高二数学解题方法大全
高中数学解题方法总结
高中数学解题方法总结高中数学解题方法总结高中数学是一门重要的学科,它不仅考察学生的逻辑思维能力和数学素养,还培养学生的分析问题和解决问题的能力。
在高中数学学习过程中,我们常常遇到各种各样的数学题目,如何有效地解题成为我们必须面对的问题。
本文将总结一些常见的高中数学解题方法,帮助同学们提高解题的效率和准确性。
一、代数解题方法1. 代数方程式解题法:将问题转化成代数方程式,并通过方程求解的方法来得到问题的答案。
这种方法适用于一次方程、二次方程等各种代数方程的解题。
2. 论证法:通过推理论证,根据已知条件导出结论。
这种方法适用于不等式证明、函数性质证明等问题。
3. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。
这种方法适用于矩阵、向量等代数题目的证明。
二、几何解题方法1. 直接证明法:通过已知条件直接推导出结论。
这种方法适用于几何定理的证明,如勾股定理、圆的性质等。
2. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。
这种方法适用于几何题目的证明,如等腰三角形的性质证明等。
3. 分析法:通过分析几何图形的性质和已知条件,结合相关定理进行推理和解题。
这种方法适用于几何图形的判断和计算题目。
三、概率解题方法1. 列举法:通过枚举每种可能的情况,计算每种情况发生的概率,从而求得总体概率。
这种方法适用于有限样本空间的概率计算题目。
2. 计数法:通过计算事件的样本点个数和总的样本点个数,求得事件发生的概率。
这种方法适用于有规律的样本空间和复杂的概率计算题目。
3. 条件概率法:通过已知条件和条件概率的定义,计算事件在给定条件下的概率。
这种方法适用于条件概率和贝叶斯定理相关的题目。
四、函数解题方法1. 函数图像法:通过函数图像的性质和已知条件,确定函数的变化规律和相关参数。
这种方法适用于函数的性质和变化规律的题目。
2. 函数方程法:通过已知条件和函数方程的关系,求解函数方程的解,从而得到问题的答案。
高中数学解题技巧方法总结(必备19篇)
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高二数学学科中的解题技巧与方法
高二数学学科中的解题技巧与方法数学是一门需要逻辑思维和解题技巧的学科,尤其对于高二学生而言,掌握一些解题技巧和方法能够极大地提高解题效率和成绩。
本文将介绍一些在高二数学学科中常用的解题技巧与方法,帮助广大学生更好地应对数学难题。
一、代数方程的解法在高二数学学科中,代数方程是一个常见的题型。
对于一元一次方程和一元二次方程,我们可以采用"解方程"的方法求解。
解一元一次方程的方法:1. 如果方程两边都加上或者减去同一个数,等式仍然成立。
2. 如果方程两边都乘以或者除以同一个非零数,等式仍然成立。
3. 如果方程两边的同一项交换次序,等式仍然成立。
解一元二次方程的方法:1. 对于形如ax^2 + bx + c = 0的方程,可以直接套用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)进行计算。
2. 如果无法通过求根公式直接求解,可以尝试将方程化简为完全平方形式,再求解。
例如,对于x^2 + px + q = 0的方程,可以通过配方法化简为(x + m)^2 = n的形式,再求解。
二、几何问题的解决方法几何问题是高二数学学科中常见的难题,需要运用一些几何性质和解题技巧来解决。
1. 利用图形的对称性质进行推理。
在解决几何问题时,可以通过观察图形的对称性来得到一些有用的信息。
例如,对称图形的对边相等、对角线相等等性质可以在解决问题时提供线索。
2. 运用相似三角形的性质。
相似三角形是解决几何问题时常用的工具之一。
根据相似三角形的性质,可以得出两个相似三角形的对应边的比例关系等。
利用此性质可以解决一些涉及比例关系的几何问题。
三、数列与数列求和问题的解题技巧在高二数学学科中,数列与数列求和问题也是常见的难题。
以下是一些解决数列问题的技巧:1. 寻找数列的通项公式。
通过观察数列的规律,可以尝试寻找数列的通项公式,从而方便求解数列的任意一项的值。
2. 利用数列的性质。
不同类型的数列都有一些特定的性质,例如等差数列、等比数列等。
高中数学19种答题方法+6种解题思想
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高二数学技巧应对各类题型的窍门
高二数学技巧应对各类题型的窍门高二是高中学习的关键阶段,数学学科的难度和综合性都有所提升。
面对各类题型,掌握一些实用的技巧和窍门能够帮助我们更加高效地解题,提高成绩。
接下来,我将为大家分享一些应对高二数学各类题型的方法。
一、选择题1、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论。
