电力电缆故障测试报告

电力电缆故障测试报告

电力电缆故障测试报告

附:报告只供修试参考、不具任何法律效率。

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.360docs.net/doc/7f421917.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.360docs.net/doc/7f421917.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.360docs.net/doc/7f421917.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 随着我国经济快速发展,我国加快了现代化社会建设,面对城市和农村日益增长的用电需求,高压电缆的安全性能受到了人们的高度关注。高压电缆相较于传统电缆,安全性更高、稳定性更好、维护方便,是当前电气设备、电能传输、电能分配的首选电缆,在我国现代化社会建设过程中得到了广泛应用。随之而来的高压电缆故障对供电造成了较大的影响,通过分析常见的高压电缆故障,为准确分析判断高压电缆故障,准确定位故障点提供基础依据,以便于及时有效的解决故障,保证电能正常供应,避免对人们生活、生产造成较大困扰。 标签:高压电缆;故障分析;故障点查找 一、高压电缆故障原因分析 1.1设计不足 设计师在设计过程中设计水平较低,在重要的设计场所对于电源、贯通电缆、电缆故障等问题没有设计备用电源,方便专业人员快速进行维护的措施场地。配电所的电缆没有进行单独的运行管道设计,较长的电缆没有设计电缆中间站或者对接方式。 1.2产品质量存在偏差 厂家在对于电缆生产的质量没有办法进行保证,经常出现绝缘偏心、绝缘厚度不均匀、绝缘内部有杂质、电缆防潮水平不高、电缆密封效果不良等问题。有些问题更加严重的是在运行过程中出现故障,大部分电缆系统在运行过程中都有程度大小不等的故障,导致电缆安全问题一直是电力系统运行的隐在性问题。个别厂家也出现过同种型号电缆两端色标不相对应,按颜色进行施工,竣工后发现无法正常使用。 1.3后期维护不善 在电缆运行中,相关的工作人员没有每年对于电缆进行排查,大部分的电缆都已经超过最大维护期,导致工作人员对于电缆上面重要信息掌握情况不足,如电缆上面的电阻、电压等重要数据,电缆绝缘性能下降未能及时发现,容易发生电力系统故障。 二、高壓电缆故障分析判断 目前常见的高压电缆故障类型较多,各个故障各自具备了较为复杂的特性,比如导电故障,其主要是导体出现故障,但在导体故障中又包含了导体断线造成的开路故障、导体短接造成的短路故障。

电桥电缆故障测试仪

电桥电缆故障测试仪基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点(低阻、高阻及闪络型击穿)及没有击穿但绝缘电阻偏低点的定位:如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。当然,也可用于电缆厂内各种线缆的缺陷点定位。粗测电缆故障定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。高压电桥电缆故障测试仪内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥置于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。与波反射法相比,高压电桥电缆故障测试仪特别适用于: 1.敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点,如电缆中间接头的线性高阻击穿(这种主要是由于电缆接头制作工艺不过关造成的。施加高压时只泄露爬弧不击穿放电)。 2. 高压电桥平衡法没有测试盲区,用于判断短电缆及靠近电缆端头的击穿点。 3. 高压电桥法仅仅要求电缆相线电阻的均匀性即可进行测量。而行波传输特性不好的电缆,如介质损耗很大的PVC低压电缆; ◎设备采用高频高压开关电源构成高压恒流源,电压高,电流稳定,体积小,重量轻。 ◎采用高灵敏度放大器及检流计指示平衡,与比例电位器构成平衡电桥,整体置于高电位。面板上的操作钮处于低电位,通过绝缘杆操作电桥。

