《复变函数论》第四章-22页文档资料

合集下载

复变函数论总结

复变函数论总结

复变函数论总结摘要:对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换。

关键词:复数;导数;解析;积分;柯西公式、定理;幂级数展开;留数;傅立叶积分与傅立叶变换1引言《复变函数论主要内容》第一章复变函数 complex function第二章复变函数的积分 complex function integral第三章幂级数展开 power series expansion第四章留数定理 residual theorem第五章傅立叶变换 Fourier integral transformation第一章复变函数§1.1 复数及复数的运算§1.2 复变函数§1.3导数§1.4解析函数§1.1 复数及复数的运算1.复数的概念的数被称为复数,其中。

;;i为虚数单位,其意义为当且仅当时,二者相等复数与平面向量一一对应z平面虚轴y. (x,y)rx实轴模幅角 (k)注意:复数“零”(即实部和虚部都等与零的复数)的幅角没有明确意义2.复数的表示代数表示三角表示指数表示一个复数z的共轭复数注意:在三角表示和指数表示下,两个复数相等当且仅当模相等且幅角相差3.无限远点在复变函数论中,通常还将模为无限大的复数也跟复平面上的一点对应,而且称这一点为无限远点,我们把无限远点记作,它的模为无限大,幅角则没有明确意义4.复数的运算复数的加法法则:复数与的和定义是两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。

复数的加法满足交换律和结合律,且,当同一方向时等号成立。

复数的减法法则:且有复数的乘法法则:乘法的交换律、结合律与分配律都成立复数的除法法则:注意:采用三角式或指数式比较方便。

[复变函数].钟玉泉.文字版.PDF

[复变函数].钟玉泉.文字版.PDF

高等学校教材复变函数论(第二版)钟玉泉 编高等教育出版社郑重声明 高等教育出版社依法对本书享有专有出版权。

任何未经许可的复制、销售行为均违反《中华人民共和国著作权法》,其行为人将承担相应的民事责任和行政责任,构成犯罪的,将被依法追究刑事责任。

为了维护市场秩序,保护读者的合法权益,避免读者误用盗版书造成不良后果,我社将配合行政执法部门和司法机关对违法犯罪的单位和个人给予严厉打击。

社会各界人士如发现上述侵权行为,希望及时举报,本社将奖励举报有功人员。

反盗版举报电话:(010)82028899转6897 (010)82086060传真:(010)82086060Email:dd@hep.com.cn通信地址:北京市西城区德外大街4号高等教育出版社法律事务部邮编:100011购书请拨打读者服务部电话:(010)64054588 图书在版编目(CIP)数据 复变函数论钟玉泉编.—2版.—北京:高等教育出版社,(2002重印) ISBN7-04-000984-6 Ⅰ.复… Ⅱ.钟… Ⅲ.复变函数论 Ⅳ.0174.5 中国版本图书馆CIP数据核字(95)第20518号出版发行 高等教育出版社 购书热线 010-64054588社 址 北京市西城区德外大街4号免费咨询 800-810-0598邮政编码 100011网 址 http:www.hep.edu.cn总 机 010-82028899http:www.hep.com.cn经 销 新华书店北京发行所排 版 高等教育出版社照排中心印 刷开 本 850×1168 132版 次 1988年5月第2版印 张 12印 次 2003年8月第22次印刷字 数 290000定 价 11.60元本书如有缺页、倒页、脱页等质量问题,请到所购图书销售部门联系调换。

版权所有 侵权必究第二版 序本书自1979年出版以来已重印了八次,采用它作教材的学校,除一些综合大学、师范院校外,还有一些理工院校的应用数学专业、计算专业、师资班和研究生班等。