这种方法适用于简单的选择题。
2、排除法从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确答案。
3、特殊值法根据题目中的条件,选取某个符合条件的特殊值或特殊图形,代入选项进行检验,从而得到正确答案。
这种方法常用于一些具有一般性结论的选择题。
4、数形结合法根据题目的条件,作出相应的图形,借助图形的直观性,经过简单的推理或计算,从而得出答案。
5、估算推理法有些选择题,由于题目条件限制,无法进行精确的运算和推理,此时可以运用估算的方法,大致确定答案的范围,从而选出正确答案。
二、填空题1、概念准确填空题考查的往往是对数学概念、定理、公式等的准确理解和运用。
因此,在答题时,一定要对相关的概念、定理、公式等有清晰的认识,确保答案的准确性。
2、认真审题仔细阅读题目,理解题意,明确题目要求填写的内容是数值、表达式还是图形等。
3、注意单位和取值范围如果题目中涉及到单位或取值范围,一定要注意填写准确,避免因粗心大意而丢分。
4、答案最简在填写答案时,要尽量将答案化简到最简形式,以确保答案的规范性。
三、解答题1、认真读题,明确要求在解答解答题时,首先要认真读题,理解题目所给的条件和问题,明确解题的目标和要求。
2、分析思路,选择方法根据题目所涉及的知识点和条件,分析解题的思路,选择合适的解题方法。
可以从已知条件出发,逐步推导得出结论;也可以从结论入手,反推所需的条件。
3、书写规范,步骤完整在书写解答过程时,要注意书写规范,字迹清晰。
高二数学题的解题方法和答题策略
高二数学题的解题方法和答题策略(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学题的解题方法和答题策略本店铺高二频道为你整理了以下文章,欢迎阅读!【一】方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
高中二年级数学解题方法讲解
高中二年级数学解题方法讲解在高中二年级数学学习中,掌握解题方法是非常重要的。
只有正确的方法才能解决各种数学难题,提高解题效率。
本文将为你详细讲解高中二年级数学解题的常用方法,希望能帮助你更好地理解和应用数学知识。
一、解方程1. 一元一次方程的解法:一元一次方程是高中数学中最基础的方程,常采用“去括号、整理项、移项、合并同类项、计算”的步骤进行解题。
例如:2x + 5 = 3x - 1先将方程式中的括号消去,得到:2x + 5 = 3x - 1接着将未知数项移到一边,常常选择将未知数项移到等式的左边,得到:2x - 3x = -1 - 5x = -62. 一元一次方程组的解法:一元一次方程组是由多个一元一次方程组成的方程组,要解决一元一次方程组,可以使用“消元法”或“代入法”。
例如:方程组:2x + 3y = 94x - y = 14可以先通过消元法将y消去,得到:2(4x - y) + 3y = 98x - 2y + 3y = 98x + y = 9接着,再使用代入法将y的值代入得到的方程中,得到:2x + 3(14-4x) = 92x + 42 - 12x = 9-10x = -33x = 3.3将x的值带入其中一个原方程,得到:4x - y = 144(3.3) - y = 1413.2 - y = 14-y = 0.8y = -0.8二、解不等式解不等式同样是高中数学中常见的解题方法,通过解不等式可以找出一组数的取值范围使得不等式成立。
常用的方法有“画图法”和“代数法”。
例如:3x - 4 > 5通过画图法,将方程绘制成不等式的图像,然后确定不等式中的符号方向,找出满足不等式的区域。
在本例中,从图像来看,x > 3/2。
三、证明在高中数学中,证明题是非常重要的,要求学生通过给出的条件和已知的数学公式,推导出结论。
证明题主要包括数学归纳法、直接证明法、反证法等。
例如:要证明:"若a、b均为正整数,则a+b的平方大于等于4ab。
高中数学21种解题方法及例题
高中数学21种解题方法及例题高中数学是一门很重要的学科,也是很多学生觉得困难的学科之一。
在解题的过程中,学生通常需要掌握一些解题方法和技巧。
下面我将介绍高中数学中常用的21种解题方法,并给出相应的例题。
1.立体几何解题方法:首先根据题目要求,画出几何图形;然后根据图形的特点,运用相应的几何定理和计算公式,推导出求解所需的等式或关系式;最后代入数据进行计算。
例题:已知正方体的体积是64立方厘米,求正方体的边长。
2.二次函数解题方法:首先确定二次函数的类型,如抛物线开口方向等;然后根据题目要求,列出方程或不等式;最后解方程或不等式,求解出未知数。
例题:已知二次函数y=ax²+bx+c的图像经过点(-1, 2)和(2, 5),且在x=1处取得最小值2,求a、b、c的值。
3.反证法解题方法:假设所要证明的结论不成立,推导出与已知条件矛盾的结论,从而证明假设不成立,即所要证明的结论成立。
例题:证明根号2是无理数。