电力电缆金属性接地故障探测技术

电力电缆金属性接地故障探测技术 来源:不详责任编辑:iong 更新时间:2007年08月12日 打印放大缩小 简介:本文从提高电力电缆金属性接地故障的粗测精度和摸索出一套精确定点的经验着手,结合实际测试情况,总结出一些金属性接地故障的探测方法,以提高工作效率。 [摘要]:本文从提高电力电缆金属性接地故障的粗测精度和摸索出一套精确定点的经验着手,结合实际测试情况,总结出一些金属性接地故障的探测方法,以提高工作效率。 [关键词]:金属性接地粗测精度精确定点 随着系统不断扩容,电缆的短路电流也不断增加,对电缆故障点冲击更加厉害,使故障点绝缘电阻有不断减小的趋势,金属性接地故障(绝缘电阻一般在10欧姆以下,实际情况下,几十欧姆的接地电阻也被称作金属性接地)时有发生,其中绝大多数是单相金属性接地,本文重点讨论的就是该类型故障。据统计,98年1月到5月,共发生故障26次(不包括不需测试的明显故障),其中单相金属性接地故障5次,占到19.2%的比例。金属性接地故障在对其高压冲击时击穿间隙放电声非常轻,故测试难度较大。为了较好的掌握金属性接地的探测技术,对常用故障测试的原理(行波法及经典法)进行了研究,采取了一系列的措施提高粗测(仪器测距)的精度并想了一些办法来进行精确定点,通过实际测试获得较好的效果,并总结出金属性接地故障的测试方法。用几句话来概括:准确测出故障距离,认真核对图纸确定走向,仔细观察现场情况,地毯式耐心听测,全面检查电缆护层,必要时剥除内外护层,通过以上方法,绝大多数情况下都能找到故障点。 一.电力电缆故障性质的分类 1.电力电缆故障点等效电路(图1) RF──绝缘电阻,取决于电缆介质的碳化程度。 CF──局部电容,取决于故障点受潮程度,数值较小,一般可以忽略。 G──击穿电压为VG的击穿间隙,VG大小取决于放电通道的距离。 2.电力电缆故障性质的分类(表1) cript> 注:(1)实际情况下,RF<100KO 时,可用经典法(电阻电桥法)测量,所以RF<100KO 通常也称作低阻故障。 (2)ZO为电缆波阻抗(后面有详细叙述),一般为10~40O 。 3.金属性接地故障的产生及特点

浅析电力电缆故障诊断与监测 刘国昌

浅析电力电缆故障诊断与监测刘国昌 发表时间:2019-05-17T10:23:48.903Z 来源:《电力设备》2018年第32期作者:刘国昌1 张伟平2 刘利昌3 [导读] 摘要:由于社会的不断发展,使得我国的电缆技术也在逐渐变化和进步,很多新涌现出的技术开始逐步应用到实际领域当中。 (大庆油田矿区服务事业部园林绿化公司黑龙江大庆市 163712) 摘要:由于社会的不断发展,使得我国的电缆技术也在逐渐变化和进步,很多新涌现出的技术开始逐步应用到实际领域当中。不过显然,相关的各类技术并不能攻克全部电缆故障问题,应该在实际的处理当中,利用相对精确度高一些的故障距离检测方式,以便在缩短维修故障时间的同时,让其产生的危害影响最小化。 关键词:电力电缆;故障诊断;监测 1导言 目前,从城市的发展和人们的生活水平状况来看,城市的整体建设规划正在不断完善,电力电缆线路在城市规划中也得到了越来越广泛的应用,与传统的线路类型相比,电力电缆能起到更好的电力资源传递效果。在电力电缆发生故障的时候,需要在第一时间完成故障地点的定位,然后尽快查找故障发生的原因,解决故障,减少中断供电的时间,提高供电的稳定性,以免影响人民群众正常的用电需求。 2电力电缆故障原因 电力电缆故障的首要原因就是绝缘介质老化变质。由于电力电缆长期持续性工作,使得电缆的外部绝缘材料会发生一定的变化,同时加之外部因素的影响,就会造成电缆严重降低绝缘能力。第二,就是电力电缆绝缘介质受潮。由于电力电缆的接头处本身的质量问题以及安装技术问题,通常情况下,电力电缆的接头处都会发生结构不密封的现象。因此,就会导致电缆的接头处经常出现受潮的现象。同时,电缆线也会存有一定的缺陷,从而造成了电缆的绝缘介质极其容易受到环境因素的影响,从而使得电缆无法正常使用。第三,就是电力电缆过热。