm6.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90°7.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .1268.如图,直线AB ,CD 相交于点O ,下列条件中:①∠AOD =90° ;②∠AOD =∠AOC ;③∠AOC+∠BOC =180°;④∠AOC+∠BOD =180°,能说明AB ⊥CD 的有( )A .1个B .2个C .3个D .4个 9.下列计算正确的是( )A .32a a a -=B .623a a a ÷=C .624a a a -=D .32a a a ÷= 10.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10±B .20±C .10D .2011.若25,()49x y x y -=+=,则22x y +的值等于()A .37B .27C .25D .4412.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .()()22-a b a b a b +-=B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()2222a b a ab b -=--二、填空题13.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的关系:______________.14.如图①,在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y .若y 关于x 的函数图象如图②所示,则△BCD 的面积是__.15.若∠A 的余角与∠A 的补角的度数和比平角的13多110︒,则∠A =____________. 16.在同一平面上有三条互相平行的直线,,a b c ,已知a 与b 的距离为5,cm b 与c 的距离为2cm ,则a 与c 的距离为________.17.如图,AB CD ∥,EF 平分BED ∠,66DEF D ︒∠+∠=,28B D ∠-∠=︒,则BED ∠=__________.18.如图为杨辉三角表,它可以帮助我们按规律写出()n a b +(其中n 为正整数)展开式的系数,请仔细观察表中规律可得:1()a b a b +=+;222()2a b a ab b +=++; ……;如果55432345()10105y a b a xa b a b a b ab b +=+++++…….那么x y + =________.19.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.20.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________.三、解答题21.如图在直角梯形ABCD 中,//AD BC ,90B ∠=︒,5cm AB =,8cm AD =,14cm BC =,点P ,Q 同时从点B 出发,其中点P 以1cm/s 的速度沿着点B A D →→运动;点Q 以2cm/s 的速度沿着点B C →运动,当点Q 到达C 点后,立即原路返回,当点P 到达D 点时,另一个动点Q 也随之停止运动.(1)当运动时间4s t =时,则三角形BPQ 的面积为_____2cm ; (2)当运动时间6s t =时,则三角形BPQ 的面积为_____2cm ;(3)当运动时间为3(s)1t t ≤时,请用含t 的式子表示三角形BPQ 的面积.22.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题: (1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时; (3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?23.问题情境:我市某中学班级数学活动小组遇到问题:如图1,AB ∥CD ,3PAB 10︒=∠, 120PCD ︒∠=,求APC ∠度数.经过讨论形成的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可求得APC ∠度数.(1)按该数学活动小组的思路,请你帮忙求出APC ∠度数;(2)问题迁移:如图3,AD ∥BC ,点P 在A 、B 两点之间运动时, ADP α∠=,BCP β∠=.请你判断 CPD ∠、α、 β之间有何数量关系?并说明理由;(3)拓展应用:如图4,已知两条直线AB ∥CD ,点P 在两平行线之间,且BEP ∠的平分线与 DFP ∠的平分线相交于点Q ,求2P Q ∠+∠的度数.24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.25.计算: (1)(﹣1)2019+(12)﹣2﹣(3.14﹣π)0 (2)(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4). 26.先化简,再求值:(2x+y )2﹣(y ﹣2x )2,其中11,34x y ==-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.2.C解析:C【解析】∵V1<V2,∴题中图象上表示为开始时图象斜率小,后来斜率大,又∵途中买了一瓶水,∴图象有一段平行于x轴,故选C.3.B解析:B【解析】当x=−1时,y=x2+1=(−1)2+1=1+1=2,故选B.4.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.5.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.6.B解析:B【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.7.A解析:A【分析】根据平行线的性质可求解∠GFD的度数,再结合垂线的定义可求解.【详解】解:∵AB//CD,∠1=54°,∴∠GFD=∠1=54°,∵EF⊥CD,∴∠EFD=90°,即∠2+∠GFD=90°,∴∠2=36°.故选:A.本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.C解析:C【分析】根据垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直进行判定即可.【详解】解:①∠AOD=90°,可以得出AB⊥CD;②∵∠AOD=∠AOC,∠AOC+∠AOD=180°,∴∠AOD=90°,∴AB⊥CD:③∠AOC+∠BOC=180°,不能得到AB⊥CD;④∵∠AOC+∠BOD=180°,∠AOC=∠BOD,∴∠AOC=90°,∴AB⊥CD;故能说明AB⊥CD的有①②④共3个.故选:C.【点睛】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90°.9.D解析:D【分析】根据合并同类项法则和同底数幂的除法分别计算,再判断即可.【详解】解:A.等式左边不是同类项不能合并,故计算错误,不符合题意;B. 624÷=,故原选项计算错误,不符合题意;a a aC. 等式左边不是同类项不能合并,故计算错误,不符合题意;D. 32÷=,故计算正确,符合题意.a a a故选:D.【点睛】本题考查合并同类项和同底数幂的除法.熟记运算公式是解题关键.10.B解析:B【分析】由4a2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m的值.【详解】解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.11.A解析:A 【分析】利用完全平方公式进行运算即可得. 【详解】5x y -=,2()25x y -∴=,即22225x xy y -+=①,又2()49x y +=,22249x xy y ∴++=②,由①+②得:222274x y +=,即2237x y +=, 故选:A . 【点睛】本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.12.C解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b )2 图中的阴影部分面积也可以表示为:a 2-2ab+b 2 可得:(a-b )2=a 2-2ab+b 2故选:C 【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积二、填空题13.【分析】本题采取分段收费根据20本及以下单价为25元20本以上超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式再进行整理即可得出答案【详解】解:根据题意得:y=整理得:y=;故答案为y=解析:25x(0x20) y{20x100(x>20)≤≤=+【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【详解】解:根据题意得:y=,整理得:y=;故答案为y=.14.3【解析】动点P从直角梯形ABCD的直角顶点B出发沿BCCD的顺序运动则△ABP面积y在BC段随x的增大而增大;在CD段△ABP的底边不变高不变因而面积y不变化由图2可以得到:BC=2CD=3∴S△解析:3【解析】动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化,由图2可以得到:BC=2,CD=3,∴S△BCD=12×2×3=3,故答案为:3.【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.15.50°【分析】设∠A=x根据余角补角及平角的定义列方程求出x的值即可得答案【详解】设∠A=x∴∠A的余角为90°-x补角为180°-x∵∠的余角与∠的补角的度数和比平角的多∴(90°-x)+(180解析:50°设∠A=x,根据余角、补角及平角的定义列方程求出x的值即可得答案.【详解】设∠A=x,∴∠A的余角为90°-x,补角为180°-x,∵∠A的余角与∠A的补角的度数和比平角的1多110 ,3∴(90°-x)+(180°-x)=1×180°+110°,3解得:x=50°,故答案为:50°【点睛】本题考查余角与补角,解答此类题一般根据一个角的余角和补角列出代数式和方程(组)求解.熟记互为余角的两个角的和为90°,互为补角的两个角的和为180°是解题关键.16.7cm或3cm【分析】根据abc这三条平行直线的位置不同结合两平行线间的距离的定义得出结果【详解】分两种情况:①当直线b在直线a与c之间时如图a与c的距离为5+2=7厘米;②当直线c在直线a与b之间解析:7cm或3cm【分析】根据a、b、c这三条平行直线的位置不同,结合两平行线间的距离的定义,得出结果.【详解】分两种情况:①当直线b在直线a与c之间时,如图.a与c的距离为5+2=7厘米;②当直线c在直线a与b之间时,如图.a与c的距离为5-2=3厘米.故答案为:7cm或3cm.【点睛】本题考查了两平行线间的距离的求法.得出a、b、c这三条平行直线的不同位置关系是解决此题的关键.17.【分析】过E点作EM∥AB根据平行线的性质可得∠BED=∠B+∠D利用角平分线的定义可求得∠B+3∠D=132°结合∠B-∠D=28°即可求解【详解】解:过E 点作EM∥AB∴∠B=∠BEM∵AB∥C【分析】过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.【详解】解:过E点作EM∥AB,∴∠B=∠BEM,∵AB∥CD,∴EM∥CD,∴∠MED=∠D,∴∠BED=∠B+∠D,∵EF平分∠BED,∠BED,∴∠DEF=12∵∠DEF+∠D=66°,∠BED+∠D=66°,∴12∴∠BED+2∠D=132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点睛】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.18.7【分析】根据题意写出杨辉三角表的第六行的数从而可以得到x和y的值即可求出结果【详解】解:根据杨辉三角表第六行的数依次是15101051∴∴即∴故答案是:7【点睛】本题考查找规律解题的关键是理解杨辉解析:7【分析】根据题意写出杨辉三角表的第六行的数,从而可以得到x和y的值,即可求出结果.【详解】解:根据杨辉三角表,第六行的数依次是1、5、10、10、5、1,∴5x =,∴35y +=,即2y =,∴527x y +=+=.故答案是:7.【点睛】本题考查找规律,解题的关键是理解杨辉三角表,按照规律写出第六行的数.19.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 20.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.三、解答题21.(1)16;(2)30;(3)当运动时间为3(s)1t t ≤时,三角形BPQ 的面积2(5)5(57)5(14)(713)t t t t t t ⎧⎪=<⎨⎪-<⎩【分析】(1)根据AB 、BC 的值和点Q 的速度是2cm/s ,点P 的速度是1cm/s ,求出BP 、BQ 的值,再根据三角形面积公式计算即可;(2)求出BQ 的值,再根据三角形面积公式计算即可;(3)分三种情况讨论:根据三角形面积公式列出即可.【详解】解:(1)AB=5cm ,AD=8cm ,BC=14cm ,点Q 的速度是2cm/s ,点P 的速度是1cm/s , 当运动时间t=4s 时,QB=2t=2×4=8(cm ),BP=t=4(cm ),则三角形BPQ 的面积为:()2118416cm 22BQ BP ⋅=⨯⨯=, 故答案为:16;(2)当运动时间6s t =时,∵AB=5cm ,点P 的速度是1cm/s ,∴点P 运动到了AD 上, ()22612cm QB t ==⨯=,则三角形BPQ 的面积为:()21112530cm 22BQ AB ⨯⋅=⨯⨯=, 故答案为:30;(3)当P 在AB 上时,此时5t ≤,则三角形BPQ 的面积为211222BQ BP t t t ⋅=⨯⋅=; 当P 在AD 上,且Q 沿着点B C →运动时,∵BC=14cm ,点Q 的速度是2cm/s , 此时1452t <≤,即57t <≤, 则三角形BPQ 的面积为1125522BQ AB t t ⋅=⨯⨯=;当P 在AD 上,且Q 沿着点C B →运动时,∵AB=5cm ,AD=8cm ,点P 的速度是1cm/s , 此时1371t <≤,即713t <≤, 则三角形BPQ 的面积为11(2142)55(14)22BQ AB t t ⋅=⨯⨯-⨯=-; 综上,当运动时间为3(s)1t t ≤时,三角形BPQ 的面积2(5)5(57)5(14)(713)t t t t t t ⎧⎪=<⎨⎪-<⎩.【点睛】本题考查了列代数式,三角形的面积,数形结合、分类讨论是解题的关键.22.(1)10;(2)1;(3)3;(4)不一样,理由见解析;【解析】【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s 不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下: 乙骑自行车出故障前的速度7.50.5=15千米/小时. 与修车后的速度22.57.53 1.5--=10千米/小时. 因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.23.(1)110°;(2)∠CPD =α+β,见解析;(3)360°【分析】(1)过P 作PE ∥AB ,构造同旁内角,通过平行线性质,可得∠APC=50°+60°=110°.(2)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(3)由(1)可得3P 60BEP DFP +∠+∠=∠︒,()22P Q P BEQ DFQ ∠+∠=∠+∠+∠再进行代入求解即可得出结论.【详解】解:(1)如图2,过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD .∴∠A +∠APE =180°,∠C +∠CPE =180°∵∠PAB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =110°.(2)∠CPD =α+β,理由如下:如图3,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠DPE =α,∠CPE =β,∴∠CPD =∠DPE +∠CPE =α+β.(3)由(1)可得,3P 60BEP DFP +∠+∠=∠︒又QE 平分PEB ∠,QF 平分PFQ ∠∴2,2BEP BEQ DFP DFQ ∠=∠∠=∠∴()22P Q P BEQ DFQ ∠+∠=∠+∠+∠22P BEQ DFQ =∠+∠+∠360P BEP DFP ︒=∠+∠+∠=【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.24.∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.(1)2;(2)2a +2【分析】(1)先根据有理数的乘方,负整数指数幂和零指数幂进行计算,再求解计算即可; (2)先根据整式的乘法和乘法公式进行计算,再合并同类项即可.【详解】解:(1)原式=﹣1+4﹣1=2;(2)原式=(a 2+6a +9)﹣(a 2﹣1)﹣(4a +8)=a 2+6a +9﹣a 2+1﹣4a ﹣8=2a +2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂、整式的混合运算,熟练掌握运算法则是解答的关键.26.8xy ,23-【分析】直接利用完全平方公式化简进而合并同类项,再把已知数据代入计算即可.【详解】解:(2x+y)2﹣(y﹣2x)2,=4x2+4xy+y2﹣(y2+4x2﹣4xy),=4x2+4xy+y2﹣y2﹣4x2+4xy,=8xy,当11,34x y==-时,原式=8×13×(14-),=﹣23.【点睛】本题主要考查了用完全平方公式化简求值,熟记公式的几个变形公式是解题关键.。