4.分析法解题方法:根据题目所给的条件,逐步分析问题,提取并利用条件之间的关系,推导出所要求的结论。
例题:在等腰梯形ABCD中,AB∥CD,AC和BD交于点O,设∠ACD=m,求∠BOD的度数。
5.数字特征解题法:根据题目要求,进行分析,找出问题中的数字特征,并利用特征进行计算或推导。
例题:设a,b,c均为正数,且满足等式a+b+c=1,求最大值3a²+6b+9c²。
6.整体与部分解题方法:把题目所给的整体看成若干个部分,通过对部分的分析和计算,得到整体的结论。
例题:某数的20%是30,求这个数。
7.函数与方程解题方法:根据题目要求,根据函数或方程的性质和变化规律,列出方程或不等式,最后求解未知数。
例题:已知函数f(x)=ax²+bx+c与y轴交于点A,与曲线y=x²交于点B和C,且B(1, 1),求方程f(x)=0的两个根的和的倒数。
8.逐次逼近法解题方法:通过逐步逼近,不断缩小求解范围,最终得到所要求解的值。
高中数学21种解题方法及例题
高中数学21种解题方法及例题【实用版2篇】篇1 目录一、高中数学21种解题方法概述1.高中数学21种解题方法简介2.高中数学21种解题方法分类3.高中数学21种解题方法应用4.高中数学21种解题方法优缺点二、高中数学21种解题方法详细介绍1.配方法2.公式法3.十字相乘法4.配方法5.公式法6.换元法7.因式分解法8.归纳法9.分类讨论法10.对称法11.等差数列法12.等比数列法13.累乘法14.十字相乘法15.分裂法16.换元法17.数学归纳法18.反证法19.数学归纳法20.反证法21.待定系数法篇1正文高中数学是中学阶段的重要学科,对于培养学生的逻辑思维和解决问题的能力具有重要的作用。
在高中数学的学习中,掌握正确的解题方法对于提高学习效率和成绩至关重要。
本文将介绍高中数学常用的21种解题方法及其应用示例,帮助读者更好地掌握高中数学的解题技巧。
1.配方法:将一个代数式配方成完全平方式或半平方方式的算法。
例如,x+4x+4=(x+2),4x-4x+1=(2x-1)。
2.公式法:根据数学公式解决数学问题的算法。
篇2 目录1.高中数学21种解题方法2.解题方法应用举例3.总结篇2正文高中数学是学习的重要科目,掌握一定的解题方法对于提高数学成绩至关重要。
以下是高中数学常用的21种解题方法:1.配方法:将一个代数式或多项式配方成完全平方式或平方差公式,从而简化计算。
2.因式分解法:将一个多项式分解成几个因式的乘积,从而简化计算。
3.公式法:根据数学公式进行计算,如平方和公式、乘法分配律等。
4.代数法:通过代数运算来求解数学问题,如解方程、求函数值等。
5.图解法:根据题目所给的数学条件,画出图形,通过观察图形来解决问题。
6.函数法:通过建立函数关系式来求解数学问题,如求函数值、求函数图像等。
7.分类讨论法:将一个数学问题按照不同的条件进行分类讨论,从而得到不同的解法。
8.反证法:通过证明一个命题的逆否命题为真来证明原命题为真。
高中数学解题方法与技巧 必背公式总结
高中数学解题方法与技巧必背公式总结高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.在学习带参数的初等函数时,要抓住无论参数如何变化,有些性质不变的特点。
如函数的不动点,二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4.在常数建立问题中,利用二次函数的图像性质,灵活运用函数闭区间上的最大值和分类讨论的思想(分类讨论中要注意不要重复或遗漏),可以转化为极大值问题或二次函数的常数建立问题。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7.求参数的值域,要建立关于参数的不等式或方程,利用函数的值域或定义或求解不等式。
在转换公式的过程中,应优先考虑分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12.圆锥曲线的题目应优先考虑它们的定义。
如果直线与圆锥曲线相交的问题与弦的中点有关,则选择设定而不是求点差的方法,维耶塔定理公式的方法与弦的中点无关。
(使用维耶塔定理时,首先要考虑二次函数方程是否有根,即二次函数的判别式。
).13.解曲线方程的问题,如果知道曲线的形状,可以选择待定系数法。
如果不知道曲线的形状,采用的步骤是建立系统,设置点,列表化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
高中数学解题的21个典型方法与技巧
中学数学解题的21个典型方法与技巧1、解决肯定值问题(化简、求值、方程、不等式、函数)的基本思路是:把肯定值的问题转化为不含肯定值的问题。
详细转化方法有:①分类探讨法:依据肯定值符号中的数或表达式的正、零、负分状况去掉肯定值。
①零点分段探讨法:适用于含一个字母的多个肯定值的状况。