当电力电缆线路被铺设到地下时,电缆的绝缘介质的内部就会经常出现气隙游离的情况,进而就是造成严重电力电缆出现局部过热的问题。尤其是对于一些电力电缆内部通风速度低于外部通风速度的线路,其更加会容易出现电力电缆线路过热的现象。一旦电力电缆出现局部线路过热,那么就容易导致线路外部绝缘体老化,从而降低电力电缆外部绝缘效果。第四,就是机械损伤的原因。当电力电缆投入到实际当中进行使用的过程中,往往会出现一些外部因素造成电力电缆损伤的情况。由于电力电缆的接头处或者绝缘处受到损伤,导致严重影响其正常使用。通常情况下,电力电缆的误伤有以下几方面:①其它施工项目在进行项目施工过程中对电力电缆造成了误伤。②在进行施工过程中由于施工人员的不规范操作使得电力电缆的绝缘保护层出现了损伤。③由于一些自然因素使得电力电缆的接头处或者是绝缘体受到伤害。第五,材料自身缺陷。在进行电力电缆线制造过程中,由于制造材料不规范以及在进行施工的过程中施工人员没有对电力电缆线进行成品检查,故而使得电力电缆线出现了外部绝缘体缺损的现象。同时,由于电缆在进行连接时需要一些零部件进行辅助,而这些零部件在进行加工时没有达到质量要求,故而当对其进行使用时,就会使得两根电力电缆线之间就会出现接触不严的现象,从而造成电力电缆出现故障。 3电力电缆故障诊断方法 3.1脉冲检测法 在对电力电缆进行故障诊断的过程中,脉冲检测法是一种基本的、应用范围广泛的检测方法。脉冲检测法中还分为不同的方法,包括低压脉冲法、脉冲电压法、脉冲电流法等。而脉冲检测法的检测原理就是与脉冲发射器发出相应的脉冲波,而后在出现故障的电力电缆线的节点位置就会出现相应的反射脉冲。通过对反射脉冲的时间间隔以及速度进行相应的记录,就能够较为准确的确定电力电缆出现故障的位置,而后通过对反射脉冲波进行相应的对比后对电缆出现的故障进行判断,从而为解决电力电缆的故障提供良好的数据基础。 3.2声音检测法 在对电力电缆进行故障诊断的过程中,声音检测法是一种最简单的检测方法,声音检测法的根本原理就是根据电力电缆放电过程中所发出的声音,通过对声音的进而最终判断出电力电缆故障的位置,从而迅速的解决故障。而对于敷设在明处的电力电缆线来说,由于电力电缆线发出的声音相对较小,无法通过声音来识别出电力电缆故障的具体位置。故而,相关工作人员就需要首先对电缆线的走向进行分析,而后在通过对扩音设备的应用来判断故障发生的具体位置。 3.3电容电流的检测法 一般情况下,电力电缆处于工作状态时,线路中的芯片与大地就会形成分布均匀的电容,并且与此同时,电力电缆的线路长度还会与电容量之间形成一定的线性关系。而对电流电容进行检测的方式就是根据的这一原理,通常情况下,这种电力电缆故障检测方法更多的偏向于芯片故障方面。而在对芯线进行相应的检查时,首先需要对电缆的头部进行检查,而后对电流电容进行相应的检测,最后对电缆的尾部进行检查。检查完毕后,将正常的电力电缆芯线与故障的芯线进行对比,从而找出故障位置。 3.4电桥检测法 电桥检测法的原理是利用双臂电桥来检测电力电缆线内部的电阻值,然后确定电缆线的长度,根据电缆线的长度和电阻值的变化规律来找出不符合规律的地方,确定电缆线的故障位置。利用电桥检测法检测电力电缆的故障时,需要保证检测数值的准确,尽可能的缩短电缆连接线的路径。 4对高压电缆故障的监控管理 4.1故障性质的分析和判别 当故障产生以后,首先应该分析和判别该故障的性质类型,掌握其导致的原因,比如:常见的存在着高阻和低阻的差别;很多故障是集合了多种因素的故障,还有一些为单项性质的故障;当然也包括了一些电缆短路的情况,那么结合故障间的差异,应该予以更有针对性的解决方案。而借助监测方面的技术,可以有效分析当前的数据参数,以便达到最为理想的维修护理成效。 4.2故障电缆距离方面的测量 当明确故障的性质类型以后,结合其形成原因,加以大概估测,并依靠先进的监测技术,有效对其距离实施测量和判别,尽可能把范围进行缩小,利用更快的速度发觉故障位置,显然,此环节应该有效利用监测技术,对故障的具体范围加以锁定,成为电缆故障当中不容忽视的流程内容。 4.3精准定位故障的位置

