测井数据

合集下载

各种测井曲线代码

各种测井曲线代码

各种测井曲线代码附录33 测井曲线名称代码名称代码名称代码名称代码0、4米电位电阻率 R04 井径1 C1 阵列感应4英尺分辨率及60英寸探测深度电阻率 AF600、45米电位电阻率 R045 井径2 C2 阵列感应4英尺分辨率及90英寸探测深度电阻率 AF900、5米电位电阻率 R05 井径3 C3 阵列感应4英尺分辨率侵入带真电阻率 AFRX1米底部梯度电阻率 R1 井斜 DEV 补偿声波时差AC2、5米底部梯度电阻率 R25 井斜方位 AZIM 井径CAL4米底部梯度电阻率 R4 高分辨率侧向电阻率 LLHR 长源距声波时差 DT6米底部梯度电阻率 R6 方位电阻率曲线1 ARO1 纵横波速度比 VPVS8米底部梯度电阻率 R8 方位电阻率曲线10 AR10 纵横波方式单极横波时差 DT4S深侧向电阻率 RD 方位电阻率曲线11 AR11 纵横波方式单极纵波时差 DT4P浅侧向电阻率 RS 方位电阻率曲线12 AR12 泊松比PR邻近侧向电阻率 RPRX 方位电阻率曲线2 ARO2 上偶极横波时差 DT2微侧向电阻率 RMLL 方位电阻率曲线3 ARO3 下偶极横波时差 DT1微球型聚焦电阻率 MSFL 方位电阻率曲线4 ARO4 斯通利波时差 DTST深感应电阻率 RILD 方位电阻率曲线5 ARO5 全波列波形 WF中感应电阻率 RILM 方位电阻率曲线6 ARO6 声波成象ACI八侧向电阻率 RFOC 方位电阻率曲线7 ARO7 自然伽马GR球型聚焦电阻率 SFLU 方位电阻率曲线8 ARO8 无铀自然伽马 CGR数字聚焦电阻率 DFL 方位电阻率曲线9 ARO9 钾 K 感应电导率 COND 阵列感应1英尺分辨率地层真电阻率AORT 钍 TH微电位电阻率 ML1 阵列感应1英尺分辨率及10英寸探测深度电阻率 AO10 铀 U微梯度电阻率 ML2 阵列感应1英尺分辨率及20英寸探测深度电阻率 AO20 补偿中子 CNL钻井液电阻率 RM 阵列感应1英尺分辨率及30英寸探测深度电阻率 AO30 井壁中子 SNL井温 TEMP 阵列感应1英尺分辨率及60英寸探测深度电阻率AO60 中子伽马 NGR钻头直径 BS 阵列感应1英尺分辨率及90英寸探测深度电阻率 AO90 补偿密度 DEN200兆赫兹电阻率 R4SL 阵列感应1英尺分辨率侵入带真电阻率 AORX 岩性密度 LDL200兆赫兹幅度比 R4AT 阵列感应2英尺分辨率地层真电阻率ATRT 密度校正值 DRH200兆赫兹介电常数 D2EC 阵列感应2英尺分辨率及10英寸探测深度电阻率 AT10 光电吸收截面指数 PE200兆赫兹相位角 P2HS 阵列感应2英尺分辨率及20英寸探测深度电阻率 AT20 核磁共振总孔隙度 TPOR47兆赫兹电阻率 R4SL 阵列感应2英尺分辨率及30英寸探测深度电阻率 AT30 核磁共振渗透率 KCMR47兆赫兹幅度比 R4AT 阵列感应2英尺分辨率及60英寸探测深度电阻率 AT60 核磁共振束缚流体体积 MBVI47兆赫兹介电常数 D4EC 阵列感应2英尺分辨率及90英寸探测深度电阻率 AT90 核磁共振自由流体体积 CMFF47兆赫兹相位角 P4HS 阵列感应2英尺分辨率侵入带真电阻率 ATRX 核磁共振有效孔隙度 CMRP地层倾角微电阻(电导)率 RBSV 阵列感应4英尺分辨率地层真电阻率 AFRT T2分布对数平均值 T2LM电阻率成象 RIM 阵列感应4英尺分辨率及10英寸探测深度电阻率 AF10 核磁T2谱 T21号极板方位 P1AZ 阵列感应4英尺分辨率及20英寸探测深度电阻率 AF20相对方位 RB 阵列感应4英尺分辨率及30英寸探测深度电阻率 AF30附录30测井服务项目代码名称代码名称代码名称代码双感应 DIL 超声井眼成像 UBI 井径 CAL相量感应 PI 井周声波扫描成像 CAST 井温 TEMP 阵列感应 AIT 井周声波成像 CBIL 钻井液电阻率RM高分辨率感应--数字聚焦 DHRI 地层学高分辨率地层倾角SHDT 邻近侧向 PROX八侧向 RFOC 六臂倾角 SED 微侧向 MLL感应 COND 地层倾角 DIP 球型聚焦 SFL双侧向 DLL 电缆地层测试 MDT 微球型聚焦 MSFL 高分辨率方位侧向 ARI 电缆地层测试 RFT 微电极ML七侧向 LL7 电缆地层测试 SFT 井斜 DEV三侧向 LL3 电缆地层测试 FMT 井斜方位 AZIM补偿密度 DEN 全井眼微电阻率扫描成像 FMI 0、4米电位电阻率 R04岩性密度 LDL 全井眼微电阻率扫描成像 EMI 0、45米底部梯度电阻率 R045补偿中子 CNL 全井眼微电阻率扫描成像 STAR 0、5米电位电阻率 R05井壁中子 SPN 核磁共振 NMR 1米底部梯度电阻率R1补偿声波 AC 自然伽马能谱 NGS 2、5米底部梯度电阻率 R25长源距声波 SLS 电磁波传播测井 EPT 4米底部梯度电阻率 R4偶极子横波成像 DSI 自然电位 SP 6米底部梯度电阻率 R6低频偶极子声波成像 LFD 自然伽马 GR 8米底部梯度电阻率 R8多极子声波成像 MAC 垂直地震测井 VSP超声成像 USI 中子伽马 NGR附录29测井地面仪器类型代码名称代码名称代码JD58-1 C01 CLS-3600 C21SJD58-1 C02 CLS-3700 C22SL91-I C03 EXLIPS-5700 C23SL91-II C04 CSU C31VCT-2000 C05 MAXIS-500 C32WP-2000 C06 DDL-III C41SDCL-2000 C07 DDL-V C42SL-3000 C08 EXCELL-1000 C43SL-6000 C09 EXCELL-2000 C44691 C10 AT+ C5183系列 C11 CS400 C52附录31测井下井仪器型号代码名称代码说明双感应-八侧向 SL1503双感应-八侧向 SL1502双侧向 SL1230微球型聚焦 SL3105补偿密度 SL1608补偿声波 SL1608补偿声波 SL1670高分辨率声波 SL9801补偿中子 SL2436岩性密度 SL2222岩性密度 SL2223自然伽马 SL1310自然伽马能谱 SL1319四臂与六臂地层倾角 SL1017 地层压力测试 SL1967声波井眼成像 SL1620核磁共振 SL1801多极子声波 SL1616PCM、及井斜方位 SL1600双感应-八侧向 SL1501 小井眼双侧向 SL1228 小井眼微球型聚焦 SL3102 小井眼补偿声波 SL1607 小井眼补偿中子 SL2434 小井眼岩性密度 SL2220 小井眼自然伽马 SL1308 小井眼PCM、及井斜方位 SL1559 小井眼双感应 1502 阿特拉斯双感应 1503 阿特拉斯双感应 1504 阿特拉斯补偿中子 2420 阿特拉斯补偿中子 2435 阿特拉斯补偿中子 2436 阿特拉斯本帖最近评分记录:财富:+8(烟灰乱弹) 应助奖励来自: 顶端回复引用分享加为好友 kokoever级别:果园新丁作者资料发送短消息 QQ联系UID: 363638精华: 0发帖: 8威望: 0 点财富: 56 果果活期存款: 0 果果定期存款: 0 果果总资产: 56 果果贡献值: 0 点在线时间: 1(时)注册时间: 2010-05-26最后登录: 2010-06-08 11 发表于: 2010-05-26 11:13 只瞧该作者| 小中大测井符号中文名称AC 