①两边平方法:适用于两边非负的方程或不等式。
①几何意义法:适用于有明显几何意义的状况。
2、依据项数选择方法和依据一般步骤是顺当进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。
3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要依据有:①()2222a ab b a b ±+=± ①()2222222a b c ab bc ca a b c +++++=++ ①()()()22222212a b c ab bc ca a b b c c a ⎡⎤+++++=+++++⎣⎦ ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ⎛⎫-⎛⎫⎛⎫++=++=+⋅⋅++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、解某些困难的特型方程要用到换元法。
换元法解题的一般步骤是:设元→换元→解元→还元。
5、待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。
其步骤是:①设①列①解①写6、困难代数等式条件的运用技巧:右边化为零,左边变形。
①因式分解型:()()0---⋅---=,两种状况为或型。
①配成平方型:()()220---+---=,两种状况为且型。
7、数学中两个最宏大的解题思路:①求值的思路−−−−−→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路−−−−−−→不等式思想与方法欲求范围字母的不等式或不等式组8的基本思路:把m 化成完全平方式。
高中数学万能解题模板
高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。
高中数学解题方法
高中数学解题方法
1. 利用平行四边形的性质解题
对于已知的平行四边形,我们可以利用其特点来解决相关问题。
例如,已知平行四边形的两条边相等,我们可以利用这一性质来求解未知边长。
2. 利用相似三角形的性质解题
在一些几何题中,我们可以利用相似三角形的性质来求解未知变量。
根据相似三角形的特点,可以建立等式,从而解出未知量。
3. 利用勾股定理解题
勾股定理是解决直角三角形问题的基本定理。
通过应用勾股定理,我们可以求解三角形的边长、角度等问题。
4. 利用二次方程解题
在代数问题中,一些问题可以通过建立二次方程来求解。
根据二次方程的求解方法,我们可以得到问题的答案。
5. 利用排列组合解题
排列组合是数学中用于解决计数问题的方法。
通过应用排列组合的原理,我们可以求解一些排列、组合的问题。
6. 利用函数的图像解题
在函数问题中,我们可以通过求解函数的零点、极值点等来解题。
利用函数的图像,我们可以获取一些与函数相关的信息。
7. 利用数列的性质解题
对于数列相关的问题,我们可以利用数列的递推关系、通项公式等性质来求解。
通过找到数列的规律,我们可以得到问题的答案。
8. 利用平面向量解题
平面向量是几何中常用的工具之一。
通过运用平面向量的性质,我们可以解决一些与向量相关的问题。
高二数学应试必备高效解题技巧全攻略
高二数学应试必备高效解题技巧全攻略在高二阶段,数学学习的难度和深度都有所增加,掌握高效的解题技巧对于提高成绩和应对考试至关重要。
以下是为大家整理的高二数学应试必备的高效解题技巧全攻略,希望能对同学们有所帮助。
一、选择题解题技巧1、直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
使用直接法时,要注意看清题目要求,仔细计算,避免粗心导致错误。
2、排除法从四个选项中排除掉容易判断是错误的答案,余下的一个自然就是正确的答案。
排除法适用于选项之间差异较大,或者可以通过简单推理排除明显错误选项的情况。
3、特殊值法根据题目中的条件,选取某个符合条件的特殊值或特殊图形进行计算、推理得出结论。
因为特殊值法只考虑了特殊情况,所以得出的结论可能不具有一般性,但在选择题中可以快速得出答案。
4、数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的选择。
对于涉及函数、不等式、几何等问题,数形结合往往能使问题变得简单明了。
二、填空题解题技巧1、直接求解法直接从题设条件出发,利用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等过程,得出正确的结果。
2、特殊值法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以取一个特殊值代入,从而得出答案。
3、等价转化法将问题进行等价转化,变成易于求解的问题。
比如将几何问题转化为代数问题,或者将复杂的问题转化为简单的问题。