初一数学下期中一模试卷附答案

初一数学下期中一模试卷附答案

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0-B .()2,2-C .()2,0D .()5,1 2.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>b B .0<a ,0>b C .0>a ,0<b D .0<a ,0<b 3.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .14.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 5.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个6.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .47.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间8.下列有关叙述错误的是( )A .2是正数B .2是2的平方根C .122<<D .22是分数 9.下列说法不正确的是( )A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行10.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm11.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180° 12.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒二、填空题 13.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.14.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______15.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.16.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;; (1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 17.把下列各数的序号填入相应的括号内①-3,②π,327-,④-3.14,2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.18.已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.19.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.20.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)三、解答题21.如图,A B C '''是ABC 经过平移得到的,ABC 中任意一点ABC 平移后的对应点为'(2,3)P x y +-(1)求A B C '''各顶点的坐标;(2)画出A B C '''.22.如图,在平面直角坐标系中,O 为坐标原点,点A (4,1)B (1,1),C (4,5),D (6,﹣3),E (﹣2,5).(1)在坐标系中描出各点,并画出△AEC ,△BCD .(2)求出△BCD 的面积.23.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 24.计算:(1)2323615--- (2)122334+25.利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD ;(2)仅用直尺,过点C 画AB 的垂线,垂足为E ;(3)连接CA 、CB ,在线段CA 、CB 、CE 中,线段______最短,理由___________. (4)直接写出△ABC 的面积为 _________.26.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据点A 的平移规律,求出点'C 的坐标即可.【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,, 故选:C .【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点A(a,b)在第二象限,∴a<0,b>0;故选:C.【点睛】此题考查直角坐标系中点的坐标,熟记各象限内点的坐标特征是解题的关键.3.C解析:C【分析】根有序数对的意义,算出净上车人数,再用原有车上人数加上净上车人数即可.【详解】解:∵数据(),a b表示该车经过某站点时先下后上的人数.∴()3,2表示先下车3人,再上车2人,即经过第一个站点净上车人数为-1人,此时公交车上有:10-1=9(人).∴()8,5表示先下车8人,再上车5人,即经过第二个站点时净上车人数为-3人,此时公交车上共有:9-3=6(人).故选C.【点睛】本题考查了有序数对的意义,理解有序数对表示的意义是解题的关键.4.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.5.B解析:B根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.6.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.7.B解析:B【分析】借助O、A、B、C的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d﹣5|=|d﹣c|∴BD=CD,∴D点介于O、B之间.故答案为B.【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.8.D解析:D根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB 是2的平方根,此项叙述正确;C 、12<<,此项叙述正确;D 、2是无理数,不是分数,此项叙述错误; 故选:D .【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键. 9.D解析:D【分析】根据平行线的概念对选项A 进行判断;根据平行线的性质对选项B 进行判断; 根据平行线的公理和判定定理对选项C 和D 进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A 正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B 选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C 正确;D. 同旁内角互补,两直线平行,所以选项D 错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.10.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm =,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.11.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A .∠A =∠BDF ,由同位角相等,两直线平行,可判断DF ∥AC ;B .∠2=∠4,不能判断DF ∥AC ;C .∠1=∠3由内错角相等,两直线平行,可判断DF ∥AC ;D .∠A +∠ADF =180°,由同旁内角互补,两直线平行,可判断DF ∥AC ;故选:B .【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.12.B解析:B【分析】直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键.二、填空题13.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202 解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.【点睛】本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.14.【分析】先分别求出A1A2A3A4A5A6A7……的坐标据此发现每个点的横坐标为序号的一半据此解答即可【详解】解:根据题意可知……由此可知每个点的横坐标为序号的一半∴点P2021的横坐标为:故答案为 解析:20212. 【分析】 先分别求出A 1、A 2、A 3、A 4、A 5、A 6、A 7、……的坐标,据此发现每个点的横坐标为序号的一半,据此解答即可.【详解】解:根据题意可知,112A ⎛ ⎝⎭,()210A ,,332A ⎛ ⎝⎭,()420A ,,552A ⎛- ⎝⎭,,()630A ,,7722A ⎛⎫ ⎪ ⎪⎝⎭,……由此可知,每个点的横坐标为序号的一半,∴点P 2021的横坐标为:20212. 故答案为:20212. 【点睛】此题主要考查探索规律,解题的关键是根据题意发现规律. 15.(1)同号得正异号得负并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用举例验证见解析【分析】(1)根据示例得出两数进行⊗运算时同号得正异号得负并把绝对值相加特别地0和任何数进行⊗运算或任解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 16.(1);(2);(3)【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程再进一步解方程即可【详解】解:(1)∵;;;;;∴;(2)由解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;; ∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 17.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3273-=-,18.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.19.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).20.对顶角相等AG两直线平行同位角相等【分析】根据对顶角的定义可得再根据平行线的判定可得CH//AG最后由两直线平行同位角相等即可证明【详解】解:证明:∵(已知)(对顶角相等)∴(等量代换)∴(AG)(解析:对顶角相等,AG,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.三、解答题21.(1)A′(1,-1),B′(-1,-2),C′(2,-4);(2)见解析【分析】(1)由△ABC 中任意一点P (x ,y )经平移后对应点为P′(x+2,y-3)可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到点A 、B 、C 的对应点A′,B′,C′的坐标;(2)根据(1)中A′,B′,C′的坐标画出图形即可.【详解】(1)∵△ABC 中任意一点P (x ,y )平移后的对应点为P′(x+2,y-3),∴△ABC 向右平移2个单位,向下平移3个单位得到△A′B′C′;∵A (-1,2),B (-3,1),C (0,-1),∴A′(1,-1),B′(-1,-2),C′(2,-4);(2)如图所示,A B C '''即为所求.【点睛】本题主要考查了作图-平移变换,关键是正确确定平移后坐标点的位置.22.(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S △BCD =12×4×4+12×4×4=16. 【点睛】 此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.23.(1)32;(2)2. 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32; (2)原式=2-1-23×15222. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.24.(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)2323615---=-4+6-1-5=-4;(2)122334-+-+-()()()213243=-+-+-213243=-+-+-14=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.25.(1)见详解;(2)见详解;(3)CE,垂线段最短;(4)8.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(4)用割补法,大长方形的面积减去三个小三角形的面积即可;【详解】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;(4) S△ABC=18﹣12×1×5﹣12×1×3﹣12×2×6=8,∴△ABC的面积为8.【点睛】本题主要考查垂线、平行线及其做图,注意作图的准确性. 26.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键.。

【必考题】七年级数学下期中第一次模拟试题附答案 (2)

【必考题】七年级数学下期中第一次模拟试题附答案 (2)

【必考题】七年级数学下期中第一次模拟试题附答案 (2)一、选择题1.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(-6,0)D .(6,2)2.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15° 3.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( ) A .(2,1) B .(﹣2,﹣1) C .(﹣2,1) D .(2,﹣1)4.若x y >,则下列变形正确的是( )A .2323x y +>+B .x b y b -<-C .33x y ->-D .33x y ->- 5.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80° 6.下列生活中的运动,属于平移的是( ) A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子 7.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 8.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个 B .3个C .4个D .5个 9.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 12.下列调查方式,你认为最合适的是( )A .调查市场上某种白酒的塑化剂的含量,采用普查方式B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C .旅客上飞机前的安检,采用抽样调查方式D .了解我市每天的流动人口数,采用抽样调查方式二、填空题13.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.14.命题“对顶角相等”的逆命题是_______.15.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).16.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.18.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.19.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.20.知a ,b 为两个连续的整数,且5a b <<,则ba =______.三、解答题21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用有理数加法表示为()321+-=.若坐标平面上的点做如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++ 解决问题:(1)计算:{}{}3,11,2+;(2)动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B :若先把动点P 按照.“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是B 吗?在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头()2,3P ,再从码头P 航行到码头()5,5Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程.解:(1){}{}3,11,2+______;(2)答:______;(3)加法算式:______.22.解方程组:2783810x y x y -=⎧⎨-=⎩23.解方程组:23238x y x y -=⎧⎨-=⎩24.解方程组:x 4y 1216x y -=-⎧⎨+=⎩. 25.如图,已知//BC GE 、//AF DE 、150∠=︒.(1)AFG ∠=________°.(2)若AQ 平分FAC ∠,交直线BC 于点Q ,且15Q ∠=︒,求ACQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P 在x 轴上,即y=0,可得出a 的值,从而得出点P 的坐标.【详解】∵点P (3a ,a+2)在x 轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P 的坐标为(-6,0).故选C .【点睛】此题考查平面直角坐标系中点的坐标,明确点在x 轴上时纵坐标为0是解题的关键.2.B解析:B【解析】【分析】根据平移的性质得出AC ∥BE ,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.3.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.4.A解析:A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解: A、两边都乘2再加3,不等号的方向不变,故A正确;B、两边都减,b不等号的方向不变,故B错误;C、两边都乘以3-,不等号的方向改变,故C错误;D、两边都除以3-,不等号的方向改变,故D错误;故选:A【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.C解析:C【解析】【分析】在图中过E作出BA平行线EF,根据平行线性质即可推出∠AEF及∠DEF度数,两者相加即可.【详解】过E 作出BA 平行线EF ,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD ,BC ∥DE ,∠ABC=180°-∠BCD =180°-110°=70°, ∠AED=∠AEF+∠DEF=30°+70°=100°【点睛】 本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.6.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动; 旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转; 故选A .【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.7.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键. 8.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.11.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题13.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.14.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.15.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误; ∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”, ∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.16.-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算 解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值,即可确定出所求.【详解】解:根据题中的新定义得:35154728a b a b +=⎧⎨+=⎩, 解得:3524a b =-⎧⎨=⎩, 所以111(35)12411☆=⨯-+⨯=-;故答案为:11-.本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.17.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a 的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方解析:9【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1) 解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.19.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.20.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】<<,∵a,b为两个连续的整数,且a b∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.三、解答题21.(1){4,3};(2)B,图见解析;(3){0,0}.【解析】【分析】(1)根据平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}计算;(2)根据题意画出图形、结合图形解答;(3)根据平移量的定义、加法法则表示即可.【详解】(1){}{}3,11,2+={3+1,1+2}={4,3},(2)如图.最后的位置仍是点B ,(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【点睛】本题考查的是几何变换,掌握“平移量”的定义、平移的性质是解题的关键.22.6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)2783810x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x= 56, 把x= 56代入①得:106-7y=8, 解得:y= 45-, 则方程组的解为6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.72x y =⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)23238x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x=7, 把x=-1代入①得:7-2y=3,解得:y=2,则方程组的解为72x y =⎧⎨=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.72x y =⎧⎨=⎩【解析】【分析】利用代入法解二元一次方程组.【详解】x 4y 1216x y -=-⎧⎨+=⎩①② 由①得:x=4y-1 ③将③代入②,得:2(4y-1)+y=16,解得:y=2,将y=2代入③,得:x=7.故原方程组的解为72x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握代入法及加减消元法是解题的关键.25.(1)50;(2)100°【解析】【分析】(1)根据//AF DE 可知∠AFG=∠E ,再根据//BC GE 即可求得∠AFG=∠1=50°, (2)先根据三角形内角和求出∠DHQ ,再根据//AF DE 求出∠FAH ,根据角平分线可知∠CAQ ,再根据三角形内角和即可求出ACQ ∠.【详解】解:(1)∵//AF DE ,∴∠AFG=∠E ,∵//BC GE ,∴∠E=∠1,又150∠=︒,∴∠AFG=∠1=50°.(2)解:在HDQ ∆中∵1180Q DHQ ∠+∠+∠=︒,15Q ∠=︒,150∠=︒,∴18011801550115DHQ Q ∠=︒-∠-∠=︒-︒-︒=︒;∵AEE ∠与DHQ ∠为对顶角,∴115AHE DHQ ∠=∠=︒,∵//AF EH ,∴180FAQ AHE ∠+∠=︒,∴65FAQ ∠=︒;∵AQ 平分FAC ∠,∴65CAQ FAQ ∠=∠=︒,∴1801806515100ACQ CAQ Q ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查的平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补等.。

【人教版】初一数学下期中一模试题含答案

【人教版】初一数学下期中一模试题含答案

一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 3.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4) 4.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 5.下列各组数中,互为相反数的是( )A .22B .2-与12-C .()23-与23-D 38-38-6.下列实数3223640.010*******;;; (相邻两个1之依次多一个0);52,其中无理数有( )A .2个B .3个C .4个D .5个7.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个 8.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7 9.如图,若1234//,//l l l l ,则图中与1∠互补的角有( )A .1个B .2个C .3个D .4个10.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④ 11.交换下列命题的题设和结论,得到的新命题是假命题的是( ) A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣312.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒二、填空题13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角) 14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.15.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|12|1232⎛⎫-+--⨯- ⎪⎝⎭ 16.已知57+的整数部分为a ,57-的小数部分为b ,则2ab b +=_________. 17.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.18.如图,已知ABC 中,4AB =、5AC =、6BC =,将ABC 沿直线BC 向右平移得到A B C ''',点A 、B 、C 的对应点分别是A '、B '、C ',连接AA '.如果四边形AA C B ''的周长为19,那么四边形AA C B ''的面积与ABC 的面积的比值是________.19.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.20.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.三、解答题21.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:A→B ( +1,+3 ),从B 到A 记为:B→A ( -1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向.填空:(1)图中A→C ( , ) C→ ( , )(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M 的坐标为( , )(3)若图中另有两个格点P 、Q ,且P→A ( m+3,n+2),P→Q(m+1, n -2),则从Q 到A 记为( , )22.如图1,已知直角梯形ABCO 中,∠AOC =90°,AB ∥x 轴,AB =6,若以O 为原点,OA ,OC 所在直线为y 轴和x 轴建立如图所示直角坐标系,A(0,a),C(c ,0)中a ,c 满足|a+c ﹣10|+7c -=0(1)求出点A 、B 、C 的坐标;(2)如图2,若点M 从点C 出发,以2单位/秒的速度沿CO 方向移动,点N 从原点出发,以1单位/秒的速度沿OA 方向移动,设M 、N 两点同时出发,且运动时间为t 秒,当点N 从点O 运动到点A 时,点M 同时也停止运动,在它们的移动过程中,当2S △ABN ≤S △BCM 时,求t 的取值范围:(3)如图3,若点N 是线段OA 延长上的一动点,∠NCH =k ∠OCH ,∠CNQ =k ∠BNQ ,其中k >1,NQ ∥CJ ,求HCJ ABN∠∠的值(结果用含k 的式子表示).23.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.24.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;25.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.⊥,OF平分26.如图,直线BC、DE相交于点O,OA、OF为射线,OA OB∠+∠=54.求AOE∠的度数.∠,BOF CODBOE【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点A(a,b)在第二象限,∴a<0,b>0;故选:C.【点睛】此题考查直角坐标系中点的坐标,熟记各象限内点的坐标特征是解题的关键.2.A解析:A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【详解】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:A.此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.4.C解析:C【分析】先求出线段OA 、OB 第2020秒时旋转的度数,再除以360︒得到余几,确定最终状态时OA 、OB 的位置,再求夹角度数.【详解】解:第2020秒时,线段OA 旋转度数=20204590900⨯︒=︒,线段OB 旋转度数=20203060600⨯︒=︒,90900360252180︒÷︒=︒,60600360168120︒÷︒=︒,此时OA 、OB 的位置如图所示,OA 与OB 之间的夹角度数=270120150︒-︒=︒.故选:C .【点睛】本题考查线段的旋转,解题的关键是利用周期问题的方法确定最终状态时OA 、OB 所在位置.5.C解析:C根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.6.B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 7.D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 8.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x 与y 的值即可.【详解】解:∵|x |=2,y 2=9,且xy <0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A .【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.9.D解析:D【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.10.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.11.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++, 又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .二、填空题13.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC ∥BD ∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC ∥BD ,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.14.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.15.(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.16.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-17.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 18.【分析】过点A 作BC 上的高根据平移的性质可得=且然后根据已知周长可得=2从而求出然后根据梯形的面积公式和三角形的面积公式即可求出结论【详解】解:过点A 作BC 上的高由平移的性质可得=且∴四边形为梯形∵ 解析:53【分析】过点A 作BC 上的高h ,根据平移的性质可得AA '=CC ',且//AA CC '',5A C AC ''==,然后根据已知周长可得AA '=2,从而求出BC ',然后根据梯形的面积公式和三角形的面积公式即可求出结论.【详解】解:过点A 作BC 上的高h由平移的性质可得AA '=CC ',且//AA CC '',5A C AC ''==∴四边形AA C B ''为梯形∵四边形AA C B ''的周长为19,∴AA '+A C ''+BC '+AB=19∴AA '+5+6+CC '+4=19∴2AA '=4∴AA '=2∴CC '=2∴BC '=BC +CC '=8∴四边形AA C B ''的面积与ABC 的面积的比为()128521632h AA BC hBC ''++== 故答案为:53. 【点睛】 此题考查的是图形的平移问题,掌握平移的性质是解题关键.19.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.20.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°, ∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.三、解答题21.(1) +3,-1;D ,+1,+3;(2)7,3;(3)+2,+4【分析】(1)根据规定“向上向右走均为正,向下向左走均为负”即可求解;(2)将从A 处到M 处的行走路线的第一个数相加后等于+6,表明是向右走了6个单位,将行走路程的第二个数相加后等于+1,表明是向上走了1个单位,由此即可求解;(3)根据P→A ( m+3,n+2),P→Q(m+1, n -2)可知m+1-(m+3)=-2,n-2-(n+2)=-4,相当于向左走了2个单位,向下走了4个单位,由此即可求解.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,-1);C→D 记为(1,+3);故答案为:+3,-1;D ,+1,+3;(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),∵+3+(+2)+(-3)+(+4)=+6,∴相当于向右走了6个单位,∵+3+(-1)+(-3)+(+2)=1,∴相当于向上走了1个单位,又A 点的坐标为(1,2),故点M 的坐标为(7,3),故答案为:7,3;(3)∵P→A ( m+3,n+2),P→Q(m+1, n -2),∴m+1-(m+3)=-2,n-2-(n+2)=-4,∴点A 向左走2个格点,向下走4个格点到点N ,∴Q→A 应记为(+2,+4).故答案为:+2,+4.【点睛】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.22.(1)A(0,3),B(6,3), C(7,0);(2)t 的取值范围为2≤t≤3;(3)1k k【分析】(1)由绝对值和算术平方根的非负性质得出a+c ﹣10=0,且c ﹣7=0,求出c=7,a+c=10,得出c=3,即可得出答案;(2)由题意得ON=t ,CM=2t ,得出AN=3﹣t ,由2S △ABN ≤S △BCM 和三角形面积公式得出不等式,解得t≥2,由0≤t≤3,即可得出答案;(3)设AB 与CN 交于点D ,由平行线的性质结合三角形的外角性质和已知条件得出∠ABN=(k+1)(∠OCH ﹣∠BNQ),再由平行线的性质和已知条件得出∠HCJ=k(∠OCH ﹣∠BNQ),即可得出答案.【详解】(1)∵10a c ++﹣0=∴100a c +=﹣,且70c =﹣,∴710c a c =+=,,∴3c =,∴()()0370A C ,,,, ∵AB ∥x 轴,6AB =,∴()63B ,; (2)∵()()0370A C ,,,, ∴37OA OC ==,,由题意得:2ON t CM t ==,,∴3AN t =﹣,∵2S △ABN ≤S △BCM , ∴()112362322t t ⨯⨯⨯≤⨯⨯﹣, 解得:2t ≥,∵当点N 从点O 运动到点A 时,点M 同时也停止运动,∴03t ≤≤,∴t 的取值范围为:23t ≤≤;(3)设AB 与CN 交于点D ,如图所示:∵AB∥OC,∴∠BDC=∠OCD,∵∠BDC=∠BND+∠ABN,∠CNQ=k∠BNQ,∠NCH=k∠OCH,∴∠BDC=(k+1)∠BNQ+∠ABN,∠OCD=(k+1)∠OCH,∴(k+1)∠BNQ+∠ABN=(k+1)∠OCH,∴∠ABN═(k+1)∠OCH﹣(k+1)∠BNQ=(k+1)(∠OCH﹣∠BNQ),∵NQ∥CJ,∴∠NCJ=∠CNQ=k∠BNQ,∵∠HCJ+∠NCJ=∠NCH=k∠OCH,∴∠HCJ=k∠OCH﹣∠NCJ=k∠OCH﹣k∠BNQ=k(∠OCH﹣∠BNQ),∴()()()k OCH BNQHCJABN k1OCH BNQ∠∠∠∠∠∠=+﹣﹣=1kk+.【点睛】本题考查了梯形的性质、坐标与图形性质、绝对值和算术平方根的非负性质、三角形面积公式、平行线的性质等知识;熟练掌握三角形的面积公式和平行线的性质是解题的关键.23.(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a的值是多少;然后根据3a+b﹣1的立方根为2,可得:3a+b﹣1=8,据此求出b的值是多少即可.(2)把(1)中求出的a与b的值代入2a+4b,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a+b﹣1的立方根为2,∴3a+b﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.24.(1)-11;(2)x=1.【分析】(1)根据新运算的规则,把新运算转化成普通有理数的计算,再按有理数相关计算法则计算即可;(2)根据新运算的规则,把等式左边的新运算转化成普通有理数运算,从而把等式转化成一元一次方程,再解一元一次方程即可.【详解】(1)∵ a ∗b= 23a b -,∴ 2∗5=223541511-⨯=-=- ;(2)∵ a ∗b=23a b -,∴ (−3)∗x=()23393x x --=- 即936x -=解此方程得:1x =.【点睛】本题考察有关新运算的问题,首先要弄清把新运算转化为普通运算的规则,然后根据规则把新运算部分转化为普通运算,再按普通运算的相关计算法则计算即可.25.答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C ∴∠=∠//AB CD ∴A D ∴∠=∠.【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.26.126º【分析】设BOF ∠=x ,根据角平分线的定义表示出∠BOE ,再根据对顶角相等求出COD ∠,然后列出方程求出x ,从而得到∠BOE 的度数,再根据垂线的定义求出AOB ∠,最后根据AOE ∠=AOB BOE ∠+∠代入数据进行计算即可得解.【详解】设BOF ∠=x ,∵OF 平分∠BOE ,∴∠BOE =2BOF ∠=2x ,∴COD ∠=∠BOE =2x (对顶角相等),∵BOF COD ∠+∠=54,∴2x x +=54,解得x =18,∴∠BOE =218⨯=36,∵OA OB ⊥,∴AOB ∠=90,∴AOE ∠=AOB BOE ∠+∠=9036+=126.【点睛】本题考查了垂线的定义,对顶角相等的性质,角平分线的定义,是基础题,设出未知数并根据已知条件列出方程求出∠BOE 是解题的关键.。