声波时差数据计数补偿密度A1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AAVG 第一扇区平均值AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AL 声波(速度)测井AMAV 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC 声波衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 方位角AZIM 井斜方位BACBGF 远探头背景计数率BGN 近探头背景计数率BHC 补偿声波BHT 井底温度BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据BxC1 井径C2 井径C3 井径CAL 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEC 阳离子交换能力CEMC 水泥图CET 水泥评价测井?CGR 自然伽马CI 总能谱比CL 粘土含量CLD 分散粘土体积CLL 层状粘土体积CLS 结构粘土体积CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 中子CN 补偿中子CNL CNL井壁中子CNL 补偿中子CO 碳氧比CON 感应测井CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DEN 密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DHY 残余烃密度DHYC 烃密度DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度补偿值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串EPOR 有效孔隙度ESW 有效含水饱与度ETIMD 时间F 地层因数FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR1 自然伽马?GR2 同位素示踪伽马HAC 高分辨率声波时差HAZI 井斜方位HDRS 深感应电阻率HF 累计烃米数HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IES 感应测井?Ild(RILD) 深探测感应测井Ilm(RILM) 中探测感应测井Ils 浅探测感应测井IDPH 深感应电阻率IMPH 中感应电阻率ISF 球形聚焦测井K 钾KCMR 核磁共振渗透率KRO 油的相对渗透率KRW 水的相对渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LL 侧向测井?LL3 深三侧向电阻率LL7 深七侧向电阻率LL8 深八侧向电阻率LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLD7、LLS7 七测向LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率LSS 长源距声波测井M 胶结指数M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML 微电位电阻率MK 微梯度电阻率ML1 微电位电阻率(微电极A0、025M0、025N-A0、05M) ML2 微梯度电阻率(微电极A0、025M0、025N-A0、05M) MLL 微侧向电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率N 饱与度指数NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NGS 自然伽马能谱测井NLL 中子寿命测井NML 核磁共振测井NPHI 补偿中子OMRL 定向微电阻率测井P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM 渗透率Perm / K 渗透率PERM-IND 核磁共振渗透率PF 流体电阻率测井PI 微球聚焦屏流比PIH 油气有效渗透率PIW 水的有效渗透率POR 孔隙度Por / Ф 孔隙度PORB 储层的孔隙度PORb Pore / Фe 有效孔隙度PORG 气指数PORT 总孔隙度Port / Фt 总孔隙度PORW 含水孔隙度POTA 钾POTV 100%粘土中钾的体积PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESS URE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量QV 阳离子交换容量R04 0、4米电位电阻率R045 0、45米电位电阻率R05 0、5米电位电阻率R1 1米底部梯度电阻率R25 2、5米底部梯度电阻率R250 2、5米底部梯度电阻率R4 4米底部梯度电阻率R400 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径) RAD2 井径(极板半径) RAD3 井径(极板半径) RAD4 井径(极板半径) RAD5 井径(极板半径) RAD6 井径(极板半径) RADS 井径(极板半径) RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深双侧向电阻率测井RFOC 八侧向电阻率RHOB 岩性体积密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率Rm 泥浆电阻率Rmf 泥浆滤液电阻率RMG 微梯度电阻率RMLL 微侧向电阻率测井RMN 微电位电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅双侧向电阻率测井Rt 地层真电阻率Rw 地层水电阻率Rxo 冲洗带地层电阻率RXO1 RXO1微球形聚焦电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SH 微电位电阻率SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNP 井壁中子孔隙度测井SNUM 特征值数量So 含油饱与度Sor 残余油饱与度SP 自然电位SPER 特征值周期Sw 含水饱与度SWB 束缚水饱与度Swirr / SIRR 束缚水饱与度SWN 井壁中子测井Swxo 冲洗带含水饱与度T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TCHK 绿泥石与高岭石含量TEMP 井温TENS 张力TH 钍THOR 钍TILL 伊利石含量TKRA 钍钾比TPI 钍钾乘积指数TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比ULSEL 超长电极距测井URAN 铀VAMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比Vsh / Sh 泥质含量VWF 可视波形WAV1 第一扇区的波列WAV2 第二扇区的波列WAV3 第三扇区的波列WAV4 第四扇区的波列WAV5 第五扇区的波列WAV6 第六扇区的波列WAVE 变密度图WF 全波列波形ZCORR 密度校正值。