三、解答题解题技巧1、认真审题这是解题的第一步,也是最为关键的一步。
要仔细阅读题目,理解题意,明确题目所给的条件和要求,找出关键信息和隐含条件。
对于较长或较复杂的题目,可以多读几遍,边读边思考,必要时可以画出图形或列出表格来帮助理解。
2、制定解题计划在理解题意的基础上,根据所学的知识和方法,制定解题的计划。
要确定解题的思路和步骤,选择合适的解题方法和公式。
对于综合性较强的题目,可以将其分解为若干个小问题,逐步解决。
高中数学这52种快速解题方法
高中数学这52种快速解题方法高中数学是学生学习中的一门重要课程,在高中数学学习过程中,有许多方法可以帮助我们快速解题。
本文将介绍52种高中数学的快速解题方法,希望对学生们在数学学习时有所帮助。
一、方程的快速解题方法:1.牛顿-莱布尼茨公式:对于高次方程,可以使用牛顿-莱布尼茨公式快速求导以及求解,以便解决方程。
2.易得关系:在解二元一次方程时,可以通过观察系数之间的关系,直接得到方程的解。
3.倍数法:有时,我们可以通过将方程两边同乘一个常数,以便简化方程求解的过程。
4.等比数列求和公式:在解等差数列求和问题时,我们可以使用等比数列求和公式,快速求解。
5.同底数幂等于同指数的求解法:当两个数的底数相等,指数相等时,我们可以将两个底数合并在一起,然后得到一个新的指数,进行计算。
二、几何图形的快速解题方法:1.同余三角形的性质:在几何图形中,应用同余三角形的性质,可以简化计算过程,快速解题。
2.双曲线的对称性:对于双曲线,我们可以利用其对称性质,快速求解问题。
3.相似三角形的定理:应用相似三角形的定理,可以快速解决三角形相似问题。
4.平行四边形的性质:利用平行四边形的性质,可以快速求解平行四边形的各种问题。
5.三角恒等式:在解三角形相关问题时,利用三角恒等式可以快速求解。
三、概率问题的快速解题方法:1.排列组合公式:在解决排列组合问题时,可以利用排列组合公式,快速计算结果。
2.互斥事件的概率:如果两个事件是互斥的,即它们不可能同时发生,我们可以直接将它们的概率相加来计算合并事件的概率。
3.独立事件的概率:对于独立事件,即它们的发生不受其他事件的影响,我们可以将它们的概率相乘来计算复合事件的概率。
4.条件概率:在解条件概率问题时,可以根据已知条件,利用条件概率公式,快速计算结果。
5.事件的补集:对于事件的补集,我们可以通过计算事件的补集的概率,再用1减去它的概率,来计算事件的概率。
四、数列的快速解题方法:1.利用等差数列的前n项和公式:在解等差数列问题时,我们可以利用等差数列的前n项和公式,快速求解。
高中数学答题技巧有哪些_解题方法
高中数学答题技巧有哪些_解题方法高中数学答题技巧有哪些1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。
高中数学答题方法填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。
选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。
其次,试题内涵,解答题比起填空题要丰富得多。
高中数学52种快速破题方法
高中数学52种快速破题方法在高中数学学习中,有时我们会遇到一些难题需要快速破解。
这篇文章将介绍52种快速破题方法,帮助你提高数学解题的效率和准确性。
1. 简化分式:利用分子分母的公因式进行约分,简化计算过程。
2. 因式分解:将多项式进行因式分解,以简化复杂的运算。
3. 公式代入:当遇到已知条件和需要求解的变量可以通过一个已知公式联系时,直接代入计算。
4. 利用图形:如果问题涉及到几何形状,将其绘制成图形有助于解题。
5. 引入辅助线:在几何题中,通过引入辅助线能够推导出更多关系,简化解题过程。
6. 使用二次函数图像:对于最值问题,可以利用二次函数图像的开口方向来确定最值的位置。
7. 数列求和:对于数列的求和问题,可以利用数列求和公式或巧妙的变形来简化计算。
8. 分类讨论法:对于某些问题,可以将不同情况进行分类讨论来解决。
9. 倒推法:从已知结果倒推出有关条件,以确定解题的方法和步骤。
10. 利用对称性:在一些几何问题中,利用对称性可以简化证明或者找出另一方面的答案。
11. 分情况讨论:对于某些复杂问题,将其分解成几个简单情况分别讨论,最后合并结果。
12. 利用相似三角形:在几何问题中,利用相似三角形的性质可以快速求解各种长度和角度。
13. 数字根法:对于整数运算,可以利用数字根法来判断整除性质和进行简单计算。
14. 观察法:对于一些规律性问题,可以通过观察规律和找出特殊性质来解决。
15. 合并同类项:在多项式计算中,将具有相同变量幂次的项进行合并,简化运算过程。
16. 借位法:在计算过程中,若存在进位或借位,可以通过借位法进行加减运算。
17. 利用轴对称性:通过利用轴对称性,可以简化一些图形问题的证明或计算。
18. 利用余角关系:对于三角函数中的角度关系,可以利用余角关系进行简化运算。