【必考题】七年级数学下期中一模试题(带答案)

【必考题】七年级数学下期中一模试题(带答案)
=20+2×3
=26.
故选D.
点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.
2.A
解析:A
【解析】
【分析】
先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.
6.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A.2B.3C. D.
7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40°B.50°C.60°D.70°
8.下列所示的四个图形中,∠1=∠2是同位角的是()
7.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
17.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.
18.若关于x的不等式组 的整数解共有4个,则m的取值范围是__________.
19.若 ,则 ______.
20.知 , 为两个连续的整数,且 ,则 ______.

初一数学下期中一模试卷及答案

初一数学下期中一模试卷及答案

初一数学下期中一模试卷及答案一、选择题1.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本2.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)3.若10x x y -++=,则xy 的值为( )A .0B .1C .-1D .24.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .325.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE 6.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <6 7.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .8.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 10.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1B .x 2+1C .1x + D .21x + 11.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .412.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3二、填空题13.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.14.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若∆PAB 的面积为18,则m ,n 满足的数量关系式为________.15.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。

初一数学下期中一模试卷(附答案)

初一数学下期中一模试卷(附答案)

一、选择题1.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 2.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 3.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 4.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(30303 5.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407 681 )A .3B .﹣3C .±3D .6 7.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( )A .2015B .2014C .20152014D .2015×2014 8.下列计算正确的是( )A .11-=-B .2(3)3-=-C .42=±D .31182-=- 9.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒10.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个11.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°12.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④二、填空题13.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.14.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.15.已知213a -=,31a b -+的平方根是4±,c 是43的整数部分,求3a b c ++的平方根.16.计算:3612516-+-+=____.17.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +与4d +互为相反数,求23c d -的平方根.18.高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB 且与射线OA 交于点M ,另一把直尺压住射线OA 且与第一把直尺交于点P ,则OP 平分∠AOB .若∠BOP =32°,则∠AMP =_____°.19.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.20.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔三、解答题21.在平面直角坐标系中,有 A (-2,a +1), B (a -1,4), C (b - 2,b )三点. (1)当 AB// x 轴时,求 A 、 B 两点间的距离;(2)当CD ⊥ x 轴于点 D ,且CD = 1时,求点C 的坐标.22.如图(1),在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),将线段AB 先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD ,连接AC ,BD ,构成平行四边形ABDC .(1)请写出点C 的坐标为 ,点D 的坐标为 ,S 四边形ABDC ;(2)点Q 在y 轴上,且S △QAB =S 四边形ABDC ,求出点Q 的坐标;(3)如图(2),点P 是线段BD 上任意一个点(不与B 、D 重合),连接PC 、PO ,试探索∠DCP 、∠CPO 、∠BOP 之间的关系,并证明你的结论.23.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +3b - 24.观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20000=141.4…0.03=0.1732,3=1.732,300=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2)已知5=2.236,50=7.071,则0.5= ,500= ;(3)31=1,31000=10,31000000=100…小数点变化的规律是: .(4)已知310=2.154,3100=4.642,则310000= ,30.1-= .25.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.26.如图,已知∠1+∠2=180°,∠B =∠DEF ,求证:DE ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3( 对顶角相等 )∴∠1+∠3=180°∴AB ∥EF ( ),∴∠B =∠EFC ( )∵∠B =∠DEF ( ),∴∠DEF = ( )∴DE ∥BC ( )【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据A(3,2) B(−3,3)坐标确定原点并建立直角坐标系即可.【详解】如图建立直角坐标系:∴C 点坐标是()5,1--故选D【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.2.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3),故选:B .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.A解析:A【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可.【详解】解:∵230,40x y -=-=∴x=±3,y=±2∵点(,)M x y 在第二象限∴x <0,y >0∴x=-3,y=2∴M 点坐标为(-3.2).故答案为A .【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键. 4.B解析:B【分析】根据扇形弧长公式求出弧长,分别求出第4秒、第8秒时点P 的坐标,总结规律,根据规律解答.【详解】 解:扇形的弧长=603180π⨯=π, 由题意得,点P 在每一个扇形半径上运动时间为1秒,在每一条弧上运动时间为1秒, 则第4秒时,点P 的坐标是(6,0),第8秒时,点P 的坐标是(12,0),……第4n 秒时,点P 的坐标是(6n ,0),2020÷4=505,∴2020秒时,点P 的坐标是(3030,0),故选:B .【点睛】本题考查规律型-点的坐标,解此类题的关键是找到循环组规律.5.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.6.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】 ∵9,∴3,故选:A .【点睛】. 7.A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.8.D解析:D【分析】根据算术平方根、立方根的定义逐项判断即可得.【详解】A 0,没有意义,此项错误;B 3==,此项错误;C 2=,此项错误;D 12=-,此项正确; 故选:D .本题考查了算术平方根、立方根,熟练掌握算术平方根、立方根是解题关键.9.D解析:D【分析】如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】CF AB,如图,过点C作//AB DE,//∴,AB DE CF////∴∠=∠∠+∠=︒,BCF B DCF D,180∠=︒∠=︒,B D50,110∴∠=︒∠=︒-∠=︒,BCF DCF D50,18070∴∠=∠+∠=︒,120BCD BCF DCF故选:D.【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键.10.B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.11.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.12.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.二、填空题13.(ab)【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC进行循环往复的轴对称变换∴对应图形4次循解析:(a,b).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A点坐标与第4次变换后的坐标相同,故其坐标为:(a,b).故答案为:(a,b).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.14.(-25)【分析】根据点A(-14)的对应点为A′(1-1)可以得出变化规律再将点C′按照此变化规律即可得出C点的坐标【详解】解:∵点A(-14)的对应点为A′(1-1)∴此题变化规律是为(x+2y解析:(-2,5)【分析】根据点A(-1,4)的对应点为A′(1,-1),可以得出变化规律,再将点C′按照此变化规律即可得出C点的坐标.【详解】解:∵点A(-1,4)的对应点为A′(1,-1),∴此题变化规律是为(x+2,y-5),∴C′(0,0)的对应点C的坐标分别为(-2,5),故答案为:(-2,5).【点睛】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.15.【分析】根据求出a的值根据3a+b-1的平方根是±4求出b的值根据c是的整数部分求出c的值把求得的值代入a+b+3c然后求出入a+b+3c的平方根即可【详解】∵∴解得:∵的平方根是∴解得:∵是的整数解析:5±【分析】3=求出a的值,根据3a+b-1的平方根是±4求出b的值,根据c数部分求出c的值,把求得的值代入a+b+3c,然后求出入a+b+3c的平方根即可.【详解】∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键. 16.5【分析】先化简绝对值求立方根和算术平方根再加减即可【详解】解:==5故答案为:5【点睛】本题考查了绝对值立方根算术平方根的运算准确运用法则是解题关键解析:5【分析】先化简绝对值、求立方根和算术平方根,再加减即可.【详解】解:6-,=6(5)4+-+,=5,故答案为:5.【点睛】本题考查了绝对值、立方根、算术平方根的运算,准确运用法则是解题关键.17.(1)2;(2)±4【分析】(1)先求出m =2进而化简|m +1|+|m−1|即可;(2)根据相反数和非负数的意义列方程求出cd 的值进而求出2c−3d 的值再求出2c−3d 的平方根【详解】(1)由题意得解析:(1)2;(2)±4【分析】(1)先求出m =2,进而化简|m +1|+|m−1|,即可;(2)根据相反数和非负数的意义,列方程求出c 、d 的值,进而求出2c−3d 的值,再求出2c−3d 的平方根.【详解】(1)由题意得:m =2,则m +1>0,m−1<0,∴|m +1|+|m−1|=m +1+1−m =2;(2)∵2c d + ∴2c d +,∴|2c +d|=00,解得:c =2,d =−4,∴2c−3d =16,∴2c−3d 的平方根为±4.【点睛】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键.18.64【分析】由长方形直尺可得MP//OB 再根据作图过程可知OP 平分∠AOB 进而可得∠AMP 的度数【详解】解:∵OP 平分∠AOB ∴∠MOB =2∠BOP =64°由长方形直尺可知:MP//OB ∴∠AMP =解析:64【分析】由长方形直尺可得MP //OB ,再根据作图过程可知OP 平分∠AOB ,进而可得∠AMP 的度数.【详解】解:∵OP 平分∠AOB ,∴∠MOB =2∠BOP =64°,由长方形直尺可知:MP //OB ,∴∠AMP =∠MOB =64°,故答案为:64.【点睛】此题主要考查了基本作图,关键是掌握角平分线的作法.19.30°或45°【分析】分2种情况进行讨论:当CB ∥AD 时当EB ∥AC 时根据平行线的性质和角的和差关系分别求得∠ACE 角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线解析:30°或45°【分析】分2种情况进行讨论:当CB ∥AD 时,当EB ∥AC 时,根据平行线的性质和角的和差关系分别求得∠ACE 角度即可.【详解】解:当//CB AD 时,18060120,1209030ACB ACE ︒︒︒︒︒︒∠=-=∠=-=;当//EB AC 时,45ACE E ︒∠=∠=.故答案为:30°或45°.【点睛】本题主要考查了平行线的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.20.;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.三、解答题21.(1)4;(2)(-1,1)或(-3,-1)【分析】(1)根据平行于x 轴的直线上的点的纵坐标相等求出a 值,进而求得A 、B 点的坐标,即可求出两点距离;(2)根据垂直于x 轴的直线上的点的横坐标相等得到D (b ﹣2,0),再由CD=1得∣b ∣=1,进而求得b 即可.【详解】(1)∵AB ∥x 轴,∴点A 、B 两点的纵坐标相等,∴a+1=4,解得:a=3,∴A (-2,4),B (2,4)∴点A 、B 两点的距离为∣2-(-2)∣=4;(2)∵CD ⊥ x 轴于点 D∴点C 、D 的横坐标相等,∴D (b-2,0)∵CD=1,∴∣b ∣=1解得:b=±1,当b=1时,点C的坐标为(-1,1),当b=-1时,点C的坐标为(-3,-1),综上,点C的坐标为(-1,1)或(-3,-1).【点睛】本题考查坐标与图形、两点间的距离,熟练掌握平行(或垂直)于坐标轴的点的坐标特征是解答的关键.22.(1)(0,2),(4,2),8;(2)Q(0,4)或Q(0,﹣4);(3)∠CPO=∠DCP+∠BOP,证明见解析【分析】(1)根据平移直接得到点C,D坐标,用面积公式计算S四边形ABDC即可;(2)设出Q的坐标,OQ=|m|,用S△QAB=S四边形ABDC建立方程,解方程即可;(3)作PE∥AB交y 轴于点E,利用两直线平行,内错角相等即可得出结论.【详解】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,且A(﹣1,0),B(3,0),∴C(0,2),D(4,2);∵AB=4,OC=2,∴S四边形ABDC=AB×OC=4×2=8;故答案为:(0,2);(4,2);8;(2)∵点Q在y轴上,设Q(0,m),∴OQ=|m|,∴S△QAB=12×AB×OQ=12×4×|m|=2|m|,∵S四边形ABDC=8,∴2|m|=8,∴m=4或m=﹣4,∴Q(0,4)或Q(0,﹣4).(3)如图,∵线段CD是线段AB平移得到,∴CD∥AB,作PE∥AB交y 轴于点E,∴CD∥PE,∴∠CPE =∠DCP ,∵PE ∥AB ,∴∠OPE =∠BOP ,∴∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,∴∠CPO =∠DCP +∠BOP .【点睛】本题主要考查了线段的平移及平行线的性质,掌握平行线的性质并作出辅助线是解题的关键.23.ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.24.(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.25.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.26.见解析【分析】根据平行的性质和判定定理填空.【详解】解:证明:∵∠1+∠2=180(已知),∠2=∠3(对顶角相等),∴∠1+∠3=180°,∴AB∥EF(同旁内角互补,两直线平行),∴∠B=∠EFC(两直线平行,同位角相等),∵∠B=∠DEF(已知),∴∠DEF=∠EFC(等量代换),∴DE∥BC(内错角相等,两直线平行).【点睛】本题考查平行的性质和判定,解题的关键是掌握平行的性质和判定定理.。

