学校超市选址问题课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构
课程设计报告设计题目:学校超市选址问题
专业班级
学生
学号
指导教师
起止时间
年学期
问题描述
对于某一学校超市,其他各单位到其的距离不同,同时各单位人员去超市的频度也不同。请为超市选址,要现总体最优。
1、需求分析
核心问题: 求最短路径(选址的要求就是超市到各单位权值之和最少)
数据模型(逻辑结构): 带权有向图(权值计算: 距离*频度)
存储结构: typedef struct
{
string vexs[MAX_VERTEX_SIZE];
int arcs[MAX_VERTEX_SIZE][MAX_VERTEX_SIZE];
int vexnum;// ,arcnum;
}MGraph;
核心算法: Floyd算法(弗洛伊德算法-每一对顶点之间的最短路径)
输入数据: 各单位名称,距离,频度,单位个数.
输出数据: 所选单位名称.
总体思路:如果超市是要选在某个单位,那么先用floyd算法得出各顶点间的最短距离/最小权值。
假设顶点个数有n个,那么就得到n*n的一表格,arcs(i,j)表示i单位到j单位的最短距离/最小权值, 这表格中和最小的那一行(假设为第t行),那么超市选在t单位处就是最优解。运行环境
DEV-C++
2、概要设计
Floyd算法利用动态规划思想,通过把问题分解为子问题来解决任意两点见的最短路径问题。设G=(V, E, w)是一个带权有向图,其边V={v1, v2, …, vn}。对于k≤n,考虑其结点V 的一个子集。对于V中任何两个结点vi、vj,考虑从vi到vj的中间结点都在vk中的所有路径,设是其中最短的,并设的路径长度为。如果结点vk不在从vi到vj的最短路径上,则;反之则可以把分为两段,其中一段从vi到vk,另一段从vk到vj,这样便得到表达式。上述讨论可以归纳为如下递归式:
原问题转化为对每个i和j求,或者说求矩阵
流程图
3、详细设置
第一步,让所有路径加上中间顶点1,取A[i][j]与A[i][1]+A[1][j]中较小的值作A[i][j]的新值,完成后得到A(1),如此进行下去,当第k步完成后,A(k)[i][j]表示从i到就且路径上的中间顶点的路径的序号小于或等于k的最短路径长度。当第n-1步完成后,得到A (n-1),A(n-1)即所求结果。A(n-1)[i][j]表示从i到j且路径上的中点顶点的序号小于或等于n-1的最短路径长度,即A(n-1)[i][j]表示从i到j的最短路径长度。
代码表示如下:
void Floyed(Mgraph *G) //带权有向图求最短路径floyd算法
{
int A[MAXVEX][MAXVEX],path[MAXVEX][MAXVEX];
int i,j,k,pre;
int count[MAXVEX];
for(i=0;i
{
A[i][j]=G->dis[i][j];
path[i][j]=-1;
count[i]=0;
}
for(k=0;k
{
for(i=0;i
for(j=0;j
if(A[i][j]>(A[i][k]+A[k][j])) //从i经j到k的一条路径更短
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
cout< for(i=0;i for(j=0;j { if(i!=j) { cout<<" "<"< if(A[i][j]==INF) { if(i!=j)