测井资料综合解释经典

测井资料综合解释经典

测井资料综合解释经典测井是油气勘探开发过程中极为重要的一项技术手段,通过对地下岩层进行电磁、声波、核子等各种物理方法的测量,获取有关地层、含油气性质等基本参数的数据。

测井数据对于判断油气藏的性质、水文地质条件、岩性变化等都具有重要的参考价值。

本文将综合解释几种经典的测井资料,包括测井曲线、测井解释方法等。

一、测井曲线1. 自然伽马测井曲线(GR)自然伽马测井曲线测量的是地层的自然伽马辐射强度,是一种常用的测井曲线之一。

自然伽马辐射是由岩石中的放射性元素,如钍、钾和铀等的衰变所产生的。

GR曲线的峰值反映了岩石的放射性物质含量,通过与岩层进行对比分析,可以判断岩层的类型和含油气性质。

2. 电阻率测井曲线(ILD、Rt)电阻率是指物质对电流的阻碍程度,电阻率测井曲线测量了地层的电阻率值。

岩石的电阻率与其孔隙度、含水饱和度以及岩石的含油气性质密切相关。

ILD曲线是测量液体饱和度等含油气性质的重要参数,而Rt曲线通常用于描述岩石的电阻性质。

3. 声波测井曲线(DT、ΔT)声波测井曲线主要是通过测量岩石对声波的传播速度来获取有关地层岩性和孔隙度等参数。

DT曲线即声波传播时间曲线,反映了声波在地层中传播所需的时间,ΔT曲线是声波时差曲线,它可用于计算地层中流体的饱和度。

二、测井解释方法1. 直接解释法直接解释法是根据测井曲线的特征进行判断、推断,结合地层信息和岩性特征,直接得出结论。

例如,根据GR曲线的峰值及其分布情况,可以判断油气层的存在与否,以及油气层的厚度和含油饱和度等。

2. 相关系数法相关系数法是通过建立地层参数之间的统计关系来进行解释。

通过计算测井曲线之间的相关系数,可以得出地层岩性、岩相、孔隙度、饱和度等参数的推断。

例如,通过计算GR曲线与含油饱和度的相关系数,可以判断油气层的含油饱和度等。

3. 分层解释法分层解释法是根据地层的特点和垂向变化进行测井解释。

通过分析测井曲线的规律性变化和层段特点,将地层划分为若干层段,再对每个层段进行解释。

地球物理测井

地球物理测井

二、普通电阻率测井
在井中测量被钻孔穿过的矿、岩层的电阻率,并根据电 阻率的差异,来划分钻孔地质剖面,研究和解决井下的一些 地质问题的测井方法。
普通电阻率测井又称视电阻率测井,它是使用最早、应用 较广的电阻率测井方法 。
1、测量原理
A——供电电极 B——供电回路电极 M、N——测量电极
供电回路
测量回路
电源 B
检流计
A
电极矩
M
o
N
井下介质电阻率的测定
当电极B位于无穷远处时,距供电电极A一定 距离的测量电极M、N两点是的电位差为:
IR 1 1
U MN
UM
UN

4
( AM

) AN
解上式得 : 4 AM AN UMN K UMN
MN
I
I
K是与各电极之间距离有关的系数,称为电极系 系数。A、M、N组成电极系电极之间的距离是固 定的,因此电极系系数K是一个常数。
1)岩矿石的岩性; 2)岩石孔隙中地层水性质; 3)岩石的孔隙度以及孔隙结构; 4)孔隙中流体性质及其含量; 5)岩石中泥质成分(泥质含量影响岩石的导电性)。
1)岩矿石的岩性
岩石是由矿物和孔隙中流体以及胶结物组成,大多数沉积岩,当 其不含导电流体时,由造岩矿物组成的岩石骨架几乎是不导电的。 许多沉积岩之所以能导电,则是因为它们在地下不同程度的具有 一定的孔隙,在其中充填了一定数量的盐水溶液造成的。于是, 电流通过孔隙水流过岩石,岩石因此具有了一定的导电性。
本章主要内容:
(1)普通电阻率测井 (2)侧向测井 (3)电化学测井
石墨、无烟煤等电阻率很低
主要岩矿石电阻率及其变化范围
ρ沉<ρ变<ρ火

电阻率测井小结

电阻率测井小结

电阻率测井的分类
高电阻率测井
阵列电阻率测井
适用于高电阻率地层,如泥岩、页岩 等。
通过多个电极同时测量地层的电阻率, 可以
适用于低电阻率地层,如砂岩、砾岩 等。
03 电阻率测井的应用
油气勘探
01
02
03
确定油气储层
通过测量地层电阻率,可 以判断地层是否含有油气, 以及油气的聚集程度和分 布范围。
05 电阻率测井的未来发展
技术创新与改进
新型传感器技术
研发更灵敏、更耐用的传感器,提高测量精度和稳定性。
数据处理算法优化
改进数据处理算法,降低噪音干扰,提高信号识别能力。
井下仪器小型化
减小仪器体积,减轻重量,便于下井操作和运输。
应用领域的拓展
1 2
非常规资源勘探
应用于页岩气、煤层气等非常规资源的勘探和开 发。
THANKS FOR WATCHING
感谢您的观看
针对复杂地层和特殊油气藏 ,可以开展针对性的电阻率 测井技术研究,开发更加高 效、可靠的测量方案和技术 手段。
电阻率测井技术与其他地球 物理方法的结合应用也是未 来的研究方向之一,如与声 波测井、核测井等方法的综 合应用,可以更好地解决复 杂油气藏的勘探和开发问题 。
随着人工智能和大数据技术 的发展,电阻率测井数据的 自动处理和智能解释也是未 来的研究重点,可以提高数 据处理效率和解释精度,为 油气藏的快速发现和评估提 供有力支持。
电阻率测井可用于各种类型的地层,包括 砂岩、泥岩、石灰岩等,具有较广的适用 范围。
提供地层含流体信息
无损探测
电阻率测井结果可以反映地层中流体的性 质,如油、水或气,为地层含流体类型和 饱和度的判断提供依据。

常规测井数据解释

常规测井数据解释

岩石
声波时差密度补偿中子自然伽马自然电位电阻率井径煤层
160 1.8552低微异常高≥钻头直径泥岩
110 2.5532高基值低、平直≥钻头直径盐岩
67 2.04-3最低基值高≥钻头直径砂岩
55.5 2.65-2低正负异常低-中≤钻头直径石膏层
50 2.96-2最低基值高≥≤钻头直径灰岩
46.5 2.710比砂岩低基值高≤钻头直径云岩
43 2.872比砂岩低基值高≤钻头直径燧石
黄铁矿39.25-3低
说明:测井解释工作复杂,并且结果具有不确定性,此表仅供我们在现场技术服务中参考应用,而非完全定律;同时也希望在不久的将来我们的技术服务能够真正迈上专业化开始!谢谢!常规测井曲线或地球物理特性(参考)
呈孤立状团块或连续的条带不均匀分布于石灰岩中,低放射性,高电阻率。

测井资料及其应用

测井资料及其应用

地面仪器
测井仪器车
下井仪器
2、测井资料解释与评价
测井信息是地层评价的主 要手段。主要应用于: 储层评价 油气资源评价 油田勘探及开収 油藏开収及管理 地层评价 地质、钻井和采油工 程 最核心的应用是储层 评价,油气水层评价。 测井评价 技术发展历史
储层定性解释
1960年~1979年
1980年~1995年
25
测井资料的应用
测井具有成本低、垂直分辨率高、连续 性好等特点,被广泛应用于地层评价,地 质、钻井和采油工程,以及矿产资源(如 金属、煤、钾盐、水文工程)勘探开发等 方面。
1、自然电位测井
自然电位测井的应用
①划分渗透性地层。 ②判断岩性,进行地层 对比。 ③计算泥质含量。 ④确定地层水电阻率。 ⑤判断水淹层。 ⑥沉积相研究。
储层定量评价 单井精细解释 多井资料综合解释 油藏描述 地质研究 工程应用
1995年~至今
3、测井方法和理论
• 电磁测井—岩石电学性质 • 声波测井—岩石声学性质 • 核测井—放射性、核衰变、原子物理
常规测井与现代测井
常规测井技术
单一探头
现代测井新技术
阵列或扫描探头
分辨率低
测量平均物理量 非定向测量
含水饱和度 解 (%) 0 残余 可动 释 100 层 束缚水饱和度 号 100 (%) 0 50 (%) 井径 (cm) -25
85
0 25
100
(%)
0
砂泥岩地层测井数字处理成果图
固井质量评价图格式 Q/SL 1273-2001
236
胜利石油管理局测井公司
井 声波变密度测井 固井质量评价图
深度比例 1:200
原状地层