最新七年级数学下期中一模试卷含答案

最新七年级数学下期中一模试卷含答案

一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 3.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .475.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±497=±.A .0个B .1个C .2个D .3个6.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 7.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 8.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 9.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155 10.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 11.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 12.能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2 二、填空题13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.15.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2)求12a +的平方根和立方根. 16.我们知道2 1.414≈,于是我们说:“2的整数部分为1,小数部分则可记为21-”.则:(1)21+的整数部分是__________,小数部分可以表示为__________;(2)已知32+的小数部分是a ,73-的小数部分为b ,那么a b +=__________; (3)已知11的在整数部分为x ,11的小数部分为y ,求1(11)x y --的平方根. 17.若已知()21230a b c -+++-=,则a b c -+=_____.18.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.19.如图,在长方形草地内修建了宽为2米的道路,则草地面积为_______米2.20.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题21.如图,己知()(),2,53,3A C -,将三角形ABC 向右平移3个的单位长度,再向下平移4个单位长度,得到对应的三角形111A B C .(1)画出三角形111A B C ;(2)直接写出点111A B C 的坐标;(3)求三角形111A B C 的面积.22.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点” P '的坐标为____________;②若点P 的“k 之雅礼点” P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值. 23.求下列各式中x 的值.(1)2(1)2x +=; (2)329203x +=. 24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.25.如图,DE ∥BC ,∠ADE =∠EFC ,那么∠1与∠2相等吗?说明理由.26.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.2.C解析:C【分析】根据分别表示点到x 轴的距离和到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式即可.【详解】解:点(),A m n 到y 轴的距离是它到x 轴距离的两倍.则2m n =,故选C .【点睛】本题考查了点的坐标,熟记点到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式是解题的关键.3.D解析:D【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限,故选D .4.B解析:B【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B.5.D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D.【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.6.D解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB是2的平方根,此项叙述正确;C、12<<,此项叙述正确;D故选:D.【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键.7.D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.9.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C.本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.10.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m为正数”时,应先假设m为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.11.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.12.B解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a>b时,3a=2b,∴命题“若a>b,则3a>2b”为假命题,故选:B.【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.(-34)【分析】根据点平移的规律:横坐标左减右加纵坐标上加下减求解【详解】点向左平移个单位向上平移3个单位得∴点的坐标是(-34)故答案为:(-34)【点睛】此题考查直角坐标系中点的坐标平移规律:解析:(-3,4)【分析】根据点平移的规律:横坐标左减右加,纵坐标上加下减求解.【详解】点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,∴点1P 的坐标是(-3,4),故答案为:(-3,4).【点睛】此题考查直角坐标系中点的坐标平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.14.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.(1)441或49;(2)或【分析】(1)分情况讨论这两个平方根相等或互为相反数求出a 的值在算出这个正数;(2)由(1)的结果分情况讨论根据平方根和立方根的定义算出结果【详解】解:(1)若这两个平方解析:(1)441或49;(2)2±【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数;(2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 16.(1)2;(2)1;(3)【分析】(1)先估算出的取值范围再确定的整数部分和小数部分;(2)先估算出和的取值范围再确定a 与b 的值最后代入代数式计算即可;(3)先估算出的取值范围再确定xy 的值最后代入解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12 ∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.17.6【分析】分别根据绝对值平方和算术平方根的非负性求得abc 的值代入即可【详解】解:因为所以解得故故答案为:6【点睛】本题考查非负数的性质主要考查绝对值平方和算术平方根的非负性理解几个非负数(式)的和 解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 18.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数【详解】解:∵AB ⊥AE ∠CAE =42°∴∠BAC =90°﹣42°=48°∵AB ∥CD ∴∠BAC +∠ACD =180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.19.144【分析】先求出道路的总长度进而求出道路的面积最后用总面积减去道路的面积即可【详解】解:由图形得到了的总长度为20+10-2=28米所以道路的总面积为28×2=56米2所以草地面积为20×10-解析:144【分析】先求出道路的总长度,进而求出道路的面积,最后用总面积减去道路的面积即可.【详解】解:由图形得到了的总长度为20+10-2=28米,所以道路的总面积为28×2=56米2,所以草地面积为20×10-56=144米2.故答案为:144【点睛】本题考查了请不规则图形的面积,根据题意求出道路的总长度是解题关键,注意应减去重合的部分.20.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD∥BC∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.三、解答题21.(1)见解析;(2)点A1、B1、C1的坐标分别为(1,1),(-2,-6),(6,-1);(3)412.【分析】(1)利用点平移的坐标规律写出点A 1、B 1、C 1的坐标,然后描点即可得到三角形A 1B 1C 1;(2)根据(1)中画得的111A B C ,得到点A 1、B 1、C 1的坐标;(3)用一个矩形的面积分别减去三个三角形的面积可计算出△ABC 的面积.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)点A 1、B 1、C 1的坐标分别为(1,1),(-2,-6),(6,-1);(3)三角形ABC 的面积=8×7-12×2×5-12×3×7-12×5×8=412. 【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.(1)①(-2,-6);②(1,1)(答案不唯一);(2)±1;(3)m=1,n=-2或m=-1,n=2【分析】(1)①根据“k 之雅礼点”的定义即可求出结论; ②设点P (a ,b ),由题意可得,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2),利用赋值法令k=1,a=1,求出b 的值即可写出一个符合题意的坐标;(2)由题意可设点P (a ,0),a >0,则点P 的“k 之雅礼点” P '的坐标为(),a ka ,根据等腰直角三角形的定义可得ka = a ,从而求出k 的值;(3)根据k 的值分类讨论,根据一元一次方程解的情况即可得出结论.【详解】解:(1)①由题意可得点P (-1,-3)的“3之雅礼点” P '的坐标为31,1333-⎛⎫-+-⨯- ⎪⎝⎭即P '(-2,-6)故答案为:(-2,-6);②设点P (a ,b ),由题意可得点P 的“k 之雅礼点” P '的坐标,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2) 即22b a k ka b ⎧+=⎪⎨⎪+=⎩ 可令k=1则a +b=2当a=1时,b=1∴点P 的坐标可以为(1,1)故答案为:(1,1)(答案不唯一);(2)由题意可设点P (a ,0),a >0则点P 的“k 之雅礼点” P '的坐标为(),a ka∴OP=a ,P P '=ka由P '与P 的横坐标相同,OPP '△为等腰直角三角形∴∠OP P '=90°,且OP=P P ' ∴ka = a解得k=±1故答案为±1;(3)当k=-1时,2x mx mn -+=+则()12m x mn -+=+∵该方程有无数个解∴1020m mn -+=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩; 当k=1时,2x mx mn +=+则()12m x mn +=+∵该方程有无数个解∴1020m mn +=⎧⎨+=⎩解得:12m n =-=⎧⎨⎩; 综上:m=1,n=-2或m=-1,n=2【点睛】此题考查的是新定义类问题,掌握新定义、等腰直角三角形的性质和根据一元一次方程解的情况求参数是解决此题的关键.23.(1)11x =,21x =;(2)23x =-. 【分析】(1)根据平方根的意义求解即可;(2)变形后根据立方根的意义求解即可.【详解】(1)2(1)2x +=,1x +=11x =,21x =.(2)329203x +=, 32923x =-, 3827x =-, 23x =-. 【点睛】本题考查了利用平方根和立方根的意义解方程,熟练掌握平方根和立方根的意义是解答本题的关键.24.(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 25.∠1=∠2,理由见解析.【分析】根据平行线的性质推出∠ADE =∠ABC ,推出∠ABC =∠EFC ,根据平行线的判定推出EF ∥AB 即可.【详解】解:∠1=∠2,理由是:∵DE ∥BC ,∴∠ADE =∠ABC ,∵∠ADE =∠EFC ,∴∠ABC =∠EFC ,∴EF ∥AB ,∴∠1=∠2.【点睛】本题考查了对平行线的性质和判定的应用,解题的关键是熟练掌握平行线的性质及判定. 26.(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,答:CBG ∠的度数是12°.【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.。

【必考题】七年级数学下期中第一次模拟试题(附答案) (2)

【必考题】七年级数学下期中第一次模拟试题(附答案) (2)

【必考题】七年级数学下期中第一次模拟试题(附答案) (2)一、选择题1.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,2.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .3.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线4.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm5.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩6.10x x y -+=,则xy 的值为( )A .0B .1C .-1D .27.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油;③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④8.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°9.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-10.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的12 11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5D .-5<x <-3 12.我们定义a c ⎛ ⎝ b ad bc d ⎫=-⎪⎭,例如:24⎛ ⎝ 3253425⎫=⨯-⨯=-⎪⎭,若x 满足423⎛-≤ ⎝ 22x ⎫<⎪⎭,则x 的整数解有( ) A .0个 B .1个 C .2个 D .3个二、填空题13.3 1.732,30 5.477≈≈0.3≈______.14.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.15.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为______.16.m的3倍与n的差小于10,用不等式表示为______________.17.如果不等式组()53122x xx m⎧+>+⎪⎨⎪≥⎩,恰好有3个整数解,则m的取值范围是__________.189________.19.已知方程组236x yx y+=⎧⎨-=⎩的解满足方程x+2y=k,则k的值是__________.20.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.三、解答题21.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,商店考虑继续按之前的降价率再次降价,请你算一算第三次降价后出售的商品是否会亏本.22.如图,AD//BC,∠A=∠C.求证:AB//DC.23.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)在这次抽样调查中,共抽查了多少名学生?(2)请在图②中把条形统计图补充完整;(3)求出扇形统计图中“D级”部分所对应的扇形圆心角的大小;(4)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A 级和B级)有多少份?24.解方程组:23 238 x yx y-=⎧⎨-=⎩25.已知关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,求关于a、b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.【详解】解:由题意可知点P 的坐标为()25,13-+-,即P ()3,2-;故选:A .【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键. 2.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C 、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D 、∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行).故选D .【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.3.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A 、在同一平面内,平行于同一直线的两条直线平行.故正确;B 、过直线外一点,有且只有一条直线与已知直线平行.故错误;C 、根据平行线的定义知是错误的.D 、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A .【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.4.A解析:A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则29714x yx y+=⎧⎨+=⎩,解得17xy=⎧⎨=⎩则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选:A.【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm当作3个纸杯的高度,把14cm当作8个纸杯的高度.5.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.6.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.7.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.8.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.9.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.10.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y 轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.11.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<,解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.解析:B【解析】【分析】先根据题目的定义新运算,得到关于x 的不等式组,再得到不等式组的解集即可.【详解】解:结合题意可知423⎛-≤ ⎝ 22x ⎫<⎪⎭可化为42324232x x -⨯≥-⎧⎨-⨯⎩<, 解不等式可得1x <2≤,故x 的整数解只有1;故选:B .【点睛】本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.二、填空题13.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向解析:5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】解: 5.477≈Q ,0.5477≈≈故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.14.54°【解析】【分析】设∠BOD=x∠BOE=2x;根据题意列出方程2x+2x+x=180°得出x=36°求出∠AOC=∠BOD=36°即可求出∠AOF=90°-36°=54°【详解】解:设∠BOD解析:54°【解析】【分析】设∠BOD=x ,∠BOE=2x ;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°.解:设∠BOD=x,∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠EOB=2x,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵OF⊥CD,∴∠AOF=90°-∠AOC=90°-36°=54°;故答案为:54°.【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.15.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x <k1x+b的解集为x>-1.故答案为:x>-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.16.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写解析:3m-n<10.【解析】【分析】根据题意利用不等符号进行连接即可得出答案.【详解】解:由题意可得:3m-n<10故答案为:3m-n<10.本题考查不等式的书写.17.【解析】【分析】先求出不等式组的解集再根据不等式组有且只有三个整数解求出整数解得出即可【详解】解不等式组得:∵有三个整数解∴x=-101∴m 的取值范围是故答案为:【点睛】考查一元一次不等式组的整数解解析:21m -<≤-【解析】【分析】先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出21m -<≤-即可.【详解】解不等式组得:2,m x ≤<∵有三个整数解,∴x=-1,0,1,∴m 的取值范围是21m -<≤-.故答案为:21m -<≤-.【点睛】考查一元一次不等式组的整数解,解出不等式的解集是解题的关键.18.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.19.-3【解析】分析:解出已知方程组中xy 的值代入方程x+2y=k 即可详解:解方程组得代入方程x+2y=k 得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.【解析】【分析】设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元建立方程组整体求解即可【详解】解:设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元由题意得把这两个方程相加得5x+ 解析:【解析】【分析】设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.【详解】解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得 32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.【点睛】本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解.三、解答题21.(1)降价10%(2)会亏本【分析】(1)设该种商品降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,求解即可得到答案;(2)根据第二次降价后为324元,并且按照之前的降价率再次降价,可以计算出第三次降价后的价格,把第三次降价后的价格与进价比较,即可得到答案.【详解】(1)设每次降价的百分率为x则()24001%324x ⨯-=,解得:110x =,2190x =(舍去)∴降价10%(2)∵第二次降价后为324元,若商店考虑继续按之前的降价率再次降价,则第三次降价后为:()324110%291.6⨯-=元,∴291.6300<故会亏本【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程,在解题时要注意降价率是否发生变化.22.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.23.(1)这次抽取的学生数为120人;(2)补图见解析;(3)“D 级”部分所对应的扇形圆心角为36°;(4)有450份.【解析】分析:(1)根据A 级人数为24人,以及在扇形图中所占比例为20%,24÷20%即可得出抽查了多少名学生;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,即可得出D级人数,补全条形图即可;(3)求得“D级”部分所占的百分数,再乘360°即可求出答案;(4)根据A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,即可得出该校这次活动共收到参赛作品750份,参赛作品达到B级以上的份数.详解:(1)∵A级人数为24人,在扇形图中所占比例为20%,∴这次抽取的学生数为:24÷20%=120人;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,∴D级人数为:120﹣36﹣24﹣48=12人,如图所示:(3)360°×12120=36°答:“D级”部分所对应的扇形圆心角为36°;(4)∵A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,∴该校这次活动共收到参赛作品750份,参赛作品达到B级以上有750×60%=450份.点睛:考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.72 xy=⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)23238x yx y-=⎧⎨-=⎩①②,②×2-①×3得:x=7,把x=-1代入①得:7-2y=3,解得:y=2,则方程组的解为72 xy=⎧⎨=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键.。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

【人教版】七年级数学下期中一模试卷(含答案)

【人教版】七年级数学下期中一模试卷(含答案)

