定积分的换元法和分部积分法

合集下载

§3.3定积分换元法

§3.3定积分换元法

π 2
0
sin n xdx = − ∫
π 2
0
sin n −1 xd (cos x )
π 2 0
= − sin n −1 x cos x
[
= (n − 1) ∫
π 2 0 π 2
]
π 2 0
+∫
cos xd (sin n −1 x )
cos 2 x sin n − 2 xdx
= (n − 1) ∫
0
8.已知 g ( x ) = ∫ t f ′( x − t )dt ,求 g′( x ) 。
0
x
g( x ) = ∫ t f ′( x − t )dt
0
x 0
x
令x−t=u
=
− ∫ ( x − u ) f ′(u )du
x
0
= ∫ ( x − u ) f ′(u )du = x
x
∫0 f ′(u )du − ∫0 uf ′(u )du
a a ∫ 0 f(− x) dx
0
f(x) dx =
+
a ∫0
f(x) dx = ∫ [ f(x) + f(− x)] dx.
0
a
续上
∴∫
a
−a
f(x) dx = ∫ [f(x) + f( − x)] dx ,
0
a
(2)∵ f ( x ) 为偶函数,即 f (− x ) = f ( x ) ,
∴∫
π 2 sin 2 t − 1 dt π sin t 6
6 cos t dt = π cos t sin t 2

6 cos t dt π cos t ⋅ sin t 2

定积分的换元积分法和分部积分法

定积分的换元积分法和分部积分法

下一页
返回
例2 计算
x

ln 8
ln 3
1 e x dx .
ln(t2
2 td t - 1) , dx 2 . t 1
解 令 1 e t, 则 x =
x ln3 ln8 t 2 3
于是
3

ln 8
ln 3
1 e x dx 2
3 1 2t 2 dt dt 22 1 2 2 t 1 t 1
上一页 下一页 返回
例13 解
计算

1
0
(arcsinx )3dx.
先换元,再分部积分.
x 0 1 令 arcsinx = t, = sin t, dx = cos tdt, 则 x , t 0 2 1
0 2 0
于是

(arcsinx )3dx 2 t 3 cos tdt .

2 0
e 2 [e x cos x ]02 e x sin xdx
2 0
e 2 1 2 e x sin xdx


移项,解得
上一页
1 e x sin xdx (e 2 1) 2
下一页
0
返回
e x dx. 例10 计算 0
1
解 先换元,后分部积分.
1
解 令 x t,则 x = t2 ,dx = 2tdt,
于是
1 2t dx 0 1 x 0 1 t dt
x 0 1 , t 0 1
1
1 2 1 dt 0 1 t
1
2t ln | 1 t | 0 2 2 ln 2.

定积分的换元法和分布积分法

定积分的换元法和分布积分法

x2 1
x
2
dx
1
40
x2(1 1 x2 ) 1 (1 x2 ) dx
1
40 (1
1
x2
)dx
4
4 1 0
1 x2dx
单位圆的面积
4 .
例 7 若 f ( x)在[0,1]上连续,证明
(1) 2 f (sin x)dx 2 f (cos x)dx ;
0
0
(2)
xf (sin x)dx
1
2 0
arcsin
xdx
x
arcsin
x
1 2
0
1
2 0
1
1
1 2
2 6 20
1 d(1 x2 ) 1 x2
xdx 1 x2
12
1
1 x2
xf (sin x)dx
f (sin x)dx.
0
20
0
1
x
sin cos
x
2
x
dx
2
0
1
sin x cos2
x
dx
2
0
1
1 cos 2
x
d
(cos
x)
2
arctan(cos
x)0
( ) 2 . 2 44 4
二、分部积分公式
设函数u( x)、v( x)在区间a,b上具有连续
必象计算不定积分那样再要把(t ) 变换成原 变量 x 的函数,而只要把新变量t 的上、下限 分别代入(t ) 然后相减就行了.
例1 计算 2 cos5 x sin xdx. 0
解 令 t cos x, dt sin xdx,
x t 0,

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法
( 2 ) න (sin )d
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0​

+ න () d
0​
= න [(−) + ()] d
0​

2 න () d , (−) = (),
=
0​
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0

1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1

第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .

定积分换元法

定积分换元法
t x x
x
x
t
x
f (t )( x − t )dt.
t
证明 :
∫0 [∫0 f (u)du]dt = t ⋅ ∫0 f (u)du 0 − ∫0 t ⋅d[∫0 f (u)du]
=x
x
t
∫0 f (u )du − ∫0 tf (t )dt x x = x ∫ f (t )dt − ∫ tf (t )dt 0 0
7 5 3 1 π 35 = 4⋅ ⋅ ⋅ ⋅ ⋅ = π. 8 6 4 2 2 64
例 周期函数的积分性质 6.求下列定积分: 若 30 π f ( x )是以 T为周期的周期函数 , 则
f( (2) 10(1) sin nx dx x ) dx = π
n

n
∫a ∫
a +T
∫0 f ( x)dx;
1

1

1 3 − x4 1 1 2 1 1 − x4 =− x f ′( x)dx = − x e dx = e d (− x 4 ) 0 2 0 4 0



1 − x 4 1 1 −1 = e = (e − 1). 0 4 4
例 14.设f ( x)连续, 证明 :
∫0 [∫0 f (u )du ]dt = ∫0
f ( − x ) g ( x) dx
a
∴∫
=
a −a
f ( x) g ( x)dx = ∫ f (− x) g ( x)dx + ∫ f ( x) g ( x)dx
0 0
a
∫ 0 [ f ( x) + f (− x)]g ( x)dx =∫ 0 Ag ( x)dx =A∫ 0 g ( x)dx.

定积分的换元法和分部积分法

定积分的换元法和分部积分法
f (x)dx
x = (t)
f [ (t) ] '(t) d t
a

b u d v = u vb −
b
v du
a
aa
a
aa
此公式称为定积分的分部积分公式.
例4.计算 1 x e x d x 0

0 x cos x d x
解: 1 x e x d x = 1 x d (e x )
0
0
=

x
e
x

1 0

1
e
x
d
x
0
=

x
e

x

1 0


e
x

1 0
= e − (e −1)
=1
1
例5.计算 arctan x d x 0
定积分的换元法和分部积分法
一 定积分的换元法
提出问题
对于
1
e
2x
d
x
,

t
=
2
x
, 即令
x
=
1
t
,则
0
2
e 2x d t = 1 e t d t = 1 e t + C = 1 e 2x + C
2
2
2
于是
1
e
0
2x
d
x
=
1 2
e
2x
1 0
=
1 (e 2
2
− 1)
分析问题
1
(t
10−
t
11
)
d
t

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法


解:对 p 1,

a
dx (a 0) p x
收敛或发散

b
1
1 1 1 p 1 p 1 ( b ) x dx x p 1 p 1 p 1
p
重要的问题是b的指数是正数还是负数. 假如是
负数, 则当b趋向无穷时, b–p+1趋向于0. 若指数为
正数,则b–p+1当b趋于无穷时无界增长. 因此, 若–

a
udv uv a vdu .
a
回忆::
定积分的分部积分公式
不定积分的分部积分公 式为 :

udv uv vdu .
例1. 计算
解: 原式 =
x arctan x
1 2
1 0

1
0
1 1 2 d (1 x ) 2 4 2 0 1 x
1 2 ln( 1 x ) 2 4 0 1 ln 2 2 4
当p>1时积分有值


1
b 1 1 1 1 p 1 b ) dx lim p dx lim ( p b p 1 b 0 x p 1 x
1 1 ( ) p 1 p 1
定理1 (比较判别法) [a,), g ( x) f ( x) 0, 设 且f ( x), ( x)于[a,)内有界, 则 g (1) 当 a g ( x)dx 收敛时,a f ( x)dx 也收敛 ; (2) 当
1
dx 增长且无界, x
y 1 x
dx 发散. y x
1
b
dx x
0
1
b
x
2. 其它情形意义