复变函数论

复变函数论

2. 复数的乘幂
定义 n个相同的复数z 的乘积,称为z 的n次幂,
记作z n,即z n=zzz(共n个).
设z=re iθ,由复数的乘法定理和数学归纳法可证 明 zn=rn(cos nθ+isin nθ)=rn einθ.
特别:当|z|=1时,即:zn=cosnθ+isin nθ,则有
2
22

sin

2
sin

2

i
cos

2


2 sin

2
cos


2


2


i sin

2


2


2 sin

ei

2


2

2
例4 用复数方程表示:
(1)过两点zj=xj+iyj (j=1,2)的直线;
y
(z)
L z1 z
z2
复数加、减法的 几何表示如右图:
y
z2
z1 z2
z2
0
z1 x
z1 z2 z2
关于两个复数的和与差的模,有以下不等式:
(1) | z1 z2 || z1 | | z2 | (2) | z1 z2 ||| z1 | | z2 || (3) | z1 z2 || z1 | | z2 | (4) | z1 z2 ||| z1 | | z2 ||
(cosθ+isinθ)n=cosnθ+isinnθ
定义
-----De Moivre公式.
zn

1 zn

《复变函数论》课件

《复变函数论》课件

复数的定义
复平面上的点表示复数,实轴表示实数,虚轴表示虚数。
复数的几何意义
加法、减法、乘法、除法等。
复数的运算
BIG DATA EMPOWERS TO CREATE A NEWERA
复数与复变函数
总结词
复数可以用几何图形表示,其实部和虚部可以分别表示为直角坐标系中的x轴和y轴。
详细描述
复数平面上,每一个复数z=a+bi可以对应到一个点(a,b),实部a对应x轴上的坐标,虚部b对应y轴上的坐标。这种表示方法称为复平面或直角坐标系。
泰勒级数的应用场景
泰勒级数在数学、物理、工程等领域中有着广泛的应用,如近似计算、误差估计、信号处理等。
泰勒级数的误差分析
在使用泰勒级数进行近似计算时,需要进行误差分析,以确保近似结果的精度和可靠性。
BIG DATA EMPOWERS TO CREATE A NEWERA
留数定理与辐角原理
总结词:留数定理是复变函数论中的重要定理之一,它提供了计算复平面上的积分的一种有效方法。
详细描述
BIG DATA EMPOWERS TO CREATE A NEWERA
解析函数与全纯函数
解析函数的定义
如果一个复函数在某区域内的全纯函数,则称该函数在该区域内解析。
全局性质
解析函数在全纯函数的零点处具有留数。
局部性质
在某区域内解析的函数在该区域内具有无限次可微性。
局部性质
在某区域内全纯的函数在该区域内具有无限次可微性。
详细描述
复变函数的积分是指函数在某个曲线段上的累积值,其定义方式与实数函数的积分类似,采用极限和累加的方式进行计算。在计算过程中,需要考虑复数域的特性,如虚部的存在和运算规则的特殊性。

复变函数论钟玉泉第四章

复变函数论钟玉泉第四章
设复变函数项级数 f1(z)+f2(z)+f3(z)+…+fn(z)+… (4.2)
的各项均在点集E上有定义,且在E上存在一个函数 f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称
f(z)为级数(4.2)的和函数,记为: f ( z ) f n ( z )
n 1

定义4.4 对于级数(4.2),如果在点集E上有一个函数 f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
lim n 0 级数 n发散.
n n1

推论2 收敛级数的各项必是有界的. 推论3 若级数(4.1)中略去有限个项,则所得级数与原 级数同为收敛或同为发散.
8
3. 绝对收敛与条件收敛 定理 4.3 复级数(4.1)收敛的一个充分条件为级数
|
n 1

n
| 收敛.
2 2

n 1Leabharlann n 1 2
n
(4.1)
称为复数项级数.sn 1 2 n 称为级数的部分和.
若部分和数列{sn}(n=1,2,…,)以有限复数s为极限, 即 lim sn s( ) 则称复数项无穷级数(4.1)收敛 n 于s,且称s为(4.1)的和,写成 s 否则若复数列sn(n=1,2,…,)无有限极限,则称级数 (4.1)为发散. 注 复级数n收敛于s的 N定义:
(4.2)在闭圆 K : z a 上一致收敛.
16
定理4.9 设 (1)fn(z) (n=1,2,…)在区域D内解析,级数
6. 解析函数项级数
n
f ( z) 或 { f n ( z)} 序列在区域D内内闭一致收敛于函数f(z),