19. 勾股定理:在解决直角三角形问题中,可以利用勾股定理确定未知边长。
20. 合理估算:对于某些题目,可以通过合理估算来获得近似的结果,以缩小解题范围。
高中数学九大解题技巧
高中数学九大解题技巧高中数学九大解题技巧解题是深化知识、发展智力、提高能力的重要手段。
下面小编给你分享高中数学九大解题技巧,欢迎阅读。
高中数学九大解题技巧1、配法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学解题方法大全数学是一切科学的基础,小编为大家整理了高二数学解题技巧。
请大家仔细阅读并且把方法记住,也祝大家的高二数学成绩更上一层楼同时全力冲刺高考。
方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。
高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
方法五、一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
方法六、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
方法五、一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
方法六、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
方法七、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据。
这就要求不但会而且要对、对且全,全而规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。
“书写要工整,卷面能得分”讲的也正是这个道理。
方法八、面对难题,讲究方法,争取得分会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。
下面有两种常用方法。
1.缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。
如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。
还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。
而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。
若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。
也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
TOP方法七、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据。
这就要求不但会而且要对、对且全,全而规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。
“书写要工整,卷面能得分”讲的也正是这个道理。
方法八、面对难题,讲究方法,争取得分会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。
下面有两种常用方法。
1.缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。
如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。
还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。
而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。
若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。
也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
TOP方法九、以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
方法十、执果索因,逆向思考,正难则反对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
方法十一、回避结论的肯定与否定,解决探索性问题对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
方法十二、应用性问题思路:面—点—线解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。
当然,求解过程和结果都不能离开实际背景。