一、选择题1.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 2.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 3.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处 5.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .66.若23a =-2b =--,()332c =-,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 7.已知下列结论:①2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③ B .②③ C .③④ D .②④ 8.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .59.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 10.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 11.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个12.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°二、填空题13.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.15.若则2|1|2(3)0a b c -+++-=,()c a b +=______.16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当x=2时,()()1*-3*=x x x ______ 17.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______. 18.小明在楼上点A 处行到楼下点B 处的小丽的俯角是32︒,那么点B 处的小丽看点A 处的小明的仰角是_______________度.19.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___20.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.三、解答题21.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.22.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.23.计算:(1)37|2|27--+-(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭24.求出x 的值:()23227x +=25.已知:直线GH 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,并且//EM FN .(1)如图1,求证://AB CD ;(2)如图2,2AEF CFN ∠=∠,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135︒.26.如图,已知BC AE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【详解】解:∵点P 位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x 轴5个单位长度,距离y 轴3个单位长度,∴点的坐标为(﹣3,5).故选:A .【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.C解析:C【分析】平行于y 轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y 轴的直线上所有点的横坐标相等,已知点A (-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C .【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x 轴的直线上所有点的纵坐标相等,平行于y 轴的直线上所有点的横坐标相等.3.B解析:B【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断.【详解】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限.故选:B .【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.4.B解析:B【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:敌军指挥部的位置大约是B 处.故选:B .【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.5.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….6.D解析:D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3a ==-,b =,()22c ==--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.B解析:B【分析】根据实数与数轴、无理数与有理数的定义逐个判断即可得.【详解】①,此结论错误; ②无理数是无限小数,此结论正确;③实数与数轴上的点一一对应,此结论正确;④有理数有无限个,无理数有无限个,此结论错误;综上,正确的结论是②③,故选:B .【点睛】本题考查了实数与数轴、无理数与有理数的定义,掌握理解实数的相关概念是解题关键. 8.C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】4=,22 3.1428577=小数点后的142857是无限循环的,,2π+⋯,共4个,故选:C .【点睛】 本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.9.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 10.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a ,b 被直线c 所截,∠1与∠2是同位角.故选:A .【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.11.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.12.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质二、填空题13.南东35°北西60°【分析】依据地图上的方向辨别方法上北下南左西右东和图示中提高那个的度数进行解答即可判定物体的位置【详解】百鸟馆在老虎馆的南偏东35°方向上大象馆在老虎馆的北偏西60°方向上故答案解析:南东 35°北西 60°【分析】依据地图上的方向辨别方法“上北下南、左西右东“和图示中提高那个的度数进行解答即可判定物体的位置.【详解】百鸟馆在老虎馆的南偏东35°方向上,大象馆在老虎馆的北偏西60°方向上.故答案为:南、东、35°,北、西、60°.【点睛】本题主要考查了依据方向判定物体位置的方法,需要熟记地图上的方向规定. 14.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.15.-1【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】解:∵∴a-1=0b+2=0c-3=0∴a=1b=-2c=3∴【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用解析:-1【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】解:∵2|1|(3)0a c --=,∴a-1=0,b+2=0,c-3=0,∴a=1,b=-2,c=3,∴()3()12=1c a b +=--. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.16.【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴) 2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键. 18.【分析】根据题意画出图形然后根据平行线的性质可以求得点B 处的小丽看点A 处的小明的仰角的度数本题得以解决【详解】解:由题意可得∠BAC =32°∵AC ∥BO ∴∠ABO =∠BAC ∴∠ABO =32°即点B 处解析:32【分析】根据题意画出图形,然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数,本题得以解决.【详解】解:由题意可得,∠BAC=32°,∵AC∥BO,∴∠ABO=∠BAC,∴∠ABO=32°,即点B处的小丽看点A处的小明的仰角等于32度,故答案为32.【点睛】本题利用平行线间角的关系求仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.19.130cm2【分析】根据平移的性质可知梯形EFGH≌梯形ABCD那么GH=CDBC=FG观察可知梯形EFMD是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD再根据梯形的面积计算公式计算即可【解析:130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S 阴影=S 梯形MGHD =12(DM+GH )•GM=12(28-4+28)×5=130(cm 2). 故答案是130cm 2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.20.50【分析】先根据平行线的判定可得再根据平行线的性质两直线的夹角的定义即可得【详解】∵∴∵∴∴直线AB 与BD 的夹角是50度故答案为:50【点睛】本题考查了平行线的判定与性质两直线的夹角的定义熟练掌握 解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.三、解答题21.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(160.b -=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O CB A O 的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题(1)∵a 、b 60.b -=∴a −4=0,b −6=0,解得a =4,b =6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O −C −B −A −O 的线路移动, ∴2×4=8,∵OA =4,OC =6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况, 第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒,第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.22.(1)()()11A 3,5,B 1,3,1C (4,2);(2)图见解析;(3)4 【分析】(1)根据P 点的平移规律,分析解答;(2)根据(1)作图;(3)利用面积公式计算解答.【详解】解:(1)∵点P (a ,b )的对应点为P 1(a +6,b+2),∴平移规律为向右6个单位,向上2个单位,∴()()11A 3,5,B 1,3,1C (4,2); (2)△111A B C 如图所示:(3)△ABC 的面积=11133-22-13-13=4222⨯⨯⨯⨯⨯⨯⨯.【点睛】本题考查坐标的平移规律、平移作图,割补法求三角形面积,比较基础.23.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.24.x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.25.(1)见解析;(2)AEM ∠,GEM ∠,DFN ∠,HFN ∠【分析】(1)根据平行线的性质和判定可以解答;(2)由已知及(1)的结论可知∠CFN=45°,然后结合图形根据角度的加减运算可以得到解答.【详解】(1)证明:∵//EM FN ,∴EFN FEM ∠=∠.∵EM 平分BEF ∠,FN 平分CFE ∠,∴2CFE EFN ∠=∠,2BEF FEM ∠=∠. ∴CFE BEF ∠=∠.∴//AB CD .(2)由(1)知AB //CD ,∴∠AEF+∠CFE=180°,∵∠AEF=2∠CFN=∠CFE ,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=∠FEM=∠BEM=45°,∠BEG=∠CFH=∠DFE=90°,∴∠AEM=∠GEM=∠HFN=∠DFN=90°+45°=135°,∴度数为135°的角有:AEM ∠、 GEM ∠、 DFN ∠、 HFN ∠.【点睛】本题考查平行线的判定和性质及角平分线的综合运用,熟练掌握平行线的判定和性质定理及角平分线的意义是解题关键.26.(1)∠1=∠ABD ,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC ∥DE ,再根据平行线的性质结合23180∠+∠=︒可得∠2=∠CBD ,从而可得CF ∥DB 得出∠1=∠ABD ; (2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB 为直角,即可得出∠ACF .【详解】解:(1)∠1=∠ABD ,理由:∵BC ⊥AE ,DE ⊥AE ,∴BC ∥DE ,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴∠2=∠CBD ,∴CF ∥DB ,∴∠1=∠ABD .(2)∵∠1=70°,CF ∥DB ,∴∠ABD=70°,又∵BC 平分∠ABD , ∴1352DBC ABD ︒∠=∠=, ∴∠2=∠DBC=35°,又∵BC ⊥AG , ∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。

【人教版】七年级数学下期中一模试题(含答案)

【人教版】七年级数学下期中一模试题(含答案)

一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 3.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(30303 4.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)5.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;164±,其中正确的个数有( )A .0个B .1个C .2个D .3个6.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .87.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9 8.下列说法中,错误的是() A .实数与数轴上的点一一对应 B .1π+是无理数C 3D 2 9.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 10.已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .611.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°12.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACE D .∠DAC =∠BCA二、填空题13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)15.求满足条件的x 值:(1)()23112x -=(2)235x -=16.用“<”连接2的平方根和2的立方根_________.17.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.18.如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a //b ,若1∠=α,则2∠的度数=______度.(用含有α代数式表示)19.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度. 20.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.三、解答题21.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 满足2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.22.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标. 23.计算:(1)32125(2)(10)4----⨯- (2)2325(24)27-⨯--÷24.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.25.作图题:如图,A 为射线OB 外一点.(1)连接OA ;(2)过点A 画出射线OB 的垂线AC ,垂足为点C (可以使用各种数学工具) (3)在线段AC 的延长线上取点D ,使得CD AC =;(4)画出射线OD ;(5)请直接写出上述所得图形中直角有 个.26.填空(请补全下列证明过程及括号内的依据)已知:如图,12,B C ∠=∠∠=∠.求证:180B BFC ︒∠+∠=证明:∵12∠=∠(已知),且1CGD ∠=∠(__________________________),∠=∠(_______________________________),∴2CGDCE BF(____________________________),∴//=∠(_________________________),∴∠___________C∠=∠(已知),又B C=∠(等量代换),∴∠_________________BAB CD(_________________),∴//∴180∠+∠=(_________________________).B BFC︒【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】AB x轴,解://a≠-.∴=,1b5故答案为C.【点睛】本题主要考查了坐标与图形,即平行于x轴的直线上的点纵坐标相同,平行于y轴的直线上的点横坐标相同.2.D解析:D【分析】根据点M、N的坐标可得直线MN的解析式,由此即可得.【详解】(9,5),(3,5)---,M Ny=-,∴直线MN的解析式为5则直线MN与x轴平行,与y轴垂直相交,故选:D.【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.3.B解析:B【分析】根据扇形弧长公式求出弧长,分别求出第4秒、第8秒时点P的坐标,总结规律,根据规律解答.【详解】解:扇形的弧长=603180π⨯=π,由题意得,点P在每一个扇形半径上运动时间为1秒,在每一条弧上运动时间为1秒,则第4秒时,点P的坐标是(6,0),第8秒时,点P的坐标是(12,0),……第4n秒时,点P的坐标是(6n,0),2020÷4=505,∴2020秒时,点P的坐标是(3030,0),故选:B.【点睛】本题考查规律型-点的坐标,解此类题的关键是找到循环组规律.4.D解析:D【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【详解】解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为3或-3,纵坐标为2,∴点P的坐标为(-3,2)或(3,2).故选D.【点睛】本题考查点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.5.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2 ,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.6.D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.7.C解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.8.C解析:C【分析】根根据有理数和无理数的定义可对C 、B 、D 进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.2是无理数,原说法错误,符合题意;是无限不循环小数,此说法正确,不符合题意.故选:C .【点睛】本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.9.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.10.B解析:B【分析】利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.11.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键.12.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC=∠DAB,∴AD∥BC,故A正确,本选项不符合题意;B.∵∠ADC+∠BCD=180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.二、填空题13.【分析】根据二四象限角平分线上点的特征解答【详解】∵A(m+2﹣3)在二四象限角平分线上∴m+2=3解得m=1∵点B(﹣4n+5)在二四象限角平分线上∴n+5=4解得n=﹣1∴m+n=1﹣1=0故答解析:【分析】根据二四象限角平分线上点的特征解答.【详解】∵A(m+2,﹣3)在二四象限角平分线上,∴m+2=3,解得m=1,∵点B (﹣4,n +5)在二四象限角平分线上,∴n +5=4,解得n =﹣1,∴m +n =1﹣1=0.故答案为:0.【点睛】本题考查坐标与图形的关系,熟练掌握二四象限角平分线上点的特征是解题关键 . 14.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1, ∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.15.(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.16.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2 ∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义. 17.11【分析】新运算的法则是对于任意实数ab 都有a ⊕b =a (a ﹣b )+1根据新运算的法则把新运算(﹣2)⊕3转化为实数的运算进行计算求值【详解】解:根据题意得:(﹣2)⊕3=﹣2×(﹣2﹣3)+1=﹣解析:11【分析】新运算的法则是对于任意实数a ,b ,都有a ⊕b =a (a ﹣b )+1,根据新运算的法则把新运算(﹣2)⊕3转化为实数的运算进行计算求值.解:根据题意得:(﹣2)⊕3=﹣2×(﹣2﹣3)+1=﹣2×(﹣5)+1=10+1=11.故答案为:11.【点睛】本题考查实数的混合运算,熟练掌握运算法则是解本题的关键.18.【分析】根据对顶角性质得;根据平行线性质得结合推导得即可得到答案【详解】如图∵//∴∴∴∵∴即的度数=度故答案为:【点睛】本题考查了平行线的知识;解题的关键是熟练掌握对顶角相等平行线的性质从而完成求解 解析:180α-【分析】根据对顶角性质,得13∠=∠;根据平行线性质,得23180∠+∠=,结合1∠=α,推导得2180α∠=-,即可得到答案.【详解】如图13∠=∠∵a //b∴23180∠+∠=∴21180∠+∠=∴21801∠=-∠∵1∠=α∴2180α∠=-,即2∠的度数=180α-度故答案为:180α-.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握对顶角相等、平行线的性质,从而完成求解.19.55或20【分析】根据平行线性质得出∠A+∠B =180°①∠A =∠B②求出∠A =3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A 与∠B 的两边分别平行∴∠A+∠B =180°①∠A =∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A 和∠B 的两边分别平行,即可得∠A =∠B 或∠A +∠B =180° ,注意分类讨论思想的应用.20.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.三、解答题21.(1)(2,0)A - ,(0,6)B ;(2)62(3)S t t =-<或26(3)S t t =->;(3):S S '的值为1或425. 【分析】(1)根据算术平方根及绝对值的非负性求出a 、b 的值,进而可得A 、B 的坐标;(2)由题意可得2BP t =,则根据(1)可得OB=6,OA=2,进而可分当点P 在OB 上,则有62OP t =-,当点P 在OB 外,则有26OP t =-,然后根据三角形面积计算公式可求解;(3)由(2)可得当点P 在OB 上时和点P 在OB 外时,然后根据S 求出时间t ,进而根据割补法求出S ',最后问题可求解.解:(1)∵260a b ++-=,∴20,60a b +=-=,解得:2,6a b =-=,∴()2,0A - ,()0,6B ;(2)由(1)及题意可得:OB=6,OA=2,2BP t =,∴当点P 在OB 上,即3t <,则62OP t =-,∴AOP 的面积为:()112626222S OA OP t t =⋅=⨯⨯-=-; 当点P 在OB 外,即3t >,则有26OP t =-, ∴AOP 的面积为:()112262622S OA OP t t =⋅=⨯⨯-=-, ∴综上所述:S 关于t 的函数关系式为:()623S t t =-<或()263S t t =->; (3)由(2)及题意可得:()623S t t =-<或()263S t t =->,AQ=t ,则有: 当()623S t t =-<时,如图所示:∵4S =,∴462t =-,解得:t=1,∴AQ=1,∴OQ=2-1=1,OP=4,∴1111261442222AOB OPQ S S S OA OB OQ OP '=-=⋅-⋅=⨯⨯-⨯⨯=, ∴:4:41S S '==;当()263S t t =->时,如图所示:∵4S =,∴426t =-,解得:t=5,∴AQ=5,∴OP=4, ∴11115654252222AQB APQ S S S AQ OB AQ OP '=-=⋅+⋅=⨯⨯+⨯⨯=, ∴4:4:2525S S '==, ∴综上所述::S S '的值为1或425. 【点睛】本题主要考查图形与坐标,关键是根据题意得到点的坐标,然后根据几何知识进行求解问题.22.(1)画△ABC 见解析,△ABC 的面积为272;(2)平移后的△A′B′C′见解析,A′(-1,7),B′(2,1)【分析】(1)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出各对应点位置,进而得出答案.【详解】(1)△ABC 如图所示:△ABC 的面积为:ABC 11127666333362222S=⨯-⨯⨯-⨯⨯-⨯⨯=; (2)如图所示:△A′B′C′即为所求,A′(-1,7),B′(2,1);故答案为:A′(-1,7),B′(2,1).【点睛】本题考查了作图-平移变换,熟知图形平移不变性的性质以及正确得出对应点位置是解答此题的关键.23.(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(132125(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)2325(24)27-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.24.(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.25.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)4【分析】(1)用线段连接即可;(2)用三角板的两条直角边画图即可;(3)用圆规截取即可;(4)根据射线的定义画图即可;(5)根据直角的定义结合图形解答即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示;(5)直角有:∠ACO ,∠ACB ,∠DCO ,∠DCB 共4个,故答案为:4.【点睛】本题考查了线段、射线、垂线、直角的定义,以及作一条线段等于已知线段,熟练掌握各知识点是解答本题的关键.26.对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补【分析】结合题意,根据平行线的性质分析,即可得到答案.【详解】∵12∠=∠且1CGD ∠=∠(对顶角相等),∴2CGD ∠=∠(等量代换),∴//CE BF (同位角相等,则两直线平行),∴∠BFD C =∠(两直线平行,则同位角相等),又B C ∠=∠(已知),∴∠BFD B =∠(等量代换),∴//AB CD (内错角相等,则两直线平行),∴180B BFC ︒∠+∠=(两直线平行,则同旁内角互补).故答案为:对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握平行线、内错角、同旁内角、同位角、对顶角的性质,从而完成求解.。