第4节 定积分的换元法与分部积分法

第4节 定积分的换元法与分部积分法
4 1 0


1 0
1 x

1 0
ax dx


a 4
4

a

1 0
f ( x )d x

3
7/9/2013 12:56 AM
第6章
函数的积分
7. 设
f (x)
F 是连续函数, ( x ) 是 f ( x ) 的原
函数,则( A )
(A) (B ) (C ) (D) F 当 f ( x ) 是奇函数时, ( x ) 必是偶函数 F 当 f ( x ) 是偶函数时, ( x ) 是奇函数
dx )
8(e 2e 2
7/9/2013 12:56 AM
x
) 8(e 2 )
第6章
函数的积分
例9 设

f (x)

x 1
2
sin t t
2 2
dt ,

2

2
1
x f ( x )d x
0
f ( x ) 2 x
x f ( x )d x
2 1 0
sin x x


x 1
3
f ( t ) d t ln x ,

x 1
3
f (e ) 。
3

ln x
3

1
3 ( t ) d t f ( x ) f (1 ) f ( x ) f

u x ,

f ( u ) ln
3
u
1 3
ln u
f (e )
3
思考 是否还有其它方法?

高等数学-定积分的换元积分法与分部积分法

高等数学-定积分的换元积分法与分部积分法

当 = 0时, = 0;当 = 4时, = 2.
4
2
2


2

= න
⋅ 2 = 2 න

0 1+
0 1+
0 1+
2
1
2
− + ( 1 + )
= 2 න ( − 1 +
) = 2
0
2
1+
0
4
= 2 − 2 + ( 1 + 2) − 1 = 2 3.
(3)()在区间[, ](或[, ])上有连续的导数,
且 ′ () ≠ 0,
则有

‫)( ׬‬
=

‫ ])([ ׬‬′ ().
(5.3)
3
01 定积分的换元积分法
注 (1) (5.3)式从左往右相当于不定积分中的第二类换
元积分法,从右往左相当于不定积分中的第一类换
2
2
5
01 定积分的换元积分法
1
例2 求定积分 න
4 − 2 .
0
解 令 = 2 ,则 = 2 ,
当 = 0时, = 0;当 = 1时, =
1

0

6
4 − 2 = න
0

.
6
4 − 4 2 ⋅ 2

6

6
= 4 න 2 = 2 න (1 + 2 )
定积分及其应用
第3讲
定积分的换元
积分法与分部积分法
本节内容
01 定积分的换元积分法
02 定积分的分部积分法
2

§5.3_定积分的换元法与分部法

§5.3_定积分的换元法与分部法

2
20
定积分的换元法和分部积分法
3

e4
dx
e x ln x(1 ln x)
d( ln x) 1 1 d ln x 2 ln x
3
e4
解 原式
d(ln x)
e ln x(1 ln x)
3
3
e4

d(ln x)
e4 d ln x
2
e ln x (1 ln x)
e 1 ( ln x)2
2 arcsin(
ln x )
3
e4 e
.
6
21
定积分的换元法和分部积分法
a
1
dx (a 0)
0 x a2 x2
解 令 x a sint, dx a cos tdt
x0t0
x a t
2
原式


2
0
a
sin
t

a cost a 2 (1


b
a f ( x)dx F(b) F(a)
N--L公式
由于 d dt
F (t) F(t)(t)t) (t)的原函数, N--L公式



f [ (t)](t)dt

F ( )
b
a
所以 f (a b x)dx f (t)(dt)
a
b
b
b
a f (t)dt a f (x)dx
所以,原命题成立。
10

计算
4 dx .
0 1 x
解 用定积分换元法.