直埋高压电缆故障点查找分析初探通用版

安全管理编号:YTO-FS-PD531 直埋高压电缆故障点查找分析初探通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

直埋高压电缆故障点查找分析初探 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1概述 脉冲法和直流电桥法是目前应用较广的电力电缆故障点查找方法。石家庄热电厂在几次电力电缆故障点查找中,采用脉冲法在较短时间内找到了故障点,而用传统直流电桥法却无法找到。 直流电桥法在实际应用中存在着许多不便之处,如对断线故障不可测;受故障点电阻影响较大,测量误差大;当电缆为三相短路故障,需另铺设临时线等。脉冲法特别是低压脉冲法对电力电缆的短路故障和开路故障查找具有操作简单、测量误差小的优点。 低压脉冲测量故障点的过程分粗测和定点2个步骤。粗测是将故障点定位在一较小的范围内,正确读取脉冲波形,该步是脉冲法的重要步骤,也是本文分析的重点。 石家庄热电厂电力电缆故障情况如下。 a.2001-12-22,水源地10kV电缆故障,断路器跳闸在测试中用2500V摇表测试电缆三相绝缘对地及相间均为

电缆故障测试仪说明书

电缆故障测试仪说明书 第一节概述 有线通信的畅通和电力的输送有赖于电缆线路的正常运行。一旦线路发生障碍,就会造成通信及时查出故障并迅速予以排除,就会造成很大的经济损失和不良的社会影响。因而,电缆故障测试仪是维护各种电缆的重要工具。电缆故障智能测试仪采用了多种故障探测方式,应用当代最先进的电子技术成果和器件,采用计算机技术及特殊性电子技术,结合本公司长期研制电缆测试仪的成功经验而推出的高科技,智能化,功能全的全新产品。 电缆故障智能测试仪是一套综合性的电缆故障探测仪器。能对电缆的高阻闪络故障,高低阻性的接地,短路和电缆的断线,接触不良等故障进行测试,若配备声测法定点仪,可准确测定故障点的精确位置。特别适用于测试各种型号、不同等级电压的电力电缆及通信电缆。

第二节功能介绍及技术指标 一、功能介绍 1.功能齐全 测试故障安全、迅速、准确。仪器采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置。 2.试精度高 仪器采用高速数据采样技术,A/D采样速度为100MHz,使仪器读取分辨率为1m,探测盲区为1m。 3.智能化程度高 测试结果以波形及数据自动显示在大屏幕液晶显示屏上,判断故障直观。并配有全中文菜单显示操作功能,无需对操作人员作专门的训练。 4.具有波形及参数存储,调出功能 采用非易失性器件,关机后波形、数据不易失。 5.具有双踪显示功能。 可将故障电缆的测试波形与正常波形进行对比,有利于对故障进一步判断。 6.具有波形扩展比例功能。 改变波形比例,可扩展波形进行精确测试。 7.可任意改变双光标的位置,直接显示故障点与测试