复变函数论讲义

复变函数论讲义

这个映射通常简称为由 函数 w f ( z ) 所构成的映射.
如果 E 中的点 z 被映射 w f ( z ) 映射成 F 中的点 w , 那末 w 称为 z 的象 (映象), 而 z 称为 w 的原象.
y
A
B
z1 2 + 3i z 2 1 2i
x
C
v
w 2 1 + 2i
o
B
C
o
u
A
w1 2 3i
(3). 两个特殊的映射:
1) 函数 w z 构成的映射 .
将 z 平面上的点 z a + ib 映射成 w 平面上 的点 w a ib .
y
A
B
z1 2 + 3i z 2 1 2i
x
C
v
w 2 1 + 2i
o
定理
设 lim f ( z ) A, lim g ( z ) B , 那末
z z0 z z0
(1) lim[ f ( z ) g ( z )] A B;
z z0 z z0
(2) lim[ f ( z ) g ( z )] AB; f (z) A (3) lim ( B 0). z z0 g ( z ) B
(2)复变函数的几何意义:
取两张复平面,分别称为z平面和w平面
如果用 z 平面上的点表示自变量 的值, z 而用另一个平面 平面上的点表示函数 的 w w 值, 那末函数w f ( z ) 在几何上就可以看作 是把 z 平面上的一个点集 (定义集合) 变到 E w 平面上的一个点集 (函数值集合的映射 F ) (或变换).
当 z 沿直线 y kx 趋于零时, x x lim u( x , y ) lim lim 2 2 2 2 x 0 x 0 x 0 x +y x + ( kx ) y kx y kx

复变函数论第4章

复变函数论第4章

n1
n
当z 2时,
原级数成为
n1
1, n
调和级数,发散.
说明:在收敛圆周上既有级数的收敛点, 也有 级数的发散点.
首页
上页
返回
下页
结束


例3 求幂级数 (cosin)zn的收敛半径:
n0

因为
cn
cos in

cosh n
1 (en 2
en ),
所以
lim cn1 n cn
n1 n
解 (1) 因为 lim cn1 lim ( n )3 1,
n cn
n n 1

1
lim n
n
cn
lim n n
n3
lim 1 1. n n n3
首页
上页
返回
下页
结束

所以收敛半径 R 1, 即原级数在圆 z 1内收敛, 在圆外发散,


补充求:等比级数
ar n1 的敛散性。
n1
解:等比级数的部分和为:
Sn

n
ar k 1
k 1

a ar n1 r 1 r

a(1 r n ) 1 r
已利用等比数列求和公式:
Sn

a1 anq 1 q
当公比|r|<1时,lim n
Sn

lim
n
a(1 rn ) 1 r
n0
n0



f (z) g(z) anzn bnzn (an bn )zn ,
n0
n0
n0
R min( r1, r2 )

复变函数复习资料 葵花宝典

复变函数复习资料 葵花宝典

第一部分
复变函数论的重要性和进一步发展
复变函数论, 英语称为‘复分析’(complex analysis),法语称为‘复 分析’ (analyse complexe) 或 ‘复变函数论’ (theorie de fonctions variables
complexes) 德语称为‘函数论’ (Funktionentheorie).它的重要性, 从法国
z2 式(1)与式(5)相加然后以2相除, 得到式(2). 这说明点 z1 + 2 在直线Bz +
Bz + C = 0上. 式(1)与式(5)相减后得到 B (z 1 − z 2 ) + B (z2 − z1 ) = 0.
从而式(3)成立, 故向量i(z1 − z2 )与向量B 垂直. 故z1 − z2 与直线Bz + Bz +
Cauchy不等式: Cauchy不等式, Cauchy不等式的应用, 解析函数模
的上界控制各阶导数模的上界(定理2), Liouville 定理, Liouville 定理的 应用,整函数, 超越整函数, 平均值定理, 平均值定理的应用 本章要注意的知识点: 本章冠以大牛Cauchy名字的结果都是重要结果, 其它结果不过是 它们的推论. 正因为有这些结果, 复变函数论才和数学分析分家, 否则 前者不过是后者的附录而已. 同时也要注意到数学分析中的简单事实: 区域D上的实函数ϕ(u, v ) = u2 + v 2 在D内没有极大值点(最大模原理的 证明用到), 仅在区域D包含原点的情况下才有极小值点(用开映射定理 证明代数学基本定理的证明中用到). 另外, 仔细体会与数学分析的差别. 第四章Laurent级数
复变函数复习葵花宝典
汉斯当普夫印阿伦加森制作并维护
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。