x

t, 则

定积分的换元法与分部法

定积分的换元法与分部法

由此公得式:
In

n 1 n
In2

注意:
I0

2 dx

,
0
2
I1

2 sin xdx 1,
0


In
2 sin n xdx
0
2 cosn xdx
0

n n
1 n 1 n

n n n n

3 2 3 2

a
0
注: (1) 当f(x)为奇函数时,
a
f (x)dx 0.
a
(2) 当f(x)为偶函数时,
a
a
f (x)dx 2 f (x)dx.
a
0
练习
7
首页
上页
返回
下页
结束

例5 若f(x)在[0, 1]上连续, 证明


(1) 02 f (sin x)dx02 f (cosx)dx ;
上页
返回
下页
结束

例8
计算
1 0
ln(1 x) (2 x)2
dx

原式=
1
0
ln(1

x)
d
2
1
x

ln(1 x) 1 1


1

1 dx
2 x 0 0 2 x 1 x

ln
2

1 3
1 1 01 x

2
1
x
dx

ln
2

1 3
ln(1

定积分的换元法和分部积分法

定积分的换元法和分部积分法

1
4
R2
R
x x
例2 计算
0
cos3 x cos5 xdx
2

0
cos3 x cos5 xdx
2
0
cos3 x cos5 xdx
0
3
cos 2 x
1 cos2 xdx
0
3
cos 2 x sin x dx
2
2
2
0
3
cos2 x sin xdx
2
0
2
3
cos 2
解:
I1 tax
a 0
f (a t) dt f (a t) f (t)
2I1
a 0f f(a (ax) x)f f
(x) (x)
dt
a,
I1
a 2
I2 tx
0
( 1
t) sin cos2 t
t
dt
sin t 0 1 cos2 t dt
t sin t
0
1
cos2
dt t
第三节 定积分的换元法和分部积分法
一 定积分的换元法
定理1 设函数f(x)在[a,b]上连续,且x=φ(t)满足条件:(1) φ(t)在[α,β]上连续 可微;(2)当t在[α,β]上变化时, x= φ (t)的值在[a,b]上单调变化,且 φ(α)=a,φ(β)=b则
b
a f (x)dx f [ (t)](t)dt(1)
xd
cos
x
2 5
5
cos 2
x |0 2
2 5
利用换元法计算定积分时,要注意: (1).在换元时,积分的上下限必须同时变化. (2).在换元时,要注意换元后的函数在积分区域内是否有 意义.

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法
03
2. 选择适当的原函数:根据被积函数的形式,选择 一个易于计算的原函数。
分部积分法的步骤与注意事项
3. 应用分部积分公式
将被积函数和选择的原函数代入分部积分公式,进行计算。
化简结果
对计算结果进行化简,得到最终答案。
分部积分法的步骤与注意事项
01
注意事项
02
1. 正确选择原函数:选择合适的原函数是分部积分法的关键,通常需 要根据被积函数的形式和特点进行判断。
详细描述
设$u=x^n$,$v=e^x$,则 $frac{du}{dx}=nu^{n-1}$, $frac{dv}{dx}=e^x$。根据分部积分公式 ,$int x^ne^xdx=[x^ne^x-nint x^{n1}e^xdx]$。通过递推关系,可以逐步求得 定积分的值。
幂函数与三角函数之间的分部积分
指数函数换元法
要点一
总结词
通过指数函数进行换元,将复杂的定积分转化为简单的定 积分。
要点二
详细描述
对于一些包含指数函数的定积分,我们可以利用指数函数 的性质进行换元,将原定积分转化为更容易计算的形式。 例如,对于 $int e^x dx$,我们可以令 $u = e^x$,则 $du = e^x dx$,从而将原定积分转化为 $int u du$。
倒代换法
总结词
通过倒数关系进行换元,将复杂的定积 分转化为简单的定积分。
VS
详细描述
对于一些包含复杂函数的定积分,我们可 以利用倒数关系进行换元,将原定积分转 化为更容易计算的形式。例如,对于 $int frac{1}{x} dx$,我们可以令 $u = x^{-1}$,则 $du = -x^{-2} dx$,从而 将原定积分转化为 $int u du$。