测井资料解释(煤田测井解释)

测井资料解释(煤田测井解释)
为使煤层模型更接近于原生状态,模型中的灰分还包含有泥质及其它矿物成分在原生 状态下所含有的水及其在燃烧过程中的挥发物。为与化验室中的灰分相区别,这部分 成分称湿灰分;
对比泥质砂岩体积模型和煤的体积模型: 泥质砂岩的岩石骨架相当于碳分, 泥质相当于灰分, 而孔隙水则相当于水分。
煤的声波测井、密度测井及中子测井解释公式与泥质砂岩的测井解释公式具有相 同的形式:
t 1 Vatc Vata t f b 1 Vac Vaa f N 1 Vac Vaa f
上式中Va’=V0/V为灰分的相对体积含量;Δtc、Δta、Δtf分别为碳、灰、水的声波时差; δc、δa、δf分别为碳、灰、水的体积密度;Φc、Φa、Φf分别为碳、灰、水的含氢指 数;为水分的相对体积含量。
煤层的井径曲线受钻井工艺和钻井液性能影响,煤层会发生垮塌,使井径扩大。 煤层的声反射系数比其它地层都小,声波井周成像是记录声波在井壁处反射波的 能量,由于煤层反射系数小,声波透过地层的能量多,而反射的能量少,因此图像 颜色深。
煤储层孔渗特征
1. 煤储层孔隙结构 属裂缝—孔隙型结构,煤基质被天然裂缝(割理)网分隔成许多方块,每个方块 由煤粒和微孔隙组成。基质是储气空间,甲烷被吸附在微孔的表面,渗透率很低, 一般为(10-2~10-6)×10-3μm2。在浓度差的作用下,甲烷透过基质扩散到裂缝中, 裂缝在煤的总孔隙体积中占次要地位,储气功能很低,可有少量游离气储存其中, 但裂缝的渗透率高,是甲烷渗流的主要通道。 煤中的天然裂缝(割理)是煤化作用和构造应力影响的结果。成大致相互垂直的两 组,主要的、延伸较大的一组叫面割理,次要的、与面割理大致垂直的一组叫端割 理。割理是煤中流体运移的主要通道,并且有方向性,因而它是控制煤层气方向渗 透的主要因素,割理间距是煤储层模拟中的一个重要参数。

2 测井资料预处理

2 测井资料预处理

具有相同采样密度,应将刻度后的等时采样数据变为等距采样数。 方法……

(2)目前常用的数字化方法 ④ 扫描曲线数字化

可以采用多种软 件实现数字化
本章内容提要
第一节 测井曲线深度校正 第二节 测井曲线的平滑滤波 第三节 测井曲线的环境影响校正 第四节 交会图技术及在应用
第一节 测井曲线深度校正
并行方式发送来的采样数据,并经过一定的加工转换,再以串行方式将数
据送到计算机接口。 D.采样笔 又称信号接收笔,笔尖由铁磁材料制成,其上绕有线圈,采样 笔上端有一Z开关。线圈通过Z开关用导线与数字转换仪连接。

(2)目前常用的数字化方法
②平板式数字化仪采样过程

将图纸放在图形转换
板上,采样脉冲与标准脉 冲发生器产生脉冲。 笔尖线圈中的感应信号经放大 将点方式开关按下,采样笔触 到图纸上沿某条曲线移动;经放大 的X信号在平行于X轴的发送线周围 产生电磁场,使X组合金线发生磁 当传至采样笔尖所在位臵时,应变 波引起电磁场变化,笔尖线圈中便 产生一个感应信号。 后,一方面关闭X信号计数器,另 一方面触发Y信号发生器产生一个
H0
h0 A(h1,δ 1) C h
H1
H H2
A1
C1 B1
AB的垂直井段(A1B1):
h h h 2 dH h 2 cos ( 2 1 ) d H H 2 H 1 h1 h1 2 1 h h 1 (sin sin ) 2 2 1 2 1
为了提高对比的精度和效率,经常采用归一化方法
yy(i )
yi ymin ymax ymin
第一节 测井曲线深度校正
2.利用相关函数进行深度校正

油田测井数据的采集与处理

油田测井数据的采集与处理

油田测井数据的采集与处理作者:李彬来源:《中国石油和化工标准与质量》2013年第16期【摘要】本文对油田测井数据的采集与处理重要性进行简单描述并提出地层微电阻率扫描测井数据采集与处理系统的方法,其中给出详细的数据模型与实现的方法。

【关键词】油田测井数据采集数据处理地层微电阻率扫描法1 概论井周微电阻率扫描成像技术起源于美国,是世上一种比较先进的测量技术,它突破过去传统的测量方式,只能获取井眼周向和井上的信息这种弱点,使用成像测井技术对井下使用阵列传感器扫描测量或者旋转测量,得到井内大量地层信息,在得到信息后对井壁地层进行分析,了解地层细微变化和储层性能,这让高含水油田开发的性能有很大的提升。

随着石油勘近代一发,大量石油被开采,要想探明石油资源的难度变得越来越大,需要采集的信息也越来越大,地层微电阻率扫描测井(以下简称MFS)技术在石油勘探开采中起到集大的作用,发展这项技术,对石油开采有集重要的意义。

2 FMS技术的系统设计2.1 指标与要求FMS技术可以在地下温度极高的地方进行倾角、快扫、慢扫三种方式进行测量,它有以下的指标数据(表1):2.2 系统设计FMS的技术,要求弱信号采集模块总共有144个通道电扣信号,分6极板,每个极版24个电扣,极板输出的电扣信息通过AD转换数字化,经过DSP对数字相敏松江后把数据发送至主控板,主近代板将传输过来参数存进数据帧相应的位置,在收到遥传的数据请求帧后数据帧经过CAN总线发到遥传短节,再通过主控板DSP完成数据采集与处理系统的CAN通信,实现仪器与高速遥测通信。

3 MFS技术的采集数据采集部份是由可编程增益、A/D驱动、A/D转换器组成,ADC使用AD公司的AD7671,这套芯片使用SAR结构,精度为16比特,采样率达1MSPS。

数据采极与处理系统需要对处理对象范围放大,因此,需要对大小不同的系统进行增益放大,本系统增益功能使用GAIN PROGRAMING系统完成。

测井专业统计指标解释.doc

测井专业统计指标解释.doc

测井专业统计指标解释测井一、基本概念(一)测井指钻井钻到目的层后,运用专门的测井仪器,沿井身测量地层的各种物理参数,并根据这些测量参数,结合钻井、录井资料,认识和判明地层岩性、储**物性(孔隙度、渗透率、含****饱和度)以及****层的规律,为****田开发和开采提供依据。