电力电缆故障原因及常用的检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电

关于电力电缆故障分析与诊断技术探讨 费利定

关于电力电缆故障分析与诊断技术探讨费利定 发表时间:2018-11-14T20:13:48.483Z 来源:《基层建设》2018年第28期作者:曾维炎费利定[导读] 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。 浙江省送变电工程有限公司浙江杭州 310016 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。因此,在配网电力电缆的使用与运行的过程之中如何快速、准确地定位故障的类型以及故障点就显得非常的重要,因此需要加强对配网电力电缆故障监测的研究。 关键词:电力电缆;故障;诊断技术随着我国社会经济发展进步,电力行业迅猛发展,人们在用电方面的需求不断增大,对于电力系统的要求也越来越高。当前电力已经逐渐发展成为人们生活、生产过程中一项主要动力来源,电力电缆属于电力传输的主要介质。很多企业在电力电缆敷设方面以埋地电缆方式为主,这种电力输送方式能够将电缆与外界环境有效隔绝,避免电缆与环境之间相互作用,使电缆的运行和维护得到简化,供电安全性和可靠性有显著提高。 1 常见的电力电缆故障分析 1.1 高阻故障 如果故障区域电缆绝缘电阻值超过电缆本身电阻值,则属于高阻故障,具体可分为三种不同类型,分别是断路故障、闪络性故障、高阻泄露故障,其中闪络性故障主要是指试验电压升高时引起电流表值突然升高,试验电压下降情况下电流值回归正常,但是电缆绝缘阻值仍比较大,在故障点未有电阻通道出现,只在闪络性表面故障;高阻泄露故障,这种故障主要指在高压绝缘测试时,随着试验电压的增加,泄露电流值也会有明显升高,试验电压在上升至额定值时,泄露电流会超过最大允许值。 1.2 机械损伤 导致机械损伤的原因有三种,其一是受到外力的破坏,比如在施工过程或者运输过程中发生意外损伤,对电缆造成影响,其二是敷设造成损坏,尤其是过大拉力作用下,绝缘材料出现损伤,或者保护层发生损坏,其三是自然力的作用,在受到自然压力下两端的接头会出现膨胀电缆,护套开裂,并且还会受到气候变化的影响,产生自然缩涨。 1.3 因绝缘层破损引发的故障 绝缘层的老化、破损对输电电路的损害是不可估量的,而造成绝缘层老化、破损的原因有很多,除上述几种原因外,还要其他几种常见的原因。(1)腐蚀影响,由于一些电力电缆铺设环境存在腐蚀性较强的物质,在长期腐蚀侵蚀下,电力电缆的绝缘层遭到损坏引发故障问题。(2)摩擦损伤,在电力电缆与金属结构重合的地方,电缆与金属结构长期摩擦造成绝缘层破损,也会导致电力电缆受潮引发故障。(3)动物啃咬,电力电缆容易受到老鼠、白蚁等动物的啃咬造成绝缘层破损,导致电力电缆受潮,进而引发短路问题。 2 电力电缆故障的类型 电力电缆故障类型呈现出多样性,第一是因为低电阻接地或者短路导致故障的发生,简而言之便是电缆线路一相或者多相导体对地,绝缘电阻比正常的阻值要低,且导体具有连续性,常见的类型有单相接地、两相接地等。第二是因为电阻接地或者短路所导致的故障,该故障类型同第一点相似,但仍旧存在差别,主要是接地或短路电阻具有良好的芯线连接,较为常见的类型包括单相接地、两相接地等;第三种是开路故障电缆的各相导体均符合相应的绝缘电阻,但是针对导体进行的连续性实验结果却存在不连续的一项或者数项导体,虽然没有发生断开,但是却无法将电压及时传送给电缆终端,这种情况下则会导致故障的发生,较为常见的便是单相与两相、三相断线。 3 电力电缆故障的诊断技术 3.1 动态监测电缆负荷 电缆超负荷运行情况下会严重缩短绝缘层使用寿命,电力电缆运行中需要注意避免电缆的超负荷运行,结合电网分布以及电缆特性做好载流量的合理分配,降低电缆负荷控制在合理范围,及时更换无法满足电力输送要求电缆,使电缆运行安全稳定性得到保证。另外,还需要采取针对性技术措施做好电缆载流量的动态监测,当有超负荷情况出现时,及时采取处理措施,最大限度降低电缆故障发生率。 3.2 电桥检测法 所谓的电桥检测法主要是指在电缆中要利用双臂电桥测量出流经新线的电流阻值,然后对电缆的长度进行测量,严格按照电阻与电缆长度之间所存在的关系,对电缆之中所存在的故障点加以计算,其中在应用电桥检测法对故障进行诊断的时候,需要多角度分析,尤其要对短路点接触加以诊断,对小于一欧姆的电缆芯线间的短路接触阻值进行计算,要将故障的误差保持在三米以下,其中需要注意的是对于超过一欧姆故障连接处阻值的故障,则需要应用高电压烧穿技术,将其电阻下降到标准数值以下,然后继续利用电桥检测法进行测量。从本质上分析,利用电桥检测法对电力电缆故障进行诊断,可以提高精度测量,减少电桥连接线。 3.3 万用表法 在配网电力电缆的故障监测过程中,在万用表法之中短接了电缆内的金属屏蔽层以及电缆芯,也就是配网电力电缆的终端,而始端测量短接的电阻值,如果测得的电阻值读数为无穷大,那么就代表配网电力电缆系统之中存在有开路故障,如果电阻值的读数比线芯的两倍还要高,那么就代表系统之内出现了似断非断的故障。如果配网电力电缆采用的是三芯电缆结构,接入了金属屏蔽层,那么就需要考虑中终端位置,对屏蔽层进行短接,然后使用万用表接入开始位置,对三相间的实际电阻值进行直接测量,对绝缘层的电阻值进行掌握。而对于没有金属屏蔽层的情况,只需要检测相间电阻就可以,以对配网电力电缆的性能以及质量进行判断。 3.4 声音测量法 声音测量法主要是指检测诊断电缆故障的时候需要根据放电过程中所释放的声音进行判断,高压电缆的线芯对绝缘层闪络的放电比较适用于声音测量方法,需要应用直流耐压试验机对电力电缆故障加以诊断。其中,当电容器达到固定电压值的时候,要根据电缆故障新线放电,这个时候放电会发出滋滋的声音,可以靠听觉查出故障所在的位置,对于敷设在地下电缆如发生故障,首先需要对电缆的走向加以确定,并且在最大放电声音区域内放大设备,查找故障的发生位置,主要的方法是利用低音器缓慢地在电缆的走向处进行移动,在放电声最大的区域仔细检测。

电力电缆故障测试仪地埋线故障检测仪

T-880电力电缆故障测试仪地埋线故障检测仪T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405图片 型号:RL024280型号:RL187405 T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405内容 型号:RL024280

T-880电力电缆故障测试仪 长度测试+漏电测试 T-880加强版:长度测试+漏电测试+路径查找(功能上取得重大突破:断线点可以实现精确定位,带外铠电缆的对地短路、相线断线也能测试)---10天倒计时上市发售,目前接收预定,6月25日前预定客户到正式上市发售时送精美礼品一份。 长度测试:电缆线的断线、短路距离;也可以测试电缆线总长度(用于工程验收) 漏电测试:针对地埋线路绝缘层被破坏造成的绝缘不好定位; 路径查找:对于不知道地埋走向电缆能方便的查找出其准确走向; 工业级制造标准,不存在接口粗糙连接不好情况,专业指导,售后无忧。 使用ARM技术和FAGA技术一键自动快速测试,不用漫长等待,测试结果直观明了!采用大屏幕真彩液晶显示 适用于测量低压电力电缆的断线、混线(短路)、漏电等故障的精确位置。是缩短故障查找时间、提高工作效率、减轻线路维护人员劳动强度的得力工具。线路查修人员也可以用于线路工程验收和检查电缆电气特性。填补农电故障及小区供电故障没有相应仪表测试的空白。 产品功能: 长度测试单元: ?脉冲反射测试法,可以测试断线、混线(短路)、严重绝缘不良类型的故障距离; ?全自动测试,智能故障诊断,全中文操作菜单,液晶显示具有背光功能; ?自动增益和自动阻抗平衡技术,替代繁琐的电位器调节; ?手动分析功能,方便对电缆进行分析判断; ?可充锂电电池,智能充电,无需值守。 ?脉冲反射测试法:最大测量范围2km,测试分辨率:1m,测试盲区:0m, 脉冲宽度:80ns-10μs自动调节。 漏电测试单元: ?故障智能诊断,辅助耳机音频判断; ?背带包式设计,方便随身携带; ?对于绝缘没处理好或者绝缘层遭到破坏造成的漏电(线间漏电、对地漏电)故障均可测试; ?测试电缆地埋深度不大于3米; ?测试精度:探测误差±5cm; 其他指标: ?充电时间约3个小时,充满后连续工作时间8小时;