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法

−a
0
0
a
= ∫ 0 [ f (x ) + f (− x) ]d x
a
a

∫ ∫ f ( x)d x = [ f ( x) + f (− x) ] d x
−a
0
a
a
∫ ∫ 即
f (x)d x = [ f (x) + f (−x) ] d x
−a
0
(1)若 f (x) 为偶函数,即 f ( x ) = f (− x )
π
原式 =
t 2
+
ln
|
sin
t
+
cos
t
|
2 0

4
例6:证明
(1)若 f (x) 在 [ - a , a ] 上连续且为偶函数,
a
a
则 ∫ − a f (x)d x = 2∫ 0 f (x)d x
(2)若 f (x) 在 [ - a , a ] 上连续且为奇函数,
a
则 ∫ −a f (x)d x = 0
1 −1
f (u) d u
∫ ∫ ∫ =
1
f (x)d x =
0 (1 + x2 ) d x +
1 e−x d x
−1
−1
0
=
[
x
+
1 3
x
3
]0−1
+
[−e − x ]10
= 7− 1 3e
二、 定积分的分部积分法
设 u = u (x) , v = v(x) 在区间 [ a , b ] 上有连续导
π 2

t
dt
π

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

1 0
f (2x)dx
1
f (2)
1
1
f (2x)d(2x)
2
40
1 2
f
(2)
1f
4
(
2
x
)
1 0
5 1 f (2) f (0) 2.
24
23
定积分的换元法和分部积分法
思考题 试检查下面运算是否正确?
如 令x 11 dx11Fra bibliotek x2t
1 1
1
1
1 t2
d
1 t
1 dt 11 t 2
0t
x2
0
sinu
u
du x
x2 sin u du
0u
原式 lim x0
x
x2 sin u du 0u
x2
0
lim
sin x2 x2
2x
1
0 x0
2x
17
定积分的换元法和分部积分法
二、定积分的分部积分法
definite integral by parts
定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,
x3 sin2 x4 2x2
x
dx 1
0
1 4 x2dx 2 1 4 x2dx
1
0
2 x5 x4 x3 x2 2dx
2
1x2


2 2
x15xx23dx
2 x4 x2 2 2 1 x2 dx
02
2 0
x4 x2 1 x2
2dx
8 3
12
定积分的换元法和分部积分法
2
0 20
2

§5-3定积分的换元法和分部积分法

§5-3定积分的换元法和分部积分法


2 0

f (sin x ) dx .
上页 下页 返回 结束
14
例 9
若 f ( x ) 在 [ 0 ,1 ] 上 连 续 , 证 明 ( 2)
0

xf (sin x ) dx

2 0

f (sin x ) dx .
由此计算
0

x sin x 1 cos
2
dx . x

证 (2)
高等数学Ⅰ
换元法与分部积分法
一、换元公式
定理 假 设
( 1 ) f ( x ) 在 [a , b ]上 连 续 ;
( 2 ) 函 数 x ( t ) 在 [ , ] 上 是 单 值 的 且 有连续导数;
( 3 ) 当 t 在 区 间 [ , ] 上 变 化 时 , x ( t ) 的 值 在 [ a , b ] 上 变 化 , 且 ( ) a 、 ( ) b ,
ln 2 3
ln 2 3


1
1
0
2 x 1 x
dx
1 1 x
1

5 3
1 2 x
ln 2 ln 3 .
上页 下页 返回 结束
ln( 1 x ) ln( 2 x ) 0
19
例4 解
设 f (x)
因为
1
x
2
sin t t
dt , 求 xf ( x ) dx . 0
2 2
∴ 原式 =
o
a x
机动
目录
上页
下页
返回
结束
例4. 计算 解: 令 则 且