1、测井类型和对象测井按井身结构分,可分为裸眼井测井和套管井测井两类。

套管井测井通常又称为测试,测井和测试在作业技术上没有本质区别,二者在作业井型上也没有严格的界限,从统计意义上两者工作性质相同。

按作业方式分,分为常规测井、标准测井、工程测井、特殊测井和生产测试五类。

常规测井通常包括声波测井、电法测井和放射性测井;标准测井通常包括自然电位、梯度、电位和井斜等项目;工程测井通常包括固放磁(校深)、井径、噪声和固井质量检查等项目;特殊测井通常包括声电成像、核磁、藕极声波、剩余**、重复地层测试、倾角、能谱、碳氧比、介电、阵列感应、阵列声波和长源距声波等项目,特殊测井项目均可作为单测项目进行施工;生产测试通常包括产液剖面和注水剖面测井等项目。

按井别分,分为探井测井和开发井测井两类。

探井测井就是以研究地层的岩性、物性、含**性与特性的关系为基础,以寻找并评价****储集层,计算地质储量。

开发井测井则是为对已探明量进行开发利用,在开发钻井中进行的以判明**层厚度、埋藏深度及核实储量为主要目的测井。

生产测试是以研究**层动态为基础,其根本任务是求准**层的各项参数,查明**、**、水在地下的分布和动态,研究**井的技术状况,指导井下作业和提高**的最终采收率。

2、测井方法常用测井方法有声波测井、电法测井、放射性测井、生产井测井和其它测井。

3、测井工序主要由测井准备、路途行驶、现场施工、回站仪器检查保养、资料验收、解释处理等组成。

(二)射孔在套管井中的****层位置,采用爆炸穿孔的方式对井壁进行穿孔,在****层与井筒间形成通道,以使储层中的****得以释放开采的施工过程。

测井综合解释及数据处理

测井综合解释及数据处理

补偿中子测井
补偿中子测井主要用于识别孔 隙性地层和估算孔隙度。通常, 通过将中子测井孔隙度与其它 孔隙度测井或者岩心分析资料 对比,能够将气层从油层或者 水层中区分出来。中子和密度 测井相结合能够提供精确的地 层评价资料。
应用: · 确定孔隙度; · 识别气层; · 结合其它类型的孔隙度测井识 别岩性。
四、中子测井(NEUTRON LOG)
1.探测对象
中子测井是测量井中的热中子分布。输出视孔隙度 φN。 常见的中子测井仅有两种: (1)测超热中子分布的井壁中子测井仪:SNP (2)测热中子分布的补偿中子测井仪:CNL 它们的区别如下: 名称 探测器个数 所测φ N值反映内容 SNP CNL 1 2 只反映地层含氢指数,不受Cl-干扰 反映地层含氢指数及Cl-元素影响
2.地质应用 (1)识别孔隙地层,确定孔隙度φN 因为中子孔隙度测井是一种通过地层含氢量 来反映充满液体的孔隙大小的测井方法。所以:
N (1 N ) Nma N Nf
N Nma N Nf Nma
其中, φN、 φNma 、 φNf分别表示岩层、骨 架、孔隙流体的含氢指数。
各种岩性的测井特征声波时差体积密度gcm中子孔隙度自然电位微电极电阻率井径泥岩300222653504501315snp40cnp40snp井壁cnp补偿异常不明显或很大正异常无烟煤无烟煤最低接近钻头砂岩2503802125中等中等明显异常中等明显正差异低中等略钻头生物200300比砂岩略较低较高比砂岩还低明显异常较高明显正差异较高略钻头石灰岩1652502427比砂岩还低大片异常齿状正负差异小于或等于钻头白云岩15525025285比砂岩还低大片异常齿状正负差异小于或等于钻头硬石膏约164约30约为0接近钻头石膏约171约23约50约220约21接近于0最低钾盐最高钻头测井方法曲线特征在实际应用时各种测井方法区分岩性的能力是不同的一般地说spgr和岩性密度测井所提供的光电吸收截面指数pe等区分岩性的能力较强

石文软件快速使用手册

石文软件快速使用手册

Gxplorer软件使用要点数据加载:1.井位数据加载:在窗口新建一个平面图→在平面图上单击右键→添加井位→加载井位数据(文本数据选择路径或excel格式粘贴)→在出现的对话框里确认数据内容和标题一一对应→点击确定→数据加载完成。

2.测井数据加载批量加载:项目树→点中井数据→右键→加载数据→加载测井数据→选择数据(支持的数据格式:txt、lass)→点击打开→弹出“导入多井数据”对话框→点选要加载的曲线→确定加载测井数据选择测井数据选择曲线曲线加载成功后●单独加载:项目树→点开井数据→点击要加数据的井右键→加载数据→加载测井曲线→确定3.分层数据加载●批量加载:项目树→点中井数据→右键→加载数据→加载(如:地层、砂层等)→确保数据内容和列标名称对应→点击确定→弹出“重建分层结构”对话框,数据加载完毕。

加载地层数据加载砂层数据单独加载:项目树→点开井数据→点击要加数据的井右键→加载数据→加载(如: 地层、砂层等)4.研究区域、断层数据或边界线数据加载●加载研究区域:项目树→平面图→点击研究区域管理器→右键→加载研究区域●加载断层数据:项目树→平面图→点击断层管理器→右键→加载数据●加载边界线数据:项目树→平面图→打开人文信息管理器→选中边界线→右键→加载数据加载研究区域加载断层数据加载边界线5.井位显示在平面图上后,可以使用快捷键Shift+鼠标左键――移动平面图,Shift+Alt+鼠标左键或Shift+Ctrl+鼠标左键调整,以改变平面图作图比例。

连井剖面:一、创建剖面:1.选择井:平面图上单击鼠标右键→选择创建连井→依次在平面图上点选连接作剖面的井→单击右键选择创建连井剖面。

2.确定井的风格:剖面上选一口井确定风格和加载的图道→点中井名单击右键→保存单井默认模版→在空白处单击右键选择所有井使用默认模版。

3.截取要研究的目的层:点中地层分界线→右键→地层线截取作图井段顶/底部→截取4.调整井间比例:在空白处双击→层与井间属性下选择是否与实际距离成比例→调整作图比例5.选择对齐方式:点中地层分界线→右键→选择对齐方式(作图段顶部对齐、海拔对齐、地层线对齐、地层线海拔比例对齐)6.在相应的模式下连接相应的层:1)地层对比图:选择地层模式→自动连层→需要填充地层时在空白处双击层与井间属性下选择地层连层填充。