电力电缆故障探测技术05

第五章 电缆路径的探测与电缆的鉴别 在对电缆故障进行测距之后,要根据电缆的路径走向,找出故障点的大体方位来。由于有些电缆是直埋式或埋设在沟道里,而图纸资料又不齐全,不能明确判断电缆路径,这就需要专用仪器测量电缆路径。在地下管道中,往往是多条电缆并行排列,还需要从多条电缆中找出故障电缆。下面我们首先对地下电缆的磁场进行简单地分析,然后分别介绍探测电缆路径以及识别电缆的方法。 §5-1 地下电缆磁场分析 目前,现场上主要是检测地下电缆上方地面上的磁场来探测电缆路径;对一些短路或电阻很低的电缆故障点来说,由于很难检测到故障点放电的声音,也主要是通过检测地面上磁场的变化来确定故障点位置。为了便于读者理解利用磁场进行电缆路径探测及故障定点的原理,本节简单地分析地下电缆地面上磁场的产生及分布规律。 1.相地连接时电缆的磁场 相地连接是指将信号源接到待测电缆的一相导体与电缆的金属护套外皮(简称外皮)之间,经电缆末端的短路环或故障点形成回路,如图5.1所示。 在相地连接时主要存在着两个电流回路,一个是导体与外皮形成的回路,再就是外皮与大地构成的回路,其等效电路如图5.2所示,两个回路之间有互感(M)产生的磁耦合以及互阻抗(外皮阻抗)造成的电耦合。电源施加在导体与外皮之间的回路里,产生电流I;由于有电磁耦合,在外皮与地之间的回路产生电流I’,这样导 79

80 体、外皮与大地中的电流分别是I、(I-I’)及I’。电流I’的大小与信号的频率、电缆的材料及周围介质等因素有关,它是随着频率的增加而减少的;对一般的电力电缆来说,在数千赫兹的频率范围内,电流I’在10%I的 数量级上变化。 图5.1 相地连接接线示意图 图5.2 相地连接等效电路 电缆周围的磁场可以看成是由在导体与外皮之间流动的电流I产生的磁场以及金属外皮与大地之间的电流I’产生的磁场迭加形成的。电缆的导体是包在环形金属外皮里边的,回路电流I在电缆上方地面上产生的磁场很小,地面上的磁场主要是在金属外皮与大地之间的回路电流I’产生的。