按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。

设0z 是一个复常数。

如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。

如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。

令0z a ib =+,其中a 和b 是实数。

由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式:,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。

注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。

注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。

定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。

定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。

注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下121321()()...()...n n z z z z z z z -+-+-++-+则序列{}n z 的敛散性和此级数的敛散性相同。

注2级数nz∑收敛于σ的N ε-定义可以叙述为:0,0,,N n N ε∀>∃>>使得当时有1||nk k z σε=-<∑,注3如果级数n z ∑收敛,那么1lim lim ()0,n n n n n z σσ+→+∞→+∞=-=注4令Re ,Re ,Im ,Re ,Im n n n n n n a z a z b z a b σσ=====,我们有 11n nn k k k k a i b σ===+∑∑因此,级数n z ∑收敛于σ的充分与必要条件是:级数n a ∑收敛于a 以及级数n b ∑收敛于b 。

注5关于实数项级数的一些基本结果,可以不加改变地推广到复数项级数,例如下面的柯西收敛原理:定理4.2柯西收敛原理(复数项级数):级数n z ∑收敛必要与充分条件是:任给0ε>,可以找到一个正整数N ,使得当n>N ,p=1,2,3,…时,12|...|n n n p z z z ε++++++<柯西收敛原理(复数序列):序列{}n z 收敛必要与充分条件是:任给0ε>,可以找到一个正整数N ,使得当m 及n>N ,||n m z z ε-<对于复数项级数n z ∑,我们也引入绝对收敛的概念: 定义4.2如果级数12||||...||...n z z z ++++收敛,我们称级数n z ∑绝对收敛。

非绝对收敛的收敛级数称为条件收敛复级数n z ∑收敛的一个充分条件为级数n z ∑收敛注1、级数n z ∑绝对收敛必要与充分条件是:级数n a ∑以及n b ∑绝对收敛:事实上,有11111||||||||||,nn n nkk nk k k k k nk k k k ab z a b ======≤=≤+∑∑∑∑∑及注2、若级数n z ∑绝对收敛,则n z ∑一定收敛。

例4.1当||1α<时,21......n ααα+++++绝对收敛;并且有12111...,lim 01n nn n αααααα++→+∞-++++==-我们有,当||1α<时,211.......1n αααα+++++=- 定理4.1如果复数项级数'n z ∑及"n z ∑绝对收敛,并且它们的和分别为',"αα,那么级数'"'"'"12111(...)n n n n z zz z z z +∞-=+++∑也绝对收敛,并且它的和为'"αα。

2、复变函数项级数和复变函数序列:定义4.3 设{()}(1,2,...)n f z n =在复平面点集E 上有定义,那么:...)(...)()(21++++z f z f z f n是定义在点集E 上的复函数项级数,记为1()n n f z +∞=∑,或()n f z ∑。

设函数f(z)在E 上有定义,如果在E 上每一点z ,级数()n f z ∑都收敛于()f z ,那么我们说此复函数项级数在E 上收敛于()f z ,或者此级数在E 上有和函数()f z ,记作),()(1z f z fn n=∑+∞=设),...(),...,(),(21z f z f z f n是E 上的复函数列,记作+∞=1)}({n n z f 或)}({z f n 。