测井和地震数据深度的统一

测井和地震数据深度的统一

Z:Elevation,海拔。

所有的海拔都是从平均海平面(MSL,Mean Sea Level)算起的,向上海拔增加,向下海拔减小,MSL处为0。

所以就很明显,MSL以下的Z值都是负值(图2)。

KB:Kelly Bushing,补心海拔。

其实,Kelly Bushing是方钻杆补心,在Petrel 中就用KB表示方钻杆补心的海拔。

很明显,这个值也是以平均海平面MSL为基准的(见图1)。

MD:Measured Depth,测量深度。

从方钻杆补心(KB)开始,沿着井眼测量的深度(图2)。

很明显,测量,包括测井的时候,都是从方钻杆补心开始。

TVD:True Vertical Depth,垂直深度。

从方钻杆补心(KB)开始,井眼的真实垂向深度(图2)!老外很严谨,为什么要加一个“True”啊,因为对应MD不“True”。

直井MD和TVD是一样的,斜井,水平井就不同了,MD更多的体现了“长度”的概念,TVD才是True的“垂向深度”。

TVDSS:True Vertical Depth Sub-sea。

平均海平面下垂直深度(图2)。

这个说的很明白,Sub-sea,从海平面往下真实的垂向深度。

不过,这个sea是平均海平面。

补心高(度):补心的高度,指方钻杆补心至地面的距离,也就是方钻杆补心的地面高度。

补心海拔=地面海拔+补心高(度)。

图1 补心海拔(KB)(据Petrel)图2 MD、TVD等(据Petrel)个人认为,“测井都是从地面为基准面开始测试的”这句话是不对的。

如果一个油田单位的测井资料里没有做特别地说明其测井深度是从哪一个位置为起算点的,那么石油行业标准的通常做法是测井的基准面是该井自身的补心海拔高度,即地面海拔再加上补心高的位置,也就是钻井平台的位置(也就是KB)。

下表层套管、技术套管和油层套管时,都是从补心海拔为起算点的,实际测井时,也可能表层有一段不去测量,但测量仪器依然是从钻井平台放下去的,所以深度起算点依然是该井的补心海拔。

测井数据处理与综合解释

测井数据处理与综合解释

测井数据处理与综合解释1、测井解释收集的第一性资料:①钻井取芯②井壁取芯和地层测试③钻井显示④岩屑录井⑤气测录井⑥试油资料2、测井数据预处理在用测井数据计算地质参数之前,对测井数据所做的一切处理都是预处理。

主要包括:①深度对齐:使每一深度各条测井数据同一采样点的数据。

②把斜井曲线校正成直井曲线③曲线平滑处理:把非地层原因引起的小变化或不值得考虑的小变化平滑掉。

④环境校正:把仪器探测范围内影响消除掉,获得地层真实的数值。

⑤数值标准化:消除系统误差的方法。

测井资料的定性解释是确定每条曲线的幅度变化和明显的形态特征反映的地层岩性、物性和含油性,结合地区经验,对储集层做出综合性的地质解释。

三、测井综合解释由各油田测井公司的解释中心选择的处理解释程序,有比较富有经验的人员,较丰富的资料对测井数据做更完善的处理和解释,它向油田提供正式的单井处理与解释结果,综合地质研究,还可以完成地层倾角、裂缝识别、岩石机械性质解释等特殊处理。

1、地层评价方法以阿尔奇公式和威里公式为基础,发展了一套定量评价储集层的方法,包括:①建立解释模型;②用声速或任何一种孔隙度测井计算孔隙度;③用阿尔奇公式计算含水饱和度和含油气饱和度;④快速直观显示地层含油性、可动油和可动水;⑤计算绝对渗透率;⑥综合判断油气、水层。

2、评价含油性的交会图电阻率—孔隙度交会图3、确定束缚水饱和度和渗透率储集层产生流体类别和产量高低, 与地层孔隙度和含油气、束缚水饱和度、绝对渗透率和原油性质等有关。

束缚水饱和度与含水饱和度的相互关系,是决定地层是否无水产油气的主要因素,绝对渗透率是决定地层能否产出流体的主要因素,束缚水饱和度有密切关系。

没有一种测井方法可直接计算这两个参数。

确定束缚水饱和度的方法:1)将试油证实的或综合分析确有把握的产油。

油基泥浆取芯测量的含水饱和度就是束缚水饱和度。

2)深探测电阻率计算的含水饱和度作为束缚水饱和度。

3)根据试油、测井资料的统计分析,确定束缚水饱和度。

测井资料处理与解释

测井资料处理与解释

油藏静态描述 地质、地震、测井、开发信息综合分析
测井、地质、地震信息间的相互深度匹配与刻度 地层和油气层的对比
岩性、储集性、含油气性在纵、横向的变化规律; 区域构造、断层、沉积以及生储盖层
地下储集体的几何形态与储层参数的空间分布
油气藏和油水分布规律,计算油气储量,为制定油田 开发方案提供可靠的基础地质参数
油井检测与油藏动态描述
在油气田开发过程中,研究产层的静态和动态 参数-孔隙度、渗透率、温度、压力、流量、 油气饱和度、油气水比等的变化规律,确定油 气层的水淹级别及剩余油气分布,确定生产井 的产出剖面和注入井的注入剖面及随时间的变 化,监测产层的油水运动状态、水淹情况及采 出程度、确定挖潜部位,对油气藏进行动态描 述,为单井动态模拟和全油田油藏模拟提供基 础数据,以确定最优的开发调整方案,达到最 大限度地提高最终采收率的目的

定性解释
量 程
半定量解释
采用方法的 难易程度

定量解释
快速直观解释 定量解释

井场解释
单井初步解释与油气分析

解释精度与 单井储层的精细描述与油

测井站解释
评价范围
气评价

计算中心解释
多井评价与油藏描述
注意问题
测井方法自身的探测特性、范围、适用范围 间接性 地质情况的复杂性 井眼影响
测井解释-间接性、模糊性、多解性 测井解释是对地质特征的推理和还原过程 综合分析是测井数据处理与解释中最基本的方法
BIT
阿特拉司 (Western Atlas Wireline)
LAS
CWLS
LA716
Western Atlas Wireline
TIF

测井数据处理

测井数据处理

中国石油大学胜利学院课程设计(论文)题目:测井解释及评价年级专业:资源勘查工程三班学生姓名:丛玉天学号:************ 指导教师:**导师单位:中国石油大学胜利学院论文完成时间:2015 年 6 月23 日摘要通过对《测井数据处理与综合解释》基本理论与方法的学习,以地层评价为主线,系统介绍了测井数据处理与解释的基本理论和基本方法;和根据测井解释自身发展,编人了近十年来在该领域内部分重要研究成果,主要包括:最优化测井解释、水淹层评价、油藏描述、图像处理与解释、模糊数学及人工智能在测井解释中的应用等内容。

对某实际测井资料进行岩性划分与评价、储层识别、物性评价及含油气性评价。

获得常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究。

掌握常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井方法的理解,运用所学程序设计语言完成设计数据的程序编写,利用所学carbon绘图软件完成数据成图,对所得结果做分析研究。