【人教版】七年级数学下期中一模试卷(带答案)

【人教版】七年级数学下期中一模试卷(带答案)

一、选择题1.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 2.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4) 3.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 5.若 5.7134≈2.3903,57.134≈7.5587,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.903 6.估计50的立方根在哪两个整数之间( ) A .2与3 B .3与4 C .4与5 D .5与6 7.设,A B 均为实数,且33,3A m B m =-=-,则,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ 8.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 9.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 10.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个11.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .312.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180°二、填空题13.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)14.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.15.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.16.27-的立方根是___________81___________;| 3.14|π-的绝对值是___________.17.比较大小:326-3-(用“>”,“<”或“=”填空).18.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.19.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 20.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.三、解答题21.已知点P(a ﹣2,2a+8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;(3)点P 到x 轴、y 轴的距离相等.22.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.24.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=25.如图,直线AB 和CD 相交于点O .(1)∠1的邻补角是____________,对顶角是___________;(2)若∠1=40°,求出∠2,∠3,∠4的度数.26.如图,AD 平分BAC ∠,点E ,F 分别在边BC ,AB 上,且BFE DAC ∠=∠,延长EF ,CA 交于点G ,求证:G AFG ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B (-4,-1)的对应点D 的坐标.【详解】∵线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (4,7),∴由A 平移到C 点的横坐标增加5,纵坐标增加3,则点B (-4,-1)的对应点D 的坐标为(-4+5,-1+3),即(1,2).故选:C .【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A6(0,4)…,所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.3.C解析:C【分析】直接利用点的坐标特点进而画出图形得出答案.【详解】解:如图所示:,过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,故点B的坐标为:(0,3).故选C.【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.4.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.5.D解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D.【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.6.B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B.【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.7.D解析:D【分析】根据算术平方根的定义得出A是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A=∴A是一个非负数,且m-3≥0,∴m≥3,∵B=∵3-m≤0,即B≤0,∴A≥B,故选:D.【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.8.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.9.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.11.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.二、填空题13.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1, ∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.14.【分析】根据三种变换规律的特点解答即可【详解】解:故答案为:【点睛】本题考查了点的坐标变换读懂题目信息正确理解三种变换的特点是解题的关键解析:()2,5-【分析】根据三种变换规律的特点解答即可.【详解】解:()()()()2,52,52,5O Ω=O -=-.故答案为:()2,5-.【点睛】本题考查了点的坐标变换,读懂题目信息、正确理解三种变换的特点是解题的关键. 15.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.16.-3±3π-314【分析】直接利用立方根以及平方根绝对值的性质分别分析得出答案【详解】解:∵∴-27的立方根是:-3;∵9的平方根是:±3;∴的平方根是:±3;∵|π-314|=π-314π-314解析:-3 ±3 π-3.14.【分析】直接利用立方根以及平方根、绝对值的性质分别分析得出答案.【详解】解:∵3(3)27-=-∴-27的立方根是:-3; ∵9的平方根是:±3; ∴±3;∵|π-3.14|=π-3.14,π-3.14的绝对值是:π-3.14∴|π-3.14|的绝对值是:π-3.14.故答案为:-3;±3;π-3.14.【点睛】此题主要考查了实数的性质,正确掌握相关定义是解题关键.17.>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.18.【分析】利用垂直定义可得∠COE =90°进而可得∠COB 的度数再利用对顶角相等可得∠AOD 再利用角平分线定义可得答案【详解】解:∵EO ⊥CD 于点O ∴∠COE =90°∵∠BOE =50°∴∠COB =90解析:70︒【分析】利用垂直定义可得∠COE =90°,进而可得∠COB 的度数,再利用对顶角相等可得∠AOD ,再利用角平分线定义可得答案.【详解】解:∵EO ⊥CD 于点O ,∴∠COE =90°,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.19.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 20.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E 作EG ∥AB 则EG ∥CD 由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)P(﹣6,0);(2)P(1,14);(3)P(﹣12,﹣12)或(﹣4,4).【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(3)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10时,a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2时,a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12)或(﹣4,4).【点睛】此题主要考查了点的坐标性质,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质等知识,属于基础题,要熟练掌握点的坐标性质.22.图见解析,72【分析】在平面直角坐标系中,依次画出点A 、B 、C 、D ,连接BC 、CD 、BD ,作CE 垂直于x 轴于点E ,由于BCD BCE ABD AECD S S S S ∆∆∆=+-梯形,分别求出AECD S 梯形、BCE S ∆、ABD S ∆即可得出BCD 的面积.【详解】作CE 垂直于x 轴于点E ,BCD BCE ABD AECD S S S S ∆∆∆=+-梯形()1113533145222=+⨯⨯+⨯⨯-⨯⨯ 312102=+- 72=. 【点睛】本题主要考查平面直角坐标系以及割补法求不规则图形的面积,利用割补法求不规则图形的面积是解题关键.23.(1)2;(2)±4【分析】(1)先求出m =22-,进而化简|m +1|+|m−1|,即可;(2)根据相反数和非负数的意义,列方程求出c 、d 的值,进而求出2c−3d 的值,再求出2c−3d 的平方根.【详解】(1)由题意得:m =2,则m +1>0,m−1<0,∴|m +1|+|m−1|=m +1+1−m =2;(2)∵2c d + ∴2c d +,∴|2c+d|=00,解得:c =2,d =−4,∴2c−3d =16,∴2c−3d 的平方根为±4.【点睛】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键.24.(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.25.(1)∠2和∠4,∠3(2)∠2=140°,∠3=40°,∠4=140°【分析】(1)根据对顶角和邻补角的定义解答即可;(3)根据邻补角的定义列式求出∠2,再根据对顶角相等解答.【详解】(1)∠1的邻补角是∠2和∠4,对顶角是∠3;(2)∵∠1=40°,∴∠2=180°−∠1=180°−40°=140°,∴∠3=∠1=40°,∠4=∠2=140°.【点睛】本题考查了对顶角、邻补角,是基础题,熟记概念是解题的关键,要注意一个角的邻补角有两个.26.证明见解析.【分析】先根据角平分线的定义可得∠=∠DAB DAC ,从而可得BFE DAB ∠=∠,再根据平行线的判定与性质可得G DAC ∠=∠,从而可得G BFE ∠=∠,然后根据对顶角相等可得BFE AFG ∠=∠,最后根据等量代换即可得证.【详解】 AD 平分BAC ∠,DAB DAC ∴∠=∠,BFE DAC ∠=∠,BFE DAB ∴∠=∠,//AD EG ∴,G DAC ∴∠=∠,又BFE DAC ∠=∠,G BFE ∴∠=∠,由对顶角相等得:BFE AFG ∠=∠,A G G F ∴∠=∠.【点睛】本题考查了角平分线的定义、对顶角相等、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。

【人教版】七年级数学下期中一模试题(附答案)

【人教版】七年级数学下期中一模试题(附答案)

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 4.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4) 5.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个6.下列各数中比3-小的数是( )A .2-B .1-C .12-D .07.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4078.在下列各数中是无理数的有( ) 0.111-,4,5,3π,3.1415926,2.010101(相邻两个0之间有1个1),76.01020304050607,32. A .3个 B .4个 C .5个 D .6个9.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个 10.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD的周长为( )A .8B .9C .10D .1111.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )A .40°B .50°C .60°D .70°12.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACE D .∠DAC =∠BCA二、填空题13.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.14.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.15.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.16.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则17]=___.17.观察下列二次根式的规律求值:12211112S =++222221*********S =+++++ 3222222111111111122334S =++++++++ …则20202020S =_______. 18.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.19.如图,//EF AD ,//AD BC ,CE 平分BCF ∠,120DAC ∠=︒,20ACF ∠=︒,FEC ∠为______°.20.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.三、解答题21.已知点(24,1)P m m +-,请分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在过点(2,4)A -且与y 轴平行的直线上.22.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.23.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.24.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x,y是有理数,且x,y满足等式2x2y2y1742++=-,求x-y的值.25.补全解答过程:如图,EF∥AD,∠1=∠2,若∠BAC=70°,求∠AGD.解:∵EF∥AD,(已知)∴∠2=,(两直线平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥,()∴∠AGD+∠BAC=180°.()∵∠BAC =70°,(已知)∴∠AGD = .26.如图,已知BC AE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B′点的坐标.【详解】∵A (-1,-1)平移后得到点A′的坐标为(3,-1),∴向右平移4个单位,∴B (1,2)的对应点B′坐标为(1+4,2),即(5,2).故答案为:(5,2).【点睛】本题主要考查了坐标与图形的变化-平移,关键是掌握平移的规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.2.B解析:B【分析】根据横坐标为负,纵坐标为正的点在第二象限解答即可.【详解】解:∵点A(-π,4)横坐标为负,纵坐标为正,∴应在第二象限.故选:B .本题主要考查了坐标的特点,解答此题的关键是熟记平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.C解析:C【分析】根据x 轴上的点的纵坐标为0求出m 的值,由此即可得出答案.【详解】∵点()1,3M m m ++在x 轴上,30m ∴+=,解得3m =-,12m ∴+=-,则M 点的坐标为()2,0-,故选:C .【点睛】本题考查了坐标轴上的点坐标,掌握理解x 轴上的点的纵坐标为0是解题关键. 4.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.5.D解析:D【分析】直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是6.A解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.7.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.8.B解析:B根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732 故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数. 9.B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.10.D解析:D【分析】根据平移的基本性质,得出四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.【详解】解:根据题意,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,∴AD=2,BF=BC+CF=BC+2,DF=AC ;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.11.B解析:B试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选B .考点:平行线的性质12.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC =∠DAB ,∴AD ∥BC ,故A 正确,本选项不符合题意;B.∵∠ADC+∠BCD =180°,∴AD ∥BC ,故B 正确,本选项不符合题意;C.∵∠BAC =∠ACE ,∴AB ∥CD ,故C 不正确,本选项符合题意;D.∵∠DAC =∠BCA ,∴AD ∥BC ,故D 正确,本选项不符合题意;故选:C .【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.二、填空题13.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.14.或【分析】由AB ∥y 轴可得AB 两点的横坐标相同结合AB=3A (32)分B 点在A 点之上和之下两种情况可求解B 点的纵坐标进而可求解【详解】解:∵AB ∥y 轴∴AB 两点的横坐标相同∵A (32)∴B 点横坐标为解析:()3,1-或()3,5【分析】由AB ∥y 轴可得A ,B 两点的横坐标相同,结合AB=3,A (3,2),分B 点在A 点之上和之下两种情况可求解B 点的纵坐标,进而可求解.【详解】解:∵AB ∥y 轴,∴A ,B 两点的横坐标相同,∵A (3,2),∴B 点横坐标为3,∵AB=3,∴当B 点在A 点之上时,B 点纵坐标为2+3=5,∴B (3,5);∴当B 点在A 点之下时,B 点纵坐标为2-3=-1,∴B (3,-1).综上B 点坐标为(3,-1)或(3,5).故答案为(3,-1)或(3,5).【点睛】本题主要考查坐标与图形,运用平行于坐标轴的直线上点的特征解决问题是解题的关键. 15.(1)9334;(2)这个数用十进制表示为51或102【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得化简成24a+b=12c 根据abc 的取值范围分别将a 从1开始取值验证即可得到答案【详解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 16.4【分析】根据无理数的估算可得即可求解【详解】解:∵∴∴故答案为:4【点睛】本题考查无理数的估算掌握无理数的估算方法是解题的关键解析:4【分析】根据无理数的估算可得45<<,即可求解.【详解】解:∵161725<<, ∴45<<,∴4=,故答案为:4.【点睛】本题考查无理数的估算,掌握无理数的估算方法是解题的关键.17.【分析】通过前三个式子找出其中的规律即可【详解】=故答案为:【点晴】本题考查了数字的规律总结准确算出前三个式子的值总结出规律是解题的关键 解析:20222021【分析】通过前三个式子找出其中的规律即可.【详解】11112=+-=32,1171236=+-=,111313412=+-=, 111112122S ∴=+-=-, 2111113133S =++-=-, 31111114144S =+++-=-, 21n S n n n +∴=+, 2020202220202021S ∴=. 故答案为:20222021. 【点晴】本题考查了数字的规律总结,准确算出前三个式子的值,总结出规律是解题的关键. 18.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.19.20【分析】根据平行线的性质可得进而可得∠ACB =60°根据角平分线的性质和角的和差可得∠BCE 根据平行线的性质可得∠FEC 【详解】∵∴∵∴∵又∵∴∵平分∴∠BCE =∠ECF =∠BCF =20°∵∴∴解析:20【分析】根据平行线的性质可得180DAC ACB ∠+∠=︒,进而可得∠ACB =60°,根据角平分线的性质和角的和差可得∠BCE ,根据平行线的性质可得∠FEC .【详解】∵//AD BC ,∴180DAC ACB ∠+∠=︒.∵120DAC ∠=︒,∴180********ACB DAC ∠=︒-∠=︒-︒=︒.∵60BCF ACF ACB ∠+∠=∠=︒.又∵20ACF ∠=︒,∴602040BCF ACB ACF ∠=∠-∠=︒-︒=︒.∵CE 平分BCF ∠,∴∠BCE =∠ECF =12∠BCF =20° ∵//EF BC , ∴20FEC BCE ∠=∠=︒,∴20FEC ∠=︒.故答案为:20.【点睛】本题主要考查平行线的性质,涉及到角的和差,角平分线的性质,解题的关键是求得∠BCE .20.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE 和BC 被AB 所截∴当时AD ∥BC (内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B ∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE 和BC 被AB 所截,∴当DAB B ∠=∠时,AD ∥BC (内错角相等,两直线平行).故答案为DAB B ∠=∠【点睛】此题考查平行线的性质,难度不大三、解答题21.(1)(6,0)P ;(2)(2,2)P -.【分析】(1)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让横坐标为2求得m 的值,代入点P 的坐标即可求解.【详解】(1)由题意得:10m -=,解得:1m =,∴24246m +=+=,∴(6,0)P ;(2)由题意得:242m +=,解得:1m =-,∴12m -=-,(2,2)P -.【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.22.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A 的坐标,向左1个单位,向下2个单位为坐标原点,建立平面直角坐标系即可;(2)根据平面直角坐标系标注体育馆和食堂即可;(3)根据四边形所在的矩形的面积减去四周四个小直角三角形的面积列式计算即可得解.【详解】解:(1)建立平面直角坐标系如图所示;(2)体育馆(1,3)C -,食堂(2,0)D 如图所示;(3)四边形ABCD 的面积111145332313122222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯, 20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.23.(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.24.(1)x=−13;(2)(2)x-y的值为9或-1.【分析】(1)将错就错把x=2代入计算求出a的值,即可确定出正确的解;(2)根据题意可以求得x、y的值,从而可以求得x−y的值.【详解】(1)把x=2代入2(2x−1)=3(x+a)−3中得:6=6+3a−3,解得:a=1,代入方程得:2x1x13 32-+=-,去分母得:4x−2=3x+3−18,解得:x=−13;(2)∵x、y 是有理数,且 x,y 满足等式2x2y17++=-∴22174x yy⎧+=⎨=-⎩,解得,54xy=⎧⎨=-⎩或54xy=-⎧⎨=-⎩,∴当x=5,y=−4时,x−y=5−(−4)=9,当x=−5,y=−4时,原式=−5−(−4)=−1.故x-y的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.25.∠3;DG;内错角相等,两直线平行;两直线平行,同旁内角互补;110°【分析】由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得AB∥DG,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】∵EF∥AD(已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB ∥DG .(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.故答案为:∠3;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补;110°.【点睛】本题主要考查了平行线的判定与性质,理解平行线的判定与性质进行证明是解此题的关键.26.(1)∠1=∠ABD ,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC ∥DE ,再根据平行线的性质结合23180∠+∠=︒可得∠2=∠CBD ,从而可得CF ∥DB 得出∠1=∠ABD ; (2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB 为直角,即可得出∠ACF .【详解】解:(1)∠1=∠ABD ,理由:∵BC ⊥AE ,DE ⊥AE ,∴BC ∥DE ,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴∠2=∠CBD ,∴CF ∥DB ,∴∠1=∠ABD .(2)∵∠1=70°,CF ∥DB ,∴∠ABD=70°,又∵BC 平分∠ABD , ∴1352DBC ABD ︒∠=∠=, ∴∠2=∠DBC=35°,又∵BC ⊥AG , ∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。