电力电缆故障诊断

https://www.360docs.net/doc/7f421917.html, 电力电缆故障诊断 背景及意义 电力电线可以分为电缆线路和架空线路。一般来说,电缆线路比架空线路成本要高。但是,电缆具有传送同等功率损耗少、受外界环境影响小、安全可靠、占地少、优化 线路、改造及美化环境等优点,因此被广泛使用于城镇市区、发电厂、变电站及地下、海底、隧道等复杂环境。特别在城市配电网中,电缆正在逐步取代架空线⑷,成为城 市电网的主力军。 随着电缆广泛使用,面临的电力电统故障诊断的难题也愈加严峻。首先,电缆主要 敷设于隧道、地底甚至海底等环境,敷设的环境复杂隐蔽,导致电缆故障点的查找、 修复较架空线更为困难。其次,我国首批城市电缆大致在九十年代开始使用,逾多年,不少的电缆线路开始进入老年期。部分电缆线路由于投入时间较早,巳经出现绝缘老 化故障。参照故障发展的一般规律,电缆故障出现的概率应该符合洛盆曲线,即在整 个使用寿命的初期和晚期的故障率较高,在中期的故障率较低。可以预见随着电缆使 用年限的进一步增加,我国的电缆线路故障会迈入频发期。众所周知,电缆故障造成 的突发性停电事件会给用户的生命、财产安全带来严重的威胁,甚至会造成恶劣的社 会影响。避免电缆故障带来的损失是众望所归。因此,做好电力电缆故障预警及故障 快速、准确定位时科技界必须担当的职责,客观形式给我国电力科技人员提出了更高 的要求。第二届全国电气设备状态盟测与故障诊断研讨会指出电缆故障诊断的发展趋 势是从电缆现有的“预防性维修转为“预知性维修”,从”到期必修’’和故障维修”转为该修则修,即通过对电缆绝缘在线监控,在提前预知电缆故障隐患的前提下,实 现对故障的及时、准确定位。综上所述,研究基于电缆绝缘在线监控的预警方法,提 前发现电缆故障隐患可以减少停电事故,降低因停电而产生的经济损失,甚至是政治 影响、生命代价。 研究并探寻提高电缆故障定位的精度的方法有着重要的学术意义和实际应用价值。 这一难题的研究攻克在微电子技术,传感器技术、计算机及控制技术高度发展的今天 已经有好的物质基础,一旦突破将有着良好的应用前景。 电缆故障原因及类型 电缆故障的原因众多,电缆故障的形式也千差万别。为了方便进行电缆故障诊断的 研究,需要对电缆故障原因与类型进行合理的分类。按照故障原因的分类,可将故障 分为如下几类如地层变动挤压、人为等外力因素引起的机械损伤,绝缘老化,绝缘受湖,过电压,过热,设计不良和产品质量缺陷。其中,绝大部分故障初期并不会对电

电缆故障测试仪的四种实用测定方法

https://www.360docs.net/doc/7f421917.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.360docs.net/doc/7f421917.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.360docs.net/doc/7f421917.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