关键词:最优化测井解释、水淹层评价、储层识别、物性、含油气性、绘图软件目录第1章设计目的和基本要求 (1)第2章课程设计的主要内容 (1)2. 1 测井曲线的数字化及CIF (1)2. 2 测井曲线的特征 (2)2. 3 划分储层界面的方法 (2)2. 4 计算储层物性参数 (2)第3章测井解释和评价: (3)3.1测井资料解释流程 (3)3.2测井资料定性解释 (3)3.3测井资料定量计算 (4)3.4定性分析及定量评价基本原理 (4)第4章处理结果及分析 (5)4.1岩性评价 (5)4.2物性评价 (5)4.3含油气性评价 (6)第5章总结 (7)参考文献 (8)致谢 (8)附录 (9)第1章设计目的和基本要求测井课程设计是学完《测井数据处理与综合解释》之后的重要实践教学环节。

测井数据的采集与处理技术

测井数据的采集与处理技术

1 概述测井数据的采集与处理是油田测井工作的重要环节,往往对其有较高的要求,一旦技术使用不恰当,就会对测井质量造成影响[1]。

随着科学的不断发展,当前测井数据采集与处理也发展十分迅猛,有必要对这些技术进行深入的探讨。

2 利用FMS技术进行系统设计由于测井工作的特殊性,井下环境往往比较复杂,需要在非常高的环境温度下开展测井工作,经常采用快速扫描、满扫以及倾角法。

在该技术的实际应用过程中其应用数据指标往往较多,主要包括采集、控制方式、电路板尺寸、算法、输入信号数据处理等。

在该系统对弱信号的采集过程中,往往需要提供144个数据采集通道,首先利用AD转换器实现对模拟测量信号的数字化转换,然后通过DSP的进一步数据处理后,将其传输到主控制板上,然后按照相同通信协议要求,将这些数据组织成信息传输帧,通过数据总线,将这些数据发送到数据的接收端。

3 利用MFS技术进行采集在数据的采集过程中,主要是使用了A/D,其采用了SAR结构,转换精度可以达到16位,可以满足多种信号的采集需要,其采样频率也可以保持在1Mbit,可以同时实现多通道的数据采集。

在对测井信号采集的过程中,难免会出现信号干扰的现象,这些干扰可以分为地线回路干扰和地线阻抗干扰。

在这2种阻抗中,对于前述的干扰可以采用滤波的方法,来滤除其中的杂波,或者通过对接地方式的优化,也可以大大减少干扰信号的产生。

例如在电路板PCB布线的过程中,可以通过地线网格设计,就能够起到非常好的地线干扰抑制作用[2]。

在具体的设施过程中,可以将差分加入到采集的输出端与极板的输出端之间,利用隔离系统让采集系统和其它电路有效隔离开来,这样也可以减少干扰的产生。

为了避免在数据通信的过程中,出现严重的干扰,可以采用数字通信技术,如CAN通信、串口通信等。

如果对通信的需求比较简单,属于一对一的通信模式,就可以直接采用串口通信的方式。

如果对通信速度要求较好,且希望实现多通道通信,则应该采用CAN通信的方式。

生产测井技术(井身质量)

生产测井技术(井身质量)

轴向短探头C 横向探头B
轴向短探头C探 测深度较浅,只能 用于探测内层管的 损伤。
轴向长探头A
电磁探伤测井仪的结构
上扶正器 伽马探头 井温探头 下扶正器
轴向短探头C 横向探头B
轴向长探头A探测 深度较深,能够探 测内外两层管的损 伤。
轴向长探头A
电磁探伤测井仪的结构
上扶正器 伽马探头 井温探头 下扶正器
Mak2-SGDT是俄罗斯研制的 一种固井质量评价测井仪,该仪器 是一种声波-伽马密度组合仪。
Mak2-SGDT的声波测量部分
Mak2-SGDT的声波测量部分与 CBL/VDL测量原理、仪器结构基本相同,都 是测量套管滑行波的首波。Mak2测量参数 包括两个接收器分别记录的首波传播时间T1、 T2(由此可计算出声波时差ΔT)、两个接收 器分别记录的首波衰减曲线dk1、dk2(由此 计算出衰减系数αk)和全波列或变密度曲线。 用这些曲线进行综合分析,就可以判断两个 界面的胶结情况。
ⅡⅡ


电磁探伤模拟测井实验
TEXP UUB1 UUC1 UUA1
电磁探伤模拟测井实验
TEXP UUB1 UUA1 UUC1
缝高 缝宽


75mm 1mm



Байду номын сангаас
100mm 2mm




75mm 2mm
电磁探伤测井应用
裂 缝
电磁探伤测井应用
损伤
电磁探伤测井应用
变形
该井为一 口注水井,由 于不了解井下 套管的破损情 况不知是否应 该作业。因此, 采用电磁探伤 仪在油管内测 量套管变形情 况。测井结果 发现该井只是 变形,并没有 产生裂缝,因 此,没有作业。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年全国大学生数学建模夏令营题目A题:垃圾分类处理与清运方案设计垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。

在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。

2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。

在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。

其中对于居民垃圾,基本的分类处理流程如下:在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。

不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。

2)可回收垃圾将收集后分类再利用。

3)有害垃圾,运送到固废处理中心集中处理。

4)其他不可回收垃圾将运送到填埋场或焚烧场处理。

所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。

显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。

本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。

为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是:1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。

以期达到最佳经济效益和环保效果。

2)假设转运站允许重新设计,请为问题1)的目标重新设计。

仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。

其他所需数据资料自行解决。

附录11)大型厨余垃圾处理设备(如南山餐厨垃圾综合利用项目,处理能力为200吨/日,投资额约为4500万元,运行成本为150元/吨。

小型餐厨垃圾处理机,处理能力为200-300公斤/日,投资额约为28万元,运行成本为200元/吨。

橱余垃圾处理后产物价格在1000-1500元/吨。

2)四类垃圾的平均比例橱余垃圾:可回收垃圾:有害垃圾:其他不可回收垃圾比例约为4:2:1:3。

可回收垃圾划分为纸类、塑料、玻璃、金属四大类,大概比例分别是:55%、35%、6%、4%。

纸类、塑料、玻璃、金属四类的废品回收价格是每公斤:1元、2.5元、0.5元、2.5元。

3)南山区的垃圾清运设备情况(主要是车辆数目和载重)。

拖头(拖车):只拖十吨的大型厢,只用于从转运站到垃圾中心,每次只拖一个大型“厢”,平均吨公里耗油25L—30L柴油/百公里。

收集车辆:只负责从小区的垃圾站到转运站运输。

100辆2.5吨汽车,每车耗油20L—35L 70#汽油/百公里。

司机月薪平均3500元。

附录2. 部分有关资料请上网站,在数学建模基础数据页之垃圾问题基础数据下载:1)垃圾转运站垃圾转运量等情况统计表(南山),2)南山区居民数据,3)中转站位置图。

B题:水资源短缺风险综合评价水资源,是指可供人类直接利用,能够不断更新的天然水体。

主要包括陆地上的地表水和地下水。

风险,是指某一特定危险情况发生的可能性和后果的组合。

水资源短缺风险,泛指在特定的时空环境条件下,由于来水和用水两方面存在不确定性,使区域水资源系统发生供水短缺的可能性以及由此产生的损失。

近年来,我国、特别是北方地区水资源短缺问题日趋严重,水资源成为焦点话题。

以北京市为例,北京是世界上水资源严重缺乏的大都市之一,其人均水资源占有量不足300m3,为全国人均的1/8,世界人均的1/30,属重度缺水地区,附表中所列的数据给出了1979年至2000年北京市水资源短缺的状况。