最新七年级数学下期中一模试卷附答案

最新七年级数学下期中一模试卷附答案

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 3.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .165.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4077.下列各式中,正确的是( ) A .16=±4B .±16=4C .3273-=-D .2(4)4-=- 8.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个9.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 10.下列说法中,正确的是 A .相等的角是对顶角 B .有公共点并且相等的角是对顶角 C .如果1∠和2∠是对顶角,那么12∠=∠ D .两条直线相交所成的角是对顶角 11.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是012.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .26二、填空题13.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 14.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______15.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b=++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 16.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则 192与2的大小;1922194-=,161925<<,则4195<<,19221940∴--=->,1922∴->.请根据上述方法解答以下问题:(1)比较大小:329_______3;(2)比较223-与3-的大小,并说明理由.17.若4<a <5,则满足条件的整数 a 分别是_________________.18.如图,已知点O 是直线AB 上一点,过点O 作射线OC ,使∠AOC =110°.现将射线OA 绕点O 以每秒10°的速度顺时针旋转一周.设运动时间为t 秒.当射线OA 、射线OB 、射线OC 中有两条互相垂直时,此时t 的值为__________.19.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.20.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.三、解答题21.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .22.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.23.计算:(132125(2)(10)4---⨯- (2)2325(24)27-⨯--÷24.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 25.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90∴∠=∠=.FGC HEC︒∴_______().//FG∴∠=∠_______().3∠=∠,又12=∠+∠,∴______24=∠.即∠_________EFC∴(___________).DE BC//26.如图,直线AB,CD相交于点O,OE平分∠BOC,FO⊥CD于点O,若∠BOD∶∠EOB=2∶3,求∠AOF的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【详解】∵A(-1,-1)平移后得到点A′的坐标为(3,-1),∴向右平移4个单位,∴B(1,2)的对应点B′坐标为(1+4,2),即(5,2).故答案为:(5,2).【点睛】本题主要考查了坐标与图形的变化-平移,关键是掌握平移的规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.2.C解析:C【分析】根据分别表示点到x 轴的距离和到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式即可.【详解】解:点(),A m n 到y 轴的距离是它到x 轴距离的两倍.则2m n =,故选C .【点睛】本题考查了点的坐标,熟记点到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式是解题的关键.3.C解析:C【分析】确定出n+2为负数时,1-n 一定是正数,再根据各象限内点的坐标特征解答.【详解】解:当n+2<0时,n <﹣2,所以,1﹣n >0,即点A 的横坐标是负数时,纵坐标一定是正数,所以,点A 不可能在第三象限,有可能在第二象限;当n+2>0时,n >﹣2,所以,1﹣n 有可能大于0也有可能小于0,即点A 的横坐标是正数时,纵坐标是正数或负数,所以,点A 可能在第一象限,也可能在第四象限; 综上所述:点A 不可能在第三象限.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.5.D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数,②227是分数,是有理数,③π是无限循环小数,是无理数,5⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,327,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.6.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A 4=,此项错误;B、4=±,此项错误;C 3=-,此项正确;D 4==,此项错误;故选:C .【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.8.C解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.9.B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.10.C解析:C【分析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D、两条直线相交所成的角有对顶角、邻补角,错误;故选C.【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.11.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.12.D解析:D由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S 四边形HDFC =S 梯形ABEH=12(AB+EH )×BE=12(8+5)×4=26.故选D. 二、填空题13.(-23)或(23)【分析】先判断出点P 在第一或第二象限再根据点到x 轴的距离等于纵坐标的绝对值到y 轴的距离等于横坐标的绝对值求解【详解】解:∵点P 在x 轴上方∴点P 在第一或第二象限∵点P 到x 轴的距离为 解析:(-2,3)或(2,3)【分析】先判断出点P 在第一或第二象限,再根据点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值求解.【详解】解:∵点P 在x 轴上方,∴点P 在第一或第二象限,∵点P 到x 轴的距离为3,到y 轴的距离为2,∴点P 的横坐标为2或-2,纵坐标为3,∴点P 的坐标为(-2,3)或(2,3).故答案为:(-2,3)或(2,3).【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.14.【分析】先分别求出A1A2A3A4A5A6A7……的坐标据此发现每个点的横坐标为序号的一半据此解答即可【详解】解:根据题意可知……由此可知每个点的横坐标为序号的一半∴点P2021的横坐标为:故答案为 解析:20212. 【分析】 先分别求出A 1、A 2、A 3、A 4、A 5、A 6、A 7、……的坐标,据此发现每个点的横坐标为序号的一半,据此解答即可.【详解】解:根据题意可知,1122A ⎛ ⎝⎭,,()210A ,,3322A ⎛⎫ ⎪ ⎪⎝⎭,,()420A ,,5522A ⎛⎫- ⎪ ⎪⎝⎭,,()630A ,,772A ⎛ ⎝⎭……由此可知,每个点的横坐标为序号的一半,∴点P 2021的横坐标为:20212. 故答案为:20212. 【点睛】此题主要考查探索规律,解题的关键是根据题意发现规律. 15.(1)6;(2)①;②不一定理由见解析【分析】(1)根据新定义可得然后按有理数的运算法则计算即可;(2)①首先根据数轴可得 然后根据新定义可得去掉绝对值符号之后按整式加减运算法则化简即可;②举反例: 解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 16.(1)>;(2)<【分析】(1)由<<可得:<<从而可得答案;(2)由<<可得<<从而可得:<即<从而可得答案【详解】解:(1)<<<<故答案为:>(2)<<<<<<<<【点睛】本题考查的是实数的大解析:(1)>;(2)3-<2-.【分析】(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,∴<4,3故答案为:>.(2)16<∴5,4∴<5∴<3+2,23-,∴<()∴3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.17.18192021222324【分析】求出a的范围是16<a<25求出16和25之间的整数即可【详解】解:∵4<<5a为整数∴<<∴整数a有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a的范围是16<a<25,求出16和25之间的整数即可.【详解】解:∵4<5,a为整数,∴∴整数a有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.18.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷10解析:9、20或27【分析】分4种情况确定垂直关系,可得OA的旋转角度,从而可求出t的值.【详解】解:①当射线OA绕点O顺时针旋转20°时,如图1,则∠COA=110°-20°=90°,故OA⊥OC,此时,t=20°÷10°=2;②当射线OA绕点O顺时针旋转90°时,如图2,则∠AOB=180°-90°=90°,故OA⊥OB,此时,t=90°÷10°=9;③当射线OA绕点O顺时针旋转200°时,如图3,则∠COA=200°-110°=90°,故OA⊥OC,此时,t=200°÷10°=20;④当射线OA绕点O顺时针旋转270°时,如图4,则∠BOA=270°-180°=90°,故OA⊥OB,此时,t=270°÷10°=27,故答案为:2,9,20或27.【点睛】本题主要考查了角的有关计算,注意在分类讨论时要做到不重不漏.19.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.20.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).三、解答题21.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,根据点A坐标即可求得点A到原点O的距离;(2)因为点C与点D的纵坐标相等,所以线段CD与x轴平行.【详解】(1)点A到原点O的距离是3,点B到x轴的距离是4,点B到y轴的距离是2;(2)因为点C与点D的纵坐标相等,所以线段CD与x轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.22.(1)A( -1,-1 )、B(4,2)、C(1,3);(2)7;(3)见解析【分析】(1)利用坐标系可得答案;(2)利用矩形面积减去周围多余三角形面积;(3)根据B点平移后的对应点位置可得三角形向右平移2个单位,然后再向上平移3个单位,然后作出图形即可.【详解】(1)A(-1,-1),B(4,2),C(1,3);(2)△ABC的面积:111⨯-⨯⨯-⨯⨯-⨯⨯54241335222=---204 1.57.5=;7(3)如图:△A′B′C′即为所求.【点睛】本题主要考查了作图-平移变换,关键是掌握组成图形的关键点平移后的位置. 23.(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(132125(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)2325(24)27-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.24.7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.25.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 26.45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。

【人教版】七年级数学下期中一模试题(带答案)

【人教版】七年级数学下期中一模试题(带答案)

一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 2.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限B .第二象限C .第三象限D .第四象限 3.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2) 4.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处5.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②6.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是4 7.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 8.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 42=± D .()515-=- 9.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 10.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240° 11.下列命题中,属于真命题的是( ) A .相等的角是对顶角 B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b 12.已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .6二、填空题13.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.14.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .15.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.16.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.17.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根.18.如图,将一张长方形纸片按如图所示折叠,如果∠1=55°,那么∠2=_____°.19.命题“等边三角形的每个内角都等于60°”的逆命题是_____命题.(填“真”或“假”) 20.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.三、解答题21.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)22.如图,已知五边形 ABCDE 各顶点坐标分别为A (-1,-1),B (3,-1),C (3,1),D (1,3),E (-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F ,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标. 23.计算:38642-+--.24.若()22210b a b -+++-=,求()2020a b +的值.25.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.26.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.2.D解析:D【分析】根据点(1,)A n -在x 轴上,计算得n 的值,从而计算出点B 的坐标,即可完成求解.【详解】∵点(1,)A n -在x 轴上∴0n =∴11n +=,11n -=-∴(1,1)B n n +-为(1,1)B -∴(1,1)B n n +-在第四象限故选:D .【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解.3.D解析:D【分析】先判断出点P 在第一或第二象限,再根据点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值求解.【详解】解:∵点P 在x 轴上方,∴点P 在第一或第二象限,∵点P 到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为3或-3,纵坐标为2,∴点P 的坐标为(-3,2)或(3,2).故选D .【点睛】本题考查点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.4.B解析:B【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:敌军指挥部的位置大约是B 处.故选:B .【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.5.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如222-=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 6.B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A 选项:4-没有平方根,故A 错误;B 选项:()224-=,4的算术平方根为2,故B 正确;C选项:()224-=,4的平方根为2±,故C错误;D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.7.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3-是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.9.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 10.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.11.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.12.B解析:B【分析】利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.二、填空题13.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A (2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A (2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.14.(62)或(42)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标再分点C在点A的左边与右边两种情况讨论求出点C的横坐标从而得解【详解】∵点A(12)AC∥x轴∴点C的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.【详解】∵点A(1,2),AC∥x轴,∴点C的纵坐标为2,∵AC=5,∴点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.15.(1)x=或;(2)x=﹣15【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可【详解】解:(1)4(x﹣3)2=9(x﹣3)2=x﹣3=x ﹣3=或x﹣3=解得:x=或;(2)(x+10解析:(1)x=92或32;(2)x=﹣15【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x﹣3)2=9,(x﹣3)2=94,x ﹣3=32±, x ﹣3=32或x ﹣3=32-, 解得:x =92或32; (2)(x +10)3+125=0,(x +10)3=﹣125,x +10x +10=﹣5,解得x =﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.16.【分析】所给的一系列数是4个数一循环(157)表示第15排从左往右数的第7个数根据奇数排最中间数的规律可得出最终结果【详解】(157)表示第15排从左往右数的第7个数由图可得:1四个数一循环并且每个【分析】所给的一系列数是4个数一循环,(15,7)表示第15排从左往右数的第7个数,根据奇数排最中间数的规律可得出最终结果.【详解】(15,7)表示第15排从左往右数的第7个数,由图可得:1四个数一循环,并且每个奇数排最中间的一个数为1, 15为奇数排,最中间的数为这一排的第8个数,故可知,第7,则(15,7..【点睛】本题主要考查规律探索的数字变化类,还有实数,弄清题中的规律是解题的关键. 17.【分析】根据算术平方根和平方根的定义列式求出ab 的值然后代入代数式求出的值再根据平方根的定义解答即可【详解】解:根据题意得解得所以∵∴的平方根是【点睛】本题考查了算术平方根和平方根的定义能够熟记概念 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.18.110【分析】根据平行线的性质和折叠的性质可以得到∠2的度数本题得以解决【详解】如图:由折叠的性质可得∠1=∠3∵∠1=55°∴∠1=∠3=55°∵长方形纸片的两条长边平行∴∠2=∠1+∠3∴∠2=解析:110【分析】根据平行线的性质和折叠的性质,可以得到∠2的度数,本题得以解决.【详解】如图:由折叠的性质可得,∠1=∠3,∵∠1=55°,∴∠1=∠3=55°,∵长方形纸片的两条长边平行,∴∠2=∠1+∠3,∴∠2=110°,故答案为:110.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 19.真【分析】逆命题就是原命题的假设和结论互换找到原命题的题设为等边三角形结论为每个内角都是60°互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°∴逆命题为:三个内角都是60解析:真【分析】逆命题就是原命题的假设和结论互换,找到原命题的题设为等边三角形,结论为每个内角都是60°,互换即可判断命题是真是假;∵ 原命题为:等边三角形的每个内角都是60°,∴ 逆命题为:三个内角都是60°的三角形是等边三角形∴ 逆命题为真命题;故答案为:真.【点睛】本题考查了命题的真假,正确掌握原命题与逆命题之间的关系是解题的关键;20.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考 解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 三、解答题21.(1)画图见解析,点1A 的坐标是(7,5);(2)﹣m ,﹣n【分析】(1)由点C 与其对应点C 1的坐标得出平移方式是先向右平移3个单位,再向上平移2个单位,进而可得点A 1、B 1的坐标,描点后再顺次连接即可;(2)对比点A 、B 、C 与其对应点P 、Q 、R 可得这种变换的方式,从而可得答案.【详解】解:(1)△111A B C 如图所示,点1A 的坐标是(7,5);(2)由于点A(4,3)的对应点P(﹣4,﹣3),点B(3,1)的对应点Q(﹣3,﹣1),点C(1,2)的对应点R(﹣1,﹣2),所以经过这种变换,对应点的横、纵坐标均互为相反数,M m n,所以点N的坐标为(﹣m,﹣n);因为点(),故答案为:﹣m,﹣n.【点睛】本题考查了平移变换与平移作图,属于常见题型,熟练掌握平移的性质是解题的关键.22.(1)14;(2)F是CD中点,F(2,2)【分析】(1)延长ED和BC,交于点G,根据各点坐标,利用四边形ABGE的面积减去△DCG的面积即可;(2)柑橘题意可得四边形ABGE是正方形,再由ED=BC,得到F是CD中点,再由点C和点D的坐标得到点F的坐标.【详解】解:(1)延长ED和BC,交于点G,∵A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3),可得:EG∥AB,AE∥BG,∴点G的坐标为(3,3),∴五边形ABCDE的面积=4×4-2×2÷2=14;(2)由题意可得:四边形ABGE是正方形,ED=BC=2,∴当点F是CD中点时,根据轴对称性可得AF平分五边形 ABCDE 的面积,此时点F(2,2).【点睛】本题考查了点的坐标,线段中点,正方形和三角形的面积,解题的关键是根据坐标得到相应线段的长度.23.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.24.1【分析】根据平方的非负性、开平方的非负性求出a 、b 的值,代入计算即可.【详解】解:∵()22210b a b -++-=,∴20b -+=,210a b +-=,解得:2b =,3a =-,∴()()20202020321a b +=-+=. 【点睛】此题考查平方的非负性、开平方的非负性,有理数的混合运算,正确理解平方的非负性、开平方的非负性是解题的关键.25.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】 本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.26.见解析.【分析】先根据∠DGA=∠EGC 证出AE ∥BF ,再根据平行证明出∠F=∠FBC 即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC (已知)∴∠EGC=∠FHC (等量代换)∴AE ∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F (已知)∴∠F=∠FBC (等量代换)∴DF ∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.。