原式 =

定积分的换元法和分部积分法

定积分的换元法和分部积分法
2、不引入新的变量记号,积分限不变;引入新的变 量记号,积分限跟着变。
3、定积分分部积分公式的用法与不定积分分部积分 公式的用法类似。
0
分部积分
t sint
6
0
6 sintdt
0
1 62
[
cos
t
]6 0
3 1.
12 2
例16
计算
e-1
ln(1
x)dx
0

e-1
ln(1
x)dx
e-1
ln(1
x)d( x)
0
0
x
ln(1
x)
e1 0
e1
0
xd
ln(1
x)
e
1
e-1 0
x
1
1
x
dx
e
1
e-1 0
(1
1
1
x
)dx
f ( x)为偶函数;
0
0,
f ( x)为奇函数。
证毕。
例10
计算
3 3
x5 sin2 x dx.
1 x2 x4

3 3
x5 sin2 x dx 1 x2 x4
0
奇函数
例11
计算
π
2
π 2
sin2
x cos xdx

π
2
π 2
sin2 x cos xdx
π
2
2
0
sin2
x cos xdx
π
2
2
e
1
x
ln
|
1
x
|
e1 0
1
例17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
0
1
1 cos2
x
d (cos
x)
arctan(cos
2
x )0
( ) 2 . 2 44 4
15
二、分部积分公式
设函数u( x) 、v( x)在区间 a,b 上具有
连续导数,则有
b
a udv
uv b a
b
a vdu
.
定积分的分部积分公式
推导
uv uv uv,
b
a (uv
第三节 定积分的换元法和分部积分法
不定积分
换元积分法 分部积分法
换元积分法 定积分
分部积分法
一、换元公式 二、分部积分公式 三、小结 思考题
1
一、换元公式
定理 假设 f ( x)在[a,b]上连续,函数x (t )
满足条件:
(1) ( ) a , ( ) b;
(2) (t)在[ , ](或 , )上具有连续导数, 且其值域R a, b;
14
0 xf (sin x)dx 0 f (sin t)dt 0 tf (sin t)dt
0 f (sin x)dx 0 xf (sin x)dx,
xf (sin x)dx
f (sin x)dx.
0
20
0
1
x
sin x cos2
x
dx
2
0
1
sin x cos2
x
dx
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
(t) (t)
b
f (x)d x
(令 x (t))
a
或配元
(t) (t)
(t) d(t)
配元不换限
5
例1 计算 2 cos5 x sin xdx. 0
解 令 t cos x, dt sin xdx,
1
0
xf
(2 x )dx
1 2
1
0
xdf
(2
x)
1 2
xf
(2 x)10
1 2
1
f (2x)dx
0
1 2
f
(2)
1
4
f
(2 x )10
5 1 f (2) f (0) 2.
24
34
思考题2
指出求 2 dx 的解法中的错误,并写出正确
2 x x2 1
的解法.
解 令 x sect, t : 2 3 , dx tan t sectdt,
解:右端 1
b
( x a)( x b)d f ( x)
2a
分部积分积分
1 ( x a)( x b) f ( x) b
2
a
1
b
f ( x)(2x a b)dx
2a
再次分部积分
1
(2 x
a
b)
f
( x)
b
b f ( x) dx = 左端
2
a
a
30
三、小结
定积分的换元法
b
a
f ( x)dx
)dx
b
uv a
,
uv
b a
b
a
uvdx
b
a
uvdx,
b
udv
b
uv
b
vdu.
a
aa
16
1
例8 计算 2 arcsin xdx. 0
解 令 u arcsin x, dv dx,
则 du dx , v x, 1 x2
1
2 arcsin xdx
0
x
arcsin
1
x2 0
1 2
0
1
4、1 x ln xdx _____________;
5、
1
x arctan xdx ____________ .
0
二、计算下列定积分:
1、 e sin(ln x) dx ; 1
2、
e 1
ln x
dx ;
e
37
3、J (m) x sinm xdx,(m 为自然数) 0
1
0 xf ( x)dx
11
2 0
f ( x)d( x2 )
1 2
x2
f
(
x)
1 0
1 2
1
0
x
2df
(
x
)
1 2
f
(1)
11
2 0
x2
f
( x)dx
20
f
(
x)
x2
1
sin t
t
dt ,
f
(1)
1 sin
1 t
t
dt
0,
f
( x)
sin x2 x2
2x
2sin x
x2
,
1
0
xf
( x)dx
4
1 2 2
,
2
,
n为正偶数 n为大于1的正奇数
n n2 5 3
证 设 u sinn1 x, dv sin xdx,
du (n 1)sinn2 x cos xdx, v cos x,
22
In
sinn1 x cos x
2
0
(n
1)
2 sinn2 x cos2 xdx
0
0
1 sin2 x
ln 2 1 1 1 dx
3 0 2 x 1 x
11 1 x 2 x
ln 2 3
ln(1
x)
ln(2
x)10
5 ln 2 3
ln
3.
19
例11
x2 sin t
设 f (x)
dt, 求
1
xf ( x)dx.
1t
0
解 因为sin t 没有初等形式的原函数,
t
无法直接求出 f ( x),所以采用分部积分法