北京市水资源短缺已经成为影响和制约首都社会和经济发展的主要因素。

政府采取了一系列措施, 如南水北调工程建设, 建立污水处理厂,产业结构调整等。

但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。

如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。

《北京2009统计年鉴》及市政统计资料提供了北京市水资源的有关信息。

利用这些资料和你自己可获得的其他资料,讨论以下问题:1评价判定北京市水资源短缺风险的主要风险因子是什么?影响水资源的因素很多,例如:气候条件、水利工程设施、工业污染、农业用水、管理制度,人口规模等。

2建立一个数学模型对北京市水资源短缺风险进行综合评价,作出风险等级划分并陈述理由。

对主要风险因子,如何进行调控,使得风险降低?3 对北京市未来两年水资源的短缺风险进行预测,并提出应对措施。

4 以北京市水行政主管部门为报告对象,写一份建议报告。

附表1979年至2000年北京市水资源短缺的状况注:2000年以后的数据可以在《北京2009统计年鉴》上查到。

深圳也是我国严重缺水的城市。

你们也可取代北京,对深圳水资源短缺风险进行相应的研究。

C题:测井曲线自动分层问题在地球物理勘探中需要利用测井资料了解地下地质情况,其中测井曲线分层是首先要完成的基础工作。

测井曲线分层的目的是为了在今后的研究中,便于对具有不同特点的地层确定研究目标,以及确定将要重点研究的地层,统一不同井号的研究范围。

通常,在一个区域内,通过前期地质研究工作,结合各种测井数据,首先对最早开发的参考井进行详细研究。

每一种测井数据,都反映了地质结构的特点和地层的变化,地质人员通过经验,综合各种测井数据反映的地层特点,将井从一定深度开始,对井进行井层划分和命名,如1号井从距井口深368米处开始,依次往下,定名为长31、长32、长33、长41、长42、长61、长62、长63、长71、长72、长73、长81、长82、长91、长92等地层。

接着在分析随后开发的2号井时,也根据和1号井分层的特点和规律,依次定名为长31、长32、长33、长41、长42、长61、长62、长63、长71、长72、长73、长81、长82、长91、长92等地层。

井的位置不同可能会导致这口井的每一个层位的深度范围也不同,甚至有可能会出现缺失中间某层的现象。

如第6号井缺长31、长32层。

通常这些工作都是通过人工来进行的,这就是所谓人工分层方法。

该方法不仅费时费力,而且分层取值过程中受测井分析人员的经验知识和熟练程度影响较大,主观性较强,也会因为不同的解释人员的个人标准有误差,而造成不同的人员有不同的分层结果。

自动分层的基本思想、实现手段是一个不断发展变化的过程。

由人工分层到自动分层,除了计算机工具的引入,各种数据处理技术也被应用于自动分层。

随着一个区域开发井的数量增加,我们希望利用已有分层井点数据与变化特点作为控制点,结合每口井丰富的测井曲线数据,如密度(DEN)、声波(AC)、中子(CNL)、自然伽玛(GR)、自然电位(SP) 和电阻率(RT) 等的变化特点,建立合理的数学模型,实现井位分层人工智能处理,也就是实现自动分层。

相对于人工分层,自动分层可以避免人为分层的随意性,并可在很大程度上提高工作效率。

进行具体的井位分层人工智能处理,这将极大地提高工作效率。

另一方面,希望通过自动分层处理,与人工分层的结果进行比较分析,进一步提高分层精度。

下面请完成以下工作:1.以1号井为标准井,根据此井的各种测井曲线数据,建立数学模型,对第2号至7号井进行自动分层,并且通过分析,与人工分层结果进行比较分析。

考虑是否需要利用你所建立的数学模型,对1号井的分层结果进行说明。

2.通过前面人工分层与自动分层的比较结果,以及已给的各种测井曲线数据,确定合适的数学模型对第8号井至13号井进行自动分层,并分析你的结论。

数据见附件1和附件2附件1 (1-13号井测井数据):第二行是开始记录数据的井位深度,第三行是结束记录数据的井位深度。

第四行为记录井位数据的间距。

第五到第七行为66种不同的测井数据,接下即为记录的具体数据。

其中,DEPTH代表井位深度,其他的数据一部分为测井曲线,如DEN (密度),RILD (深感应电阻率),RILM (中感应电阻率),R4.0 (4M 电阻率),SP (自然电位测井),GR (自然伽玛测井),AC (声波测井),RML (微侧向电阻率),CNL (中子密度测井),RT (电阻率测井),WA (视地层水电阻率), RMFA (视泥浆电阻率) 等,还有一部分代表地层的特性,如DEVi (井斜),AZIm (井斜方位),CAL (井径),PORW (含水孔隙度),PORT (总孔隙度),POR (孔隙度),PORR (有效孔隙度),PORF (冲洗带饱含泥浆孔隙度),PERM (绝对渗透率),SW (总含水饱和度),SH (泥质含量),SXO (冲洗带含水饱和度),POW (含水孔隙度),CARB (煤的含量),FW (产水率),BULK (出砂指数),CALC (井径差值),CL (粘土体积),PORX (流体孔隙度),PORH (油气重量) 等等。

注:数据中-9999.000是无效数据,它可能是因为测量仪器对某种属性不敏感而导致的。

附件2 (井位数据):第2、3列为井的坐标位置,后面各列标出了不同名称层位的底深 (表示该层位结束时的深度),即可确定每个地层的所在深度范围。

D 题:用出租车GPS 数据分析深圳道路交通情况各大城市出租车越来越多的安装了GPS 终端,这些终端能够每隔1分钟向出租车管理中心发送本车的位置、速度和方向等信息,是车辆GPS 实时数据。

原始数据主要保存出租车上装配的GPS 终端所采集的数据,这些数据包括序号,车牌号码,GPS 时间,经度,纬度,车辆状态(空车、重车),车辆速度,车辆方向(8个方向)等信息。

附注网站提供了深圳市出租车GPS 数据,从这些数据你是否能够:1. 根据出租车载客的起讫点,结合深圳市的交通地图,恰当的划分交通小区,并选择小区中的某一点,用其经纬数值作为该小区的坐标。

2. 根据小区划分和出租车GPS 数据,给出载客出租车的OD 时空分布。

如:某时刻从坐标(,)i j 到(,)i j ''、(,)i j ''''的出租车有多少辆。

3. 由此,在合理的假设条件下,能否对人们出行的OD 时空分布进行推断?4. 根据出租车载客后的行驶数据,筛选出拥堵的路段时段以及拥堵的路口时段。

拥堵的标准自己设定,如某路段在某个时段平均行驶速度小于多少公里/小时(比如,10公里/小时),可认为是拥堵。

相关文档
最新文档