电力电缆故障测试技术及应用的概述

电力电缆故障测试技术及应用的概述 发表时间:2017-09-21T10:49:37.033Z 来源:《电力设备》2017年第13期作者:张涛 [导读] 摘要:随着国民经济的快速发展和城市建设规划的迫切需要,电力电缆的应用迅速增长,从而导致电缆故障明显增加(内蒙古鲁电蒙源电力工程有限公司内蒙古呼和浩特 010000) 摘要:随着国民经济的快速发展和城市建设规划的迫切需要,电力电缆的应用迅速增长,从而导致电缆故障明显增加。为了提高供电可靠性就必须以最短的时间修复故障,然而电力电缆是埋设于地下的电力线路,不能用眼睛直接发现故障点。如果不能及时查找出故障点的位置就更不用谈到修复故障,所以如何快速准确的测试出电力电统故障的位置,是修复电力电缆故障提高电网供电可靠,减少经济损失的关健所在。本文对各种可能出现的电缆故障的测试方法以及国内外一些先进测试设备进行概述,并介绍电统故障测试设备的应用体会。 关键词:电力电缆故障测试技术应用 随着电缆电网的发展,在电缆数量增加、工作时间延长的环境下,其故障发生频率也逐渐升高,而由于电缆路线隐蔽性强、检测设备和技术有限等原因的影响,使得电缆故障检测难度提升,因此,如何进行电缆故障检测,保障电量供应安全,成为电缆运行管理的重要内容。由于电力电缆具有供电可靠、不占地面和空间、受各种自然灾害影响较小等优点,使在现代电网供电系统中,电缆的使用数量急剧上升。与此同时,电缆的故障几率也随之增加,这给电力管理部门带来很多困扰,也给电网的安全运行提出了更大的挑战,因此迅速准确地判断故障点的位置,对保证供电线路的及时修复和恢复供电有着重要意义。电缆故障的探测方法取决于故障的性质,探测工作的第一步就是判明故障的性质。电缆故障的性质可分如下几种。①接地故障,即一芯或多芯接地。②短路故障,即两芯或三芯短路。③断线故障,即一芯或多芯被故障电流烧断或外力破坏断开。④闪络性故障,即当所加电压达到某一值时,绝缘被击穿,而当电压低于某一值时,绝缘又恢复。⑤混合故障即同时具有两种和两种以上性质的故障。另外,高阻与闪络性故障的区分不是绝对的,它与高压试验设备的容量或试验设备的内阻等因素有关。而在各种建设飞速发展的今天,外力破坏成为电力电缆故障的主要原因之一。一般在测定电缆故障类型时,首先用2500V以上兆欧表测量绝缘电阻,对电缆进行直流耐压试验以鉴定电缆是否有故障。泄露电流可能出现的情况有:①泄露电流变化很大。②泄露电流值随试验电压的升高而急剧上升。③泄露电流值随时 一、常见的电缆故障测试方法 根据电缆故障发生的原因,可以分为串联故障和并联故障两种,其中并联故障又可分为主绝缘故障和外皮故障两种,而不同的绝缘故障采用不同的检测方法,其具体表现在:主绝缘故障根据电阻影响的不同,分为低阻故障、高阻故障和间歇性故障,在与定位检测中,其分别主要采用低压脉冲反射法、二次脉冲法和二次脉冲法,而有时也可分别采用电桥法、冲闪法和衰减法等,在精确定位检测时,则采用音频感应法、声响法、声磁同步法等,而在断线故障检测中,则使用低压脉冲反射法和生磁同步法进行与定位和精确定位,在外护套故障中,预定位法与精确定位法分别为高压电桥法、降压法和生磁同步法、跨步电压法。 直流闪测发和冲击闪测法是现代进行故障检测的主要方法,其分别面向间歇故障与高阻故障,而其中的电压法也已有效实现检测效果,其波形清晰,盲区较少,这就有效实现了高电阻检测,但是接线操作复杂,分压过大,若操作不规范,往往会产生危险;电桥法、低压冲脉反射法对低压电缆进行故障检测,能起到一定效果,但是,对高阻故障却不能使用;二次冲脉法是现阶段较为先进的基础测试法,其与高压发生器冲击闪络技术相结合,通过内部装置将低压脉冲法神,而次脉冲在电弧电阻很低的情况下,发生短路反射,在仪器中形成记忆,而在电弧熄灭后,则实现开路反射,其有利于实现对故障点的转却判断,因此其具有很强的应用前景,而究其使用设备来看,主要有Baur和Seba产品,其中Baur具有安全性高、容易接线、方便切换、结构紧凑、子宫判断以及消除盲区等优点,可有效提升检测的精确度。 二、电缆故障测试的设备要求 2.1考虑价格比和价值比。在选用设备中,往往将其价格和性能进行比较,而鉴于高性能设备成本较高,出于经济效益考虑,而不予购买或是使用,实际上,当设备达到相应的使用规模时,则会实现其性能效益,若是因设备使用不当而引起停电等,则会造成更大的经济损失。 2.2由于电缆故障的隐蔽性,提升了检测难度,尤其对一些不知路径的直埋电缆,由于其埋于地下、管线干扰较强、损失较大,因此要加强各个检测工具和设备的综合运用,如将电缆识别仪器、预定位设备、精定位仪器等,以实现其检测的有效性。 2.3关注仪器反射的波形。在进行波形测定中,要考虑到冲击能量的影响,现代国外仪器一般采用2μF或是4μF电容,但是在进行测试时,往往的不到波形,因此要求其电容量加大,且对主绝缘进行有效保护,控制仪器体积等,促使冲击能量加大,以延长故障点起弧时间,增强放电量,从而获得测试波形,这对于低压电缆而说,其更为突出。 2.4由于电缆设置的隐蔽性,且电缆内部危险性等因素的影响,在检测中要求对故障点进行精确检测,这就要求选择高精确度的设备,在提升检测准确性的同时,实现安全性维护,避免因检测位置不当,或是故障点把握不准,而造成安全事故等。 三、电缆故障测试的把握点 3.1事前准备。电缆故障预测前的准备是保障故障检测的先决条件,也是实现有效监测的保障,因此在进行电缆验证时,要将电缆长度、路径预留情况、接头位置等各项资料查看,以保证监测点的准确性。 3.2检测定位。查找故障点,是进行检测的根本,若是故障点定位不准确,则会造成经济和安全损失,因此在检测中,要充分利用故障预定位检测方式和精定位检测方式,并在一定条件下,进行有机结合,以实现故障点检测的准确性,进而提升检测维修效果。如由于主绝缘故障精确定位较难但是预定位较容易,外护套恰恰与之相反,因此,在绝缘和外护套故障发生点相同时,则可将两者进行结合使用,以有效实现检测定位。 3.4预定位误差。由于操作或是仪器、技术等因素的影响,出现检测误差是必然现象,因此,在检测中,要考虑到预定位误差,其中包括仪器误差、度量误差、波速误差、波形误差等,由于仪器误差是客观存在的,其具有一定恒定性,不以人为改变;度量误差,是在测量中存在的,人为因素有一定影响,因此,必须强化人员的规范化操作,注意两端电缆的预留圈的存在性;在波速误差控制中,则要以电缆长度计算的方式,尽量降低误差与正确值之间的差距;而在仪器和人为作用下出现的波形判断误差,因此,在进行其控制中,不仅要实现规范性操作,而且要进行经验收集,以提升其准确度。 3.5获得波形。在电缆一段测试不到波形时,要进行两端互换,或是将燃弧电流加大后再进行测试;若是因为电缆较长而在预定位得不到波形,则要采用延长触发时间、加大冲击电压等措施,来获得波形;而对间歇性故障测试中,若冲击电压不能击穿,则可采用直流耐压方

相关文档
最新文档