有 b a
f
(
x)dx
f [ (t)] (t)dt .
2
证 设F ( x)是 f ( x)的一个原函数,
b
a f ( x)dx F (b) F (a),
(t) F[(t)],
(t) dF dx f ( x) (t) f [(t )](t),
dx dt
(t)是 f [ (t )] (t )的一个原函数.
思考与练习
换元必换限 配元不换限 边积边代限
1. d x sin100( x t ) d t _s_i_n_10_0_x__ dx 0 提示: 令 u x t , 则
x
sin100( x t ) d t 0
sin100 u
25
2. 设 解法1
f (x3)
解法2 对已知等式两边求导, 得
① f ( x)为偶函数,则 f (t) f (t),
a
a
f
( x)dx
0
a
f
( x)dx
a
0
f
( x)dx
a
20 f (t)dt;
② f ( x)为奇函数,则 f (t) f (t),
a
a
f
( x)dx
0
a
f
( x)dx
a
0
f
( x)dx
0.
11
例6
计算
1
2x2 x cos x dx.
In
(n
1) 2 0
sin n 2
xdx
(n
1) 2 0
sin n
xdx
(n 1)In2 (n 1)In
In
n1 n In2
积分I n关于下标的递推公式
I n2
n n
3 2
In4
, 直到下标减到0或1为止
23
I2m
2m 1 2m
2m 2m
3 5 26
3 4
1 2
I0,
(m 1,2,)
1 1 1 x2

原式
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
dx
偶函数
奇函数
1
40 1
x2 1
x2
dx
1
40
x
2(1 1 (1
1
x x2)
2
)
dx
1
40
(1
4 .
1
x2
)dx
4
1
40
1 x2dx
单位圆的面积
12
例 7 若 f ( x)在[0,1] 上连续,证明
思考: 若改题为
提示: 两边求导, 得
26
3. 设 求
解:
(分部积分)
27
作业
P249 1 (4) , (10) , (16) ; 6 ; 11 (4), (9), (10)
28
备用题
1. 证明 证:
是以 为周期的函数. 令u t
是以 为周期的周期函数.
29
2. 设 f ( x)在 [a,b] 上有连续的二阶导数, 且 f (a) f (b) 0, 试证
3
3
e4
e
d(ln x)
e4
ln x (1 ln x) 2 e
3
2 arcsin(
ln x)
e4 e
. 6
d ln x 1 ( ln x)2
8
例4
a
计算
0 x
1
dx.
a2 x2
相关文档
最新文档