初一数学下期中一模试卷含答案

初一数学下期中一模试卷含答案

初一数学下期中一模试卷含答案一、选择题 1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是()3,1-,那个这个点的坐标是( )A .()1,3-B .()3,1--C .()3,1-D .()3,1 3.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线 4.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)5.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确的是( )A .0 个B .1 个C .2 个D .3 个6.10x x y -+=,则xy 的值为( )A .0B .1C .-1D .27.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行8.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块9.下列运算正确的是( )A .42=±B .222()-=-C .382-=-D .|2|2--= 10.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm11.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .412.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°二、填空题13.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x+b 的解集为______.14.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.15.若3a ++(b-2)2=0,则a b =______.16.请设计一个解为51x y =⎧⎨=⎩的二元一次方程组________________. 17.若关于x 、y 的二元一次方程组2212x y a x y a +=⎧⎨+=-⎩的解互为相反数,则a 的值是_______________.18.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____19.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 20.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 三、解答题 21.解方程组:41325x y x y +=⎧⎨-=⎩. 22.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC P 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.23.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m 的值;(2)本次调查获取的样本数据的平均数是 ,众数是 ,中位数是 ; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.求不等式()()922312m m ---≥-的所有正整数解. 25.解二元一次方程组: (1)23532x y x y +=⎧⎨-=-⎩(2)25411x y x y -=⎧⎨+=⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】 33.【详解】∵1.52=2.25,22=4,2.25<3<4, ∴1.532<, ∴334<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.C解析:C【解析】【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【详解】1-1)故选:C.【点睛】此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a的关系即可.3.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.4.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.5.C解析:C【解析】【分析】根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB,∴DG∥BC,∴∠CDG=∠BCD,∴∠CDG=∠BFE,∴乙正确;③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;④如果连接GF,则只有GF⊥EF时丁的结论才成立;∴丙错误,丁错误;故选:C.【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.6.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.7.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.9.C解析:C【解析】【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;422-==,故选项B错误;(2)42333-=--,故选项C正确;8(2)2--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.10.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.12.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.二、填空题13.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x <k1x+b的解集为x>-1.故答案为:x>-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.14.4【解析】【分析】设购买x个A品牌足球y个B品牌足球根据总价=单价×数量即可得出关于xy的二元一次方程结合xy均为正整数即可得出各进货方案此题得解【详解】解:设购买x个A品牌足球y个B品牌足球依题意解析:4【解析】【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b =(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(答案不唯一)【解析】【分析】由写出方程组即可【详解】解:∵二元一次方程组的解为∴即所求方程组为:故答案为:(答案不唯一)【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做解析:64x y x y +=⎧⎨-=⎩(答案不唯一) 【解析】【分析】由516+=,514-=写出方程组即可.【详解】解:∵二元一次方程组的解为51x y =⎧⎨=⎩, ∴6x y +=,4x y -=,即所求方程组为:64x y x y +=⎧⎨-=⎩, 故答案为:64x y x y +=⎧⎨-=⎩.(答案不唯一) 【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做方程的解. 17.1【解析】【分析】两方程相加表示出根据方程组的解互为相反数得到即可求出的值【详解】解:①②得:即由题意得:即解得:故答案为:1【点睛】此题考查了二元一次方程组的解方程组的解即为能使方程组中两方程成立 解析:1【解析】【分析】两方程相加表示出x y +,根据方程组的解互为相反数,得到0x y +=,即可求出a 的值.【详解】解:2212x y a x y a +=⎧⎨+=-⎩①②, ①+②得:331x y a +=-, 即x y +=13a -, 由题意得:0x y +=, 即103a -=, 解得:1a =.故答案为:1.【点睛】 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.18.3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m 的一元一次不等式组求解即可【详解】解:∵点P (m ﹣3m ﹣5)在第四象限∴解得:3<m <5故答案为3<m <5【点睛】本解析:3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m 的一元一次不等式组,求解即可.【详解】解:∵点P (m ﹣3,m ﹣5)在第四象限,∴3050m m ->⎧⎨-<⎩解得:3<m <5.故答案为3<m <5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m 的一元一次不等式组.19.m <0【解析】因为mx <2化为x >根据不等式的基本性质3得:m <0故答案为:m <0解析:m <0【解析】因为mx <2化为x >2m, 根据不等式的基本性质3得:m <0,故答案为:m <0.20.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得 解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-,故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.22.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF P ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC P ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.23.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m 的值; (2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数; (3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为48%50÷=人, Q 16100%32%50⨯=,32m ∴=,故答案为:50、32;(2)15元的人数为5024%12⨯=,本次调查获取的样本数据的平均数是:1(45161012151020830)1650创+????(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)估计该校本次活动捐款金额为10元的学生人数为190032%608⨯=人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.24.72m ≤,正整数解123m =、、 【解析】【分析】 去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+3 92≥-移项,得2m-3m ≥4-3-92, 合并同类项,得-m ≥-72, 系数化为1得72m ≤, 则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.25.(1)11x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【解析】【分析】(1)利用加减消元法,先消去y ,解出x ,再代入原式解出y 即可;(2)先将411x y +=两边同时乘2,得8222x y +=与25x y -=相加,消去y ,解出x ,再代入原式解出y 即可.【详解】解:(1)23532x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,将1x =代入①得:1y =,所以方程组的解为:11x y =⎧⎨=⎩, 故答案为:11x y =⎧⎨=⎩; (2)25411x y x y -=⎧⎨+=⎩①②, ②×2得:8222x y +=③, ①+③得:927x =,解得:3x =,将3x =代入①中解得:1y =-,所以方程组的解为:31x y =⎧⎨=-⎩, 故答案为:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法,此题运用加减消元法.。

【浙教版】七年级数学下期中一模试卷(含答案)

【浙教版】七年级数学下期中一模试卷(含答案)

一、选择题1.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )A.B.C.D.2.下表是某报纸公布的世界人口数情况:年份19571974198719992010人口数30亿40亿50亿60亿70亿上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=2.39,BC=3.57.动点M从点A出发,沿A→B→C→D→A匀速运动,到点A停止.设点M运动的路程为x,点M到四边形EFGH的某一个顶点的距离为y,如果表示y关于x的函数关系的图象如图2所示,那么四边形EFGH的这个顶点是( )A.点E B.点F C.点G D.点H4.某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了1,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解5析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0 C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤5005.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED为()A.130°B.115°C.125°D.120°6.已知∠1=43°27′,则∠1的余角为()A .136°33′B .136°73′C .46°73′D .46°33′7.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转30 8.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°9.已知4,6m n x x ==,则2-m n x 的值为( )A .9B .34C .83D .4310.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .1011.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 12.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( )A .6163m n -B .6323m n -C .383m n -D .6169m n - 二、填空题13.一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.14.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40- 6t.当t=4时,Q=__,从关系式可知道这台拖拉机最多可工作__小时.15.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.16.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.17.如图,在三角形ABC 中,90BAC ∠=,AD BC ⊥于点D ,比较线段AB ,BC ,AD 长度的大小,用“<”连接为__________.18.已知25m =,2245m n +=,则2n =_______.19.765432137132113351335132113713-⨯+⨯-⨯+⨯-⨯+⨯=__________. 20.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.三、解答题21.下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【常考题】七年级数学下期中一模试卷(含答案)一、选择题1.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm2.如图,直线a b∥,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果160∠=︒,那么2∠等于()A.30°B.︒40C.50︒D.60︒3.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°4.已知m=4+3,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<65.若a<b<0,则在ab<1、1a>b1、ab>0、ba>1、-a>-b中正确的有()A.2个B.3个C.4个D.5个6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°7.把一张50元的人民币换成10元或5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法8.如图所示,在ABC 中,点D 、E 、F 分别是AB ,BC ,AC 上,且EF ∥AB ,要使DF ∥BC ,还需添加条件是( )A .∠1=∠2B .∠1=∠3C .∠3=∠4D .∠2=∠49.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.810.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( ) A .6 B .3 C .-2 D .111.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1212.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和12二、填空题13.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x+b 的解集为______.14.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____15.若x <0323x x ____________.16.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____.17.如图,直线a ,b 相交,若∠1与∠2互余,则∠3=_____.18.10的整数部分是_____.19.在整数20200520中,数字“0”出现的频率是_________.20.9的算术平方根是________.三、解答题21.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)22.已知32x y --的算术平方根是3,26x y +-的立方根是2,37的整数部分是z ,求42x y z ++的平方根.23.2020年的寒假是“不同寻常”的一个假期.在这个超长假期里,某中学随机对本校部分同学进行“抗疫有我,在家可以这么做”的问卷调查:A 扎实学习、B 经典阅读、C 分担劳动、D 乐享健康,(每位同学只能选一个),并根据调查结果绘制如下两幅不完整的统计图.根据统计图提供信息,解答问题:(1)本次一共调查了_______名同学;(2)请补全条形统计图;在扇形统计图中A 所对应的圆心角为 度;(3)若该校共有1600名同学,请你估计选择A 有多少名同学?24.阅读材料14 小明的方法:91416<<Q 143(01)k k =+<<,2214)(3)k ∴=+,21496k k ∴=++,1496k ∴≈+,解得,56k ≈, 53 3.836≈+≈. 问题:(1(2)已知非负整数a b m 、、,若1a a <<+,且2m a b =+,结合上述材料估算的近似值(用含a b 、的代数式表示).25.列方程(或方程组)解应用题:(1)某服装店到厂家选购甲、乙两种服装,若购进甲种服装9件、乙种服装10件,需1810元;购进甲种服装11件乙种服装8件,需1790元,求甲乙两种服装每件价格相差多少元?(2)某工厂现库存某种原料1200吨,用来生产A 、B 两种产品,每生产1吨A 产品需这种原料2吨、生产费用1000元;每生产1吨B 产品需这种原料2.5吨、生产费用900元,如果用来生产这两种产品的资金为53万元,那么A 、B 两种产品各生产多少吨才能使库存原料和资金恰好用完?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD =BE =3,DF =AC ,DE =AB ,EF =BC ,所以:四边形ABFD 的周长为:AB +BF +FD +DA=AB +BE +EF +DF +AD=AB +BC +CA +2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.A解析:A【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.3.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.4.B解析:B【解析】【分析】3【详解】∵4+33132,∴3<m<4,故选B.此题主要考查了估算无理数的大小,正确得出3的取值范围是解题关键.5.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.6.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.7.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x,5元的数量为y.则1055000x yx y⎧⎨≥≥⎩+=,,解得10xy⎧⎨⎩==,18xy⎧⎨⎩==,26xy⎧⎨⎩==,34xy⎧⎨⎩==,42xy⎧⎨⎩==,5xy⎧⎨⎩==.所以共有6种换法.故选C.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.8.B解析:B【解析】【分析】根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使DF∥BC,找出符合要求的答案即可.【详解】解:∵EF∥AB,∴∠1=∠2(两直线平行,同位角相等),要使DF∥BC,只要∠3=∠2就行,∵∠1=∠2,∴还需要添加条件∠1=∠3即可得到∠3=∠2(等量替换),故选B.【点睛】此题主要考查了平行线的性质与判定、等量替换原则,根据已知找出符合要求的答案,是比较典型的开放题型.9.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键. 10.B解析:B【解析】【分析】把12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,求出m、n的值,再代入要求的代数式求值即可.【详解】把12xy=⎧⎨=⎩代入3526x myx ny-=⎧⎨+=⎩得:325226mn-=⎧⎨+=⎩,解得:m=-1,n=2,∴n-m=2-(-1)=3.故选:B.【点睛】本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.11.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||=﹣,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题13.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x <k1x+b的解集为x>-1.故答案为:x>-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.14.3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m的一元一次不等式组求解即可【详解】解:∵点P(m﹣3m﹣5)在第四象限∴解得:3<m<5故答案为3<m<5【点睛】本解析:3<m<5【解析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m的一元一次不等式组,求解即可.【详解】解:∵点P(m﹣3,m﹣5)在第四象限,∴3050 mm->⎧⎨-<⎩解得:3<m<5.故答案为3<m<5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m的一元一次不等式组.15.0【解析】【分析】分别利用平方根和立方根直接计算即可得到答案【详解】解:∵x<0∴故答案为:0【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数开方的结果必须是非负数;立方根的符解析:0【解析】【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,x x=-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.16.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a=2,∴2a+1=2×2+1=5,∴m=5²=25.故答案为2, 25.17.135°【解析】【分析】由∠1与∠2互余且∠1=∠2可求出∠1=∠2=45°进而根据补角的性质可求出∠3的度数【详解】解:∵∠1与∠2互余∠1=∠2∴∠1=∠2=45°∴∠3=180°﹣45°=13解析:135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.18.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数解析:3【解析】【分析】的近似值可得到整数部分【详解】∵3<4,3.故答案为:3.【点睛】此题考查实数的估算,熟记常见的平方数19.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12. 故答案为:12. 【点睛】此题主要考查了频率的求法,正确把握定义是解题关键. 20.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.三、解答题21.篮球队14支,排球队10支【解析】【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.22.6±【解析】【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,<<Q67∴<<, 6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.23.(1)200;(2)补全图形见解析,108 ;(3)选择A 有480名同学.【解析】【分析】(1)由B 组的信息可得总人数,(2)先求解C 组所占总体的百分比,再求A 组所占总体的百分比,进而求出A 所对的圆心角,,A D 两组的人数,补全条形图即可.(3)由A 组所占总体的百分比估计总体即可得到答案.【详解】解:(1)由题意得:本次一共调查了5628%200÷=(名),故答案为:200.(2)C Q 组占总体的44100%22%,200⨯= A ∴组占总体的128%20%22%30%,---= A ∴所对的圆心角为:30%360108,⨯︒=︒A ∴组人数为:20030%60⨯=(名),D 组人数为:20020%40⨯= (名),补全条形图如下:故答案为:108.(3)该校共有1600名同学,估计选择A 有:160030%480⨯=(名)答:选择A 的大概有480名同学.【点睛】本题考查的是统计调查的知识,考查了从条形图与扇形图中获取信息,以及利用样本来估计总体,掌握相关知识点是解题的关键.24.(1)3.5;(2)2a b a +. 【解析】【分析】(1)根据题目信息,找出3030(0<k <1),再根据题目信息近似求解即可;(2)由题意直接根据题目提供的求法,先求出k 值,然后再加上a 即可.【详解】解:(1)253036<<Q 305(01)k k =+<<,2230)(5)k ∴=+,2302510k k ∴=++,302510k ∴≈+, 解得:12k ≈, 1303 3.52≈+=. (2(01)m a k k =+<<,22222m a ak k a ak ∴=++≈+,2m a b =+Q ,222a ak a b ∴+=+,解得:2b k a=,2b a a≈+. 【点睛】 本题考查无理数的估算,注意掌握读懂题目提供信息,然后根据信息中的方法改变数据即可.25.(1)甲乙两种服装每件价格相差10元;(2)A 种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完.【解析】【分析】(1)设甲服装的价格为x 元,乙服装的价格为y 元,根据题意列出方程组,然后把两个方程相减即可得甲乙两种服装每件价格相差10元;(2)设A 种产品生产x 吨、乙种产品生产y 吨,才能使库存原料和资金恰好用完,分别利用原料的总重量为1200吨和生产这两种产品的总资金为53万元列两方程组,然后解方程组即可.【详解】(1)解:设甲服装的价格为x 元,乙服装的价格为y 元,根据题意得91018101181790x y x y +=⎧⎨+=⎩, 2x ﹣2y=﹣10,所以x ﹣y=10.答:甲乙两种服装每件价格相差10元;(2)解:设A 种产品生产x 吨、乙种产品生产y 吨,才能使库存原料和资金恰好用完, 根据题意得2 2.512001000900530000x y x y +=⎧⎨+=⎩, 解得350200x y =⎧⎨=⎩ . 答:A 种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完. 考点:二元一次方程组的应用.。

相关文档
最新文档