设函数)(z ϕ在E 上有定义,如果在E 上每一点z ,序列)}({z f n 都收敛于)(z ϕ,那么我们说此复函数序列在E 上收敛于)(z ϕ,或者此序列在E 上有极限函数)(z ϕ,记作),()(lim z z f n n ϕ=+∞→注1、复变函数项级数∑)(z f n 收敛于()f z 的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|1ε<-∑=z f z f nk k注2、复变函数序列)}({z f n 收敛于)(z ϕ的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|εϕ<-z z f n定义4.4如果任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数()N N ε=,使得当E z N n ∈>,时,有.|)()(|1ε<-∑=z f z f nk k或 .|)()(|εϕ<-z z f n那么我们说级数∑)(z f n 或序列)}({z f n 在E 上一致收敛于()f z 或)(z ϕ。

注解1、和实变函数项级数和序列一样,我们也有相应的柯西一致收敛原理:定理4.5柯西一致收敛原理(复函数项级数):复函数项级数∑)(z f n 在E 上一致收敛必要与充分条件是:任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n ∈>,,p =1,2,3,…时,有.|)(...)()(|21ε<++++++z f z f z f p n n n柯西一致收敛原理(复函数序列):复变函数序列)}({z f n 在E 上一致收敛必要与充分条件是:任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n m ∈>,,时,有.|)()(|ε<-z f z f m n注2、一致收敛的魏尔斯特拉斯判别法(优级数准则):设,...)2,1)}(({=n z f n 在复平面点集E 上有定义,并且设是一个收敛的正项级数。

设在E 上,,...),2,1( |)(|=≤n a z f n n那么级数∑)(z f n 在E 上绝对收敛且一致收敛。

这样的正项级数1n n a ∞=∑称为复函数项级数∑)(z f n 的优级数.定理 4.6 设复平面点集E 表示区域、闭区域或简单曲线。

设,...)2,1)}(({=n z f n 在集E 上连续,并且级数∑)(z f n 或序列)}({z f n 在E 上一致收敛于()f z 或)(z ϕ,那么f (z )或)(z ϕ在E 上连续。

定理4.7 设,...)2,1)((=n z f n 在简单曲线C 上连续,并且级数∑)(z f n 或序列)}({z f n 在C 上一致收敛于()f z 或)(z ϕ,那么......21++++n a a a,)()(1⎰∑⎰=+∞=Cn Cn dz z f dz z f或.)()(⎰⎰=CCn dz z dz z f ϕ注1、在研究复函数项级数和序列的逐项求导的问题时,我们一般考虑解析函数项级数和序列;注2、我们主要用莫勒拉定理及柯西公式来研究和函数与极限函数的解析性及其导数。

定义4.5设函数,...)2,1)}(({=n z f n 在复平面C 上的区域D 内解析。

如果级数∑)(z f n 或序列)}({z f n 在D 内任一有界闭区域(或在一个紧集)上一致收敛于()f z 或)(z ϕ,那么我们说此级数或序列在D 中内闭(或内紧)一致收敛于()f z 或)(z ϕ。

定理4.9(魏尔斯特拉斯定理)设函数,...)2,1)((=n z f n 在区域D 内解析,并且级数∑)(z f n 或序列)}({z f n 在D 内闭一致收敛于函数()f z 或)(z ϕ,那么()f z 或)(z ϕ在区域D 内解析,并且在D 内,)()(1)()(∑+∞==n k n k z f z f或,...).3,2,1(),(lim )()()(==+∞→k z f z k n n k ϕ证明:先证明()f z 在D 内任一点0z 解析,取0z 的一个邻域U ,使其包含在D 内,在U 内作一条简单闭曲线C 。

由定理4.7以及柯西定理,,0)()(1==∑⎰⎰+∞=n Cn Cdz z f dz z f因为根据莫勒拉定理,可见()f z 在U 内解析。

再由于0z 是D 内任意一点,因此()f z 在D 内解析。

其次,设U 的边界即圆K 也在D 内,于是∑+∞=+-11)()(n k n z z z f , 对于K z ∈一致收敛于10)()(+-k z z z f 。

相关文档
最新文档